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Abstract

The LHCY grid software has been used for two
Physics Data Challenges, the most recent of which
will have produced 90 TB of data and required over
1000 processor-years of computing power. This pa-
per discusses the group’s experience with develop-
ing Grid Services, interfacing to the LCG, running
LHCb experiment software on the grid, and the in-
tegration of a number of new technologies into the
LHCb grid software. Our experience and utilisation
of the following core technologies will be discussed:
OGSI, XML-RPC, grid services, LCG middle-ware,
and instant messaging.
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1 Introduction

LHCD is one of four particle physics experiments
currently being developed for the Large Hadron
Collider (LHC) at CERN, the European Particle
Physics Laboratory. Once operational, the LHCb
detector will produce data at a rate of 40 Mb/s[21].
This data is then distributed around the world for
500 physicists at 100 sites to be able to carry out
analysis. Before this analysis of real physics data
can begin simulations are required to verify as-
pects of the detector design, algorithms, and theory.
LHCb has worked closely with the LHC Comput-
ing Grid (LCG)[5], which is coordinating the com-
mon computing strategy for the four LHC experi-
ments (LHCb, Atlas, Alice, and CMS). The LHCb
computing model intends to utilise many aspects of
LCG but will have, in addition, experiment specific
components.

DIRAC (Distributed Infrastructure with Remote
Agent Control) is the resulting LHCb grid com-
puting environment which evolved from largely
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Figure 1: Sites running DIRAC. This includes a miz-
ture of LCG sites and conventional cluster computing
centres.

standalone Python-based agents and services, dis-
tributed across various physics institutes, into a
grid-aware package which makes use of numerous
Grid middle-ware developments. It incorporates
LCG computing resources and functionality, while
also, critically, allowing the integration of non-LCG
resources (see figure 1). This paper recounts our
experience of developing DIRAC, integrating it into
the LCG grid environment, making use of exist-
ing middle-ware services and libraries, and advances
from incorporating new technology such as instant
messaging into our architecture.

We will start with a description of the DIRAC
architecture in section 2, outline key features and
advances in section 3, describe our experience de-
veloping and using grid software in section 4, and
conclude in section 5 with perspectives for the fu-
ture of DIRAC and computational grids.



2 Architecture

DIRAC is designed following a lightweight
Agent/Service model, which emphasises a Service
Oriented Architecture, rather than single, mono-
lithic, components. It is meant to provide a scalable
high throughput generic grid computing environ-
ment for uncoupled or loosely coupled long running
computational tasks, possibly requiring significant
input data and producing large volumes of output
data. The basic design objectives are to support:
100,000 queued jobs; 10,000 running jobs; and 100
sites.

The architecture is divided into four areas: Ser-
vices, Agents, Resources, and User Interface. The
core of the system is a set of independent, stateless,
distributed Services. The services are meant to be
administered centrally and deployed on a set of high
availability machines. Resources refer to the dis-
tributed storage and computing resources available
at remote sites, beyond the control of any central
administration. Each computing resource is man-
aged autonomously by an Agent, which is config-
ured with details of the by the local administrator.
The Agent runs on the remote site, and manages
the resources, job monitoring, and job submission.

The User Interface API allows access to the Ser-
vices, for control, retrieval, and monitoring of jobs
and files, and has been incorporated into command
line tools, GUIs, and web sites. A complete GUT in-
terface for managing LHCb jobs has been produced
by the Ganga project[2] and this uses the DIRAC
Client API to interface to the Services for job sub-
mission, monitoring, and retrieval.

The general separation between Services and
Agents is that Services are stateless and reactive,
whereas Agents are stateful and proactive. The Ser-
vices can be distributed across several machines, or
run from a single “server”. This allows easy repli-
cation for redundancy and load-balancing.

