BRUNEL

LHCb Reconstruction Program

User Guide

\ersion: 1

Issue: 1

Edition: 0

Status:

ID: [Document ID]
Date: 28 July 2000

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Geneéve 23 - Suisse

BRUNEL

28 July 2000

User Guide
Version/Issue: 1/1

Document Control Sheet

Table 1 Document Control Sheet

Document | Title: BRUNEL User Guide
Version: 1
Issue: 1
Edition: 0
ID: [Document ID]
Status:
Created: 25 May 2000
Date: 28 July 2000
Access: :
Keywords:
Tools DTP System: Adobe FrameMaker Version: 5.5
Layout Software Documentation Version: V1 - 15 January 1999
Template: Layout Templates
Content -- Version: --
Template:
Authorship | Coordinator: M.Cattaneo
Written by: M.Cattaneo

Document Status Sheet

Table 2 Document Status Sheet

Title: BRUNEL User Guide
ID: [Document ID]
Version Issue Date Reason for change
1 0 26 May 2000 | First draft version
1 1 28 July 2000 | Minor changes for Brunel v1r2

page 2

E

BRUNEL

Table of Contents

User Guide
Version/Issue: 1/1

Table of Contents

Document Control Sheet
Document Status Sheet .

Er

Table of Contents . .3
Chapter 1

Introduction e .5

1.1 Purpose of this document . .5

1.2 What does "Brunel” mean? .5

1.3 Editor’s note .5
Chapter 2

Structure of Brunel. T

2.1 Brunel Phases Coe T

2.1.1 Instantiating Brunel Phases . .8

2.2 Brunel sub-detector code S .8

2.2.1 Instantiating sub-detector algorithms .9

2.3 Accessing Gaudi services and data from Brunel . .9

2.4 Adding user code . 10
Chapter 3

Current Implementation . 11

3.1 Wrapped SICBDST 11

3.2 Input/Output definition 12

3.3 Histograms . 13

3.4 Debug printout 14
Chapter 4

Running Brunel . 15

page 3

BRUNEL User Guide
Table of Contents Version/Issue: 1/1

page 4

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1/1

Chapter 1
Introduction

1.1 Purpose of this document

This document is a user guide and reference manual for the LHCDb reconstruction program,
Brunel. It should be useful both to users wishing to run the program, and to programmers
wishing to add functionality.

This document does not describe the physics algorithms or the data model.

1.2 What does "Brunel" mean?

All LHCDb data processing applications are based on a framework which enforces the GAUDI
architecture. Antoni Gaudi [1] was a Catalan architect who greatly influenced the
development of Barcelona around the beginning of the nineteenth century. For the
reconstruction program we decided to use the name of an engineer. Isambard Kingdom
Brunel [2] was a British engineer who greatly contributed to the industrial revolution in the
first half of the eighteenth century.

1.3 Editor’s note

This document is a snapshot of the Brunel software at the time of the release of version v1r2.
We have made every effort to ensure that the information it contains is correct, but in the
event of any discrepancies between this document and information published on the Web, the
latter should be regarded as correct, since it is maintained between releases and, in the case of
code documentation, it is automatically generated from the code.

B 2T page 5

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1/1

We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch

page 6

mailto:Marco.Cattaneo@cern.ch

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1/1

Chapter 2
Structure of Brunel

2.1 Brunel Phases

The LHCDb reconstruction program, Brunel, is composed of a number of Gaudi algorithms:
Brunel I nitialisation,Brunel Fi nalisationandanumber of Brunel Phases.

Brunel Initialisation iswhere allinitialisations which are independent of BrunelPhase
are performed. These can be global program initialisations (in thei ni ti al i se() method),
or event by event initialisations (in the execut e() method). Note that initialisations specific
to a given BrunelPhase should not be performed here.

Brunel Fi nal i sation iswhere all finalisations which are independent of BrunelPhase are
performed. These can be global program finalisations (in the f i nal i se() method), or event
by event finalisations (in the execut e() method). Note that finalisations specific to a given
BrunelPhase should not be performed here.

Br unel Phase is where the meat of the reconstruction program lies. BrunelPhase is a base
class from which actual phases are derived. Each BrunelPhase should be independent of other
BrunelPhases: it should be possible to run only one phase, providing of course event input
data in the appropriate format exists®. All initialisations and finalisations specific to the phase
should be performed inside the phase. The following BrunelPhases are currently
implemented:

= Brunel Di gi iswhere simulated RAW Hits are converted into DIGItisings. The
output of this phase has the same format as real RAW data coming from the
detector?. Obviously this phase would not be present when reconstructing real data,
and could be moved to the simulation program when reconstructing simulated data.
Note that this implies some discipline when designing the DIGItised data model, in
particular for what concerns links to Monte Carlo truth information.

