
The CreditCard PC python
module ’ccpc’

Public Note
Issue: 1
Revision: 0

Reference: LHCb-XXX-2005
Created: September 5, 2005
Last modified: December 15, 2005

Prepared by: Stefan Rosegger TU Graz and Niko Neufeld CERN-PH

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1

Date: December 15, 2005

Abstract

This document describes the Pythonmodule ’ccpc’. The member-functions are derivatives of the func-
tions included in the standard libraries ’lblib’, ’i2culib’ and ’JTAGlib’ which are mainly used for the
LHCb CCPC glue-card. This document gives detailed instructions how they were build and how to
use them.

Document Status Sheet

1. Document Title: The CreditCard PC python module ’ccpc’

2. Document Reference Number: LHCb-XXX-2005

3. Issue 4. Revision 5. Date 6. Reason for change

Release 0 December 15, 2005 Public release

Draft 0 September 5, 2005 First version

Contents

1 Introduction . 2

2 Building a python module . 2

2.1 InitProzess and method table . 2

2.2 Argumentparsing . 3

2.3 Exceptions . 3

2.4 Setup file . 3

3 Usage of the module ’ccpc’ . 4

3.1 Import . 4

3.2 Embedded lblib . 4

3.3 Embedded i2culib . 5

3.4 Embedded JTAGlib . 6

3.5 Exceptions . 7

4 Simple python examples . 8

5 References . 9

page 1

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
2 Building a python module Date: December 15, 2005

1 Introduction

Python is an interpreted, interactive, object-oriented programming language. It is used intense in the
ONLINE subsystem of the LHCb Dedector in CERN. It combines remarkable power with very clear
syntax. Python has modules, classes and exceptions. New built-in modules are easily written in C or
C++.
To make the CreditCard PC libraries available in form of a pythonmodule improves the handling of
the CCPC libraries1. Rapid prototyping and direct control of possible errors via Pythonexceptons are
just a few advantages of using an interpreted language like python.
A huge amount of programs and libraries can be found to build a module as for example BOOST2 and
LCG-Dict. Those programs can be used as tools to include large C and C++ libraries in python. They
are providing the conversion of objects of the chosen language to equivalent python objects which can
be used and manipulated directly in python interpreter.
These programs are very powerful and strongly supported but of course they can not guess what to
do with for example a void* object. The conversion of those has to be done by hand. Because of the
fact that the CCPC libraries are using these kind of objects very often the benefits of Boost and related
programs shrink in this case.
Making the link between python and the CCPC libraries, a so called pythonwrapper, by hand would
increase the legibleness and the easy change of the sourcecode of the pythonmodule and decrease the
filesize.
The following sections describe this module. The latest version is per default installed on all CCPCs
runing Linux SLC4 or higher.

2 Building a python module

To build an extension module in python is described in detail in ”Extending and Embedding ” in [1].
Only a small introduction is given in the following sections of this document.
Examples from the ccpc module building files are shown to give a short overview how they are created
and how they can be extended to increase the capabilities of the ccpc module.

2.1 InitProzess and method table

The initialization process for a python module has to be done by a function similar to the following.
It has to be included in the c-code of the module and must be named initname(), where name is the
name of the module:

void initccpc(void) {

(void) Py_InitModule(’’ccpc’’, ccpc_methods);

}

The initializationprocess needs the definition of the Memberfunctions in form of a ”method table”
where the memberfunctions are defined as for example:

static PyMethodDef ccpc_methods[] = {

...

{ ’’lbread’’, (PyCFunction)ccpc_lbread, METH_VARARGS|METH_KEYWORDS,

’’Description shown in help’’},

...

