Status of Higgs Boson Searches

P. Igo-Kemenes

(Heidelberg / CERN)

ALEPH, DELPHI, L3, OPAL

and the

LEP Higgs Working Group

- Statistics ... definitions
- Data sets ... REF, DELTA, TOTAL
- **RESULTS** ... REF, DELTA, TOTAL
- Consistency ... btw Experiments / Channels
- Extrapolations ... the "Road map"

Statistics ... Definitions

TASK ... to combine "channels" from four experiments Data sets @ different E_{cm} and Luminosities Different decay-channels

 $e^+e^- \rightarrow Z H \rightarrow b\bar{b}, \ \tau^+\tau^- \ \hookrightarrow q\bar{q}, \nu\bar{\nu}, e^+e^-, \mu^+\mu^-, \tau^+\tau^-$

(1) **INPUTS** ... for each "channel" ... binned in two discriminating variables (both contribute to the search sensitivity)

- Reconstructed Higgs mass $\,M_{H}^{rec}\,$
- Global variable *G* ... containing
 b-tag, kinematics, jet-properties ...

MC estimates of $s_i(m_H)$ and b_i take into account the exp'tal details (e.g. E_{cm} , lumi, signal eff., mass-resol., bkgds ...)

... Statistics

For "test-mass" m_H ... (2) LIKELIHOOD TEST ... "sig + bkgd" \iff "bkgd"

 $-2\ln Q(m_H) = 2s_{tot} - 2\sum N_i \ln[1+s_i(m_H)/b_i]$

 $Q(m_H) = \mathcal{L}(s+b)/\mathcal{L}(b)$ "test-statistic"

to rank the observed event configuration between "s + b" and "b" hypotheses

For arbitrary test-mass m_H ... and replacing the data set by

ficticious MC sets of "s + b" and "b" configurations

 \Rightarrow expected curves ... and statistical spread

P. Igo-Kemenes - LEP Seminar - Nov. 3, 2000

... Statistics

(3) CONFIDENCE LEVELS ...

• $1 - CL_b$... a measure of incompatibility with "b" Given an ensemble of "b" experiments ... probability to obtain an event configuration less bkgd-like than the observed event configuration $1 - CL_b \mid 0.32 \quad 0.046 \quad 2.7 \times 10^{-3} \quad 6.3 \times 10^{-5} \quad 5.7 \times 10^{-7}$

0						
	1 <i>o</i>	2 σ	3 σ	4 σ	5 σ	

• CL_{s+b} ... a measure of incompatibility with "s+b" $CL_s = CL_{s+b}/CL_b \Rightarrow$ lower bound on Higgs mass

 ■ REFERENCE data set ... where it all begun ... data set combined for the Sept 5 LEP seminar ...
 ■ Revisited ... changes within the experiments
 ⇒ Recalibration of data

- \Rightarrow Revision of procedures (corrections)
- \Rightarrow Improvements ... better sensitivity
- **DELTA** set ... data collected since "REF"

(... until the "cutoff date" ... Oct 18-25)

• TOTAL = REF + DELTA

Integrated luminosities ... A+D+L+O = "ADLO" (contributions from single experiments ... within \pm 5%) Not included ... latest data ... \approx 30 pb⁻¹

${\cal L}$ (pb $^{-1}$)	REF	DELTA	TOTAL
$E_{cm}>200{ m GeV}$	596.6	213.7	810.3
$E_{cm}>206~{ m GeV}$	303.5	184.5	488.0

$\mathsf{REFERENCE} \Rightarrow \mathsf{TOTAL}$

No spectacular changes anticipated (limited additional luminosity)

Relevant question ... the TREND

- Does the "effect" increase / derease ?
- Towards a better distribution ...

between experiments ?

between decay channels ?

RESULTS ... REF, DELTA, TOTAL

• Derived independently by three people ...

same sets of input, differing combination software

- Results of individual experiments ... reproduced comparisons of $-2 \ln Q$, CL_s , $1 CL_b$
- Detailed checking of non-trivial technical details problems fed back to the experiments
- Alternative test statistics ... $\Delta = \pm 0.1 \, \sigma$
- Bypassing the syst. errors ... $\Delta = +0.1\,\sigma$

⇒ GLOBAL COMBINATION UNCERTAINTY on OBSERVED effect ...