2.1 Job Management Services

Jobs are described using the text based ClassAd
Job Description Language (JDL) designed by the
Condor project for use with the Condor Matchmak-
ing scheduling system[23]. The JDL file is sub-
mitted to the Job Receiver Service which regis-
ters the job in the Job Database and notifies the
Optimiser Service. The Optimiser Service sorts
jobs into different job queues and dynamically re-
prioritises queue ordering. Agents, which run on the
distributed computing resources, monitor resource
availability. When they detect “free slots”, they
submit a job request to the Matchmaker Service,
which interrogates the various Job Queues and re-
turns a suitable job, based on the resource’s profile.
These components are illustrated in figure 2.
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Figure 2: Core DIRAC Services

2.2 Agent

The Agent manages jobs locally, either executing
it directly, or submitting it to the Local Resource
Management System (LRMS) (usually a batch sys-
tem such as PBS or LSF). The current system sup-
ports PBS, LSF, BQS, Condor, Globus, EDG/LCG,
Fork, and InProcess resource types. The Agent
monitors the progress of the job and sends status
updates to the Monitoring Service. The Data Man-
agement Services can be accessed directly by the
job, or information in the JDL can be used by the
Agent to handle staging of input and output files.

The Agent is deployed on a computing resource
and interacts directly with it. This Agent is un-
der the control of the local site administrators and
can be run and configured to operate in a variety of
different ways, dependent upon site policy and ca-
pabilities. The Agent is easily deployable on a site
and only needs outbound Internet connectivity in
order to contact the DIRAC Services.

The Agent design consists of a module container
and a set of pluggable modules. The modules are
executed in sequence. Typically a site runs several
agents each having its own set of modules, for exam-
ple job management modules or data management
modules. This feature makes the DIRAC Agent
very flexible, since new functionality can be added
easily, and sites can choose which modules they wish
to have running.

2.3 Data Management Services

The DIRAC Data Management Services pro-
vide fault tolerant transfers, replication, registra-
tion, and meta-data access for files both at DIRAC
computing centres and long term mass storage sites.

A Storage Element (SE) is an abstracted interface
to internet-accessible storage. It is defined entirely
by a host, a protocol, and a path. This definition
is stored in the Configuration Service (see section
2.4), and can be used by any Agent, Job, Service or
User, either for retrieving or uploading files. Proto-
cols currently supported by the SE include: gridftp,



bbftp, sftp, ftp, http, rfio or local disk access. The
SE access API is similar to the Replica Manager
interface of the EDG project.[17]

The File Catalogue Service provides a simple in-
terface for locating physical files from aliases and
universal file identifiers. This has made it possible
to utilise two independent File Catalogues, one from
the already existing LHCb Bookkeeping Database,
and another using the AliEn File Catalogue from
the Alice experiment[3]. In the recent LHCb Data
Challenge they were both filled with replica infor-
mation in order to provide redundancy to this vital
component of the data management system, and to
allow performance comparisons to be made.

Within a running job, all outgoing data trans-
fers are registered as Transfer Requestsin a transfer
database local to each Agent. The requests contain
all the necessary instructions to move a set of files
in between the local storage and any of the SEs de-
fined in the DIRAC system. Different replication,
retry, and fail-over mechanisms exist to maximise
the possibility of successfully transferring the data
(see section 3.4). These also include registration of
the file in appropriate File Catalogues and entry of
appropriate file meta-data.

2.4 Configuration Service

It is necessary for Services, Agents, Jobs, and
Users to be able to “find” each other, and to learn
about the properties of the other components. This
is a common issue in all service oriented archi-
tectures. Services also need their own configura-
tion mechanism. It was felt that the existing ap-
proaches, such as LDAP, UDDI[14], MDSJ11], and
R-GMA|26, 7], were powerful, yet complex, and re-
quired significant infrastructure to utilise.

As such, and in keeping with the principles
of simplicity and lightweight implementation, a
network-enabled categorised name/value pair sys-
tem was implemented, which overloads the Python
ConfigParser API and the Microsoft Windows INI
file format. Figure 3 shows an example of this for-
mat. Components which use the Configuration Ser-
vice do so via a Local Configuration Service (LCS).
This retrieves information from a local file, from a
remote service, or via a combination of the two.

