

Baseline Model of LHCb's Distributed Computing Facilities

Report to World Wide Analysis Review Panel 23 March 2000

J.Harvey / CERN

- ☐ Logical dataflow and workflow model
- ☐ Data processing and storage requirements
- Baseline computing model
- ☐ Comparison with MONARC generic model
- Data processing at CERN
- ☐ Plans for deployment of the computing model

Following talk by Frank Harris will focus on :

- ☐ Resources at regional facilities
- □ Comments on Disk vs Tape

LHCb General Comments

- ☐ LHCb Technical Note in preparation see draft
- ☐ Only rough estimates of requirements are available
- ☐ Baseline model reflects current thinking
 - > based on what seems most appropriate technically
 - ➤ discussions are just starting
- ☐ Open meeting of the collaboration April 5-7
 - > feedback and changes can be expected

Physics Goals

☐ Study CP violation by measuring different final states of rare B-meson decays (>20 channels) e.g.

```
\gg B<sub>d</sub> -> \pi \pi 6.9 kevents / year
```

$$\gg$$
 B_d -> K π 33k events / year

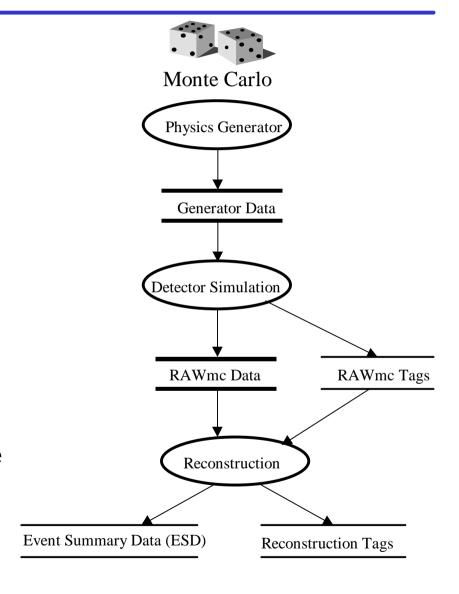
$$\gg$$
 B_d -> J/ Ψ K_s 56k events / year

$$\gg$$
 B_d -> D* π 800 k events / year


$$\gg$$
 B_s -> J/ Ψ ϕ 44 k events /year

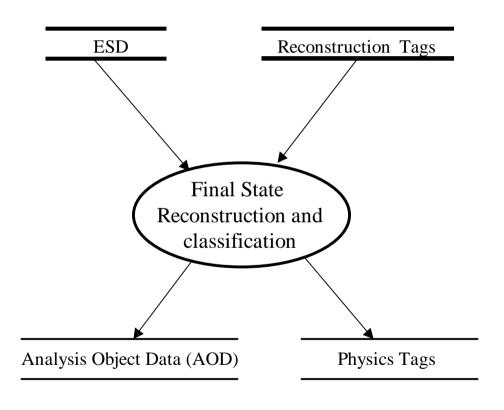
> ...

- ☐ About 10¹² bb pairs produced in 1 year
- Numbers of interesting events reconstructed offline varies according to channel (10⁵ to a few hundred)
- ☐ Trigger on high P_t and displaced secondary vertices


LHCb Dataflow Model - Production

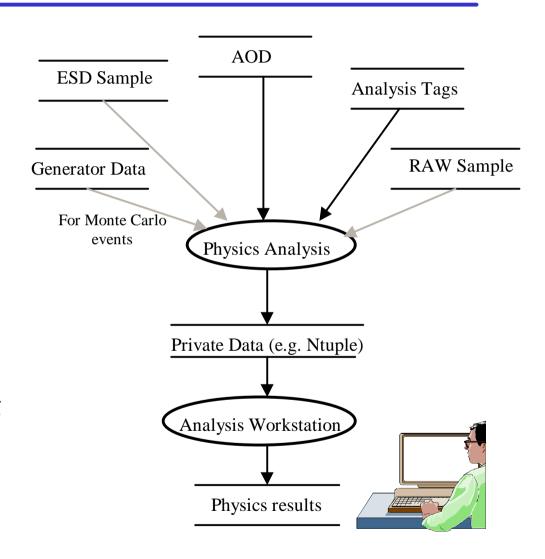
- ☐ L2/L3 runs algorithms use partial reconstruction of final states
 - > Detailed studies still to be made
- ☐ Small samples of rejected events kept for efficiency studies
- □ Reconstruction determines raw physical quantities such as energy in calorimeter, assigns hits to tracks etc.
- □ Reconstruction is repeated a number of times (~2) to accommodate changes in algorithms, calibration and alignment