{NULL, NULL, 0, NULL} /* Sentinel */

};
1More informations about those libraries can be found in [2]
2More informations can be found in [3]

page 2

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
2 Building a python module Date: December 15, 2005

2.2 Argumentparsing

Because python can only handle pythonobjects, the memberfunctions have to understand what argu-
ments they get and they have to return pythonobjects. This can easily be done by keywordparame-
ters and building pythonobjects. Detailed information about building pythonobjects can be found in
”Python/C API Reference Manual” in [1].

static PyObject *

ccpc_lbread(PyObject *self, PyObject *args, PyObject *keywds) {

int width, addr, n;

char *block = ’’s’’;

static char *kwlist[] = {’’width’’, ’’addr’’, ’’n’’, ’’block’’, NULL};

if (!PyArg_ParseTupleAndKeywords(args, keywds, ’’iii|s’’, kwlist,

&width, &addr, &n, &block))

return NULL;

...

return Py_BuildValue(’’i’’, numOut);

}

2.3 Exceptions

If an error occures then a significant string, which describes the error, can be set to an standard built-in
exception like

if (glue_default_init()) {

PyErr_SetString(PyExc_IOError, ’’glue_default_init() failed\n’’);

goto error_out;

}

2.4 Setup file

To build an extension module distuils can be used. The distuils package contains a driver script,
setup.py . This is a plain Python file which can look in a simple case like this:

from distutils.core import setup, Extension

module1 = Extension(’ccpc’,

sources = [’ccpcmodule.c’])

setup (name = ’ccpc’,

version = ’1.0’,

description = ’Module for CCPC‘s’,

ext_modules = [module1])

With this setup.py, and a file ccpcmodule.c , running

python setup.py build

will compile the file, and produce an extension module named ”ccpc” in the build directory. Depend-
ing on the system, the module file will end up in a subdirectory build/lib.system, and may have a
name like demo.so or demo.pyd .

More information about building, building and rpm-package and installing modules can be found in
”Distributing Python Modules ” in [1].

page 3

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
3 Usage of the module ’ccpc’ Date: December 15, 2005

3 Usage of the module ’ccpc’

An introduction about how to use Python is given in ”Tuotorial” in [1]. This section should give more
details about the specific usage of the pythonmodule ’ccpc’, the included functions and the possible
features.

3.1 Import

The ccpc module can easily be imported with standardprocedures of the python interpreter like ...

>>> import ccpc

>>> from ccpc import *

In both procedures the whole module will be avaiable. The secound statement loads the memberfunc-
tions directly into the namespace. The first one loads them into the scope of the module. The following
examples shows the usage of the memberfunctions in both cases ...

>>> ccpc.lbread()

>>> lbread()

The built-in functions can be listed with dir(ccpc) (just when the first import was used). How to
use these functions is shown in this document and also by using the syntax help(ccpc) directly
on the python commandline (or if the module was imported with the secound importstatement with
help(functionname)).

The usage is very similar to the usage of the functions via C-code. More details about the C-functions
can be found in [2].

3.2 Embedded lblib

The local bus library is the basic library to program the CCPC and glue-card. It interfaces directly
to the device driver plx. It offers functions to program the PLX registers to read and write local bus
addresses and to remap local memory regions into user space.

Two of those functions are included in the ccpc module, lbread and lbwrite . Those functions make
it possible to read and write from and to the local bus. They can be used as follow ...

values = lbread(bitwidth, address, n, readmode)

... bitwidth must be either 8, 16 or 32

... address to read from (integer)

... n is number of blocks to read (integer)

... readmode ... optional: ’b’ or ’s’ (string)

The values which were read are written into an integertuple. They can be handled in python in the
usual way.

Parsed Integers can be written in any form for example in decimal 65551 or in the equvalent hex-
adecimal 0x1000f . The readmode can be either blockreading ’b’ or singlereading ’s’ . This is an
optional argument (default is singlereading). It must be parsed as a string indicated by ’...’ .

The same conventions are used in lbwrite .

page 4

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
3 Usage of the module ’ccpc’ Date: December 15, 2005

lbwrite(bitwidth, address, (value, ...), writemode)

... bitwidth must be either 8, 16 or 32

... address to write on (integer)

... values to write (integertuple)

... writemode ... optional: ’b’ or ’s’ (string)

The values to write have to be parsed in form of an integertuple. In python a tuple is characterized
through round brackets so even if there is just one value to write, it has to be parsed as a tuple for
example (0xff,) . The maximum size of each value is determined by the parsed bitwidth.

