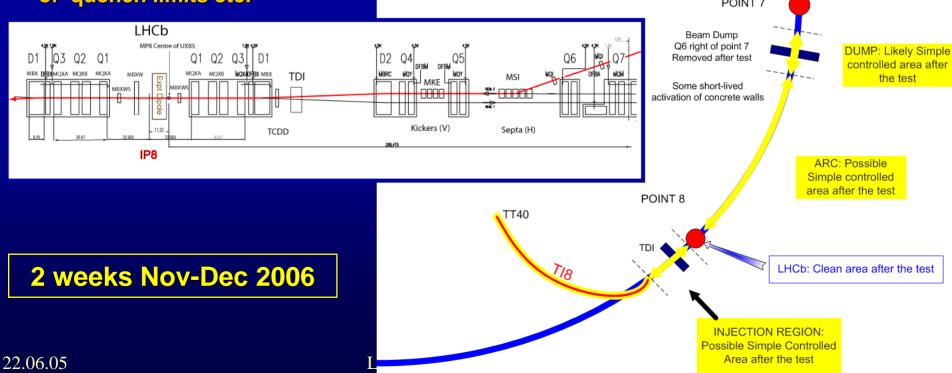
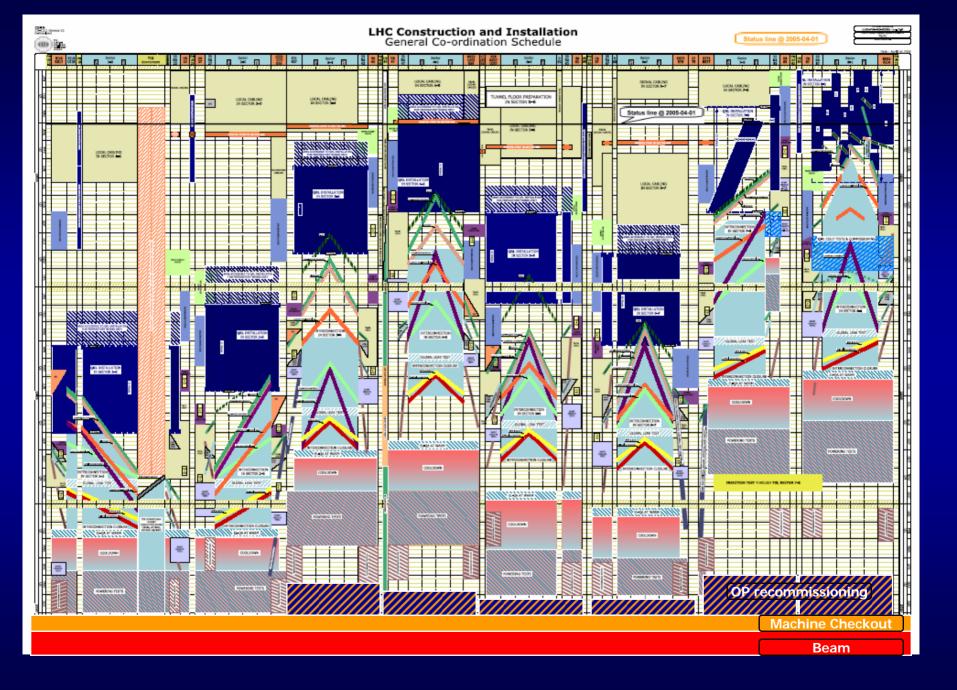

LHC commissioning

Mike Lamont AB-OP


22nd June 2005


Detailed planning for 7-8 and 8-1

Sector Test

- Rigorous check of ongoing installation and hardware commissioning
- Pre-commission essential acquisition and correction procedures.
 - Commission injection system
 - Commission Beam Loss Monitor system
 - Commission trajectory acquisition and correction.
 - Linear optics checks:
 - Mechanical aperture checks.
 - Field quality checks.
 - Test the controls and correction procedures
- Hardware exposure to beam will allow first reality checks of assumptions of quench limits etc.

22.06.05

LHC commissioning - CMS

Preparation

Obvious that meticulous preparation will be key if we are to stand half a chance of efficient commissioning

→ 6 weeks machine checkout following HWC

Clear aim to commission/fix/test everything that can be - before beam.

