

# Status of work on energy deposition for LHC insertion

### FLUKA meeting 26th July, 2007



Christine HOA, CERN (AT-MCS-MA)

### Outline

#### Motivations for LHC upgrade studies

- PAC07 paper
  - "PARAMETRIC STUDY OF HEAT DEPOSITION FROM COLLISION DEBRIS INTO THE INSERTION SUPERCONDUCTING MAGNETS FOR THE LHC LUMINOSITY UPGRADE"



- C. Hoa, F. Cerutti, J-P. Koutchouk, G. Sterbini,
  E. Wildner, CERN, Geneva, Switzerland
  F. Broggi, INFN/LASA, Segrate (MI), Italy
- Visit at Fermilab: benchmark on the LHC Insertion Region with MARS and FLUKA

## LHC upgrade studies

#### Concept

To increase luminosity by reducing  $\beta^*=55 \text{ cm} \rightarrow 25 \text{ cm}$ 

#### Staging in 2 phases

- LHC Upgrade phase I
  - Large aperture quadrupole (Nb-Ti): 130 mm
  - Longer triplet (+30%)
  - "Solution for phase-one upgrade of the LHC Low beta quadrupoles based on Nb-Ti", J-P Koutchouk, L. Rossi, E.Todesco, LHC report 1000, April 2007
- LHC Upgrade phase II
  - Large aperture quadrupole (Nb<sub>3</sub>Sn): 130 to150 mm
  - Early separation scheme with magnets in the detector
  - PAC07 paper (2 references)

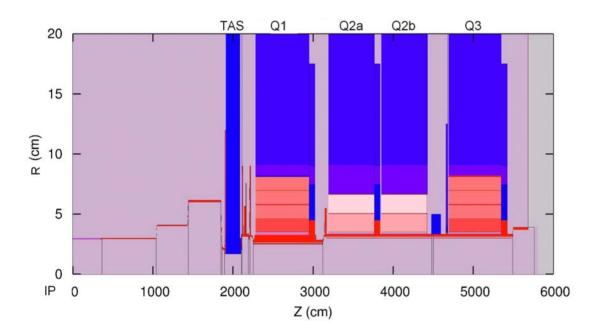
## LHC upgrade studies

#### Energy deposition issues

- LHC Upgrade phase I
  - The gain factor of 1.5 to 2 in luminosity induces same increase of the radiated power
  - Scaling law for heat load and peak power density?
- LHC Upgrade phase II
  - The gain factor of **10** in luminosity induces same increase of the radiated power
  - Larger temperature margin for Nb<sub>3</sub>Sn: sufficient?
    - Nb-Ti: quench limit: 12 mW/cm<sup>3</sup>
    - Nb<sub>3</sub>Sn : quench limit: 36 mW/cm<sup>3</sup>
  - Optics solution with magnets in the detector (Q0 and/or D0 schemes). What is the scaling law with L\*, distance to the IP?

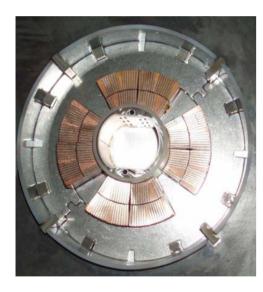
### Outline

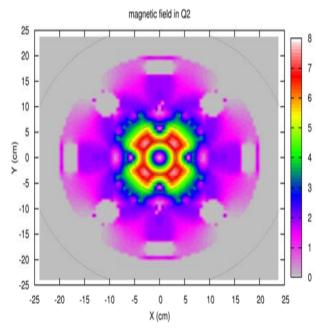
#### Motivations for LHC upgrade studies


- PAC07 paper
  - "PARAMETRIC STUDY OF HEAT DEPOSITION FROM COLLISION DEBRIS INTO THE INSERTION SUPERCONDUCTING MAGNETS FOR THE LHC LUMINOSITY UPGRADE"



