
The C Object System∗

Using C as a High-Level Language

Laurent Deniau
CERN – European Organization for Nuclear Research

CH-1211 Geneva, Switzerland
laurent.deniau@cern.ch

ABSTRACT
The C Object System (Cos) is a pure C library which im-
plements high-level concepts available in Clos, Objective-
C and other programming languages: uniform object model
(class, metaclass and property-metaclass), generic functions,
multi-methods, delegation, properties, exceptions, contracts
and closures. Cos relies on the programmable capabilities of
the C programming language to extend its syntax and imple-
ment the aforementioned concepts as first-class objects. Cos
aims at satisfying seven general principles all together: sim-
plicity, flexibility, extensibility, reusability, variability, effi-
ciency and portability. Its inductive design is tuned to pro-
vide efficient and portable implementation of two key con-
cepts essential to support these principles: message multi-
dispatch and message multi-forwarding. With COS features
at hand, software becomes as simple and flexible as with
scripting languages and as efficient and portable as expected
with C programming. Likewise, Cos concepts significantly
simplify adaptive and dynamic programming as well as large-
scale and service-oriented software development.

Categories and Subject Descriptors
D.3.3 [Programming Language]: Language Constructs
and Features; D.1.5 [Programming Techniques]: Object-
oriented Programming.

General Terms
Dynamic Languages

Keywords
Adaptive object model, Aspects, Class cluster, Closure, Con-
tract, Delegation, Design pattern, Exception, Generic func-
tion, Introspection, High-order message, Message forward-
ing, Meta-class, Meta-object protocol, Multi-method, Open
class, Predicate dispatch, Properties, Uniform object model.

∗COS project: http://sourceforge.net/projects/cos

1. INTRODUCTION
The C Object System (Cos) is a pure C library which adds
powerful concepts with user-friendly syntax to the C pro-
gramming language [1, 2] using its programmable capabili-
ties1. Cos has been developed in order to solve fundamen-
tal programming problems encountered by tiny to medium
sized teams in software development by enhancing above all
the simplicity, efficiency and variability of design and code.

Every year, new development models, design models, or pro-
gramming languages are invented and promoted. They all
claim to solve the problems encountered in other existing
model or programming languages. For instance, dynami-
cally typed languages focus on simplicity and expressivity,
and promote adaptive and dynamic programming as well as
rapid development, while statically typed languages focus on
compile-time computations (including type safety) and run-
time efficiency. To loose coupling, the latter must rely on dy-
namic features like Java and C# interfaces or Objective-
C protocols. More sophisticated languages further support
collaborative features (i.e. roles) like Scala traits, Haskell
classes and C++ parametrized inheritance, all of which al-
low to defined and compose mixins. But these features solve
only part of the problem and require explicit collaboration
between complex type systems and runtime polymorphism.
Besides, they also have to rely on various development mod-
els and design recipes to improve the flexibility of the code
and sustain large-scale development.

In contrast, Cos relies on the C programming language
which is simple, widely known and used, and has an ab-
stract machine close to the physical machine. This allows
to translate portable code into very efficient and predictable
executables and to apply simple development models. The
drawback is that Cos cannot raise the expressive power of
C itself to build domain specific languages or perform meta-
programming and generative programming like in C++.

1.1 From Principles . . .
Cos aims at satisfying seven general principles rarely met
all together in a single programming language — simplicity,
flexibility, extensibility, reusability, variability, efficiency and
portability — which have thus guided the design.

Simplicity The language must be easy to learn and use.
The training curve for an average programmer should be

1As in “Lisp is a programmable programming language” [3].

Encapsulation

opaque types

Generalization

generics

Collaboration
multi-methods

Composition
delegation

Duck Typing

message

Correctness

contracts

Late Design

open-closed

Polymorphism

inheritance

Flexibility

Extensibility

Reusability

Variability
Simplicity

Figure 1: From principles to concepts.

as short as possible what implies a clear and concise syn-
tax. Simplicity should become an asset which guarantees
the quality of the code and allows to write complex con-
structions without being penalized by a complex formalism
or by the multiplicity of the paradigms. Cos can be learned
in a few days by experienced C programmers, although ex-
ploiting the full power of Cos requires some training.

Flexibility and Extensibility The language must support
the improvement of existing components and the addition of
new features without changing significantly their design.

Reusability and Variability The language must support
the ability to reuse or quickly adapt existing components to
unforeseen tasks and to compose them dynamically.

Efficiency A general purpose programming language must
be efficient, that is it must be able to translate all kinds of
algorithms into programs running with predictable resource.
It is also an asset for simplicity when“brute force is enough”.

Portability A general purpose programming language must
be portable, that is it must be widely available on many ar-
chitectures and accessible from other languages (Ffi). This
brings many advantages: it improves the software reliabil-
ity, it reduces the deployment cost, it enlarges the field of
potential users and it helps to find trained programmers.

1.2 . . . to Concepts
Cos extends the C programming language with concepts
borrowed from Objective-C [4, 5] and Clos [7, 8] and im-
plemented in a unique collaborative and efficient manner.
Its entire design focuses on two fundamental concepts:

• dynamic polymorphic collaboration (i.e. multi-method)

• dynamic polymorphic composition (i.e. delegation)

Figure 1 shows the main inductive paths from the aimed
principles to the required concepts which guided the entire
design and implementation of Cos and formally described
hereafter.

Encapsulation and Generalization Encapsulation is a
major concern when developing libraries and large-scale soft-
ware because encapsulation is not only a matter of loose
coupling but also a design issue. Hence, Cos objects always
have opaque types (i.e. OBJ) to ensure strong encapsulation

of implementations. Moreover object behaviors are repre-
sented by generic functions which enforce the separation of
concerns since they generalize interfaces [17] towards single
orthogonal and generic open multi-methods [24] (section 3).

Polymorphism and Late Design Extending components
(i.e. reusable black boxes) requires inheritance and polymor-
phism to postpone at runtime the resolution of methods in-
vocation. Besides, when the resolution is achieved by mes-
sage dispatch, the coupling between callers and callees be-
comes almost inexistent and the code size and complexity
are significantly reduced. Furthermore, the open class model
allows to extend classes on need by adding new methods
without breaking the encapsulation (i.e. without “reopen-
ing the box”) and thus reduces the risk of premature design.
On one hand, these simplifications improve the program-
mer understanding who makes less conceptual errors, draws
simpler design and increases its productivity. On the other
hand, message dispatch postpones the detection of unknown
behavior at runtime, with the risk to see programs ending
abnormally, but contracts and test suites restricts this risk
to exceptional situations.

Collaboration Software development is mainly about build-
ing collaborations between entities, namely objects. As soon
as polymorphic objects are involved everywhere to ensure
good software extensibility and reusability, one needs poly-
morphic collaboration implemented by multi-methods [24].
They reduce strong static coupling that exist in the Visitor
pattern (or equivalent) as well as the amount of code needed
to achieve the task. Cos performs message multi-dispatch
with an efficiency equivalent to C++ virtual member func-
tion (sections 4 & 5).