[SectionA]

first_option = some value
second_option = 17

[SectionB]

old_option = local_config.ini

new_option http://example.org/

Figure 3: Example Configuration Service information

This system proved to be very robust, and the
multi-threaded XML-RPC server was able to handle

high volumes of concurrent requests, as illustrated
in figure 4. The simplicity of the data format and
the access API allowed site administrators to eas-
ily edit their local configurations, and for multiple
Configuration Service implementations to be easily
developed.
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Figure 4: XML-RPC requests per minute to the Con-
figuration Service over a 24 hour period

2.5 Monitoring and Accounting Services

The Job Monitoring Service provides an inter-
face for Agents and Jobs to update job state and
for other Services or Users to query job state. This
only retains information for jobs which are active
in the system. Jobs which have completed or failed
are eventually cleared to the Job Accounting Ser-
vice. There are three access modes to the Monitor-
ing Services: an API, a web-interface, and command
line tools.

3 Key Features and Advances

This section discusses four aspects which have
been key to the success of DIRAC: the pull schedul-
ing paradigm, lightweight modular agents, the use
of instant messaging, and mechanisms to provide
fault tolerance.

3.1 Pull Scheduling

DIRAC emphasises high throughput rather than
high performance. This idea was first presented
by the Condor project[6], from which DIRAC bor-
rows heavily in terms of philosophy for designing
generic distributed computational systems[20]. It
advocates immediately using computing resources
as they become available, rather than attempting
global optimisations of all jobs over all resources.
In the Condor approach, which we will call the pull
paradigm, computing resources request computing
tasks by announcing their availability. In contrast a



push paradigm has a scheduler which monitors the
state of all queues and assigns jobs to queues as it
wishes.

For push scheduling to work, all the information
concerning the system needs to be made available at
one place and at one time. In a large, federated, grid
environment this is often impractical as information
may be unavailable, incorrect, or out of date. Even
if it is available, job allocation complexity grows
quadratically with the number of jobs and resources,
where every possible allocation combination must
be evaluated to select an optimal schedule. While
there are efficient heuristic approaches that in prac-
tice approach an optimal solution, such algorithms
generally require complete and up to date informa-
tion regarding system state, and are typically de-
signed to operate on homogeneous computing re-
sources with 102 — 10 queued jobs.

As a result of this, push scheduling in a grid en-
vironment has proven to be problematic. By con-
trast, the DIRAC Central Services simply maintain
queues of prioritised jobs (see section 2.1) and al-
locate the highest priority job which matches the
resource’s profile. The Condor Matchmaking li-
braries facilitates this dynamic definition of resource
availability, as opposed to the traditional batch
system which contains queues consisting of static
characteristics[23].

The previously difficult task of determining
where free computing resources exist is now dis-
tributed to the local Agents (see section 2.2) which
have an up to date view of the local system state.
The central Matchmaker Service only compares one-
on-one requirements, with a round-robin on each
of the job queues until it finds a job which can
run on that resource. Since jobs are grouped into
queues based on common requirements, the worst
case is that each Agent job request will be com-
pared against each queue once, where the number of
queues is much less than the total number of queued
jobs.

Both long matching time and the risk of job star-
vation can be avoided through the use of an appro-
priate Optimiser to move “best fit”, “starving”, or
“high-priority” jobs to the front of the appropriate
queue. This frees the match operation from nec-
essarily considering all the jobs within the system.
As reported elsewhere[10], this allows a mixture of
standard and custom scheduling algorithms.

Figure 5 shows the match times for jobs during
LHCb DC04. 97% of the time this operation takes
less than one second even with tens of thousands of
queued jobs, thousands of running jobs, and dozens
of Sites requesting jobs concurrently. In compari-
son, the LCG Resource Broker (RB) requires several
seconds to several minutes to schedule jobs, with
only a single user accessing the RB, and on the or-
der of 10® — 10* queued and running jobs.
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Figure 5: Match time distribution for 60,000 jobs dur-
ing DCOJ

3.2 Lightweight Modular Agents

By providing simple abstractions of Computing
Elements (CE) and Storage Elements (SE), and ex-
posing simple APIs to the Core Services, it was pos-
sible to implement lightweight Agents (see section
2.2) which can be installed and run entirely in user-
space on any Computing Resource. This allows the
rapid utilisation of heterogeneous systems in a feder-
ated manner — the most general objective of com-
putational grids. Local site administrators simply
install a one megabyte self-contained package with
all the necessary software for the DIRAC Agent.