LHC - 2007

	ID Task Name		Finish D	Duration	May 2007 Jun 20		2007		Jul 2007					Aug 200	Aug 2007							
ID.	r dan marine	otart	tart Finish	Finish	Duration	5%	5/13	5/20	5/27	6/3	6/10	6/17	6/24	7/1	7/8	7)	/15 7/22	7/29	8/5	8/12	8/19	8/26
1	HARDWARE COMMISSIONING	1/1/2007	6/29/2007	26w																		
2	SYSTEM TESTS	1/1/2007	7/31/2007	30.4w								_					\neg					
3	MACHINE PROTECTION	4/2/2007	6/29/2007	13w																		
4	RF CONDITIONING/COMMISSIONING	1/1/2007	6/29/2007	26w																		
5	ACCESS/INB	7/23/2007	7/31/2007	1.4w																		
6	MACHINE CHECKOUT	6/14/2007	7/31/2007	6.8w																		
7	T18	7/2/2007	7/30/2007	4.2w													-					
8	CHECKOUT	7/2/2007	7/13/2007	2w																		
9	WITH BEAM	7/23/2007	7/30/2007	1.2w																		
10	T12	7/16/2007	8/2/2007	2.8w											V			/				
11	CHECKOUT	7/16/2007	7/26/2007	1.8w																		
12	WITH BEAM	7/26/2007	8/2/2007	1.2w																		
13																						
14	LHC COMMISSIONING WITH BEAM	8/1/2007	10/30/2007	13w																		
15																						
											E	XI	ΓH	W	С	;						
	EXIT CHECKOUT																					
22.0	2.06.05 LHC commissioning - CMS																					

6

Objectives

Commissioning the LHC with beam - Stage One

- Establish colliding beams as quickly as possible
- Safely
- Without compromising further progress

Take two moderate intensity multi-bunch beams to high energy and collide them.

More Specifically

43 on 43 with 3 to 4 x 10¹⁰ ppb to 7 TeV

No parasitic encounters

- No crossing angle
- No long range beam
- Larger aperture
- Instrumentation
- Good beam for RF, Vacuum...
- Lower energy densities
 - Reduced demands on beam dump system
 - Collimation
 - Machine protection
- Luminosity
 - 10³⁰ cm⁻²s⁻¹ at 18 m
 - 2 x 10³¹ cm⁻²s⁻¹ at 1 m

Beam

- Pilot Beam:
 - Single bunch, 5 to 10 x 10⁹ protons
 - Possibly reduced emittance
- Intermediate single:
 - 3 to 4 x 10¹⁰ ppb
- 4 bunches etc. pushing towards...
- 43 (to 156) bunches
 - **3 to 4 x 10¹⁰ ppb**

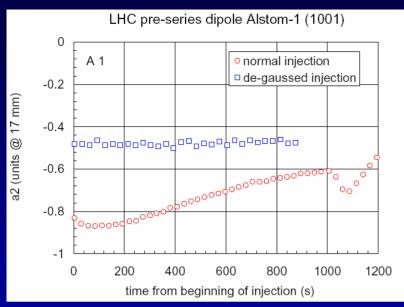
Will stepping up & down in intensity/number of bunches through the phases

The challenge

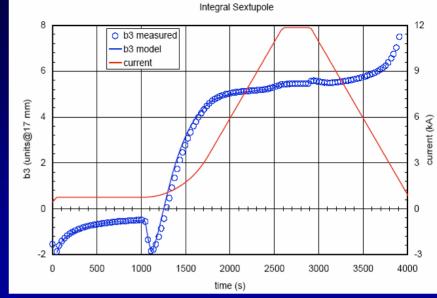
 \otimes

 \otimes

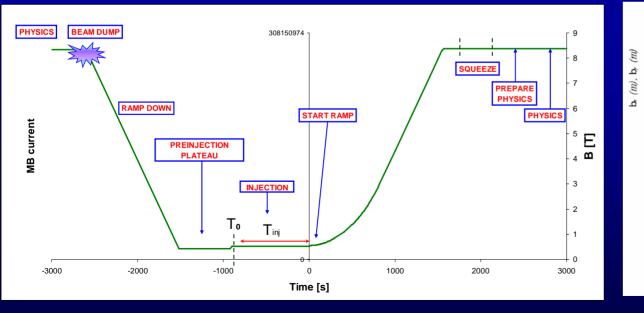
EQUIPMENT

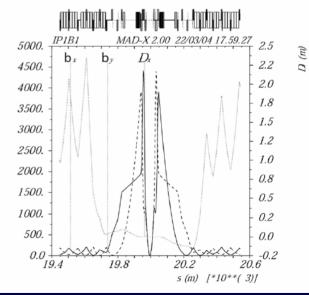

- Collimators/TDI/TCDQ etc.
- Beam Dump
- Power converters,
- Kickers
- RF, TFB, LFB
- Spectrometers & compensation
- INSTRUMENTATION
 - Distributed systems:
 - BLMs, BPMs,
 - Standalone:
 - BCT, BTV, AGM, BIPM, BWS, Schottky..
 - Tune, Chromaticity, Coupling
 - Luminosity monitors
 - Radiation Monitors
- REFERENCE MAGNET SYSTEM
- MACHINE PROTECTION
- VACUUM, CRYOGENICS, QPS