Composition The composition of objects and behaviors is
the cornerstone of software flexibility and variability through
the use of indirections. Most structural and behavioral de-
sign patterns described in [22] introduce such indirections,
but they also increase the code complexity and rigidity and
hence decrease the reusability of the components built. The
delegation is an effective mechanism which allows to manage
dynamic composition of both, objects and behaviors, with-
out introducing coupling. Cos achieves delegation with the
same efficiency as message dispatch, seemingly a unique fea-
ture (section 4.2).

Reflection Reflection is a powerful aspect of adaptive ob-
ject models which, amongst others, allows to mimic the be-
havior of interpreters. Cos provides full introspection and
limited intercession on polymorphic types and behaviors,
that is classes, generics and methods, as well as object at-
tributes through the definition of properties. Since all Cos
components are first-class objects, it is trivial to replace cre-
ational patterns [22] by generic functions (section 6.1).

Ownership The management of object life cycles requires
a clear policy of ownership and scope rules. In languages like
C and C++ where semantic by value prevails, the burden is
put on the programmer’s shoulders. In languages like Java,
C# and D where semantic by reference prevails, the burden
is put on the garbage collector. In this domain, Cos lets the
developer choose between garbage collection [19] and (semi-)
manual reference counting with rich semantic (section 2.3).

Function/Behavior/Verb

defgeneric

function declaration

(interface)

Type/State/Noun

defclass

structure definition

(definition)

Specialization

defmethod

function definition

(implementation)

1 1..5

Figure 2: Cos components mapping to C-forms

Concurrency Cos has been designed from the beginning
with concurrency in mind and shares only its dictionary of
static components. Per thread resource like message caches,
exception contexts and autorelease pools rely on thread-local-
storage or thread-specific-key according to their availability.

Consequently, the concepts resulting from the inductive de-
sign of Cos strengthen inherently all the guidelines stated
in [17] to build “flexible, usable and reusable object-oriented
frameworks” as well as the architectural pattern proposed in
[18] to design flexible component-based frameworks.

1.3 Components
Cos is a small framework entirely written in portable2 Iso C
which provides programming paradigms like objects, classes,
metaclasses, generic functions, multi-methods, delegation,
properties, exceptions, contracts and closures. Cos syntax
and features are directly available at the level of the C source
code through the use of the language keywords defined in the
header file <cos/Object.h>. The object-oriented layer of Cos
is based on three components (figure 2) borrowed from Clos
which characterize its meta-object protocol [7, 8].

Classes Classes play the same role as structures in C and
define object attributes. They are bound to their superclass
and metaclasses and define supertypes-subtypes hierarchies.

Generics Generics play the same role as function declara-
tions in C and define messages. They are essential actors to
ensure good separation of concern and correctness of formal
parameters of messages between callers and callees.

Methods Methods play the same role as function defini-
tions in C and define specializations of generics. A method
is invoked if the message belongs to its generic and the re-
ceivers match its classes (multi-methods).

The similarity between the Cos components and their equiv-
alent C-forms (figure 2) actually makes simple procedural
development model very effective with Cos and lets C pro-
grammers to be rapidly productive compared to other object-
oriented approaches which impose more constraints. This is
a consequence of the open class model which enables to add
methods on need in different places while affording a much
better extensibility and reusability of the components built.

Syntax Cos introduces new keywords to extend the C lan-

2Namely C89 augmented with variadic macros (C99).

guage with a user-friendly syntax half-way between Objec-
tive-C and Clos. Cos parses its syntax and generates code
with the help of its functional C preprocessing library3; a
module of a few hundred C macros which was developed
for this purpose. It offers limited parsing capabilities, token
recognition, token manipulation and algorithms like eval,
map, filter, fold, scan, split borrowed from functional lan-
guages and working on tuples of cpp-tokens. As a rule of
thumb, all Cos symbols and macros are mangled to avoid
unexpected collisions with other libraries, including the lan-
guage keywords which can be disabled individually.

Despite of its dynamic nature, Cos tries hard to detect all
syntax errors, type errors and other mistakes at compile-
time by using static asserts or similar tricks and to emit clear
and meaningful diagnostics. The only point that Cos cannot
check at compile time is the understanding of a message by
its receivers; an important “feature” to reduce coupling.

2. CLASSES (NOUNS, ENTITIES)
Cos allows to define and use classes as easily as in other
object-oriented programming languages.

Declaration The useclass() declaration allows to access
classes as first-class objects. The following simple program
highlights the similarities between Cos and Objective-C:

1 #include <cos/Object.h>
2 #include <cos/generics.h>
3

4 useclass(Counter, (Stdout)out);
5

6 int main(void) {
7 OBJ cnt = gnew(Counter);
8 gput(out, cnt);
9 gdelete(cnt);

10 }

which can be translated line-by-line into Objective-C by:

1 #include <objc/Object.h>
2 // Counter interface isn’t exposed intentionally
3

4 @class Counter, Stdout;
5

6 int main(void) {
7 id cnt = [Counter new];
8 [Stdout put: cnt];
9 [cnt release];

10 }

Line 2 makes the standard generics like gnew, gput and gdelete
4

visible in the current translation unit. Objective-C doesn’t
need this information since methods are bound to their class,
but if the user wants to be warned for incorrect use of mes-
sages, the class definition must be visible. This example
shows that Cos requires less information than Objective-
C to handle compile-time checks what leads to better code
insulation and reduces useless recompilations. Moreover, it
offers fine tuning of exposure of interfaces since only the used
generic functions have to be visible.

Line 4 declares the class Counter
5 and the alias out for local

renaming of the class Stdout, both classes being supposedly

3Describing this module is beyond the scope of this paper.
4By convention, Cos generic names starts by a ’g’.
5By convention, Cos class names starts by an uppercase.

defined elsewhere to avoid an error at link-time. In line 7,
the generic type OBJ is equivalent to id in Objective-C.

Lines 7–9 show the life cycle of objects, starting with gnew

(resp. new) and ending with gdelete (resp. release). They
also show that generics are functions (e.g. one can take
their address). Finally, the line 8 shows an example of
multi-method where the message gput(_,_) will look for the
specialization gput(mStdout,Counter) whose meaning is dis-
cussed in section 4. In order to achieve the same task,
Objective-C code has to rely on the Visitor pattern, a bur-
den that requires more coding, creates static dependencies
(strong coupling) and is difficult to extend.

Definition The definition of a class is very similar to a C
structure:

defclass(Counter)
int cnt;

endclass

which is translated in Objective-C as:

@interface Counter : Object {
int cnt;

}
// declaration of Counter methods not shown
@end

or equivalently in Clos as:

(defclass Counter (Object) ((cnt)))

The Counter class derives from the root class Object — the
default behavior when the superclass isn’t specified — and
defines the attribute cnt.

Visibility What must be visible and when? In order to man-
age coupling, Cos provides three levels of visibility: none,
declaration and definition. If you only use the generic type
OBJ, nothing is required (no coupling) as in:

OBJ gnew(OBJ cls) {
return ginit(galloc(cls));

}

If you want to create instances of a class, only the declaration
is required (weak coupling) as in:

OBJ gnewBook(void) {
useclass(Book); // declaration of a local reference
return gnew(Book);

}

If you want to define subclasses, methods or instances with
automatic storage duration, the class definition (i.e. defclass)
must be visible (strong coupling).