3.3 Embedded i2culib

The I2C controller on the glue-card can drive 4 different I2C channels. The I2C library makes it possi-
ble to write, read and scan. It also allows combined write and reads (separated by a restart condition
on the bus). The following functions are included in the ccpc module.

values = i2cwread(bus, addr, subaddr, n)

... bus (integer)

... address (integer)

... subaddress (integer)

... n is number of values to read

This is the function to read from the i2c bus. The returned values are parsed as an integertuple.

i2cwrite(bus, addr, (subaddr, [values] ...))

... bus (integer)

... address (integer)

... subaddress and values to write (integertuple)

This is the function to write to the i2c bus. The subaddress and the values to write have to be com-
bined in an integertuple. Maybe this will be changed in a later version, so that the subaddress can be
parsed in form of an integer detached from the valuetuple.

value = i2cscan(bus, addr, [scanmode])

... bus (integer)

... address (integer)

... scanmode ... optional: ’w’ or ’r’ (string)

This function is used to scan an address of the i2c bus in read or write mode. It does not actually read
or write any data on the bus. It just checks whether it is acknowledged upon a read or write request
for a specific addressFunction. Return value is 1 (True) on success and 0 (False) otherwise.

The scanmode can be either writemode ’w’ or readmode ’r’ . This is, like in the lblib library an
optional argument (default is writemode). It must be parsed in form of a string.

page 5

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
3 Usage of the module ’ccpc’ Date: December 15, 2005

3.4 Embedded JTAGlib

The JTAGlib is a C library which make possible to send data to the JTAG Controller LVT8980. This
Library exposes all the controller function, and other functions necessary to control the controller reg-
isters (for a detailed description see [2] and linked).

The following functions of the JTAG library are included in the ccpc module.

bitsIn = drscan(chain, nbits, bitsOut)

... chain is the JTAG chain (integer: 1, 2 or 3)

... nbits is number of bits to shift out (integer)

... bitsOut is bits to shift out (integer or string)

... bitIn is received bits which were read (integer or string)

bitsIn = irscan(chain, nbits, bitsOut)

... chain is the JTAG chain (integer: 1, 2 or 3)

... nbits is number of bits to shift out (integer)

... bitsOut is bits to shift out (integer or string)

... bitIn is received bits which were read (integer or string)

These functions are performing an DRSCAN or IRSCAN. The variables bitsIn and bitsOut have
to be integers of the maximum size of 32bit.

If larger bitchains have to be shifted strings can be used to parse them. In such a case the first two
characters characterize the integerformat of the string. For example ’0x0f’ is an 8 bit hexadecimal
number and ’0i00001111’ is the equivalent binary number. If nbits is greater than the values of the
parsed string, the string will be filled up to get to this size.

If a string was parsed, the returned variable bitsIn will also have a string format (to allow greater
bitchains). This string will contain a hexidecimal number.

Those conventions are used in both functions drscan and irscan .

int = chainscan(chain)

... chain is the JTAG chain (integer: 1,2 or 3)

chainscan scans a chain an returns the number of attached devices as an integer.

tuple = getid(chain)

... chain is the JTAG chain (integer: 1, 2 or 3)

getid finds the ID’s of all attached Devices of a JTAG chain. The returning value is an integertuple
and contains the deviceID’s. (It is using chainscan to find the number of attached devices).

int = chainreset(chain)

... chain is the JTAG chain (integer: 1, 2 or 3)

This function resets the JTAG chain and returns the new JTAGState as an integer.

page 6

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
3 Usage of the module ’ccpc’ Date: December 15, 2005

int = statemove(chain, endst)

... chain is the JTAG chain (integer: 1, 2 or 3)

... endst is the state to move on (integer)

possible Endstates are:

0 ... ENDST_TLRST

1 ... ENDST_RTIDLE

2 ... ENDST_PSDR

3 ... ENDST_PSIR

statemove changes the JTAGState by moving (not jumping) to the new state defined by endst . It
returns the new JTAGState (note: those integers are different to the numbers above).

3.5 Exceptions

The ccpc module uses the standard built-in exceptions provided by python. In these a significant
string is set to describe the type of the error and where it appeared.

It is possible to write programs that handle selected exceptions without exiting the whole program,
as the following code shows.