The configuration allows local policies on queue
usage to be applied, and selection of specific Agent
modules to run. This modularity gives administra-
tors great flexibility and control, and makes it easy
to write custom modules.

The only pre-requisite is a recent version of the
Python interpreter and outbound internet connec-
tivity, in order to contact the DIRAC Services. This
allows the agent to run under virtually any com-
puting and network environment, including behind
firewalls and private networks utilising Network Ad-
dress Translation (NAT) to reach the Internet. In-
stallation entirely in regular user-space mitigates
the security risks present in software which requires
“root” access and system wide installation.

Agents can operate in a cycle-scavenging mode
at the cluster level, where they only request and
execute jobs when the local resources are under-
utilised. This idea comes from global comput-
ing models, such as SETIQHome, BOINC, and
distributed.net [25, 4, 8], which perform cycle-
scavenging on home PCs.

3.3 Instant Messaging for Grid Services
DIRAC has incorporated an instant messag-

ing framework into all the components: Services,
Agents, Jobs, and User Interface. This provides



reliable, asynchronous, lightweight, and high speed
messaging between components. Public demand for
instant messaging has led to highly optimised pack-
ages which utilise well defined standards, and are
proven to support thousands to tens-of-thousands
of simultaneous users. While these have primar-
ily been for person-to-person communication, it
is clear that machine-to-machine and person-to-
machine applications are possible, and it is in these
areas DIRAC has demonstrated a novel application
of the technology.

While the DIRAC Services expose their APIs via
XML-RPC, due to the simplicity, maturity, and ro-
bustness of this protocol, the need to expose a mon-
itoring and control channel to the transient Agents
and Jobs led to the use of instant messaging. No a
priori information is available about where or when
an Agent or Job will run, and local networks often
will not allow Agents or Jobs to start an XML-RPC
server that is externally accessible. This suggests a
client-initiated dynamic and asynchronous commu-
nications framework is required.

Extensible Messaging and Presence Protocol
(XMPP), now an IETF Internet Draft[15], is cur-
rently used in DIRAC. This has grown out of the
open-source, non-proprietary, XML base Jabber in-
stant messaging standard. XMPP provides stan-
dard instant messaging functionality, such as one-
to-one messaging, group messaging (“chat”), and
broadcast message. An RPC-like mechanism exists
called Information/Query, (IQ) which can be used
to expose an API of any XMPP entity. The roster
mechanism facilitates automatic, real-time monitor-
ing of XMPP entities via their presence.

The DIRAC Services use XMPP in places where
fault tolerant, asynchronous messaging is impor-
tant. For example, the Job Receiver Service uses
XMPP to notify the Optimiser Service when it re-
ceives a new job. When the Optimiser gets this
message, it will then sort the new job into the ap-
propriate queues. The IQ functionality has the po-
tential to allow users to retrieve live information
about running jobs, something which is critical for
interactive tasks, or for job steering. It also greatly
facilitates debugging and possible recovery of stuck
jobs.

MPP is specifically designed to have extrememly
lightweight clients, and gracefully handles dynamic
availability of entities, buffering all messages un-
til an entity is available to retrieve them. By
matching the XMPP IQ functionality to standard
XMPP messages, it is possible for users with a stan-
dard XMPP client to locate and communicate with
Agents, Jobs and Services from anywhere. This has
already been put to good use in DC04 for control-
ling and monitoring the state of Agents.