2.1 Inheritance
Class inheritance is as easy in Cos as in other object-oriented
programming languages. Figure 3 shows the hierarchies of
the core classes of Cos deriving from the root classes Object

and Nil. As an example, the MilliCounter class defined here-
after derives from the class Counter to extend its resolution
to thousandths of count:

defclass(MilliCounter, Counter)
int mcnt;

endclass

which gives in Objective-C:

Object

Proxy

Nil

Method Behavior

Generic Class

MetaClass

PropMetaClass

Tracer TrueFalse

FalseTrue

NIL
subclass of

NIL

Property Predicate

Figure 3: Subset of Cos core classes hierarchy

@interface MilliCounter : Counter {
int mcnt;

}
// declaration of MilliCounter methods not shown
@end

and in Clos:

(defclass MilliCounter (Counter) ((mcnt)))

In the three cases, the derived class inherits the attributes
and the methods of its superclass. Since Cos aims at insulat-
ing classes as much as possible, it discourages direct access
to superclass attributes by introducing a syntactic indirec-
tion which forces the user to write obj->Super.attribute

instead of obj->attribute. The inheritance of behaviors in
the context of multi-methods will be discussed in section 4.

Class rank Cos computes at compile-time the inheritance
depth of each class. The rank of a root class is zero (by
definition) and each successive subclass increases the rank.

Dynamic inheritance Cos provides the message gchange-
Class(obj,cls) to change the class of obj to cls iff it is a
superclass of obj’s class; and the message gunsafeChange-
Class(obj,cls,spr) to change the class of obj to cls iff both
classes share a common superclass spr and the instance size
of cls is lesser or equal to the size of obj. These messages are
useful for implementing class clusters, state machines and
adaptive behaviors.

2.2 Meta classes
Like in Objective-C, a Cos class definition creates a paral-
lel hierarchy of metaclass which facilitates the use of classes
as first-class objects. Figure 4 shows the complete hierarchy
of the PropMetaClass class, including its metaclasses.

Class metaclass The metaclasses are classes of classes im-
plicitly defined in Cos to ensure the coherency of the type
system: to each class must correspond a metaclass [20].
Both inheritance trees are built in parallel: if a class A de-
rives from a class B, then its metaclass mA

6 derives from the
metaclass mB — except the root classes which derive from
NIL and have their metaclasses deriving from Class to close
the inheritance path. All meta-classes are instances of the
class MetaClass.

6Metaclass names are class names prefixed by ’m’.

Object

Behavior

Class

MetaClass

PropMetaClass

NIL

pmObject

pmBehavior

pmClass

pmMetaClass

pmPropMetaClass

mObject

mBehavior

mClass

mMetaClass

mPropMetaClass

instance of
subclass of

Class

Figure 4: Subset of Cos core classes with metaclasses

Property metaclass In some design patterns like Singleton
or Class Cluster, or during class initialization, the automatic
derivation of the class metaclass from its superclass meta-
class can be problematic as detailed in [21]. To solve the
problem Cos associates to each class a property metaclass
which cannot be derived; that is all methods specialized on
the property metaclass can only be reached by the class it-
self. In order to preserve the consistency of the hierarchy, a
property metaclass must always derive from its class meta-
class, namely pmA

7 (resp. pmB) derives from mA (resp. mB)
as shown in the figure 4. All property meta-classes are in-
stances of the class PropMetaClass.

Class objects With multi-methods and metaclasses in hands,
it is possible to use classes as common objects. Figure 5
shows the hierarchy of the core class-objects used in Cos
to specialized multi-methods with specific states. For in-
stance messages like gand, gor and gnot are able to respond
to messages containing the class-predicates True, False and
TrueFalse (i.e. undefined). The root class Nil is a special
class-object which means no-object but still safe for message
dispatch: sending a message to Nil is safe, but not to NIL.

Type system The Cos type system follows the rules of
Objective-C, that is polymorphic objects have opaque types
(ADT) outside their methods and are statically and strongly
typed inside their methods; not to mention that multi-methods
reduce significantly the need for runtime identification of
polymorphic parameters. Furthermore, the set of class–
metaclass–property-metaclass forms a coherent hierarchy of
classes and types which offers better consistency and more
flexibility than in Objective-C and Smalltalk where meta-
classes are not explicit and derive directly from Object.

2.3 Instances
Object life cycle The life cycle of objects in Cos starts
by the creation (galloc) followed by the initialization (ginit
and variants) and ends with the deinitialization (gdeinit)
followed by the destruction (gdealloc). In between, the
user manages the ownership of objects (i.e. dynamic scope)

7Property metaclass names are class names prefixed by ’pm’.

Nil

Predicate

TrueFalse

FalseTrue

subclass of

Ordered

GreaterLesser Equal

Property

sizename

NIL

Figure 5: Subset of Cos class-predicates

with gretain, grelease and gautoRelease like in Objective-
C. The copy initializer is the specialization of the generic
ginitWith(_,_) for the same class twice. The designated ini-
tializer is the initializer with the most coverage which in-
vokes the designated initializer of the superclass using next-
_method. Other initializers are secondary initializers which
must invoke the designated initializer [6].

Object type In Cos (resp. Objective-C), objects are al-
ways of dynamic type because the type of galloc (resp. alloc)
is OBJ (resp. id). Since it is the first step in the life cycle of
objects in both languages, the type of objects can never
be known statically, except inside their own multi-methods.
That is why Cos (resp. Objective-C) provides the message
gisKindOf(obj,cls) (resp. [obj isKindOf: cls]) to inspect the
type of objects. But even so, it would be dangerous to use
a static cast to convert an object into its expected type be-
cause dynamic design patterns like Class Cluster and Proxy
might override gisKindOf for their own use. Cos also pro-
vides the message gclass(obj) which returns obj’s class.

Object identity In Cos, an object is bounded to its class
through a unique 32-bit identifier produced by a linear con-
gruential generator which is also a generator of the cyclic
groups N/2kN for k = 2..32. This powerful algebraic prop-
erty allows to retrieve efficiently the class of an object from
the components table using its identifier as an index (Fig-
ure 6). Comparing to pointer-based implementations, the
unique identifier has four advantages:

It ensures better behavior of cache lookups under heavy load
(uniform hash), it makes the hash functions very fast (sum
of shifted ids), it is smaller than pointers on 64-bit machines
and it can store extra information (high bits) like class ranks
to speedup linear lookup in class hierarchies.

Automatic objects Since Cos adds an object-oriented layer
on top of the C programming language, it is possible to
create objects with automatic storage duration (e.g. on the
stack) using compound literals. In order to achieve this,
the class definition must be visible and the developer of
the class must provide a special constructor. For exam-
ple the constructor aStr(’’a string’’)8 is equivalent to the
Objective-C directive @’’a string’’. Cos already provides
automatic constructors for many common objects like Char,
Short, Int, Long, Float, Complex, Range, Functor and Array.

8By convention, automatic constructors start by an ’a’.

obj->id -

Dictionary of behavioral components

table[obj->id & (table_size-1)]

- obj’s class

Figure 6: Lookup of object’s class from object’s id.

Automatic constructors allow to create efficiently temporary
objects with local scope and enhance the flexibility of multi-
methods. For example, the copy initializer ginitWith(_,_)

and its variants can be used in conjunction with almost
all the automatic constructors aforementioned. Thanks to
the rich semantic of Cos reference counting, if an auto-
matic object receives the message gretain, gautoDelete or
gautoRelease, it is automatically cloned using the message
gclone and the new copy with dynamic scope is returned.

