LHC Operations 2009/2010

Mike Lamont

- Energy extraction times (K.H. Mess)
- RRR and recommended values for simulation (A. Siemko)
- Beam induced quenches in magnets, interconnects and connection cryostats (J Wenninger)
- Simulation results for MB and MQ circuits (A. Verweij)
- FRESCA measurements status (L. Bottura)
- Splice resistance measurements and worst case estimate (A. Siemko)
- Recommendation for safe energy for operation in 2009/2010

Initial operating energy of the LHC

- Operating at 7 TeV com with a dipole energy extraction time of 50s
 - Simulations show that resistances of 120 micro-ohm are safe from thermal runaway under conservative assumed conditions of worst case conditions for the copper quality (RRR) and no cooling to the copper stabilizer from the gaseous helium

Operating at 10 TeV com with a dipole energy extraction time of 68s

- Simulations show that resistances of 67 micro-ohm are safe from thermal runaway under conservative assumed conditions of worst case conditions for the copper quality (RRR), and with estimated cooling to the stabilizer from the gaseous helium
- Decision:
 - Operation initially at 7 TeV c0m (energy extraction time of 50s) with a safety factor or more than 2 for the worst stabilizers. During this time monitor carefully all quenches to gain additional information.
- Then operate at 9 10 TeV com.

3.5 TeV running – prelim.

Acknowledgements: Ralph Assmann Werner Herr

- Emittance goes down with increasing γ : $\varepsilon_N = \beta \gamma \varepsilon$
- And thus luminosity increases with increasing γ IF we can hold other parameters constant: $L \propto \gamma$

- However, because beam size goes as:
 - □ lower energy:
 - \rightarrow increased beam size less aperture \rightarrow higher β^*
 - \blacksquare \rightarrow separation of beams in interaction regions drops

LHC - 2009/2010

Intensity – collimators and beam-beam

LHC - 2009/2010

Limit stored energy versus beam energy

LHC - 2009/2010

Beta* - with crossing angle

Werner Herr

Required crossing angle for 2.75 TeV for minimum 10σ separation (scales $\approx 1/\sqrt{\gamma}$)

LHC - 2009/2010

- Fill length: 8 hours
- Turnaround time: 5 hours
- 20 hours luminosity lifetime
- 30 day months.
- 40% machine availability
- Nominal crossing angle assumed for 50 ns.
- Total intensity limited to around 12% of nominal
- No squeeze beyond 2 m. with 156 bunches, crossing angle off conservative

NB: BIG ERROR BARS – BALL PARK FIGURES ONLY

Plugging in the numbers – 3.5 TeV

Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrated	% nominal	events/X
1	Beam commissioning							
2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹		
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹		
4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5	
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4	
5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8	1.6
6	partial 50 ns – nominal crossing angle	144	7 x 10 ¹⁰	2-3	3.1 x 10 ³¹	~16 pb ⁻¹	3.1	0.8
7		288	7 x 10 ¹⁰	2-3	8.6 x 10 ³¹	~32 pb ⁻¹	6.2	
8		432	7 x 10 ¹⁰	2-3	9.2 x 10 ³¹	~48 pb ⁻¹	9.4	
9		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	
10		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	
11		432	9 x 10 ¹⁰	2-3	1.5 x 10 ³²	~80 pb ⁻¹	12	

Plugging in the numbers with a step in energy

Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	Integrated	% nominal	events/X
1	Beam commissioning							
2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹		
3		43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹		
4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5	
5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4	0.8
5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8	1.6
6	Shift to higher energy: approx 4 weeks	Would aim for physics without crossing angle in the first instance with a gentle ramp back up in intensity						
7	4 – 5 TeV (5 TeV luminosity numbers quoted)	156	7 x 10 ¹⁰	2	4.9 x 10 ³¹	~26 pb ⁻¹	3.4	
8	50 ns – nominal crossing angle	144	7 x 10 ¹⁰	2	4.4 x 10 ³¹	~23 pb ⁻¹	3.1	1.1
9	50 ns	288	7 x 10 ¹⁰	2	8.8 x 10 ³¹	~46 pb ⁻¹	6.2	
10	50 ns	432	7 x 10 ¹⁰	2	1.3 x 10 ³²	~69 pb ⁻¹	9.4	
11	50 ns	432	9 x 10 ¹⁰	2	2.1 x 10 ³²	~110 pb ⁻¹	12	

Step up in energy

Task	Comment	Time	
Hardware commissioning of main circuits	 Modification and testing of dump resistors Installation of snubbing capacitors Calorimetry and QPS measurements 	~ 2 weeks	
Qualification of machine protection without beam	FMCMs, PIC, Collimators, TCDQ, BLMs, BPM interlocks, SMPs, RF, LBDS	In parallel with HWC	
Operation dry runs of re- qualified sectors		After hand over from HWC	
Re-commissioning of ramp and associated machine protection	Safe beam: LBDS, BLMs, RF	~ 1 week	
Re-commissioning of squeeze	Could possibly ramp-squeeze-ramp (avoiding the need to re-com the 3.5 TeV squeeze		
Optics and operations' checks at high energy		~ 2 days	
Collimator re-optimization		~4 days	

Estimate: 4 weeks to re-establish physics

Beam commissioning

450 GeV collisions

- Time limited: 3-4 shifts
- No squeeze
- Low intensity machine protection commissioning unlikely to be very advanced.
- ~1 week after first beam

No of bunches	1	4	12	
Particles/bunch 10^10	4	4	4	
Beam Intensity	4 10^10	16 10^10	4.8 10^11	
fraction of nominal beam intensity	0.0001	0.0005	0.0015	
beta* [m]	11	11	11	
Luminosity [cm^-2 s^-1]	1.7 10^27	6.6 10^27	2 10^28	
Integrated Lumi 24 hours [nb^-1]*	0.06	0.24	0.7	
Beam size at IP [microns]	293	293	293	
inelastic event rate [kHz]**	0.07	0.27	0.8	

Latest Schedule

Katy Foraz

27-08-09

LHC 2010 – very draft

IONS

(≈4 weeks)

• 2009:

1 month commissioning

• **2010**:

- 1 month pilot & commissioning
- 3 month 3.5 TeV
- 1 month step-up
- 5 month 4 5 TeV
- 1 month ions

Τu We

Th

Fr Sa Su 27

Xmas Da

- Constraints of 3.5 TeV enumerated
- Potential performance shown
 - □ NB: ball park figures only
- Step up in energy would take ~4 weeks
- Would start with a flat machine at the higher energy...
- before bringing on crossing angle and exploiting 50 ns.
- Potential performance shown
- As always, we note:
 - importance of collimator system commissioning in allowing any increases in intensity
 - Full and thorough commissioning of machine protection system as an essential pre-requisite