¹⁵⁷ Supplementary material for CDS

Table 2 shows the B_c^+ meson signal yield in each (p_T, y) bin.

$p_{\rm T}({\rm GeV}\!/c)$	2.0 < y < 2.9	2.9 < y < 3.3	3.3 < y < 4.5
$0 < p_{\rm T} < 2$	88.7 ± 12.6	100.2 ± 13.1	78.3 ± 14.1
$2 < p_{\rm T} < 3$	100.1 ± 12.3	103.7 ± 12.9	106.6 ± 13.5
$3 < p_{\rm T} < 4$	103.1 ± 12.7	93.6 ± 13.1	124.4 ± 14.2
$4 < p_{\rm T} < 5$	142.6 ± 14.2	93.1 ± 11.3	166.9 ± 15.9
$5 < p_{\rm T} < 6$	145.9 ± 13.9	107.4 ± 12.7	136.6 ± 15.3
$6 < p_{\rm T} < 7$	113.2 ± 12.4	107.1 ± 11.7	91.9 ± 11.0
$7 < p_{\rm T} < 8$	111.2 ± 11.7	66.8 ± 9.8	76.6 ± 10.4
$8 < p_{\rm T} < 10$	149.3 ± 13.9	71.5 ± 9.7	122.3 ± 12.9
$10 < p_{\rm T} < 14$	144.0 ± 13.2	89.4 ± 10.8	80.3 ± 10.5
$14 < p_{\rm T} < 20$	81.2 ± 9.6	34.5 ± 7.7	29.2 ± 6.7

Table 2: B_c^+ meson yield in each p_T and y bin, with the statistical uncertainty from the fit to the invariant mass distribution.

The results are compared with the theoretical predictions in Fig. 5 and Fig. 6. For B_c^+ 159 meson the predictions following the α_s^4 approach [40] are shown. We use the CTEQ6LL [49] 160 parton distribution functions, and the leading order running α_s , the characteristic energy 161 scale $Q^2 = p_T^2 + m_{B_c^+}^2$, and the masses of the *b* and *c* quarks are set to $m_b = 4.95 \text{ GeV}/c^2$ and 162 $m_c = 1.326 \text{ GeV}/c^2$. The normalization of the theoretical predictions uses $0.47 \,\mu\text{b}$ as the 163 B_c^+ production cross-section in the whole phase space and 0.33% for $\mathcal{B}(B_c^+ \to J/\psi \pi^+)$ [50], 164 corrected for the latest measurement of the B_c^+ lifetime. The theoretical prediction on the 165 B^+ cross-section is based on the fixed order + next-to-leading log (FONLL) framework [51]. 166 The uncertainties on the theory curves are the uncertainties of the FONLL calculation, 167 including the uncertainties of the b quark mass, the renormalisation and factorisation 168 scales, and CTEQ6.6 [52] functions. The FONLL predictions are scaled according to the 169 measured branching fraction value $\mathcal{B}(B^+ \to J/\psi K^+) = 0.106\%$ [34] and the B^+ production 170 cross-section 38.9 µb measured at $\sqrt{s} = 7 \text{ TeV}$ [53] increased by 20% due to higher collision 171 energy [54]. 172

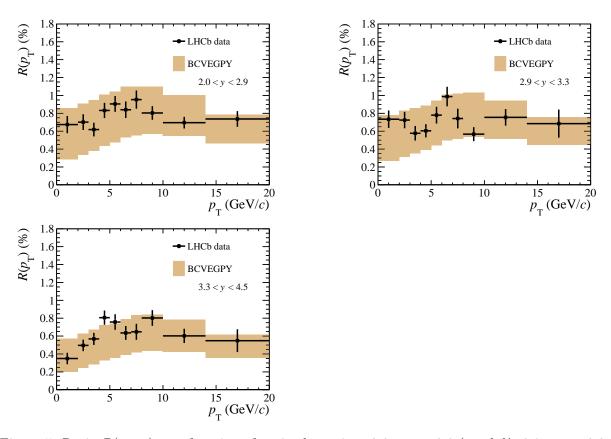


Figure 5: Ratio $R(p_T, y)$ as a function of p_T in the regions 2.0 < y < 2.9 (top left), 2.9 < y < 3.3 (top right), and 3.3 < y < 4.5 (bottom left), with theoretical predictions following the α_s^4 approach [40] overlaid.

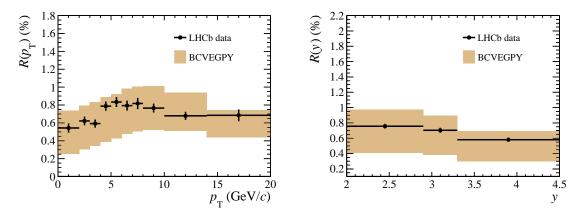


Figure 6: Ratio $R(p_{\rm T})$ as a function of $p_{\rm T}$ integrated over y in the region 2.0< y <4.5 (*left*) and R(y) as a function of y integrated over $p_{\rm T}$ in the region 0< $p_{\rm T}$ < 20 GeV/c (*right*) are compared to the theoretical predictions following the α_s^4 approach [40].