Settings, functions, monitoring, display, post mortem, control, acquisition, concentration, archiving, alarms, interlocks


 \otimes

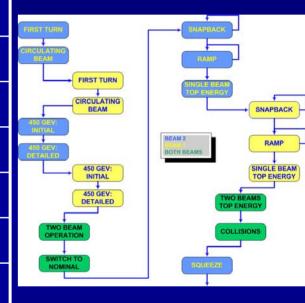
Driving the machine through the cycle


Magnet errors, crossing angles, snapback, ramping, squeezing, colliding, orbit, parameter control, optimisation etc. etc.



Snapback

Squeeze

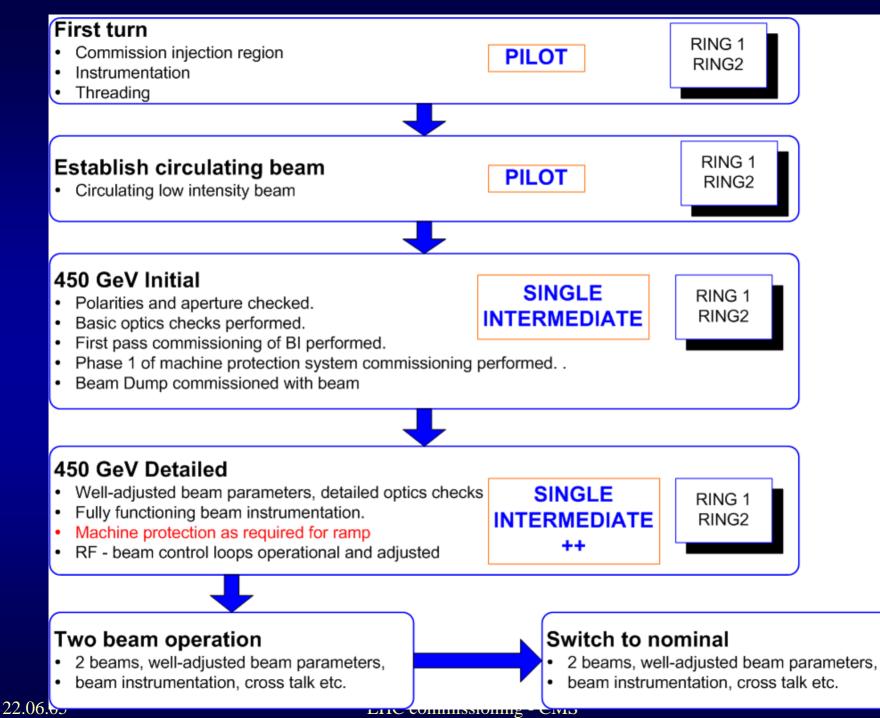

22.06.05

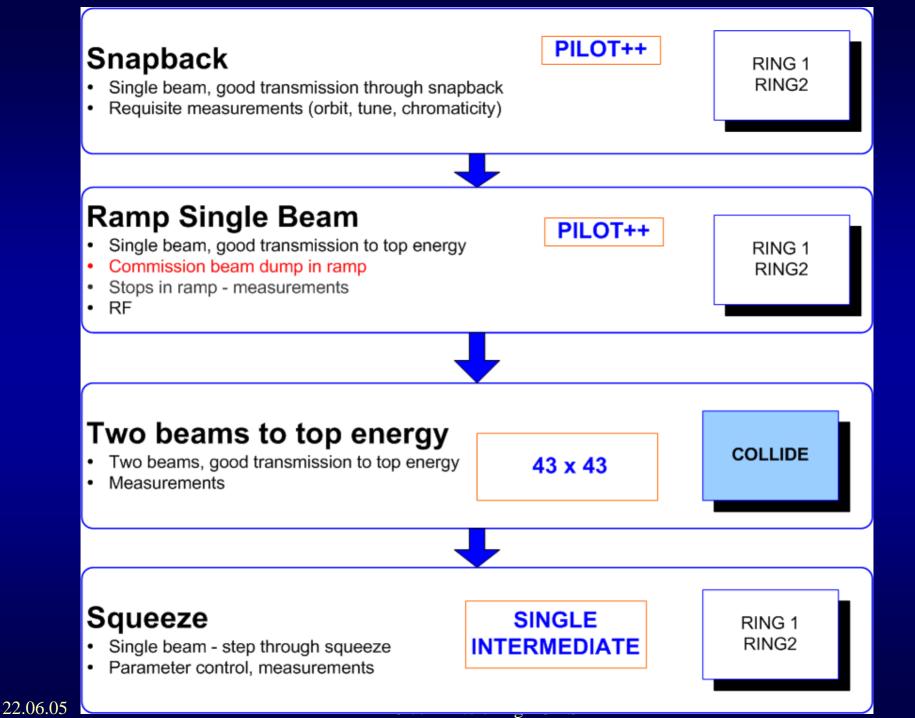
LHC commissioning - CMS

11

PLANNING

1	Injection
2	First turn
3	Circulating beam
4	450 GeV: initial commissioning
5	450 GeV: detailed measurements
6	450 GeV: 2 beams