LHC Event Simulation


- ☐ Simulates all steps :
 - ➤ bb generation
 - ➤ GEANT tracking
 - ➤ Digitisation
 - ➤ trigger
 - ➤ reconstruction
- ☐ Truth information is stored to record physics history of the event
 - ➤ RAWmc larger than RAW
- □ Simulation also repeated as algorithms evolve, and as detector design continues to be optimised

LHCL Dataflow Model - Final State Reconstruction

- Determine P^μ of measured particle tracks, vertices, invariant masses
- Run tagging algorithms to identify candidates for composite particles (J/Ψ , π^0)
- □ Common to different decay modes - run in production as First Pass Analysis
- ☐ Use Reconstruction Tags to optimise
- ☐ Step will be repeated (3-4 times/year) on complete sample as algorithms evolve



LHCk Dataflow Model - User Analysis Cycle

- Physicist runs physics analysis jobs
- ☐ Select interesting events using tags
- □ Reconstruct B-decay channels of interest using AOD only
 - >> copy parts of ESD if needed
- Generate private data (e.g. ntuple)
- □ Study systematic effects by looking at ESD for small event samples
- Access raw data of individual events (~100) and study in detail e.g. with event display

Real Data Processing Requirements

Length of period	120 days	10 ⁷ secs	
LHC duty cycle	50%		
Event rate stored	200 Hz	10 ⁷ per day	10 ⁹ per year
RAW data size	100 kB/event	1 TB/day	100 TB/yr
ESD data size	100 kB/event	1 TB/day	100 TB/yr
AOD data size	20 kB/event	0.2 TB/day	20 TB/yr
TAG data size	1 kB/event	0.01 TB/day	1 TB/yr
L2 trigger CPU	0.25 SI 95sec/event	@40 kHz	10,000 SI 95
L3 trigger CPU	5 SI 95sec/event	@5 kHz	25,000 SI 95
Reconstruction CPU	250 SI 95sec/event	@200 Hz	50,000 SI 95
First Pass Analysis	5 SI 95/event	2.10 ⁸ in 2 days	5000 SI 95
User analysis at RC	20 SI 95/event		10,000 SI 95
User analysis CERN	20 SI 95/event		20,000 SI 95

LHCK User Analysis Requirements

- ☐ Assume that physicist performs a production analysis and requires a response time of 4 hours
- ☐ The ~10⁷ events tagged by first pass analysis are scanned and candidates selected (0.25 SI 95 /event)
- ☐ The selected candidates are subjected to analysis algorithm (20 SI 95 / event)
- ☐ Total installed cpu power needed calculated assuming:
 - ➤ ~140 physicists actively doing analysis
 - ➤ each submits 1 job / day (NB. many short jobs as well)
 - analysis distributed over a number of regional centres (~5) and assume ~20 physicists at each Regional Centre, ~40 at CERN
 - ➤ Assume 0.3 x 10⁷ events selected for algorithm on average
 - > 10,000 SI 95 at each Regional Centre, 20,000 SI 95 at CERN

LHCL Simulation Requirements - Signal Events

- \Box CPU power to simulate 10⁷ B -> D* π events in 1 year
 - > assume need to simulate 10 times real data sample (106)
 - > N.B.this channel dominates
 - ➤ installed capacity needed is 100,000 SI 95