Static objects Static objects can be built in the same way
as automatic objects except that they require some care
in multi-threaded environments. It is worth to note that
all Cos components have static storage duration and conse-
quently are insensitive to ownership and destruction.

3. GENERICS (VERBS, ROLES)
We have already seen in previous code samples that generics
are C functions. But a generic is in fact a verb raised at
the same level of abstraction as a noun and takes multiple
forms: i) a function declaration (defgeneric) which ensures
the correctness of the signature of its methods (defmethod),
aliases (defalias) and next-methods (defnext), ii) a function
definition used to dispatch the message and find the most
specialized method belonging to the generic and matching
the classes of the receivers, iii) an object holding the generic’s
metadata: the selector.

Generic rank The rank of a generic is the number of re-
ceivers in its list of formal parameters. Cos supports gener-
ics from rank 1 to 5 what should be enough in practice since
rank 1 to 4 already cover all the multi-methods defined in
the libraries of Cecil and Dylan [23, 30].

Declaration Generic declarations are less common than
class declarations but they can be useful when one wants to
use generics as first-class objects. Since generic definitions
are more often visible than class definitions, it is common to
rename them locally as in the following short example:

void safe_print(OBJ obj) {
usegeneric((gprint) prn);
if (gunderstandMessage1(obj, prn) == True)
gprint(obj);

}

which gives in Objective-C:

void safe_print(id obj) {
SEL prn = @selector(print);
if ([obj respondsToSelector: prn] == YES)
[obj print];

}

Definition Definition of generics correspond to function
declarations in C and differ from Objective-C method dec-

larations by the fact that they are neither bound to classes
(prefix ’-’) nor to metaclasses (prefix ’+’). The following
definitions:

defgeneric(void, gincr, _1); // rank 1
defgeneric(void, gincrBy, _1, (int)by); // rank 1
defgeneric(OBJ , ginitWith, _1, _2); // rank 2
defgeneric(OBJ , ggetAt, _1, at); // rank 2
defgeneric(void, gputAt, _1, at, what); // rank 3

can be translated into Clos (but not Objective-C) as:

(defgeneric incr (obj))
(defgeneric incr-by (obj by))
(defgeneric init-with (obj with))
(defgeneric get-at (obj at))
(defgeneric put-at (obj at what))

Selector parameters like at are called open types (no paren-
thesis) since their type can vary for each specialization. Other
parameters like by are called closed types (with parenthesis)
and have fixed types and names: specializations must use the
same types and names as defined by the generic. This en-
forces the semantic of monomorphic parameters which could
otherwise be ambiguous: (int)offset vs. (int)index.

Messages Cos dispatcher uses global caches (one per gener-
ics rank) implemented with hash tables to speedup method
lookups. The caches solve slot collisions by growing until
they reach a configurable upper bound of slots. After that,
they use sorted linked lists to hold a maximum of 3 cells.
Above this length, the caches start to forget cached meth-
ods — a required behavior when dynamic class creation is
supported. The lookup uses fast asymmetric hash functions
(sum of shifted ids) to compute the cache slots and ensures
uniform distribution even when all selectors have the same
type or specializations on permutations exist.

4. METHODS
Methods are defined using a similar syntax as generics as
shown in the following code which defines a method special-
ization of the generic gincr for the class Counter:

defmethod(void, gincr, Counter)
self->cnt++;

endmethod

which in Objective-C gives (within @implementation):

- (id) incr {
self->cnt++;

}

Methods specializers The receivers can be equivalently ac-
cessed through selfn9 whose types correspond to their class
specialization (e.g. struct Counter*) and through unnamed
parameters _n whose types are OBJ for 1 ≤ n ≤ g, where
g is the rank of the generic. It is important to understand
that selfn and _n are bound to the same object, but selfn
provides a statically typed view (i.e. monomorphic) which
allows to efficiently treat Cos objects as normal C structures.

Multi-methods Multi-methods are methods with more than
one receiver and do not require special attention in Cos. The
following example defines the assign-sum operator (i.e. +=)
specializations which add respectively 2 and 3 Counters:

9
self and self1 are equivalent.

defmethod(OBJ, gaddTo, Counter, Counter)
self->cnt += self2->cnt;
retmethod(_1); // return self

endmethod

defmethod(OBJ, gaddTo2, Counter, Counter, Counter)
self->cnt += self2->cnt + self3->cnt;
retmethod(_1); // return self

endmethod

In effect, about 75% of Cos generics have a rank >1 (multi-
methods) and cover more than 90% of all Cos methods.

Class methods Class methods are methods specialized for
classes deriving from Class what includes all metaclasses:

defmethod(void, ginitialize, pmMyClass)
// some initialization specific to MyClass when it’s loaded.

endmethod

// full implementation of the 9 states tri−boolean table
defmethod(OBJ, gand, mFalse, mTrueFalse)
retmethod(_1); // return False

endmethod

defmethod(OBJ, gand, mTrueFalse, mFalse)
retmethod(_2); // ditto

endmethod

defmethod(OBJ, gand, mTrueFalse, mTrueFalse)
retmethod(TrueFalse);

endmethod

defmethod(OBJ, gand, mTrue, mTrue)
retmethod(_1); // return True

endmethod

Method aliases Cos allows to specialize compatible gener-
ics with the same implementation. The following aliases de-
fine specializations for gpush, gtop and gpop which share the
specializations of gput, gget and gdrop respectively:

defalias(void, (gput)gpush, Stack, Object);
defalias(OBJ , (gget)gtop , Stack, Object);
defalias(void, (gdrop)gpop , Stack, Object);

Method types In order to support fast generic delegation
(section 4.2), Cos must use internally the same function
types (i.e. same C function signatures) for methods imple-
mentation belonging to generics of the same rank:

void (*IMP1)(SEL,OBJ,void*,void*);
void (*IMP2)(SEL,OBJ,OBJ,void*,void*);
void (*IMP3)(SEL,OBJ,OBJ,OBJ,void*,void*);
void (*IMP4)(SEL,OBJ,OBJ,OBJ,OBJ,void*,void*);
void (*IMP5)(SEL,OBJ,OBJ,OBJ,OBJ,OBJ,void*,void*);

The first parameter _sel and the subsequent OBJs point re-
spectively to the message selector (i.e. generic’s object) and
to the receivers (i.e. _n) used by the dispatcher, the penul-
timate parameter _arg is a pointer to the structure storing
the closed arguments of the generic (if any) and the last pa-
rameter _ret is a pointer to the placeholder of the returned
value (if any). The responsibilities are shared as follow:

i) the generic functions are in charge to pack the closed
arguments into the structure pointed by _arg, to create the
placeholder pointed by _ret for the returned value, to lookup
for the method specialization and to invoke its implementa-
tion (i.e. IMPn) with the arguments _sel, _n, _arg and _ret.

ii) the methods are in charge to unpack the closed argu-
ments into local variables, to bind the receivers _n to local
selfn and to handle the returned value appropriately.