1. This is not entirely true in the current version of the reconstruction program, due to the underlying calls to
SICBDST routines which do not have this structure.

B 2T page 7

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1/1

< Brunel Tri gger iswhere the LHCDb trigger decision is applied. The input event data
are DIGItisings. The output are also DIGItisings, with the addition of the trigger
decision information.

< Brunel Reco is where the first pass reconstruction is carried out. By first pass we
mean that the reconstruction algorithms in this phase rely only on DIGItisings and do
not require input from the reconstruction of other subdetectors. This restriction can
be somewhat relaxed by ensuring that subdetectors are reconstructed in a specific
order: those that only require input from the DIGItisings are processed first, those
that require input from the reconstruction of other sub-detectors are processed after
those sub-detectors.

= Brunel Fi nal Fi t is the second pass reconstruction, to allow for processing which
requires input from the reconstruction of several subdetectors.

Note that additional phases could easily be implemented if further reconstruction passes are
required.

2.1.1 Instantiating Brunel Phases

Brunel Phases are Gaudi top Algorithms. They are therefore instantiated using the standard
Gaudi job option Appl i cati onMgr. TopAl g [3]. Listing 1 shows the value of this option for
the current implementation. Note the different phases in lines 2 to 5, which are different
instances of the cl ass Br unel Phase and will be executed in the order shown

Listing 1 Brunel Top Algorithms

1. ApplicationMgr. TopAlg = { "Brunellnitialisation/Brunellnit",
2 "Brunel Phase/ Brunel Di gi ",

3: " Brunel Phase/ Brunel Tri gger",

4: " Br unel Phase/ Brunel Reco",

5 "Brunel Phase/ Brunel Final Fit",

6 "Brunel Fi nal i sati on/ Brunel Fi ni sh" };

2.2 Brunel sub-detector code

It is expected that sub-detector specific code will be executed inside one or more Brunel
Phases. Each Brunel Phase instantiates a sub-algorithm for each detector participating in that
phase. The class name of the sub-algorithm has to follow a specific convention: it is composed
of the Phase name (e.g. Brunel Di gi) followed by the abbreviated sub-detector name (e.g.
MUON). These sub-algorithms are intended to be the phase specific steering algorithms of the
sub-detectors.

The advantage of this system is that it is easily extendable and modifiable. To add a new
phase, or a new sub-detector, or to change the name of a phase or subdetector, it is sufficient to

2. This is not entirely true in the current version of the reconstruction program, due to the underlying use of
the SICB event data model, which does not have this structure.

page 8 g

bl

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1/1

provide an appropriately named algorithm and to make the necessary changes to the job
options to instantiate this new algorithm. No changes are necessary to the Brunel steering
code.

The list of sub-detector names and sub-algorithm classes currently implemented is shown in
Table 3

Table 3 Sub-detector algorithms currently implemented in Brunel

Sub-detector Abbreviation Algorithms implemented
Electromagnetic Calorimeter | ECAL Brunel Di gi ECAL

Br unel RecoECAL
Hadron Calorimeter HCAL Br unel Di gi HCAL

Br unel RecoHCAL
Muon Detector MUON Br unel Di gi MUON
Ring Imaging Cherenkov RICH Brunel Di gi Rl CH

Br unel RecoRI CH

Tracking Detectors TRAC Brunel Di gi TRAC
Br unel RecoTRAC
Brunel Fi nal Fi t TRAC

Trigger System TRIGGER Brunel Tri gger TRl GGER

Vertex Locator VELO Br unel Di gi VELO

2.2.1 Instantiating sub-detector algorithms

The reason for the naming convention described above is to provide a simple method for
selecting which sub-detectors to reconstruct and in which order. It is sufficient to provide a
Det ect or Li st job option for each phase, containing the list of sub-detectors to be processed
in that phase, as shown in Listing 2.

Listing 2 Processing order of sub-detector algorithms in Brunel.

1: Brunel D gi.DetectorList = { "VELO',"TRAC',"RI CH', "ECAL", "HCAL", "MJON" };
2: Brunel Trigger.DetectorList = { "TRI GGER' };

3: Brunel Reco. DetectorList = { "TRAC' , "RICH' , "ECAL" , "HCAL" };

4: Brunel Final Fit.DetectorList = { "TRAC' };

2.3 Accessing Gaudi services and data from Brunel

Brunel sub-detector algorithms are instances of Gaudi algorithms. As such they have access to
all the services currently implemented in Gaudi, and to all data in the Gaudi data stores.
Please refer to the Gaudi user guide [3] for details.