 $\lesssim 0.2\, oldsymbol{\sigma}$

2**0** 3**0** 4 0 100 102 104 106 108 110 112 114 116 118 120 $m_H (GeV/c^2)$ 2.2σ 2.3σ 2.9σ $2.5 imes 10^{-2}$ $2.2 imes 10^{-2}$ $4.2 imes10^{-3}$ $- CL_b$ LEP DELTA Expected s+b Expected b **CL_b** ... REF, DELTA, TOTAL Observed ADLO REF БП TOT $I_{IO} = I_{IO} = I_{IO}$ $I0^{-2}$ $I0^{-5}$ $I0^{-3|}$ -4 10 3**0** 20 4 6 2g 30 4 0 100 102 104 106 108 110 112 114 116 118 120 100 102 104 106 108 110 112 114 116 118 120 $m_H (GeV/c^2)$ $m_H(GeV/c^2)$ LEP TOTAL Expected s+b Expected b Expected s+b Expected b Ш Ш И **Dbserved** Observed с Ш Ц $I0^{-2}$ $I0^{-2}$ $I0^{-3}$ $I0^{-4}$ $I0^{-3[}$ $I0^{-5}$ ⁻¹ ⁻¹ ¹⁰ ¹⁻ ¹⁻ ¹⁻ ¹⁻ ¹⁻ I^{P}_{I} , V 4 10 10

EVOLUTION ... BY EXPERIMENT

(values quoted @ $m_H=115$ GeV)

ALEPH	$1-CL_b$	
REF	$1.6 imes10^{-4}$	3.8σ
DEL	0.43	bkgd-like
τοτ	$6.5 imes 10^{-4}$	3.4σ

DELPHI	$1-CL_b$	
REF	29.0	bkgd-like
DEL	0.52	bkgd-like
тот	0.68	bkgd-like

	bkgd-like	2.6σ	1.8σ
$1 - CL_b$	0.84	$9.0 imes 10^{-3}$	6.8×10^{-2}
L3	REF	DEL	τοτ

	bkgd-like	1.9σ	1.3σ
$1-CL_b$	0.47	6.2×10^{-2}	1.9×10^{-1}
OPAL	REF	DEL	ΤΟΤ

P. Igo-Kemenes - LEP Seminar - Nov. 3, 2000

Contributions from Single Candidates

(for TOTAL data set)

$-2\ln(Q)~\sim~\sum\ln(1+s_i/b_i)$

1+s/b ... an indicator of of event "weight"

Distributions of Event "weights"

(for TOTAL data set @ $m_H=115$ GeV)

"Bkgd"-like or "Signal+bkgd"-like ?

Expected rates $@m_H = 115 \text{ GeV} \dots$ TOTAL

Integrating bkgd, signal and data ...

for $s/b\gtrsim 1$

		Backgd	Signal	Candidates
ADLO	4-jet	0.93	1.60	3
	E-miss	0.30	0.46	1
	Lept	0.35	0.68	0
	Taus	0.14	0.29	0
ADLO	All chan.	1.72	3.03	4

Distributions of Reconstructed Mass

Sequence: "Loose", "Medium" and "Tight" selection (*)

CII	клкл к	DV
. 5U	Ινιινι Α	

REFERENCE	\Rightarrow	TOTAL
2.2σ	\Rightarrow	2.9σ
One expt "s+b"-like	\Rightarrow	Three expt "s+b"-like
4-jet "s+b"-like	\Rightarrow	4-jet, E-miss "s+b"-like

Perfect compatibility with SM Higgs cross section for $m_{H} = 115.0^{+1.3}_{-0.9} \, {
m GeV}$

! ALL THIS IS VERY EXCITING !

Current bound on Higgs boson mass

 $m_H > 113.5~{
m GeV}$ @95% c.l.

for 115.3 GeV expected

The "Road-Map" ... Since Sept' 2000

If accummulating background only ...

If accummulating signal + background ...

P. Igo-Kemenes - LEP Seminar - Nov. 3, 2000

The "Road-Map" ... Running at $E_{cm}=208.2$ GeV

If accummulating background only ...

If accummulating signal + background ...

P. Igo-Kemenes - LEP Seminar - Nov. 3, 2000

Given the consistency for the combined results with the hypothesis of the production of a SM Higgs boson with a mass of 115 GeV, and an observed excess in the combined data set of 2.9σ , a further run with 200 pb⁻¹ per experiment at 208 GeV would enable the four experiments to establish a 5 σ discovery.

The four experiments consider the search for the SM Higgs boson to be of the highest importance, and CERN should not miss such a unique opportunity for a discovery.

Therefore, we request to run LEP in 2001 to collect ${\cal O}$ (200 pb $^{-1}$) at $\sqrt{s}{\geq}~208$ GeV.

ALEPH, DELPHI, L3, OPAL The LEP Higgs Working Group