4.1 Next method
The next_method principle borrowed from Clos10 is an ele-
gant answer to the problem of superclass(es) methods call
(i.e. late binding) in the presence of multi-methods. The fol-
lowing sample code defines a specialization of the message
gincrBy for the class MilliCounter which adds thousandths
of count to the class Counter:

1 defmethod(void, gincrBy, MilliCounter, (int)by)
2 self->mcnt += by;
3 if (self->mcnt >= 1000) {
4 defnext(void, gincr, MilliCounter);
5 self->mcnt -= 1000;
6 next_method(self); // call gincr(Counter)
7 }
8 endmethod

which is equivalent to the Objective-C code:

- (void) incrBy: (int)by {
self->mcnt += by;
if (self->mcnt >= 1000) {
self->mcnt -= 1000;
[super incr];

}
}

Line 6 shows how Cos next_method replaces the message sent
to super in Objective-C. By default, next_method calls the
next method belonging to the same generic (e.g. gincrBy)
where next means the method with the highest specialization
less than the current method. But in the example above, the
Counter class has no specialization for gincrBy. That is why
the line 4 specifies an alternate next method path, namely
gincr, to redirect the next_method call to the appropriate
next method. In some cases, it might be safer to test for the
existence of the next method before calling it:

if (next_method_p) next_method(self);

It is worth to note that next_method transfers the returned
value (if any) directly from the called next method to the
method caller. Nevertheless, the returned value can still be
accessed through the lvalue RETVAL.

Methods specialization Assuming for instance the class
inheritance A >: B >: C, the class precedence list for all pairs
of specialization of A, B and C by decreasing order is:

(C,C)(C,B)(B,C)(C,A)(B,B)(A,C)(B,A)(A,B)(A,A)

and the list of all next_method paths are:

(C,C)(C,B)(C,A)(B,A)(A,A)
(B,C)(B,B)(B,A)(A,A)
(A,C)(A,B)(A,A)

The algorithm used by Cos to build the class precedence
list (i.e. compute methods rank) has some nice properties:
it provides natural asymmetric left-to-right precedence and
it is non-ambiguous, monotonic and totally ordered [29].

Around methods Around methods borrowed from Clos
provide an elegant mechanism to enclose the behavior of
some primary method by an arbitrary number of around
methods. Around methods are always more specialized than
their primary method but have an undefined precedence:

defmethod(void, gdoIt, A, A)
endmethod

10Namely call-next-method.

defmethod(void, gdoIt, B, A)
next_method(self1, self2); // call gdoIt(A,A)

endmethod

defmethod(void, (gdoIt), B, A) // around method
// pre−processing
next_method(self1, self2); // call gdoIt(B,A)
// post−processing

endmethod

defmethod(void, gdoIt, B, B)
next_method(self1, self2); // call (gdoIt)(B,A)

endmethod

4.2 Delegation
Message forwarding is a major feature of Cos which was
developed from the beginning with fast generic delegation
in mind as already mentioned in the previous section.

Unrecognized message Message dispatch performs run-
time lookup to search for method specializations. If no spe-
cialization is found, the message gunrecognizedMessagen is
substituted and sent with the same arguments as the orig-
inal sending, including the selector. Hence these messages
can be overridden to support the delegation or implement
some adaptive behaviors. By default, gunrecognizedMessagen
throws the exception ExBadMessage.

Forwarding message Message forwarding has been bor-
rowed from Objective-C and extended to multi-methods.
The code sample below shows a common usage of message
forwarding to protect objects against invalid messages:

1 defmethod(void, gunrecognizedMessage1, MyProxy)
2 if(gundertstandMessage1(self->obj,_sel) == True)
3 forward_message(self->obj); // delegate
4 endmethod

which can be translated line-by-line into Objective-C by:

1 - (retval_t) forward:(SEL)sel :(arglist_t)args {
2 if ([self->obj respondsTo: sel] == YES)
3 return [self->obj performv:sel :args];
4 }

Here, forward_message propagates all the arguments, includ-
ing the hidden parameters _sel, _arg and _ret, to a different
receiver. As for next_method, forward_message transfers the
returned value directly to the method caller and can still be
accessed through RETVAL in the same way.

Fast delegation Since all methods belonging to generics
with equal rank have the same C function signature and fall
into the same lookup cache, it is safe to cache the message
gunrecognizedMessagen in place of the unrecognized message
and the next sending of the latter will result in a cache hit.

This substitution allows the delegation to be as fast as mes-
sage dispatch, seemingly a unique feature.

Intercession of forwarded messages Since the closed ar-
guments of the generic’s parameters are managed by a C
structure, it is possible to access each argument separately.
In order to do this, Cos provides introspective information
on generics (i.e. metadata on types and signatures) which
allows to identify and retrieve the arguments and the re-
turned value efficiently. But this kind of needs should be
exceptional and is beyond the scope of this paper.

4.3 Contracts
To quote Bertrand Meyer [25], the key concept of Design
by Contract is “viewing the relationship between a class and
its clients as a formal agreement, expressing each party’s
rights and obligations”. Most languages that support De-
sign by Contract provide two types of statements to express
the obligations of the caller and the callee: preconditions
and postconditions. The caller must meet all preconditions,
and the callee must meet all postconditions — the failure of
either party leads to a bug in the software. To illustrate how
contracts work in Cos, we can rewrite the method gincr:

defmethod(void, gincr, Counter)
int old_cnt;
PRE old_cnt = self->cnt;
POST test_assert(self->cnt > old_cnt);
BODY self->cnt++;

endmethod

The POST statement test_assert checks for counter overflow
after the execution of the BODY statement and throws the
exception ExBadAssert on failure, breaking the contract. The
variable old_val initialized in the PRE statement before the
execution of the BODY statement, plays the same role as the
old feature in Eiffel. As well, gincrBy can be improved:

defmethod(void, gincrBy, MilliCounter, (int)by)
PRE test_assert(by >= 0 && by < 1000, ’’out or range’’);
BODY // same code as before

endmethod

The PRE statement ensures that the incoming by is within the
expected range and the next_method call in the BODY state-
ment ensures that the contract of gincr is also fulfilled.

Assertions and Invariants The test_assert is a replace-
ment for the standard assert and raises an ExBadAssert ex-
ception on failure. The (optional) parameters str, func, file
and line are transfered to THROW for debugging purpose. The
test_invariant assertion relies on the message ginvariant

which must be specialized for MilliCounter to be effective:

defmethod(OBJ, ginvariant, MilliCounter,
(STR)func, (STR)file, (int)line)

next_method(self); // check Counter invariant first
test_assert(self->mcnt >= 0 && self->mcnt < 1000,

’’out of range’’, func, file, line); // trace location
endmethod

Contracts and inheritance Bertrand Meyer recommends
to evaluate inherited contracts as a disjunction of the pre-
conditions and as a conjunction of the postconditions, but
[26] demonstrates that Eiffel-style contracts may introduce
behavioral inconsistencies. Thus Cos prefers to treat both
pre and post conditions as conjunctions since this is the only
known solution compatible with multi-methods where sub-
typing is superseded by the class precedence list.

Contracts levels The level of contracts can be set by defin-
ing the macro COS_CONTRACT to one of the following cumula-
tive levels: NO disable contracts, COS_CONTRACT_PRE enables
PRE sections (default), COS_CONTRACT_POST enables POST sec-
tions, COS_CONTRACT_ALL enables invariant (debug).

