

HWG report to LEPC

Alex Read University of Oslo

for the

LEP working group for Higgs Boson searches: S. Andringa, P. Bock, M. Carena, P. Colas, M. Felcini, I. Fisk, T. Fragat, P. Garcia-Abia, S. Heinemeyer, K. Hoffman, A. Holzner, D. Horváth, P. Janot, P. Igo-Kemenes, T. Junk, M. Kado, E. Locci, P. Lutz, C. Martinez-Rivero, P. McNamara, W. Murray, K. Nagai, A. N. Okpara, M. Oreglia, A. Quadt, A. Raspereza, A. Read, A. Rosca, V. Ruhlmann-Kleider, A. Sopczak, M. Stanitzki, P. Teixeira-Dias, A. Tilquin, C. Tully, C. Wagner, G. Weiglein, S. Yamashita

Outline

Introduction

• Total luminosity in Y2K inputs delivered to HWG (last data update 10 July): ~360 pb⁻¹

● Combinations include (relevant) data taken ≤1999.

• Y2K data are placed in \sqrt{s} bins (which vary from search to search and experiment to experiment) to prevent explosion in number of channels.

• Both the inputs to the HWG and the combination results are very fresh, and thus **preliminary**, but in most cases there has been time for satisfactory cross-checks.

SM Higgs search

- HZ, $Hv_e\overline{v_e}$ (small), He^+e^- (tiny) final states
- Only remaining freedom is Higgs mass
- H branches mainly to bb O(85%) and tau-pairs O(7%)
- Select SM Z decays, use Z mass constraint when relevant

Individual SM limits

Expected (median, in presence of background-only) and observed SM Higgs mass exclusion limits (GeV).

Experiment	Expected at Moriond	Expected	Observed
ALEPH	107.2	111.0	110.6
DELPHI	106.3	109.2	109.0
L3	105.3	108.2	107.4
OPAL	105.2	109.8	110.0
LEP	109.1		

• Moriond individual expected limits computed by experiments.

• New results from combination procedure - consistent to ~0.2 GeV with experiments.

- Improvements of 3-5 GeV!
 beam energy
 - analysis optimization

Mass plots

SM Mass plots low S/B

S/B computed for mrec>105

SM Mass plots medium S/B

SM Mass plots high S /B

SM -2InQ by channel

SM -2InQ by experiment

Exclusion limits

SM limits by channel

Experiment	Expected	Observed
Leptons	106.4	107.4 (*)
Neutrinos	109.6	111.5
Taus	101.9	103.9
4 Jets	112.2	111.3
LEP	113.4	113.3

(*) Unexcluded window below 102.8 GeV

Search potentials

Search potentials for:

"Exclusion" - exclude signal at 95% CL in favor of background

- "Observation" exclude background at 3σ in favor of signal
- "Discovery" exclude background at 5 σ in favor of signal

MSSM h,A searches

MSSM 4b mass plot

MSSM bbττ mass plot

MSSM limits

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		mh	max		
• Expect to exclude beyond Z, but existing		$m_{h >}$ $m_{A >}$ tan β exclusion	observed 90.5 90.5 0.5-2.3	expected 92.2 92.8 0.5-2.3	
• Expect to exclude beyond Z, but existing		no stoj	p mixing		
• Expect to exclude beyond Z, but existing		$m_{h >}$ $m_{A >}$ tan β exclusion	observed 90.4 90.5 0.4-7.7	expected 92.4 92.9 0.4-8.6	
candidates make it difficult.	• Expect to candidates	o exclude make it	e beyo difficu	nd Z, but ex 1lt.	kisting

H+Hsearch

 In MSSM m_H>m_W extreme parameters and radiative corrections can give mu<mw< li=""> </mw<>
WW background is major obstacle
 search is carried out in context of more general 2HD models m_H>m_W constraint gone cross-section determined by mass of H⁺⁻ assume cs and τυ_τ exhaust decays cs cs
• $\tau^{+} \upsilon_{\tau} \tau^{-} \upsilon_{\tau}$ (no mass reconstruction)

H+H- 4 jet mass plot

Alex Read

H+Hsignal test

H+Hexclusion

H+Hlimits

Lower bounds on charged Higgs mass (GeV):

$B(H \rightarrow \tau \upsilon_{\tau})$	Observed	Expected
0.0	80.8	79.6
0.5	78.1	81.7
1.0	87.7	90.5
Any	77.5	78.8

Fermiophobic Higgs

 2 HDM coupling so fermed on tuned on Higg light Status of so fermed on the second second	 2 HDM of Type-I: fermion couplings of form SM*cosα/sinβ, so fermion couplings can be tuned off. Higgs decays to bosons (and γγ for light Higgs) Status of searches: 			
Experiment	\sqrt{s} (GeV)	Search channels		
ALEPH	192-209	All Z decays (global)		
DELPHI	189-202	qq, neutrinos		
L3	189-202	qq, ll, neutrinos		
OPAL	91-209	qq, 11, neutrinos		

Fermiophobic significance

Fermiophobic BR limit

95% CL exclusion for B($h \rightarrow \gamma \gamma$) from ADLO combination

Invisible Higgs search

- production as SM/MSSM but decays into undetectable final state (neutralinos, Majorons)
 extremely preliminary!
 ADO with inputs
 - **DELPHI** up to 1999 inputs
 - ALEPH+OPAL $\sqrt{s} \le 210 \text{ GeV}$

Invisible Higgs search

Invisible Higgs limits

Lower bounds (GeV) on invisible Higgs:

	Expected	Observed
ALEPH	108.6	106.9
DELPHI	103.5	102.9
OPAL	105.3	105.3
LEP (ADO)	109.9	107.7

Summary

Reminder: Results are preliminary

- First combined results for fermiophobic and invisible Higgs
- Fast analysis of y2k data in most searches
- No evidence of signal anywhere
 - Exclusion limits obtained:

SM	$m_{\rm H} > 113.3 \; {\rm GeV}$
H ⁺ H ⁻	$m_{\rm H} > 77.5 \; { m GeV}$
MSSM (m _h -max)	$m_{\rm h} > 90.5$
	$m_{\rm A} > 90.5$
	$\tan\beta < 0.5$ or $\tan\beta > 2.3$
Fermiophobic	$m_{\rm H} > 106.4 \; {\rm GeV}$
Invisible	$m_{\rm H} > 107.7~{\rm GeV}$

Prospects for observing a signal with additional running at ~same (L,√s) limited by present results
 O(1-2 GeV) improvements in exclusion limits are expected.