T page 9

BRUNEL

User Guide

Chapter 2 Structure of Brunel Version/Issue: 1/1

2.4 Adding user code

User code can be added to Brunel in several ways:

1.

By providing a Gaudi Algorithm that can be run as a top algorithm outside of a
Brunel phase. This would typically be a monitoring algorithm that would analyse the
progress of the recostruction. It can be inserted into the application by declaring it as
an additional Appl i cat i onMgr . TopAl g in the job option shown in Listing 1.

By providing a new sub-detector algorithm to be called within a given Brunel Phase.
The new algorithm should have a class name following the convention described in
section 2.2 . It is instantiated by adding the appropriate sub-detector name to the
Det ect or Li st job option shown in Listing 2. Please look at an existing sub-detector
algorithm for details of the structure of such an algorithm.

By replacing an existing sub-detector algorithm.

In the current implementation, it is also possible to add a Fortran analysis routine,
using the SICB user routined SUINIT, SUANAL, SULAST. SUANAL is called at the
end of all event processing.

page 10

E

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1/1

Chapter 3
Current Implementation

The current version of Brunel implements the "wrapping” of SICBDST Fortran code: Brunel is
simply a skeleton within Gaudi which calls the full set of SICBDST Fortran algorithms. There
are no C++ algorithms in this version.

3.1 Wrapped SICBDST

The SICBDST code has been wrapped into Brunel Phases and Brunel sub-detector algorithms.
Each algorithm calls the corresponding FORTRAN steering routine, as summarised in Table 4

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine

Brunel I nitialisation DETINIT (calls ECINIT, ECDI N T,
HCINIT, HCDONIT, MUGNIT, MPINT)

Brunel Di gi VELO VSDI G

Brunel Di gi TRAC WDDI G

Brunel Di gi Rl CH Rl D d

Br unel Di gi ECAL ECD d

Br unel Di gi HCAL HCDI d

Br unel Di gi Muon MUDI G

Brunel Tri gger TRI GGER TRI GGER

Brunel RecoTRAC AXTFI T

Br unel RecoRI CH RI RECO

page 11

E 25

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1/1

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine
Br unel RecoECAL ECRECO
Br unel RecoHCAL HCRECO
Brunel Fi nal Fi t TRAC AXRECO
Brunel Fi nal i sati on SUANAL
RECEVOUT

Communication between the various FORTRAN algorithms is done, as in SICBDST, via
COMMON blocks, in particular the ZEBRA common blocks. The FORTRAN algorithms are
controlled via the SICB data cards file. All data cards recognised by SICBDST are valid, with
the exception of cards dealing with input event data (TRIGGERS card, IOPA 'GETX’, 'GETY",
"GETZ’ cards) and selection of processing steps (SKIP data card). Please refer to the SICB
documentation [4] for details

3.2 Input/Output definition

The current version of Brunel uses the Gaudi Si cbEvent Sel ect or to read in event data
from a SICBMC RAWH file. The relevant job options are shown in Listing 3

Listing 3 Job Options for event input definition

/1 Input file nanme (all on one line!)
ApplicationMyr. EvtSel = "JOBID 19612";

/1 Nunmber of events to be processed (default is 10)
Event Sel ect or. Evt Max = 100;

/1l Print event nunber at each event

Event Sel ector. PrintFreq = 1,

/1 Enable next card if you wish to skip sone events
/] Event Sel ector. FirstEvent = 3;

CoNoORAR®NR

Event pileup is implemented by the Gaudi framework. In order to switch it on in Brunel, you
have to add the job options shown in Listing 4

Listing 4 Job Options for pileup

/1 Declare the Pileup event Selector

ApplicationMyr. Ext Svc += { "Si cbEvent Sel ector/Pil eUpSel ector" };
/1 Define the Pileup node

Pi | eUpAl g. Pi | eUpMode = "LUM ";

/1 Define the file containing the pileup events

Pi | eUpSel ector. Jobl nput = "JOBI D 19065";

oakwnNR

page 12

E

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1/1

In addition, you have to declare the Pi | eUpAl g algorithm as the first top algorithm. The
Appl i cati onMgr. TopAl g job option that was shown in Listing 1 becomes as shown in
Listing 5

Listing 5 Brunel Top Algorithms when doing pileup

1: ApplicationMgr. TopAlg = { "PileUpAl g",

2 "Brunel I nitialisation/Brunellnit",
3: "Brunel Phase/ Brunel Di gi ",

4: "Brunel Phase/ Brunel Tri gger",
5
6
7

" Br unel Phase/ Brunel Reco",
"Brunel Phase/ Brunel Final Fit",
"Brunel Fi nal i sati on/Brunel Fi ni sh" };

The Gaudi framework does not provide a facility for writing out event data to ZEBRA files.
For this reason, Brunel calls the SICB routine RECEVOUT to write out the SICB DST file. The
output stream is defined using an IOPA "SAVX’ data card as for SICBDST [4].