The two main outstanding issues for the use of
Instant Messaging are the security and authenti-
cation implications of a “tunnelled” control chanel
into remote computing sites, and the scalability to

tens of thousands of XMPP entities communicat-
ing across the same instant messaging network. For
the first, a group at Lawrence Berkley Laboratory
(USA), have developed an XMPP server which ac-
cepts Globus x509 GSI certificates for authentica-
tion. This is a positive step and we will be work-
ing with them to investigate how this can be used
for end-to-end security and authentication. For the
second, many high performance commercial XMPP
servers are available, however the freely available
open source servers still demonstrate some robust-
ness and scalability issues which have created prob-
lems when XMPP is used heavily, for example by
thousands of jobs broadcasting status updates (see
section 4.4).

3.4 Fault Tolerance

In a distributed computing environment it is im-
possible to assume that the network, remote stor-
age, and remote services will constantly be avail-
able. The result is that any remote operation may:

e fail to connect to the remote resource
e stall

e fail to complete properly

These failures often are not permanent, so a retry
at a later time or to an alternate equivalent resource
may be successful and allow the parent operation
to complete, albeit with a delay incurred due to the
retry. In order to cope with these failure modes the
following mechanisms were used:

Retry Many commands retry with a time delay in
order to overcome any network outages, ser-
vice request saturation, or service failure and
restart.

Duplication Numerous services have a duplicate
backup service available at all times.

Fail-Over When contacting critical services, after
the retry limit is reached, a request to an alter-
nate service is attempted.

Caching In the Local Configuration Service, the
remotely fetched data can be cached locally for
future retrieval.

Watchdog Monitors components to ensure contin-
uous availability and restart on failures.

All Services and Agents are run under the runit
watchdog[22]. This provides numerous advantages
over cron jobs or sysv style init scripts. It ensures
that the component will be restarted if it fails, or if
the machine reboots. It also has advanced process
management features which limit memory consump-
tion and file handles, so one service cannot incapac-
itate an entire system. Automatic time-stamping



and rotation of log files facilitates debugging, and
components can be paused, restarted, or temporar-
ily disabled. Furthermore, none of this requires root
access.

4 TImplementation and Operational
Experience

DIRAC has been developed over the past two
years by a core team of two to four developers, with
extensive input, contributions, and testing, and de-
ployment feedback from the LHCb Data Manage-
ment Group, and computing centre administrators.
It has aimed to bridge the computing requirements
of LHCDb with the capabilities available at the col-
laborating computing centers, and to provide a basis
for evaluating grid computing approaches, particu-
larly the functionality offered by the LCG environ-
ment.

4.1 Historical Background

The initial system developed in 2002-2003 was
specialised exclusively for performing LHCb physics
simulation jobs which Agents pulled from a pool
of outstanding simulation jobs[27]. For 2003-2004
the emphasis shifted to providing a generic compu-
tational grid system which could incorporate new
developments at that time around the Open Grid
Services Architecture (OGSA)[12], and the Globus
Toolkit 3 (GT3) implementation of the Open Grid
Services Infrastructure (OGSI)[28].

At the same time the EDG project[1] was in the
process of delivering the software from its three year
development phase to the LCG project[5] which was
meant to deploy and stabilise the EDG software.
Due to performance shortcomings of the EDG soft-
ware, a refactoring of the EDG architecture was pro-
posed under the auspices of the ARDA-RTAG (Ar-
chitecture Roadmap for Distributed Analysis — Re-
quirement Technical Assessment Group)[19]. This
refactoring was to take the form of a service decom-
position with clearly specified interfaces. This was
done to improve the conceptual organisation of the
architecture, decrease dependencies between com-
ponents, facilitate the incorporation of new services,
and make possible the substitution of customised or
alternative services.

The early version of DIRAC had already followed
a service oriented architecture, so it was hoped this
could then be refactored into a Python based set
of OGSI Grid Services, implementing the ARDA-
defined interfaces. The ARDA refactoring proposal
was then handed over to the EGEE (Enabling Grids
for E-science in Europe) project[18], which is the
successor to the EDG project.

4.2 OGSA and OGSI

The DIRAC team strongly supports service ori-
ented architectures, therefore the framework pro-
posed by OGSA and specified in detail by OGSI
was seen as a very positive step towards increased
interoperability between grid software components.
Several months of intensive work was invested in
developing DIRAC Services as Java GT3 compo-
nents, however the DIRAC team abandoned this
work shortly before Globus and IBM jointly an-
nounced their intent to discontinue OGSI and in
its place proposed WSRF (Web Services Resource
Framework)[13].

