Supplementary material for LHCb-PAPER-2012-024

A comparison of LHCb's differential branching fraction measurement with earlier measurements from BaBar [1], Belle [2] and CDF [3] is provided in Fig. 1. A comparison of the Belle and CDF values for A_{FB} is provided in Fig. 2. There is good agreement between the differential branching fraction and A_{FB} measurements of the experiments in every q^{2} bin. The parameter F_{H} has not been previously measured.

References

[1] BaBar collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays $B \rightarrow K \ell^{+} \ell^{-}$and $B \rightarrow$ $K^{*} \ell^{+} \ell^{-}$, Phys. Rev. D73 (2006) 092001, arXiv:hep-ex/0604007; BaBar collaboration, J. P. Lees et al., Measurement of branching fractions and rate asymmetries in the rare decays $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$, arXiv:1204.3933.
[2] Belle collaboration, J.-T. Wei et al., Measurement of the differential branching fraction and forward-backword asymmetry for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$, Phys. Rev. Lett. 103 (2009) 171801, arXiv:0904.0770.
[3] CDF collaboration, T. Aaltonen et al., Measurements of the angular distributions in the decays $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$at $C D F$, Phys. Rev. Lett. 108 (2012) 081807, arXiv:1108.0695.

Figure 1: Differential branching fraction of $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$as a function of the dimuon invariant mass squared, q^{2}. The SM theory prediction is given as the continuous cyan (light) band and the rate-average of this prediction across the q^{2} bin is indicated by the purple (dark) region. No SM prediction is included for the regions close to the narrow $c \bar{c}$ resonances. Previous results from BaBar [1] Belle [2] and CDF [3] are included for reference.

Figure 2: Dimuon forward-backward asymmetry, A_{FB}, for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$as a function of the dimuon invariant mass squared, q^{2}. The values of A_{FB} measured by Belle [2] and CDF [3] are included for reference.