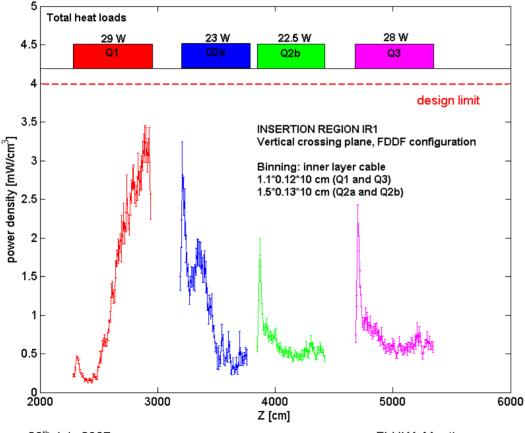
- C. Hoa, F. Cerutti, J-P. Koutchouk, G. Sterbini,
  E. Wildner, CERN, Geneva, Switzerland
  F. Broggi, INFN/LASA, Segrate (MI), Italy
- Visit at Fermilab: benchmark on the LHC Insertion Region with MARS and FLUKA





Detailed model of the insertion region : Geometry layout



- Triplet magnets
  - SC 70 mm aperture
  - Nb-Ti quads
- Absorbers (TAS and liners)
- Beam screens

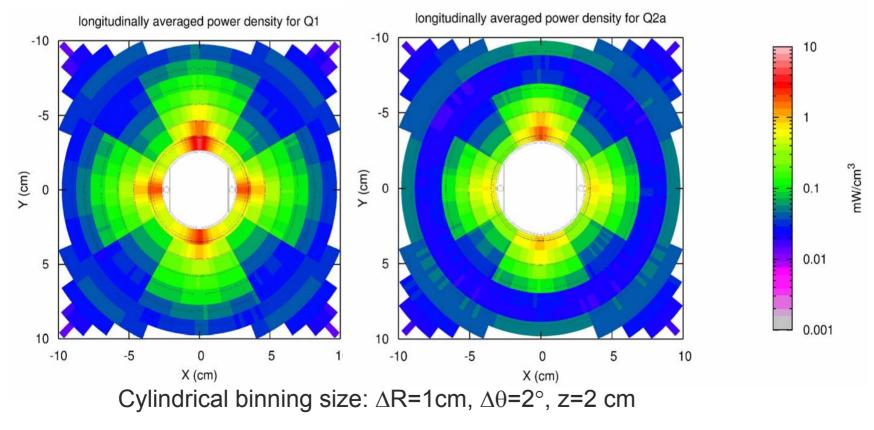

Insertion region detailed model: Magnetic description





- 2D maps MQXA and MQXB
- Solenoid field of ATLAS 2 Tesla (analytic)

#### Insertion region detailed model: power deposition 1




- Nominal luminosity: 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- o Total heat loads
- Peak power density

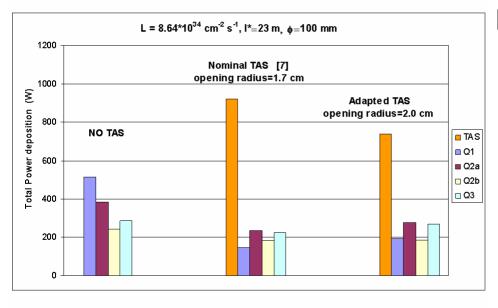
Values < 4 mW/cm<sup>3</sup>

→ Very good agreement with Nikolai's calculation with MARS

#### Insertion region detailed model: power deposition 2

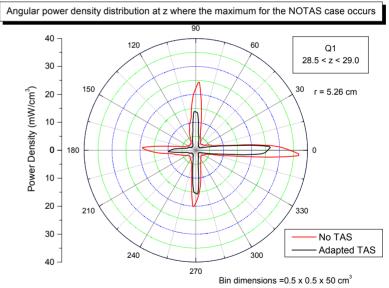


**FLUKA Meeting** 


Parametric studies: L\* distance to the IP

- Aperture of 100 mm
- Same beam dynamics for  $\beta^*=25$  cm
- Same upgrade luminosity 8.7 \*10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- TAS opening adapted to each L\*