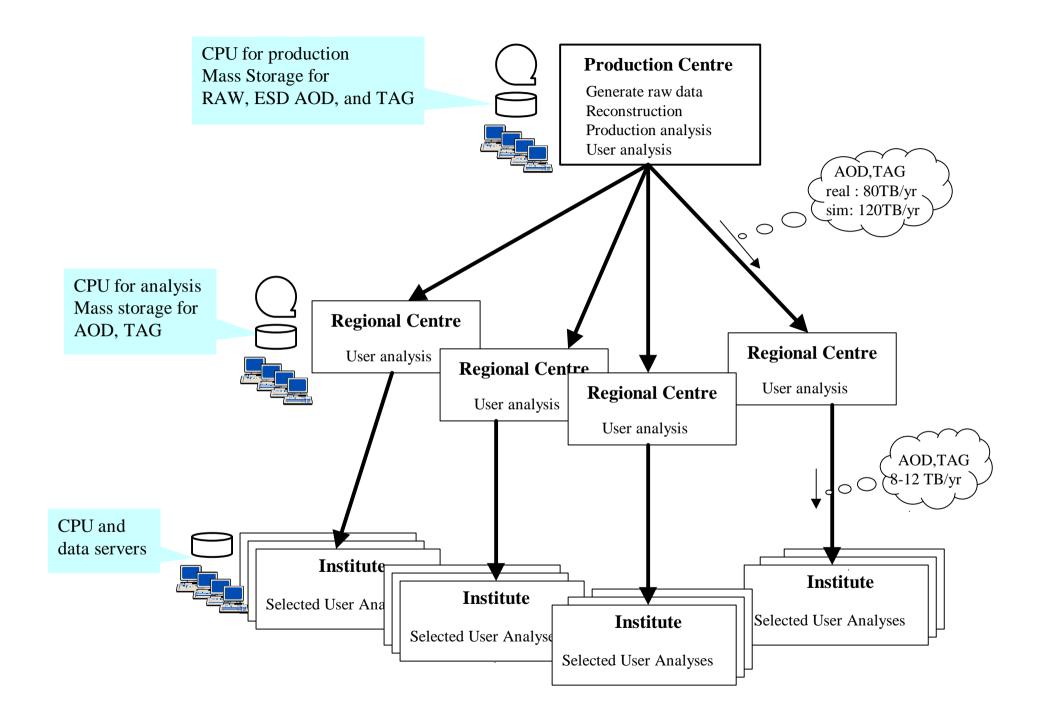
Step	Number of	Cpu time/evt	Total cpu power	
	events			
Generator	10 ¹⁰	200 SI 95sec	2. 10 ¹² SI 95sec	
GEANT	10 ⁹	1000 SI 95sec	10 ¹² SI 95sec	
tracking				
Digitisation	10 ⁹	100 SI 95sec	10 ¹¹ SI 95sec	
Trigger	10 ⁹	100 SI 95sec	10 ¹¹ SI 95sec	
Reconstruction	10 ⁸	250 SI 95sec	2.5 10 ¹⁰ SI 95sec	
First Pass analysis	10 ⁷	20 SI 95sec	2. 10 ⁸ SI 95sec	

LHCL Simulation Requirements - Background

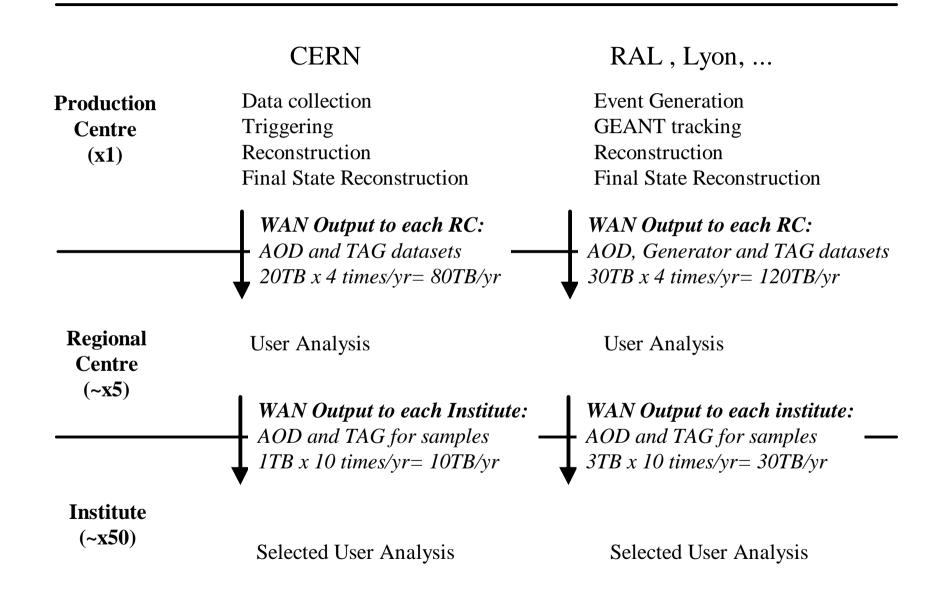
- □ 10⁵ bb inclusive events in detector every second
- □ ~100 Hz are recorded in real data
 - ➤ trigger efficiency 10⁻³
- ☐ If need as many to be simulated then need to generate, track, digitise and trigger 10¹² bb inclusive events/yr and 10⁹ will have to be reconstructed
 - \gg corresponds to 3. 10¹⁴ SI 95 sec / yr
- ☐ Obviously need to study ways of optimising background simulation
 - > store and reuse data produced at generator level
 - ➤ optimise generation step without biasing physics
 - ➤ focus on background particularly dangerous for a specific physics channel
 - → aim to reduce requirements by > 1 order of magnitude
- Assume 400,000 SI 95 required