Exceptions The exception mechanism of Cos is based on
the pair setjmp/longjmp and provides full-fledged TRY-CATCH-

FINALLY statements with the same semantic as in OO lan-
guages. THROW (resp. CATCH) relies on message gthrow (resp.
gisKindOf) to throw (resp. identify) the exception.

4.4 Properties
Property declaration is a useful programming concept which
allows, amongst others, to manage the access of object at-
tributes, to use objects as associative arrays or to make ob-
jects persistent. Properties in Cos are just syntactic sugar
on top of the definition of class-objects and the specializa-
tion of the accessors ggetAt and gputAt already mentioned.

Definition Properties are class-objects deriving from the
class Property (fig. 3) with lowercase names prefixed by P_.

defproperty(name);
defproperty(size);
defproperty(class);
defproperty(value);

For example, the value property definition is equivalent to:

defclass(P_value, Property) endclass

Class properties Once properties have been defined, it is
possible to define class-properties:

defproperty(Counter, (cnt)value, int2OBJ, gint);
defproperty(Counter, ()class, gclass); // read−only

with:

OBJ int2OBJ(int val) { // no receiver: cannot be a method
return gautoDelete(aInt(val)); // boxing

}

The value property is associated with the cnt attribute with
read-write semantic and uses user-defined boxing (int2OBJ)
and unboxing (gint). The class property is associated with
the entire object (omitted attribute) with read-only seman-
tic and uses the inherited method gclass to retrieve it.

Sometimes the abstraction or the complexity of the proper-
ties require handwritten methods. For instance:

defmethod(OBJ, ggetAt, Person, mP_name)
retmethod(gcat(self->fstname, self->lstname));

endmethod

is, assuming gname(Person) is doing the gcat, equivalent to:

defproperty(Person, ()name, gname);

Using properties The code sample below prints some ob-
ject property (or raise the exception ExBadMessage):

void print_property(OBJ obj, OBJ prp) {
gprint(ggetAt(obj, prp));

}

5. PERFORMANCE
In order to evaluate the efficiency of Cos, small test suites11

have been written to stress the message dispatcher in vari-
ous conditions. The test results summarized in table 1 have
been performed on an Intel DualCore2TM T9300 Cpu 2.5
Ghz with Linux Ubuntu 64-bit and the compiler Gcc 4.3
to compile the tests written in the three languages. The
timings have been measured with clock() and averaged over
many loops of 2 · 108 iterations each. The Param. column
indicates the number of parameters of the message split by
selectors (open types) and arguments (closed types). The
other columns represent the performances in million of in-
vocations sustained per second for respectively C++ virtual

11The code can be found in the module CosBase/tests.

Tests Param. C++ ObjC Cos
single dispatch

counter incr 1 + 0 176 122 218
counter incrBy 1 + 1 176 117 211
counter incrBy2 1 + 2 176 115 185
counter incrBy3 1 + 3 176 112 171
counter incrBy4 1 + 4 167 111 154
counter incrBy5 1 + 5 167 107 133

multiple dispatch
counter addTo 2 + 0 90 40 150
counter addTo2 3 + 0 66 23 121
counter addTo3 4 + 0 45 16 90
counter addTo4 5 + 0 40 12 77

Table 1: Performances in 106 calls/second

member functions, Objective-C messages and Cos mes-
sages. The tests stress the dispatcher with messages al-
ready described in this paper: incr increments a counter,
incrBy{2..5}opt accept from 1 to 5 extra closed parameters
(to stress the construction of _arg) and addTo{2..4}opt add
from 2 to 5 Counters together (to stress multiple dispatch).
Multiple dispatch has been implemented with the Visitor
pattern in C++ and Objective-C.

Concerning the performance of single dispatch, Cos shows
a good efficiency since it runs in average at about the same
speed as C++ and about ×1.6 faster than Objective-C.
On one hand, Cos efficiency decreases faster than C++ be-
cause it passes more hidden arguments (i.e. _sel and _arg)
and uses more registers to compute the dispatch. On the
other hand, C++ shows some difficulties to manage effi-
ciently multiple inheritance of abstract classes. Concerning
the performance of multiple dispatch, Cos outperforms both
C++ and Objective-C by factors ×1.9 and ×5.3 respec-
tively. Concerning the performance of message forwarding,
we have seen that by design, it runs at the full speed of
message dispatch in Cos. Rough measurements of Objec-
tive-C message forwarding (linear lookup) shows that Cos
performs from ×50 to ×100 faster, depending on the classes.

Multi-threading The same performance tests have been
run with Posix multi-threads enabled. When the Thread-
Local-Storage mechanism is available (Linux), no significant
impact on performance has been observed (<1%). When
the architecture supports only Posix Thread-Specific-Key
(Mac OS X), the performance is lowered by a factor ×1.6
and becomes clearly the bottleneck of the dispatcher.

Object creation Like other languages with semantic by ref-
erence, Cos loads heavily the C memory allocator (e.g. malloc)
which is not very fast. If the allocator is identified as the
bottleneck, it can be replaced with optimized pools by over-
riding galloc or by faster external allocators (e.g. Google
tcmalloc). Cos also takes care of automatic objects which
can be used to speed up the creation of local objects.

Other aspects Other features of Cos do not involve such
heavy machinery as in message dispatch or object creation.
Thereby, they all run at full speed of C: contracts run at the
speed of the user tests since the execution path is known
at compile time and flattened by the optimizer, empty TRY-
blocks run at the speed of setjmp which is a well known
bottleneck and next_method runs at 70% of the speed of an
indirect function call (i.e. late binding) because it also has to

pack the closed arguments into the _arg structure. Finally,
this kind of benchmark is a worst-case (resp. best-case) for
Cos (resp. C++) since in real applications, its collaborative
features increase (resp. decrease) its relative performance.

6. GENERIC DESIGN (COMPONENTS)
This overview of Cos shows that the principles stated in the
introduction are already well fulfilled. So far:

Simplicity can be assumed from the fact that a large part
of Cos syntax can be described within few pages, includ-
ing some examples, implementation details and comparisons
with other languages. Besides, the language has a simple
and consistent syntax and semantic free of pitfall.

Flexibility and extensibility come from the nature of
the object model which allows to extend (methods bound
to generics), wrap (around methods) or rename (method
aliases) behaviors with a user-friendly syntax. Moreover en-
capsulation, polymorphism, messages (loose coupling) and
contracts are also strong assets for software extensibility.

Reusability and variability come from the key concepts
of Cos which enhance generic design: polymorphism, col-
laboration (multi-methods) and composition (delegation).

Efficiency measurement shows that its runtime features
perform well compared to other mainstream languages.

Portability comes from its nature: a C89 library.