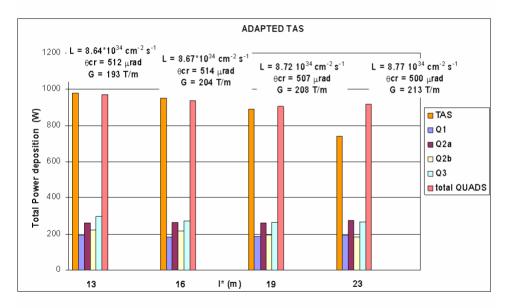
| Cases                     | 1   | 2   | 3   | 4   |
|---------------------------|-----|-----|-----|-----|
| l* distance to the IP (m) | 23  | 19  | 16  | 13  |
| Gradient (T/m)            | 193 | 204 | 208 | 213 |
| Crossing angle (µrad)     | 512 | 514 | 507 | 500 |
| TAS opening (cm)          | 2.0 | 1.7 | 1.5 | 1.3 |


### TAS protection analyses

#### Total heat loads

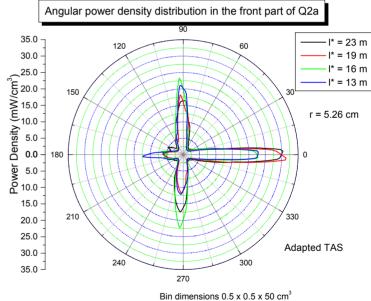


The TAS protects the front face of the triplet, mainly Q1 (-62%) but protection is much less for Q3 (-7%) 26<sup>th</sup> July 2007 FLUK/


#### • Peak power density



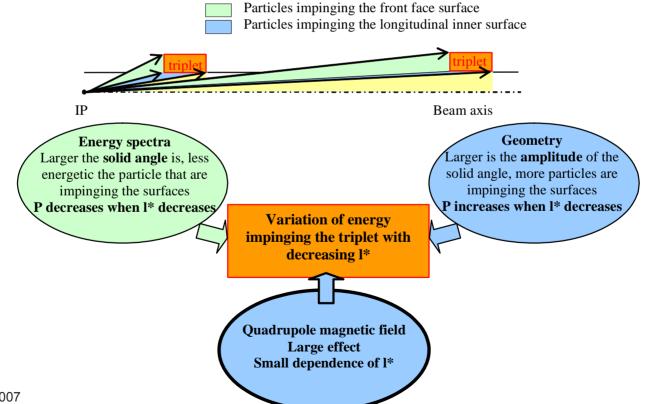
### -30% decrease of peak power density at the end of Q1


Parametric studies: I\* distance to the IP

#### o Total heat loads



### Moderate increase of heat load in the quads +6%


#### Peak power density



### Peak power density varies in the range of 22 mW/cm<sup>3</sup> to 36 mW/cm<sup>3</sup>

26th July 2007

### Counterbalancing effects



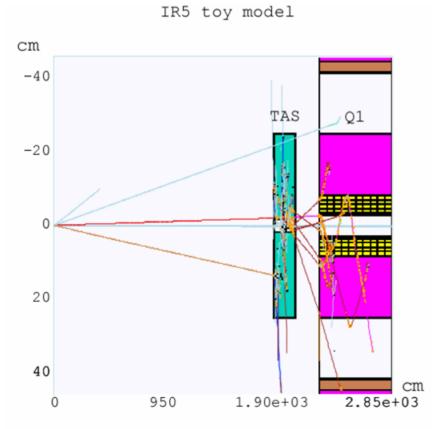
Main outcome of the study

 Moderate variation of power deposition

 with decreasing L\*. It leaves possibilities to have magnets closer to the IP.

• The magnetic field of the quadrupole is a driving parameter. Protection of the triplet has to be optimized accordingly.

### Outline


#### Motivations for LHC upgrade studies

- PAC07 paper
  - "PARAMETRIC STUDY OF HEAT DEPOSITION FROM COLLISION DEBRIS INTO THE INSERTION SUPERCONDUCTING MAGNETS FOR THE LHC LUMINOSITY UPGRADE"