7	Nominal cycle
8	Snapback – single beam
9	Ramp – single beam
10	Single beam to physics energy
11	Two beams to physics energy
12	Physics
13	Commission squeeze
14	Physics partially squeezed




At each phase:

- Equipment commissioning with beam
- Instrumentation commissioning
- Checks with beam
 - BPM Polarity, corrector polarity, BPM response
- Machine protection
- Beam measurements
 - beam parameter adjustment, energy, linear optics checks, aperture etc. etc.

to the levels required.

Looking for an efficient commissioning path to get us to the above objectives

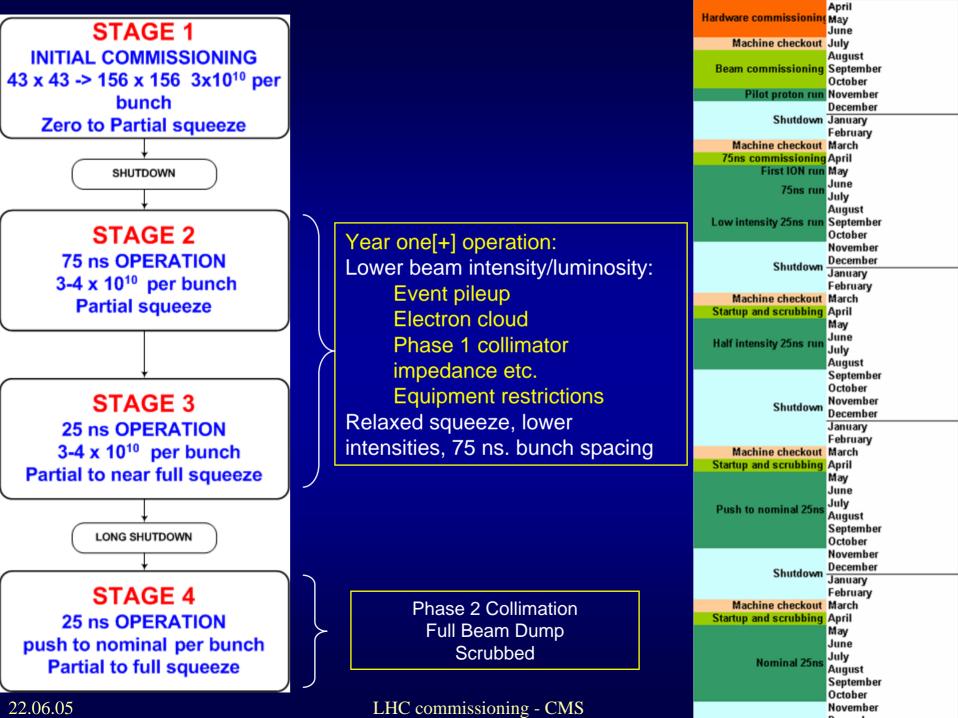
Stage 1 - How long?

