ALEPH Status Report

LEPC Sept 5, 2000 D. Schlatter CERN

TPC SUSY Searches **Higgs Searches**

Results are very PRELIMINARY Y2K Data until 1. Sept.

<u>collected luminosity (in pb⁻¹)</u>

	now	until July 20
all energies	154	93
<205 GeV	4	
~205.5 GeV	68	62
~206.5 GeV	75	31
>207 GeV	7	

Short in TPC Field Cage

track residuals in VDET

TPC field cage current

Similar to August 1999 incident (carbon fibre)

TPC Short continued

affected data have been reprocessed

8h30, Sept 2 LEP, heavy beam loss

\Rightarrow TPC short is gone!

At LEPC on July 20, ALEPH presented a fresh analysis with a possible excess for:

b-jets with leptons:

56 obs. / 33.6 exp. for **580 pb**⁻¹ (39 obs. / 23.0 exp. 411 pb⁻¹)

- n-tuple of preliminary analysis contained lepton-id for isolated leptons.
- new study using e.g. heavy flavour lepton identification, more adequate for leptons in jets yields no excess
 - **D** 24 obs. / 20. exp. for 411 pb⁻¹

excess is NOT confirmed

No significant excess in any channel!

SM Higgs Searches

"Online" Analyses

frozen before start of data taking, 4jet analysis same as last year

Number of observed and expected events				
Analysis	Data	SM Bkg	Signal	
		expected	(m _H = 114 GeV)	
qqqq	34	33.3	3.0	
q qn	29	27.0	1.0	
$\mathbf{q}\overline{\mathbf{q}}ll$	21	21.1	0.4	
q q tt	11	9.7	0.2	
AII NN	95	91.1	4.6	

overall good agreement, but...

	Data	Bkg	Signal M _H =114GeV
Four Jet	10	5.1	0.9
qqm	2	2.2	0.2
qqll	4	1.7	0.2
qqtt	2	0.6	0.07

Bkg (>109 GeV):	WW ~40%	
	77 ~23%	mass cut:
	<u>aa</u> ~37%	M _H - 5 GeV

CL for Background Hypothesis, Cb

11

Significance of Excess

High Purity Selection

NN Output Distribution

Four Jets

At very high NN values ZZ bkg dominates. e.g. NN>0.96: 75% ZZ 25% qq

assumption: 22 GeV in SICAL is beam related 17

- evt.: 1 2 3 • very signal like, NN output very high: 0.996, 0.997, 0.999
- very good b-tagging for H cand. jets: 0.990, 0.993, 0.990 (except one jet) 0.990, 0.999, 0.21
- the two evts with m=114GeV have only one jet combination passing all cuts (CUT analysis)
- in second 4b cand., second best jet pairing in NN flips H $\hat{\mathbf{U}}$ Z assignment. m_{reconst}=m₁₂+m₃₄-91.2 remains the same!

However, all three candidates also have an acceptable kin. fit (prob = O(1%)) for the ZZ hypothesis.

b-tag Checks

semi-leptonic WW events

reconstructed Higgs mass is result of 4C fit (E and \vec{P} conservation) \Rightarrow no bias close to limit looking at last years data

Preliminary search results based on 154 pb⁻¹ collected:

SUSY : no excess

• no chargino candidates @ 208 GeV

Exotic Higgs no excess

Charged Higgs, Invisible Higgs, Fermiophobic Higgs

MSSM Higgs no excess

BUT...

Using two online analyses:

- from c_b: 3.9(NN) or 3.8(cuts) std deviation from Standard Model background
- compatible with SM Higgs around 114 GeV
- but cross section 1s 2.5s too high wrt SM Higgs
- at s/b ³ 2 and m_{rec} > 109 GeV, observe 3 candidates,
 0.3 bkg evts expected (signal » 0.6 evts, m =114GeV)

Exciting, but small number of events and not background free!

- Can neither claim nor rule out that the excess observed in the Higgs search is first sign for production of SM Higgs.
- therefore, we request an extension of running to allow us to

double the statistics at > 206.5 GeV

(³ 75 pb⁻¹)

This would not be enough for a 5s discovery, but will give a definite answer if excess was due to background fluctuation