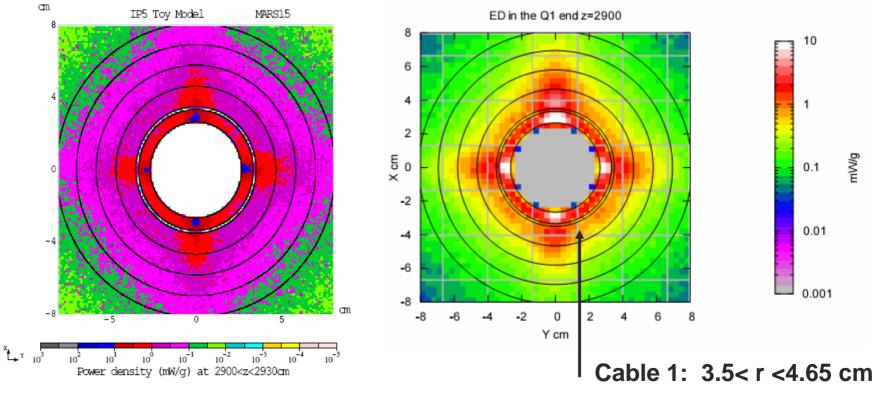
C. Hoa, F. Cerutti, J-P. Koutchouk, G. Sterbini,
 E. Wildner, CERN, Geneva, Switzerland
 F. Broggi, INFN/LASA, Segrate (MI), Italy

Visit at Fermilab: benchmark on the LHC Insertion Region with MARS and FLUKA



### IR5 Toy model

- Same simple geometry layout
- Same magnetic field definition
- Same materials


### Results: heat loads

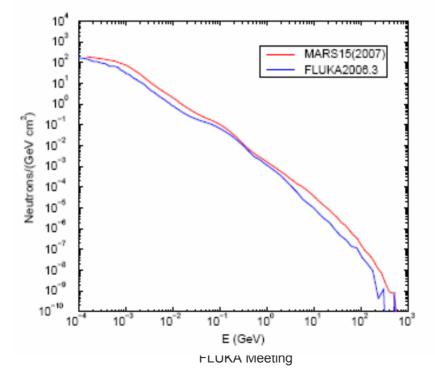
Total heat loads in the insertion region elements (W) for upgrade luminosity L=10\*L0

|          | FLUKA  | +/- (%) | MARS   |     | discrepancy<br>FLUKA/MARS<br>(%) |
|----------|--------|---------|--------|-----|----------------------------------|
| TAS      | 1910.3 | 0.5     | 1821.6 | 0.1 | 4.9                              |
| Q1 tube  | 94.6   | 1.2     | 97.6   | 0.4 | -3.1                             |
| Q1 cable | 166.3  | 1.1     | 158.5  | 1.6 | 4.9                              |
| yoke     | 100.5  | 1.0     | 77.0   | 0.4 | 30.6                             |
| alu      | 2.4    | 1.2     | 2.4    | 0.5 | -0.4                             |
| mila     | 20.2   | 1.1     | 20.5   | 0.3 | -1.2                             |
| vessel   | 17.9   | 0.9     | 17.3   | 0.3 | 3.4                              |

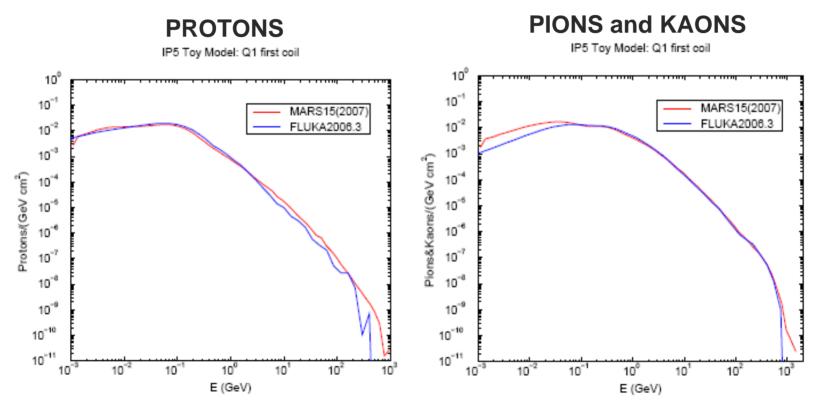
#### Good agreement for the TAS and Q1 within 5%