In principal, the DIRAC team supports the idea
of dynamic, stateful, transient Grid Services, as
compared to Web Services which are static and
stateless. The mechanisms for security, lifetime,
service data, and publish/subscribe event notifica-
tions are all reasonable, however in the end we found
OGSI was unworkable for the following reasons:

heavyweight and complex impossible to de-
velop lightweight clients, difficult to run as a
regular user, significant infrastructure required
for deploying Grid Service container

not standards compatible unable to leverage
existing Web Services tools

poor documentation for installation, mainte-

nance, debugging, development

poor implementation many bugs in GT3 and
constant exceptions being thrown

Together these made it difficult to develop, de-
bug, deploy, maintain OGSI Grid Services. Sim-
ilar experiences were recorded by others[24]. We
also investigated using a pure Python implementa-
tion of OGSI, pyGridWare, prepared by Lawrence
Berkley Laboratory (USA), but this was not suffi-
ciently complete to be useable. While it is under-
stood that the more recent versions of GT3 have
corrected many of the early technical problems,
the combined facts that OGSI no longer had a fu-
ture, and the complexity of development under GT3
forced development of DIRAC to return to Python
and XML-RPC.

4.3 Development and Deployment Environ-
ment

The DIRAC team has utilised CVS and Savan-
nah for software management. Both have proved to
be invaluable. Savannah, which is a branch from the
popular SourceForge project management environ-
ment, is available at CERN and integrated with the
CERN CVS repository, and CERN AFS file system.
Both users and developers have made extensive use
of Savannah for bug reporting, task prioritisation,



support requests, software documentation, and soft-
ware releases. Use of Savannah also allows easy
migration of bugs from DIRAC to other software
groups, such as LCG or physics software teams.

The Core Services for the initial test deployment
were installed on two servers at CPPM Marseille.
When the production deployment was instaled on
high availability servers at CERN, the test deploy-
ment became an emergency fail-over system and
also moved to CERN. At times during development
the services were spread across servers in Oxford,
Marseille, and at CERN, demonstrating the effec-
tive distribution of a single DIRAC “installation”
with different services installed at different sites.
Batch system integration was developed using PBS
on the Oxford Physics cluster, Condor and Globus
using the Oxford e-Science Centre NGS clusters,
BQS at the IN2P3 Computing Centre in Lyon, and
LSF at CERN.

4.4 Data Challenge 2004

The DIRAC system has been used for the LHCb
Data Challenge 2004 (DC04), held from May to
July 2004. DCO04 had three goals: to validate
the LHCb distributed computing model based on
the combined use of LCG and conventional com-
puting centres; to verify LHCb physics software;
and, to generate simulation data for analysis. Hun-
dreds of thousands of jobs were run, consuming over
400 processor-years of CPU power, and producing
90 terabytes of data. This data was redistributed
across the centres for both organised (i.e. planned
and predictable) and chaotic analysis of the results.

The system operated smoothly with a sustained
level of over 2000 running jobs, and 600 gigabytes
of data generated and replicated daily. Figure 1
shows the participating sites, and figure 6 shows a
snapshot of the running job distribution. Once in-
stalled, the DIRAC Agents ran autonomously and
restarted after failures or reboots. A central team
watched the monitoring system and alerted site ad-
ministrators when problems were detected.

The twenty participating sites varied enormously
in size, from 20 CPU clusters shared heavily with
other users to large 500+ dedicated CPU clusters.
The involvement of the site administrators also var-
ied signficantly. A mailing list and weekly phone
conferences allowed the DIRAC software developers,
site administrators, and data challenge managers to
discuss progress and solve problems.