	Phase	R1/2	Time [days]	
	Injection	2	1	2
1	First turn	2	3	6
2	Circulating beam	2	3	6
3	450 GeV: initial commissioning	2	4	8
4	450 GeV: detailed measurements	2	4	8
5	450 GeV: 2 beams	1	2	2
6	Nominal cycle	1	5	5
7	Snapback – single beam	2	3	6
8	Ramp – single beam	2	4	8
9	Single beam to physics energy	2	2	4
10	Two beams to physics energy	1	3	3
11	Physics	1	2	2
12	Commission squeeze	2	4	
13	Physics partially squeezed	1		
	TOTAL TIME (WITH BEAM)			<u>60</u>

Stage 1 - Luminosities

- 43 to 156 bunches per beam
- N bunches displaced in one beam for LHCb
- Push one or all of:
 - To 156 bunches per beam
 - Squeeze
 - Bunch intensity

IP 1 & 5


Bunches	<mark>β</mark> *	l _b	Luminosity	Event rate
1 x 1	18	10 ¹⁰	10 ²⁷	Low!
43 x 43	18	3 × 10 ¹⁰	3.8 × 10 ²⁹	0.05
43 x 43	4	3 × 10 ¹⁰	1.7 ×10 ³⁰	0.21
43 x 43	2	4 × 10 ¹⁰	6.1 ×10 ³⁰	0.76
156 x 156	4	4 × 10 ¹⁰	1.1 × 10 ³¹	0.38
156 x 156	4	9 × 10 ¹⁰	5.6 ×10 ³¹	1.9
156 x 156	2	9 × 10 ¹⁰	1.1 ×10 ³²	3.9

LHCb – stage 1

Displaced vertex – need to displace some bunches in the beam with 43x43 and 156x156

Displaced Bunches	β* IP8	l _b	Luminosity	Events per crossing
4/43	10	4 × 10 ¹⁰	1.1 × 10 ²⁹	0.15
4/43	2	4 × 10 ¹⁰	5.7 × 10 ²⁹	0.76
12/43	2	4 × 10 ¹⁰	1.7 × 10 ³⁰	0.76
24/156	10	4 × 10 ¹⁰	6.9 × 10 ²⁹	0.15
24/156	2	4 × 10 ¹⁰	3.4 × 10 ³⁰	0.76

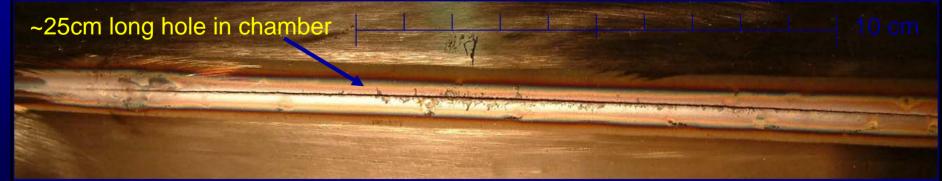
Note: displacing bunches will lead to a concomitant reduction in the luminosity at the other IPs

Stage 2 – 75ns

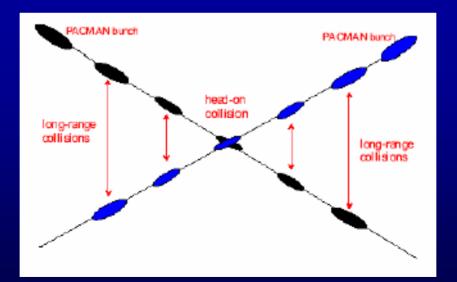
- Parameter tolerances:
 - will necessarily tightened up. Optics/beta beating under reasonable control (and measured)
- Commission crossing angles. Re-commission ramp and squeeze
- Injection:
 - long range beam-beam, effect on dynamic aperture,
- Need for feedback
 - orbit plus adequate control of tune and chromaticity through snapback.
- Lifetime and background optimization in physics
 - with a crossing angle and reduced aperture needs to be mastered.
- Bunch train bunch-to-bunch variations, implications for beam instrumentation.
- Emittance conservation through the cycle
 - has to be well under control & we have to be able to measure it. Associated BI has to be fully commissioned.
- Squeeze
 - only partially commissioned up to now, needs to be well mastered including the implications of crossing angle and long-range beam-beam.

Plus Machine Protection etc

Give us a month...



Damage limit at 450 GeV: 1 full nominal batch » damage limit


Verena Kain

25th of October: MSE trip during high intensity extraction. Damage of QTRF pipe and magnet.