## Results: peak power deposition maps MARS FLUKA

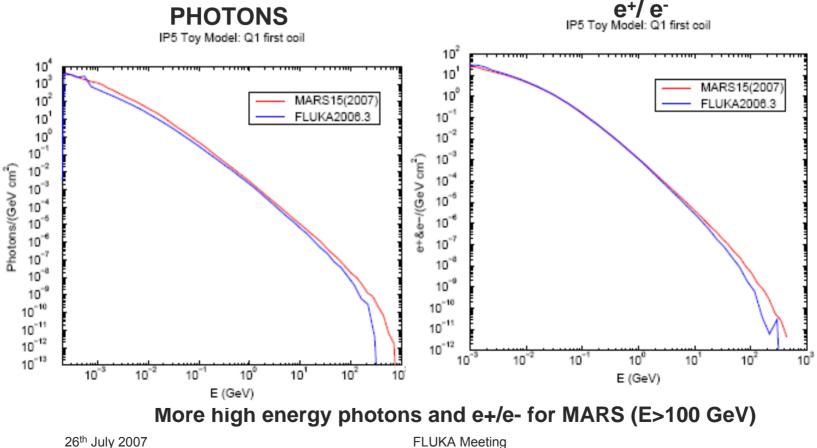



Results: peak power density in cable 1

- Same binning size (0.33\*0.33\*30 cm<sup>3</sup>)
- Maximum values in the vertical plane
- Peak power density
  - MARS :17.5 mW/cm<sup>3</sup>
  - FLUKA: 18.2 mW/cm<sup>3</sup> +/- 4.4% (statistical error)


#### Good agreement within the statistical error range

## Results: particle spectrum in cable1 NEUTRONS

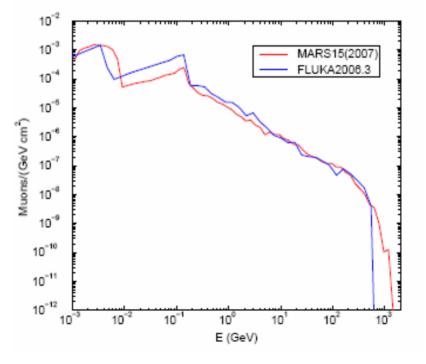

IP5 Toy Model: Q1 first coil



### Results: particle spectru



### **Results:** particle spectrum




**FLUKA** Meeting

### Results: particle spectrum

MUONS

IP5 Toy Model: Q1 first coil



**FLUKA** Meeting

## Conclusion

### Perspective work & collaboration

- High energy physics for LHC: benchmark studies for the IR
  - MARS
  - FLUKA
- Magnetic field impact of the solenoid field (3D detailed maps)
- LHC Upgrade phase
  - Baseline solution 130 mm aperture to be addressed
  - Optimization for the protection of insertion region

## Acknowledgement

- AT-MCS-MA: Jean-Pierre Koutchouk, Elena Wildner, Ezio Todesco, Franck Borgnolutti, Christine Vollinger
- Francesco Broggi
- FLUKA team: Alfredo Ferrari, Francesco Cerutti, Markus Brugger, Stephan Roesler...
- Nikolai Mokhov and his group

### References

- LHC report
  - "Solution for phase-one upgrade of the LHC Low beta quadrupoles based on Nb-Ti", J-P Koutchouk, L. Rossi, E.Todesco, LHC report 1000, April 2007.
- PAC07 papers
  - " 130 mm aperture quadrupole for the LHC luminosity upgrade", F. Borgnolutti, E. Todesco, A. Mailfert, July 2007.
  - "A concept for the LHC luminosity upgrade based on strong beta reduction combined with a minimized geometrical luminosity loss factor", J-P. Koutchouk, R. Assmann, E. Metral, E. Todesco, F. Zimmermann, R. De Maria, G. Sterbini, July 2007.
- FLUKA
  - A. Fasso, A. Ferrari, J. Ranft, and P.R. Sala, "FLUKA: a multi-particle transport code", CERN-2005-10 (2005), INFN/TC\_05/11, SLAC-R-773.
- MARS
  - "Protecting LHC IP1/IP5 components against radiation resulting from colliding beam interactions", N.V. Mokhov, I.L. Rakhno, J.S. Kerby, J.B. Strait, LHC report 633, April 2003.