Another 20 sites were accessed via LCG, and are
discussed in section 4.5. In total, these 40 sites pro-
vided more than 3000 worker nodes. At the typical
level of 5000 globally queued jobs, the Matchmaker
Service responded to Agent job requests in an aver-
age of 0.25 seconds (see figure 5). More than 40,000
jobs were completed in the month of May with an
average duration of 23 hours, running on average
at 93% load, the remaining 7% being data trans-
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Figure 6: Representative snapshot of running jobs per
site during DCO4. Notice a mizture of “standard” sites
(prefized DIRAC), and sites accessed via LCG (prefized
LCG).

fer. Each job produced 400 megabytes, which was
replicated to several sites for redundancy and to
facilitate later data analysis. To date the system
has produced, stored and transfered 20 terabytes of
data.

At the time of writing, there have been four ma-
jor outages in the DIRAC core services availability
which resulted in jobs failing, jobs stalling, or sites
failing to get new jobs:

Inappropriate Intervention One of the high
availability core servers, which is monitored 24
hours a day by CERN IT staff, reached 90%
of full on the local hard drive. This was due
to a large and very actively used database on
the server. The DIRAC team were notified in
the morning, and were discussing a strategy
for gracefully stopping the services, moving the
database, and restarting the services when we
received a second notification, approximately 6
hours later, that a large, and growing, one gi-
gabyte file had been deleted from the server.
Due to open file handles holding the file, the
MySQL process was killed. Fortunately the
damage was limited to the loss of all queued
jobs in the system. CERN IT were asked not
to unilaterally stop the database process and
delete large database files in the future.

Security Scan CERN hosted servers are sub-
jected to regular security scans to detect vul-
nerabilities. These scans take several hours or
more to complete and flood a server on all ports
with large pseudo-random operations. The ex-
perience during DCO04 is that this largely dis-
ables the server from responding to legitimate
requests and amounts to a Denial of Service
(DoS) attack. Negotiations are underway to try
to prevent the desireable security scan having



the undesireable effect of disabling the server
in question.

Distributed Denial of Service Early efforts to
incorporate instant messaging into all aspects
of DIRAC resulted in very effective distributed
denial of service attack on the server hosting
DIRAC and the instant messaging hub. Thou-
sands of jobs were simultaneously sending sta-
tus information, and in many cases were (un-
necessarily) sharing this information with each
other, resulting in an extrememly high, and
unmanageable, message volume which compro-
mised the performance of other services run-
ning on the same server.

Network Failure CERN experienced a site wide
network failure for approximately one day due
to efforts required to isolate an internally com-
promised machine. All services were unavail-
able during this time, and it was proposed that
a fail-over system be prepared at an external
site. This was not completed due to the in-
frequency of extended total network failure at
CERN and the effort required to configure and
manage a second DIRAC system.

Only a few significant bugs were identified in the
DIRAC software. These appeared early in the data
challenge and were quickly resolved. They generally
centered around service scalability and availabil-
ity, requiring the implemention of operation buffer-
ing, timeouts, and fail-over mechanisms on both
the client and server sides (see section 3.4). Once
these early bugs were resolved, “standard” comput-
ing sites observed stable performance. The small
size of DIRAC, buffering of transfer requests, use
of a local job database, and independence from the
local batch system, all meant that it was possible
to stop the Agent, even while jobs are still running
on the site, perform a software update, and recom-
mence the Agent loosing existing jobs or transfers.

Data Management presented the greatest over-
all challenge. A number of sites experienced sig-
nificant data transfer delays or failures, resulting
in transfer backlogs. Large sites would quickly fill
their queues with hundreds of jobs, producing 40
Gb of data and all finishing at approximately the
same time, therefore saturating one or both of the
site’s outbound bandwidth or the target server’s in-
bound bandwidth. Although DIRAC supports a
wide range of transfer protocols (see section 2.3),
difficulties in using every one of these were encoun-
tered. In particular we note the lack of a simple
user-level installation of a grid-ftp client as a major
stumbling block in its acceptance. Through a com-
bination of features discussed in section 3.4 it was
possible to buffer and retry these transfers, in most
cases eventually successfully replicating the data to
a remote source.