75 ns - performance

Bunches	<mark>β</mark> *	l _b	Luminosity	Events per crossing
936 x 936	10	4 × 10 ¹⁰	2.3 × 10 ³¹	0.13
936 x 936	4	4 × 10 ¹⁰	5.6 × 10 ³¹	0.32
936 x 936	2	4 × 10 ¹⁰	1.1 × 10 ³²	0.64

Stage 3 – 25ns Luminosities

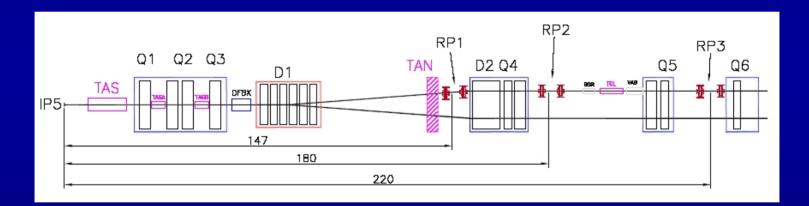
- Start with bunch intensities below electron cloud threshold [?!]
- Increase bunch intensities to beam dump & collimator limit
- Tune IP2 and IP8 to meet experimental needs

Number of bunches per beam	2808	2808	2808
β* in IP 1, 2, 5, 8 (m)	0.55,10,0.55,10	0.55,10,0.55,10	0.55,10,0.55,10
Crossing Angle (µrad)	285	285	285
Bunch Intensity	3 10 ¹⁰	5 10 ¹⁰	1.15 10 ¹¹
Luminosity IP 1 & 5 (cm ⁻² s ⁻¹)	~ 7 10 ³²	~ 2 10 ³³	10 ³⁴
Luminosity IP 2 & 8 (cm ⁻² s ⁻¹)	~ 4 10 ³¹	~ 1 10 ³²	~ 5 10 ³²

Requests from Experiments

- Single beam runs
- Early operation:
 - Displace some bunches during 43/156 for collisions in LHCb
 - As fast as possible to stable operations with 25 ns bunch spacing, L ~ 10³³ cm⁻²s⁻¹
 - However, experiments will take anything...
- Tune luminosity, spectrometer magnets, and β*
- LHCb:
 - squeeze with low bunch intensities [single event per crossing, 2 10³² @ 25 ns] to beta* = 2 m
- Alice
 - protons, L ~ 10²⁹ cm⁻²s⁻¹
 - Stable conditions by β^* rather than separated beam limits under review

Requests from experiments


- 75 ns:
 - 2 weeks sufficient [synchronisation, background studies]
 - Avoid pile up
 - LHCb
 - to 25 ns ASAP [avoiding loss in B rate]
 - again tuning beta* to 2 m if possible
- Low Energy Runs:
 - Totem: √s 1.8 TeV & 8 TeV
 - Alice: pp @ 5.5 TeV ($\sqrt{s} \sim nominal pb-pb$)

- Pb-Pb
 - Alice: 4 week run after first long shutdown
 - plus collisions in CMS & Atlas

Requests from experiments

• TOTEM

- beta* = 1540 m., 43 bunches, low emittance
- Plus large t elastic scattering at 18 m
 - 3 x 1-day runs at 1540 plus 2 short runs at 18 m
- Roman Pots at 10 σ, high beam stability, low BGs

RPs at ~10 σ imply : collimators must be set to 6/7 s. e^{*} ~ 1 mm, ~ 4 times smaller than nominal :

 \rightarrow collimator gaps \leq 1 mm

Requires special machine conditionssimilar to polarization at LEP. The difficulty and challenge of TOTEM operation is coming from the requested precision for both optics & beams.

Totem – the challenge

• Machine setup

- Optics: $\beta^* = 1540, 200, 18 \text{ m}$ plus injection, ramp ...
 - 1 to 3 x 24 hours
- Low emittance beam
- 2 stage collimation → collimators closed < 1 mm.
- Stringent accuracy and stability demands
 - β* to 1%
 - **β** at roman pots < 5%
 - Emittance < 1%</p>
 - Crossing angle < 0.2 μrad</p>
 - Orbit stability 5-10 μm
 - Energy calibration ~ 0.05%

Implies a very good control of optics and all key beam parameters, good performance of beam instrumentation,

beyond that expected in the first months of operation

See: Operation for TOTEM, J. Wenninger, Chamonix 2005

Conclusions

Commissioning with beam will be somewhat of a challenge

- PREPARATION
- OBJECTIVES
 Stage 1
- PLANNING
 Before beam
 Stage 1....

- <u>http://cern.ch/lhc-injection-test</u>
- <u>http://cern.ch/lhc-commissioning</u>