>>> for addr in range(0x10000, 0x10010):

... try:

... lbread(8, addr, 0xff, ’w’))

... except IOError:

... print ’IOError on address ’, addr

In this case, if an IOError occurs, the program will not exit. The Message shown above will be printed
and the program will continue.

In the ccpc module just three of the standard built-in exceptions are used to provide elementariness.
The significant string set in the module gives more details about the occured error. The three main-
errors are:

StandardError . . . if parsed arguments are incorrect

TypeError . . . parsed arguments are of invalid type

IOError . . . libraryfunctionerror, boarderror, mallocerror, writeerror etc.

page 7

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
4 Simple python examples Date: December 15, 2005

4 Simple python examples

The following examples should give a short introduction about how to use the module ’ccpc’.
The first python code uses the lblib functions lbread and lbwrite . It reads 8 values from the local-
bus, shifts those values and writes them on the same address.

1 import ccpc
2
3 addr = 0 x13000
4 width = 8
5
6 t u p l e a = ccpc . lbread (width , addr , 8)
7 print t u p l e a
8
9 tuple b = () for pos in range (0 , len (t u p l e a)) :

10 tuple b = tuple b + (t u p l e a [pos] > > 1 ,)
11
12 print tuple b
13 ccpc . l b w r i t e (width , addr , tuple b)

The second python code uses the i2clib functions. It scans addresses on the i2c busses in readmode.
The readable are printed. This code is similar to the commandline utility ’i2cscan’ mentioned in [2].

1 from ccpc import ∗
2
3 for bus in range (0 , 4) :
4 print ” scan bus : ” , bus
5
6 for addr in range (0 , 0 x100) :
7 i f i 2 c s c a n (bus , addr , ’ r ’) :
8 print hex (addr)
9

10 print ’ f i n i s h e d ’

The last python code uses the JTAGlib functions. This one scans a chains, gives the number of devices
and the belonging ID’s. Then it writes the ’101’ command (= 0x06 in hex) via irscan. The benefit is
that now drscan is able to read the device ID directly from the buffer (provided that it shifts 32 bits).

1 from ccpc import ∗
2
3 chain = 1
4 print ”−−−−−−−−−−−−−−−−−−−−−”
5 print ” chain ” , chain , ” − devices ” , chainscan (chain)
6 a = get id (chain)
7 print ”ID” , hex (a [0])
8
9 # r e a d t h e ID v i a d r s c a n

10 print ” i r s c a n : bi tsOut : ” , hex (6)
11 i r s c a n (chain , 3 , ’ 0 i101 ’)
12
13 print ” drscan : b i t s I n : ” , drscan (chain , 3 2 , ’ 0 xfeedbabe ’)
14
15 print ”−−−−−−−−−−−−−−−−−−−−−”

page 8

The CreditCard PC python module ’ccpc’ Ref: LHCb-XXX-2005
Public Note Issue: 1
5 References Date: December 15, 2005

The last code produces the following output3.

1 −−−−−−−−−−−−−−−−−−−−−
2 chain 1 − devices 1
3 ID 0 x40a093
4 i r s c a n : bi tsOut : 0 x6
5 drscan : b i t s I n : 0 x0040a093
6 −−−−−−−−−−−−−−−−−−−−−

5 References

[1] Python 2.2.3 Documentation, http://www.python.org/doc/2.2.3/

[2] CreditCard PC softwareguide, Niko Neufeld EPFL & CERN, LHCb note, http:
//cern.ch/lhcb-online/ecs/ccpc/software

[3] boost C++ Libraries, http://www.boost.org

3produced on the 8.Sept 2005 on the CreditCardPC ’pclbcc06’

page 9

http://www.python.org/doc/2.2.3/
http://cern.ch/lhcb-online/ecs/ccpc/software
http://cern.ch/lhcb-online/ecs/ccpc/software
http://www.boost.org

	Introduction
	Building a python module
	InitProzess and method table
	Argumentparsing
	Exceptions
	Setup file

	Usage of the module 'ccpc'
	Import
	Embedded lblib
	Embedded i2culib
	Embedded JTAGlib
	Exceptions

	Simple python examples
	References