It is widely acknowledged that dynamic programming lan-
guages simplify significantly the implementation of classi-
cal design patterns [22] when they don’t supersede them by
more powerful dynamic patterns [6, 27, 28]. This section
focuses on how to use Cos features to simplify design pat-
terns or to turn them into reusable components, where the
definition of componentization is borrowed from [11, 12]:

Encapsulation+Polymorphism+Multi-dispatch+Delegation

6.1 Simple Patterns
Creational Patterns It is a well known fact that these
patterns vanish in languages supporting generic types and
introspection. We have already seen gnew, here is more:

OBJ gnewWithStr(OBJ cls, STR str) {
return ginitWithStr(galloc(cls), str);

}

OBJ gclone(OBJ obj) {
return ginitWith(galloc(gclass(obj)), obj);

}

The Builder pattern is a nice application of property meta-
classes to turn it into a so-called Class Cluster:

defmethod(OBJ, galloc, pmString)
retmethod(_1); // lazy, delegate the task to initializers

endmethod

defmethod(OBJ, ginitWithStr, pmString, (STR)str)
OBJ lit_str = galloc(StringLiteral);
retmethod(ginitWithStr(lit_str, str));

endmethod

This example shows how to delegate the object build to the
initializer which in turn allocates the appropriate object ac-
cording to its arguments, an impossible task for the alloca-
tor. The allocation of the StringLiteral uses the standard
allocator inherited from Object, despite it derives from the
class String, thanks to property metaclass. Now, the code:

OBJ str = gnewWithStr(String,’’literal string’’);

will silently return an instance of StringLiteral. This is the
principle of Class Clusters where the front class (e.g. String)
delegates to private subclasses (e.g. StringLiteral) the re-
sponsibility to build the object. It is worth to note that
each pmString specialization needed to handle new subclass
is provided by the subclass itself, thanks to the open class
model, which makes the Builder pattern truly extensible.
Most complex or multi-purpose classes of Cos are designed
as class clusters (e.g. Array, String, Functor, Stream).

Garbage Collector This exercise will show how to simplify
memory management in Cos with only few lines of code. We
start by wrapping the default object allocator such that it
always auto-releases the allocated objects:

defmethod(OBJ, (galloc), mObject) // around method
next_method(self); // allocate
gautoRelease(RETVAL); // auto−release

endmethod

Then we neutralize (auto-)delete and reinforce retain:

defmethod(void, (gdelete), Object) // do nothing
endmethod

defmethod(OBJ, (gautoDelete), Object) // clone auto objects
BOOL is_auto = self->rc == COS_RC_AUTO;
retmethod(is_auto ? gclone(_1) : _1);

endmethod

defmethod(OBJ, (gretain), Object)
next_method(self); // retain
if (self->rc == COS_RC_AUTO)
RETVAL = gretain(RETVAL); // once more for auto objects

endmethod

Now, the following code:

OBJ pool = gnew(AutoRelease);
for(int i = 0; i < 1000; i++)
OBJ obj = gnewWithStr(String, ’’string’’);

gdelete(pool); // pool specialization, collect the strings

does not create any memory leak, there is no longer the need
to delete or auto-delete your objects. For the first runs, you
can rely on the default auto-release pool managed by Cos.
Then a memory profiler will show the appropriate locations
where intermediate auto-release pools should be added to
trigger collects and limit the memory usage.

Key-Value-Coding We have already seen that properties
allow to access object attributes, but to implement KVC,
we need to translate strings (key) into properties (noun):

defmethod(OBJ, ggetAt, Object, String)
OBJ prp = cos_property_getWithStr(self2->str);
if (!prp) THROW(gnewWith(ExBadProperty,_2));
retmethod(ggetAt(_1, prp));

endmethod

defmethod(void, gputAt, Object, String, Object)
OBJ prp = cos_property_getWithStr(self2->str);
if (!prp) THROW(gnewWith(ExBadProperty,_2));
gputAt(_1, prp, _3);

endmethod

where cos_property_getWithStr is an optimized version of
cos_class_getWithStr for properties from the API of Cos,
which also provides cos_class_{read,write}Properties to re-
trieve all the properties of a class (and its superclasses).

Key-Value-Observing Adding access notifications of prop-
erties is the next step after KVC, using around methods:

defmethod(OBJ, (ggetAt), Person, mP_name)
useclass(After, Before); // local declaration
OBJ context = aMthCall(_mth,_1,_2,_arg,_ret);// this call
gnotify(center, context, Before);
next_method(self1, self2); // get property
gnotify(center, context, After);

endmethod

where _mth is the object representing the method itself. This
example assumes that observers and objects observed have
been registered to some notification center as commonly
done in the Key-Value-Observing pattern.

6.2 Proxies and Decorators
Proxy Almost all proxies in Cos derive from the class Proxy

which handles some aspects of this kind of class:

defclass(Proxy);
OBJ obj; // delegate

endclass

defmethod(void, gunrecognizedMessage2, Proxy, Object)
forward_message(self1->obj, _2);
check_ret(_sel, _ret, self1);

endmethod

defmethod(void, gunrecognizedMessage2, Object, Proxy)
forward_message(_1, self2->obj);
check_ret(_sel, _ret, self2);

endmethod

// ... other rank specializations

where the small function check_ret takes care to return the
proxy when the forwarded message returns the delegate obj.

Tracer For the purpose of debugging, Cos provides the
simple proxy Tracer to trace the life of an object:

defclass(Tracer,Proxy) // usage: gnewWith(Tracer, obj);
endclass

defmethod(void, gunrecognizedMessage2, Tracer, Object)
trace_msg2(_sel, self1->Proxy.obj, _2);
next_method(self1, self2); // forward message

endmethod

defmethod(void, gunrecognizedMessage2, Object, Tracer)
trace_msg2(_sel, _1, self2->Proxy.obj);
next_method(self1, self2); // forward message

endmethod

// ... other rank specializations

where trace_msg2 prints useful information on the console.

Locker The locker is a proxy which avoids synchronization
deadlock on shared objects that can be encountered in pro-
gramming languages supporting only single-dispatch [7]:

defclass(Locker,Proxy) // usage: gnewWith(Locker, obj);
pthread_mutex_t mutex;

endclass

defmethod(void, gunrecognizedMessage2, Locker, Object)
lock(self1); // lock the mutex
next_method(self1,self2); // forward the message
unlock(self1); // unlock the mutex

endmethod

defmethod(void, gunrecognizedMessage2, Locker, Locker)
sorted_lock2(self1,self2); // lock by sorted addresses

next_method(self1,self2); // forward the message
sorted_unlock2(self1,self2); // unlock by sorted addresses

endmethod

// ... other 55 specializations

For the sake of efficiency, higher ranks use sorting networks.

Multiple Inheritance The first version of Cos was na-
tively implementing multiple inheritance using the C3 algo-
rithm [29] to compute the class precedence list on the way
of Dylan, Python and Perl6. But it was quickly consid-
ered as too complex for the end-user and incidental as far as
fast generic delegation could be achieved. Indeed, multiple
inheritance can be simulated by composition and delegation
with an efficiency close to native support12 as shown below:

defclass(IOStream, OutStream) // inherits its out stream
OBJ in_stream;

endclass

defmethod(void, gunrecognizedMessage1, IOStream)
forward_message(self->in_stream);

endmethod

Now, messages of rank one not understood by the IOStreams
(e.g. gget, gread) will be forwarded to their InStream. Al-
beit it is more efficient to use dynamic inheritance to switch
IOStreams back and forth between OutStream and InStream.

Distributed Objects Without going into the details, we can
mention that Cos already implements all the key concepts
required to develop a distributed object system on the model
of Objective-C and Cocoa. A challenge for the future.