Simulation Requirements - Summary

RAWmc data size	200 kB/event	200 TB/10 ⁹ events
Generator data size	12 kB/event	12 TB/10 ⁹ events
ESD data size	100 kB	100 TB/10 ⁹ events
AOD data size	20 kB/event	20TB/10 ⁹ events
TAG data size	1 kB/event	1 TB/10 ⁹ events
CPU power	~100,000 SI 95	~400,000 SI 95
	signal events	background events


RHCB Baseline Computing Model

- Based on a distributed multi-tier regional centre model
- ☐ I dentify the production centre
 - > responsible for all production processing phases
 - ➤ generation, reconstruction, and first pass analysis
- Production Centre archives all data generated
 - > RAW, ESD, AOD, TAG (+ generator for simulation)
- □ Assume bulk physicis analysis normally only requires access to AOD and TAG datasets
 - ➤ specific ESD data needed in analysis (small) added to AOD.
 - ➤ only ship AOD and TAG outside to other centres
- ☐ Assume analysis repeated ~4 times per year
 - >> 80 TB / yr (real), 120 TB/yr (simulated) to each RC
 - ➤ Move data using most appropriate medium (network, tape...)

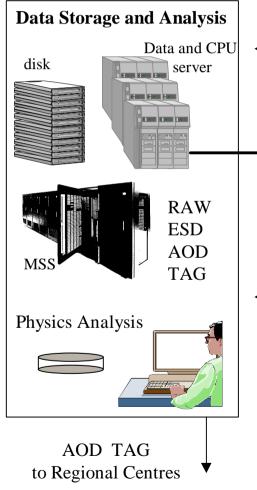

LHCL Baseline Computing Model - Roles

- ☐ To provide an equitable sharing of the total computing load can envisage a scheme such as the following
- ☐ After 2005 role of CERN
 - > to be production centre for real data
 - ➤ support physics analysis of real and simulated data by CERN based physicists
- ☐ Role of regional centres
 - > to be production centre for simulation
 - to support physics analysis of real and simulated data by local physicists
- ☐ Institutes with sufficient cpu capacity share simulation load with data archive at nearest regional centre
- □ NB This scheme still to be discussed in the collaboration political issue as well as technical

Real Data

Simulated Data

- ☐ Technical Note describes three typical scenarios for a distributed physics analysis
 - ➤ physics channel under study
 - ➤ regional centres and institutes involved
 - how data are achived, and requirements on shipping to remote sites


LHCb Differences with MONARC

- □ Do not explicitly identify Group Analyses
 - >> First pass analysis run as one production job as much of final state reconstruction is common to different decay channels
- □ Run all production data processing from RAW to AOD at the production centre. Only ship AOD and TAG datasets to regional facilities.
- ☐ Envisage to focus activities at CERN after 2005 on processing of real data and simulation at remote facilities
- □ Our data processing requirements do not imply a clear need to distinguish Tier 1 and Tier 2 centres.

Computing at CERN

- □ Run high level triggers and reconstruction on same cpu farm located at LHCb pit
- ☐ Send RAW and ESD data over the CDR link (80 Gbps) to computer centre for archive, and first pass analysis
- ☐ Maintain local storage at pit in case CDR down
 - ➤ accumulate 2 TB/day, therefore need >10 TB
- ☐ Dispatch AOD and TAG etc to regional centres
- ☐ During shutdowns, down periods do re-processing of RAW data on the farm in the pit
 - > read RAW back from computer centre
 - ➤ send new ESD from pit to computer centre
 - > full farm available so proceeds at twice the rate
 - ➤ allows 2-3 reprocessings of complete year's data
- ☐ Flexible, efficient and maintainable solution

