Energy Deposition Studies MA Section meeting March 22nd, 2007

Status of work Energy deposition studies in LHC nominal luminosity Insertion Regions

Christine Hoa

Outline

- Introduction
- Modeling
 - Geometry lay out
 - Magnetic fields
- Simulation parameters
- Simulation results
- Next steps
- Conclusions

Introduction

Introduction

- Modeling
- Simulation
- parameters
- Simulation results
- Comparisons
- Next steps
- Conclusions

- Validate a reference energy deposition calculation for the insertion regions IR1 and IR5
 - Comparison with reference calculation performed by N. Mokhov

 Develop competences in FLUKA computation and energy deposition studies
Assess a general methodology
'Objet oriented' modeling with generic routines and elements to be re-usable

Geometry Layout

- Modeling
- Geometry layout

 \succ

- Simulation
- parameters
- Simulation results
- Comparisons
- Next steps
- Conclusions

Insertion region IR1 Nominal LHC version 6.5

Tools for Geometry implementation & visualization > Simplegeo > FLAIR

Geometrie IR1

Magnetic fields

 \geq

Introduction

Modeling

Geometry layout

Magnetic fields

Simulation

parameters

Simulation results

Comparisons

Next steps

Conclusions

Quadrupoles MQXA and MQXB : Roxie Data (in the courtesy of C. Vollinger) >2D description, FDDF configuration for the debris particle

Solenoid Field in ATLAS 2 Tesla
>analytical description

Simulation parameters

Introduction

Modeling

Simulation

parameters

Simulation results

Next steps

Conclusions

Beam parameters

collision points	units	Nominal LHC
sigmax	μm	11.81
sigmay	μm	11.81
sigmaz	cm	5.34

Beams	units	Nominal LHC	
half crossing angle	μrad	142.5	
crossing plane		vertical	
рх	GeV/c	0	
ру	GeV/c	9.975E-01	
pz	GeV/c	7.000E+03	

Nominal luminosity 10³⁴ cm⁻² s⁻¹

Cross section 80 mbarn

Event generator 14 TeV proton-proton collisions: DPMJET

Simulation parameters

Introduction

Modeling

Simulation

parameters

Simulation results

Next steps

Conclusions

Cut off thresholds

Number of primary particles	700		
Average CPU time	36 s/pr		
Cut off energy for e-/+e-	<10-3 GeV in TAS and QUADS		
Cut off energy for photons	< 10-4 GeV in TAS and QUADS		
Cut off energy for Hadrons/ Muons	<100 keV		
Cut off for high energy neutrons	< 19.6 Mev		
Cut off for low energy neutrons	thermal energies		

► Gain in CPU time factor of 2.5

>Optimization of CPU time vrith Biasing methods

- Leading Particle Biasing methods
 - •e+/e-, photons
 - hadrons
- ► Gain in CPU time factor of 2.8

\rightarrow TOTAL gain in CPU time with a factor of 7

Introduction

Modeling

Simulation

parameters

Simulation results

Next steps

Conclusions

Dynamic heat loads in Quadrupoles and TAS

Power(W)=Power(eV/primary)* $e(eV)*L(cm^{-2}s^{-1})*A(barn)*10^{-24}$

1.609e-19 10^34 80e-3

			reference cases	
	Power deposition (W)	statistical errors (%)	N. Mokhov [1]	F. Broggi [2]
Insertions	IR1		IR5	IR1
TAS	144.8	5.8	184	139
Q1	37.3	7.1	37.6	27
Q2	28.6	11.1	29.6	45
Q3	26.6	12.3	27.4	28
Q4	44.6	8.9	32.8	23
TOTAL QUADS	137.1	9.9	127.4	123.0

[1] LHC Project report 633, Apr03[2] NED presentation, Feb06

Fairly good agreement with reference cases

Longitudinal power distribution

Introduction

Radial power distribution

Q1 Power density (W/cm³) -100 -100 -100 -100 -100 -100 -100 -100-100

10

1

0.1

0.01

10

1

0.1

0.01

C. Hoa 22nd March 2007

- wodeling
- Simulation
- parameters
- Simulation results

Next steps

Conclusions

Next steps

Introduction

- Modeling
- Simulation
- parameters
- Simulation results
- Next steps
- Conclusions

Geometry improvements

- Beam screens
- Correctors

Magnetic fields

- Checking of the tracking on a reference proton (comparison with MAD) in progress
- ATLAS Solenoid mapping

Beam parameters

- Vertical/horizontal plane for the crossing angle
- Implement the divergence of the beam

Detailed analysis

- Peak energy deposition
- Particle fluxes

Conclusions

- Introduction
- Modeling
- Simulation
- parameters
- Simulation results
- Comparisons
- Next steps
- Conclusions

Encouraging first results

- Good agreement of the dynamic heat loads
- Similar Energy deposition maps
- Still many tasks ahead...
 - Refinement of the modeling for IR1 in progress
 - Detailed analysis to be performed
 - ▶ IR5 ...

Acknowledgments

- Introduction
- Modeling
- Simulation
- parameters
- Simulation results
- Comparisons
- Next steps
- Conclusions
- Acknowledgments

- > AT-MCS
 - Guido, Elena, Jean-Pierre, Christine. V
- > INFN
 - Francesco Broggi
- > AB/ATB
 - FLUKA team, especially Francesco Cerutti