6.3 Closures and Expressions
Cos provides the family of gevaln messages (equivalent to
Common Lisp funcall) and the class cluster Functor to sup-
port the mechanism of closures and more generally lazy ex-
pressions and high order messages. The objects representing
the context of the closure (i.e. the free variables) are passed
to the Functor constructor which handles partial evaluation
and build expressions. The example hereafter shows another
way to create a counter in Perl using a closure:

1 sub counter {
2 my($val) = shift; # seed
3 $cnt = sub { # closure
4 my($inc) = shift; # increment
5 return $val += $inc; # perform addTo
6 };
7 return $cnt; # return the closure
8 }
9

10 $cnt = counter(0);
11 for($i=0; $i<25000000; $i++) {
12 &$cnt(2);
13 }

which can be translated into Cos as:

1 OBJ counter(int seed) {
2 return gautoDelete(gaddTo(aCounter(seed), aVar(0)));
3 }
4
5 int main(void) {
6 OBJ cnt = counter(0);
7 for(int i=0; i<25000000; i++)
8 geval1(cnt, aInt(2));
9 }

12Objective-C delegation is far too slow to simulate MI.

Line 2 creates a closure using the placeholder aVar(0) which
trigs the build of the functor (lazy expression) and deduces
its arity (here 1) from the remaining parameters, namely
the seed boxed in the counter, while the message gautoDelete

ensures proper delayed destruction of the functor. As one
can see, Cos achieves the same task as Perl with about the
same amount of code but runs more than ×16 faster.

The following example shows a more advanced example in-
volving lazy expressions and indexed placeholders:

// return f ′ = (f(x + dx)− f(x))/dx
OBJ ggradient(OBJ f) {
OBJ x = aVar(0); // placeholder #1
OBJ dx = aVar(1); // placeholder #2
OBJ f_x = geval1(f, x); // lazy expression
OBJ f_xpdx = geval1(f, gadd(x, dx)); // lazy expression
return gdiv(gsub(f_xpdx, f_x), dx); // lazy expression

}

// return f ′(x)|dx

OBJ gderivative(OBJ f, OBJ dx) {
return geval2(ggradient(f),aVar(0),dx);// lazy expression

}

Now, we can map this function to a bag of values (strict
evaluation) or expressions (lazy evaluation) indifferently:

OBJ df = gderivative(f, dx);
OBJ new_bag = gmap(df, bag);

High Order Messages The principle behind Homs is to
incrementally construct on-the-fly expressions from their ar-
guments and evaluate the last built expression to get the
result (i.e. interpreter). Objective-C Homs [31] are not
generic and require conventions and user-defined methods
(per class) to satisfy the underlying machinery. C++ High
Order Metaprogramming [32] relies on traits and templates
to build static meta-expressions but still requires signifi-
cant user-defined code. Finally, Homs in Cos rely on poly-
morphism, delegation and multi-methods to build efficient
Homs as generic components: a nice proof of the power of
Cos. Comparing to [31], Cos fast generic delegation avoids
the need to cache messages in Hom objects while multi-
methods avoid the need to provide specific Hom objects per
task (e.g. filter, select, collect) and methods per class
(e.g. Array, List, Map) and to build heavy machinery (Visi-
tor pattern) behind the scene to handle their collaboration.

7. CONCLUSION
Cos seems to be unique by the set of features it provides.
The library approach on top of the C programming language
without requiring any extra preprocessor, compiler or plat-
form specific feature, allowed to explore rapidly some object
models and to select the most appropriate one fulfilling the
best the seven aimed principles: simplicity, flexibility, ex-
tensibility, reusability, variability, efficiency and portability.
Moreover, the list of Cos features is complete and consistent:
syntax to support object-oriented programming, uniform ob-
ject model with extended metaclass hierarchy, multi-methods,
fast generic delegation, design by contract, properties and
key-value coding, exceptions, ownership and closures. Cos
features have been optimized from the design point of view,
but for the sake of simplicity and portability, code tuning
was never performed and lets some room for future improve-
ment. The 8000 lines of source code of Cos can be down-
loaded from sourceforge.net under the LGPL license.

8. REFERENCES
[1] Programming Languages – C. ISO/IEC 9899:1999.

[2] D.R. Hanson. C Interfaces and Implementations:
Techniques for Creating Reusable Software. 1997.

[3] J.K. Foderaro. Lisp is a Chameleon. 1991.

[4] B.J. Cox, and A.J. Novobilski. Object-Oriented
Programming: An Evolutionary Approach. 1991.

[5] The Objective-C 2.0 Programming Language. 2008.

[6] Cocoa Fundamentals Guide. Apple Inc., 2007.

[7] S.E. Keene. Object Oriented Programming in Common
Lisp: A Programmers Guide to Clos. 1989.

[8] G. Kiczales, J. des Rivières, and D.G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[9] J. Bosch. Design of an Object-Oriented Framework for
Measurement Systems. John Wiley & Sons, 2000.

[10] J. Bosch, P. Molin, M. Mattsson, and P.O. Bengtsson.
Object-Oriented Framework-based Software
Development: Problems and Experiences. ACM, 2000.

[11] K. Rege. Design Patterns for Component-Oriented
Software Development. Euromicro’99, vol. 2, 1999.

[12] B. Meyer, K. Arnout. Pattern Componentization: The
Visitor Example. Computer, vol. 39, no. 7, July 2006.

[13] B. Meyer, K. Arnout. Pattern Componentization: The
Factory Example. Software Engineering, July 2006.

[14] R.E. Johnson. Dynamic Object Model. 1998

[15] D. Riehle, M. Tilman and R.E. Johnson. Dynamic
Object Model. PLoP’2000.

[16] J.W. Yoder and R.E. Johnson. The Adaptive
Object-Model Architectural Style. WICSA’2002.

[17] J. van Gurp, and J. Bosch. D&E of Object-Oriented
Frameworks: Concepts & Guidelines. March 2001.

[18] D. Parsons and al. An architectural pattern for
component-based application frameworks. 2005.

[19] H. Boehm. Bounding Space Usage of Conservative
Garbage Collectors. PoPL’2002.

[20] R. Razavi and al. Language support for Adaptive
Object-Models using Metaclasses. ESUG’2004.

[21] N.M. Bouraqadi-Saâdani, T. Ledoux, and F. Rivard.
Safe Metaclass Programming. OOPSLA’98.

[22] E. Gamma and al. Design Patterns: Elements of
Reusable Object-Oriented Software. 1995.

[23] Y. Zibin and Y. Gil. Fast Algorithm for Creating
Space Efficient Dispatching Table with Application to
Multi-Dispatching. OOPSLA’02.

[24] P. Pirkelbauer, Y. Solodkyy and B. Stroustrup. Open
Multi-Methods for C++. GPCE’07.

[25] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[26] R.B. Findler and al. Behavioral Contracts and
Behavioral Subtyping. FSE’2001.

[27] P. Norvig. Design Patterns in Dynamic Programming.
http://www.norvig.com/design-patterns, 1996.

[28] G.T. Sullivan Advanced Programming Language
Features for Executable Design Pattern. MIT 2002.

[29] K. Barrett and al. A monotonic superclass
linearization for Dylan. OOPSLA’96.

[30] The Cecil Standard Library. 2004.

[31] M. Weiher and S. Ducasse. High Order Message.
OOPSLA’05.

[32] Boost C++ Library. http://www.boost.org.