CERN Computer Centre

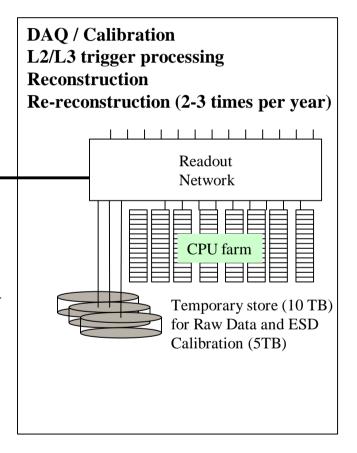
Data Taking

DAQ @ 200 Hz

Raw data 20 MB/s

ESD data 20 MB/s

CDR 80 Gb/s


SHUTDOWN

Reprocessing @ 400 Hz

Raw data 40 MB/s

ESD Data 40 MB/s

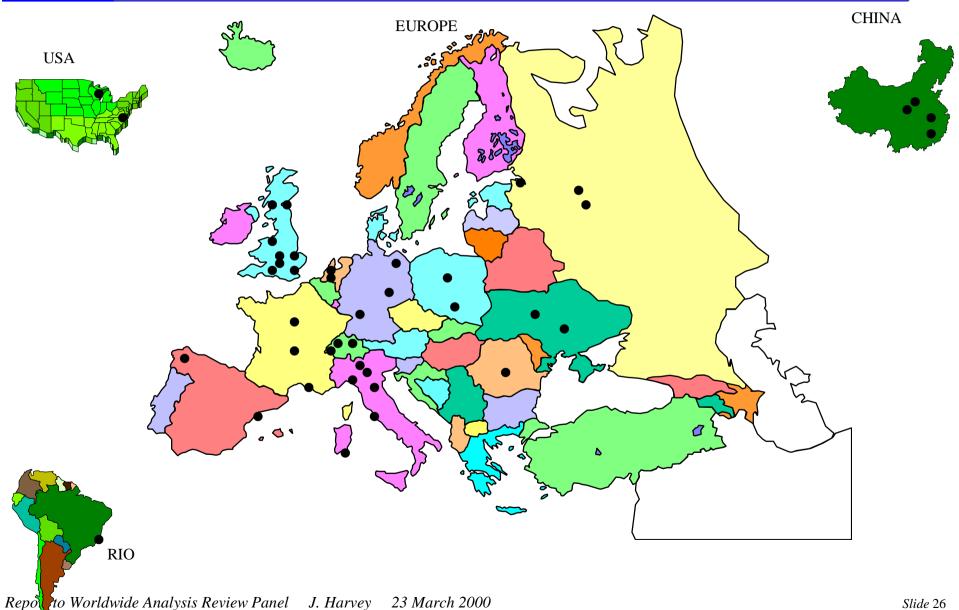
Experiment - LHC Pit 8

Facility at Pit - Requirements

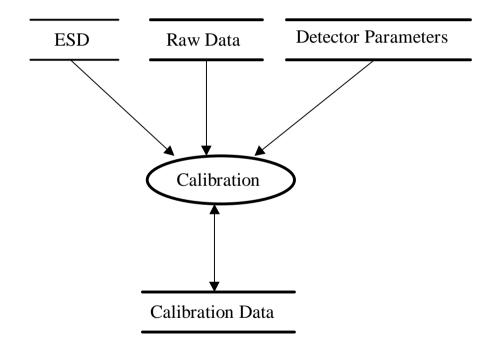
CPU Farm	~100,000 SI 95
Disk storage event buffer	> 10 TB
Disk storage calibration and secondary data	> 5TB
CDR link capacity (80 Gb/s)	1 Gb/s

CERN Computer Centre Requirements

RAW data storage	100 TB/yr
Copy RAW data storage	100 TB/yr
ESD data storage	100 TB/yr
AOD data storage	4 x 20 TB/yr
TAG data storage	1 TB/yr
AODmc, Generator storage	120 TB (30 TB imported 4 times/yr)
TAGmc data storage	4 TB (1 TB imported 4 times/yr)
Total data storage	~500 TB / yr
CPU for First Pass analysis	2000 SI 95
CPU for user analysis	20,000 SI 95
WAN for AOD TAG export	80 TB/yr
WAN for AOD TAG import	124 TB/yr


LHCL Simulation requirements 2000-2005

- **2000-2001**
 - $\gg 10^7$ simulated events/yr for detector optimisation studies
 - ➤ prepare TDRs
- **2**002-2003
 - \gg 2. 10⁷ events/yr for high level trigger studies
- **2**004 2005
 - > start to install and commission large scale facilities
 - > start to produce large samples of background events with the final detector description
 - > ~108 simulated events/yr
- **□** >2001
 - ➤ use simulation and MDC to test computing model
 - ➤ contribute to HEP Application WP of EU grid proposal (scenario3)


Sizing Estimate for Regional Centre

	2000-2001	2002-2003	2004-2005	>2005
AOD TAG				80TB/yr
AODmc TAGmc imported	2TB/yr	5TB/yr	20TB/yr	120 TB/yr
CPU analysis	3000 SI 95	5000 SI 95	10000 SI 95	10000 SI 95
RAWmc, ESDmc AODmc TAGmc generated	5TB/yr	10TB/yr	33TB/yr	333TB
CPU mc production	20000 SI 95	40000 SI 95	60000 SI 95	100000 SI 95

LHCb Collaboration Institutes

Calibration Cycle

□ IO overhead (20% from BaBar)