In addition, it is possible to write out an object-oriented DST to a ROOT file, using the
facilities provided by Gaudi. Please refer to the Gaudi manual [3] for details

3.3 Histograms

In the current version of Brunel, the only predefined histograms are those created by the
subdetector code inside SICBDST, control of filling and of output of these histograms is via
the SICB data cards in the usual way.

The standard SICBDST checking histograms are also linked into Brunel by default. This is
done by line 2 in the code fragment below, part of the Brunel requirements file.

1: application Brunel ../Brunel/*.cpp \
2. #/afs/cern.ch/l hcb/software/ LHCOCMI/ SI CBDST/ v233r2/dst/*. F \
3: ../Brunel/*. F

Fill of these histograms is enabled with the following SICB data card:

| OPA
"CHCK' 'HO ' $WORKDI R/ Brunel . hbook!’

In addition, it is possible for users to define their own histograms inside Gaudi algorithms,
using the facilities provided by Gaudi. Such histograms are output by the Gaudi histogram
service, to a file defined by the following card

Hi st ogr anmPer si stencySvc. QutputFile = "histo. hbook";

P page 13

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1/1

3.4 Debug printout

In the current version of Brunel, control of debug printout from the SICBDST Fortran
algorithm is via the SICB data cards in the usual way.

In addition, it is possible to define the level of debug printout available from the Gaudi
Services and from the Brunel control framework via the standard Gaudi MessageSvc job
options:

/1 dobal output Ievel
MessageSvc. Qut put Level = 3

/1 CQver-ride global l|evel for sonme algorithns
Brunel | ni t. Qut put Level = 2;
Br unel Di gi VELO. Qut put Level 2;
Br unel RecoVELQ. Qut put Level 2;

page 14 —

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1/1

Chapter 4
Running Brunel

Brunel is implemented as a CMT [5] package, with the following subdirectory structure:

— Brunel C++ and Fortran source code

— doc release notes

— job example jobs and steering data cards
— ngr CMT r equi rement s file

— Visual Visual Studio Workspace

The j ob subdirectory contains two example jobs for running Brunel either interactively or in
batch on Linux, and examples of a Gaudi job options file (Br unel Opti ons. t xt) and a SICB
data file (Br unel . car ds). You should customise these two files according to your needs.

The files Brunel Opti ons. t xt and Br unel . car ds are picked up by default when you run
one of the example jobs on Linux, or inside Visual Studio on NT. To pick up different files, you
should modify the following two lines in the r equi r enent s file

Set the paths for Brunel and SICBDST data cards.
set JOBOPTPATH ${ BRUNELROOT}/ j ob/ Brunel Opti ons. t xt
set S| CBCARDS ${ BRUNELROOT}/ j ob/ Brunel . cards

[l page 15

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1/1

page 16

BRUNEL User Guide
Appendix A References Version/Issue: 1/1

Appendix A
References

1 See for example http://www.gaudiclub.com/ingles/i_vida/i_menu.html for more
information about Antoni Gaudi

2 See for example http://www.spartacus.schoolnet.co.uk/RAbrunel.htm for more
information about Isambard Kingdom Brunel

3 The GAUDI users guide is available at:
http://lhcb.cern.ch/computing/Components/Gaudi_v5/gug.pdf

4 The SICB documentation is available at: http://Ihch.cern.ch/computing/SICB/

5 CMT documentation is available at

http://Ihcb.cern.ch/computing/Support/html/cmt.htm

page 17

http://www.spartacus.schoolnet.co.uk/RAbrunel.htm
http://www.gaudiclub.com/ingles/i_vida/i_menu.html
http://lhcb.cern.ch/computing/Components/Gaudi_v5/gug.pdf
http://lhcb.cern.ch/computing/SICB/
http://lhcb.cern.ch/computing/Support/html/cmt.htm

BRUNEL User Guide
Appendix A References Version/Issue: 1/1

page 18

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1�� Purpose of this document
	1.2�� What does "Brunel" mean?
	1.3�� Editor’s note

	Chapter 2 Structure of Brunel
	2.1�� Brunel Phases
	2.1.1�� Instantiating Brunel Phases

	2.2�� Brunel sub-detector code
	2.2.1�� Instantiating sub-detector algorithms

	2.3�� Accessing Gaudi services and data from Brunel
	2.4�� Adding user code

	Chapter 3 Current Implementation
	3.1�� Wrapped SICBDST
	3.2�� Input/Output definition
	3.3�� Histograms
	3.4�� Debug printout

	Chapter 4 Running Brunel