The Transfer Request mechanism, which discon-
nects the data transfer from the job execution in a
manner similar to that done by Condor Stork[16],
goes a long way to providing reliable transfers, how-
ever from a global view the system shows shortcom-
ings in identifiying fatally failed transfers (i.e. those
that will not be retried) and transfers which are out-
standing but queued.

4.5 Integration with LCG

LCG is required to make possible the storage and
processing of the vast quantities of data produced by
the LHC experiments. It will bring together hun-
dreds of computing centres around the world and
provide an aggregated computing power equivalent
to over 70,000 of today’s fastest processors. One
of the broad objectives for DIRAC is to provide a
smooth transition from cluster based to grid based
computing for the LHCb experiment and to inte-
grate LHCb computing with the LCG resources.

DIRAC is able to make use of LCG through an
implementation of the abstract CE interface. This
demonstrates the generality of the DIRAC CE, and
ability of DTIRAC to bridge both cluster and grid en-
vironments. Due to the relatively recent availability
of LCG (January 2004 for LCG-2), there are still
many operational issues to be worked through. The
LCG project assigned two of their team, Roberto
Santinelli and Flavia Donno, as LCG Liasons. Their
assistance was invaluable in understanding how to
work with LCG and tracking down problems.

The task flow is similar to the one described in
section 2.1, with the key difference that the job sub-
mitted to LCG is a generic DIRAC Agent installa-
tion script, rather than a specific DIRAC job. When
the LCG job starts, the DIRAC Agent performs an
auto-install and configure, then operates in a run-
once mode where it fetches and executes a single
job. This is very similar to the Condor Glide-In
concept.

Given the small size of the DIRAC Agent the
overhead to do this is minimal, and it provides the
advantage that any failure of the LCG job before
the DIRAC job is fetched will have no consequence
on the DIRAC job pool. The disadvantage is that it
adds another layer to the processing chain, and pre-
vents targeted submission of DIRAC jobs to LCG
sites. While other approaches are still under inves-
tigation and development, this approach has been
the most successful and allowed substantial use of
the LCG resources with a low rate of failed jobs.

overloaded nodes throws off benchmarks and
queue times.

5 DIRAC Future Developments

The service oriented architecture of DIRAC
proved that the flexibility offered by this approach



allows faster development of an integrated dis-
tributed system. The pull paradigm Agent/Service
model has scaled well with a large and varying set
of computing resources, therefore we see the future
evolution of DIRAC along the lines of the services
based architecture proposed by the ARDA work-
ing group at CERN[19] and broadly followed by the
EGEE middle-ware development group[18]. This
should allow DIRAC to be integrated seamlessly
into the ARDA compliant third party services, pos-
sibly filling functionality gaps, or providing alter-
native service implementations. The use of two
different File Catalogues in the DIRAC system is
a good example of leveraging the developments of
other projects, and being able to “swap” services,
provided they implement a standard interface.

DIRAC currently operates in a trusted environ-
ment, and therefore has had only a minimal empha-
sis on security issues. A more comprehensive strat-
egy is required for managing authentication and au-
thorisation of Agents, Users, Jobs, and Services. It
is hoped that a TLS based mechanism can be put
in place with encrypted and authenticated XML-
RPC calls using some combination of the GridSite
project[9], and the Clarens Grid Enabled Web Ser-
vices Framework, from the CERN CMS project.

While the pull model works well for parameter
sweep tasks, such as the physics simulations con-
ducted during DCO04, it remains to be seen if in-
dividual analysis tasks, which are more chaotic by
nature, and require good response time guarantees,
will operate effectively. A new class of Optimiser
is planned which will allocate time-critical jobs to
high priority global queues in order that they be run
in a timely fashion.

Expanded use of the XMPP instant messaging
framework should allow both Jobs and Agents to
expose a Service interface, via the XMPP IQ mech-
anisms. This has great promise for user interactiv-
ity, and real-time monitoring and control of Agents
and Jobs.

Furthermore, with this Service interface to
Agents, a peer-to-peer network of directly interact-
ing Agents is envisioned. This would reduce, and
possibly even eventually eliminate, the reliance on
the Central Services, as Agents could dynamically
load-balance by taking extra jobs from overloaded
sites.
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