Supplementary material for CDS

Table 2 shows the B_{c}^{+}meson signal yield in each $\left(p_{\mathrm{T}}, y\right)$ bin.

Table 2: $\quad B_{c}^{+}$meson yield in each p_{T} and y bin, with the statistical uncertainty from the fit to the invariant mass distribution.

$p_{\mathrm{T}}(\mathrm{GeV} / c)$	$2.0<y<2.9$	$2.9<y<3.3$	$3.3<y<4.5$
$0<p_{\mathrm{T}}<2$	88.7 ± 12.6	100.2 ± 13.1	78.3 ± 14.1
$2<p_{\mathrm{T}}<3$	100.1 ± 12.3	103.7 ± 12.9	106.6 ± 13.5
$3<p_{\mathrm{T}}<4$	103.1 ± 12.7	93.6 ± 13.1	124.4 ± 14.2
$4<p_{\mathrm{T}}<5$	142.6 ± 14.2	93.1 ± 11.3	166.9 ± 15.9
$5<p_{\mathrm{T}}<6$	145.9 ± 13.9	107.4 ± 12.7	136.6 ± 15.3
$6<p_{\mathrm{T}}<7$	113.2 ± 12.4	107.1 ± 11.7	91.9 ± 11.0
$7<p_{\mathrm{T}}<8$	111.2 ± 11.7	66.8 ± 9.8	76.6 ± 10.4
$8<p_{\mathrm{T}}<10$	149.3 ± 13.9	71.5 ± 9.7	122.3 ± 12.9
$10<p_{\mathrm{T}}<14$	144.0 ± 13.2	89.4 ± 10.8	80.3 ± 10.5
$14<p_{\mathrm{T}}<20$	81.2 ± 9.6	34.5 ± 7.7	29.2 ± 6.7

The results are compared with the theoretical predictions in Fig. 5 and Fig. 6. For B_{c}^{+} meson the predictions following the α_{s}^{4} approach [40] are shown. We use the CTEQ6LL [49] parton distribution functions, and the leading order running α_{s}, the characteristic energy scale $Q^{2}=p_{\mathrm{T}}{ }^{2}+m_{B_{c}^{+}}^{2}$, and the masses of the b and c quarks are set to $m_{b}=4.95 \mathrm{GeV} / c^{2}$ and $m_{c}=1.326 \mathrm{GeV} / c^{2}$. The normalization of the theoretical predictions uses $0.47 \mu \mathrm{~b}$ as the B_{c}^{+}production cross-section in the whole phase space and 0.33% for $\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)$[50], corrected for the latest measurement of the B_{c}^{+}lifetime. The theoretical prediction on the B^{+}cross-section is based on the fixed order + next-to-leading log (FONLL) framework [51]. The uncertainties on the theory curves are the uncertainties of the FONLL calculation, including the uncertainties of the b quark mass, the renormalisation and factorisation scales, and CTEQ6.6 [52] functions. The FONLL predictions are scaled according to the measured branching fraction value $\mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)=0.106 \%[34]$ and the B^{+}production cross-section $38.9 \mu \mathrm{~b}$ measured at $\sqrt{s}=7 \mathrm{TeV}$ [53] increased by 20% due to higher collision energy [54].

Figure 5: Ratio $R\left(p_{\mathrm{T}}, y\right)$ as a function of p_{T} in the regions $2.0<y<2.9$ (top left), $2.9<y<3.3$ (top right), and $3.3<y<4.5$ (bottom left), with theoretical predictions following the α_{s}^{4} approach [40] overlaid.

Figure 6: Ratio $R\left(p_{\mathrm{T}}\right)$ as a function of p_{T} integrated over y in the region $2.0<y<4.5$ (left) and $R(y)$ as a function of y integrated over p_{T} in the region $0<p_{\mathrm{T}}<20 \mathrm{GeV} / c$ (right) are compared to the theoretical predictions following the α_{s}^{4} approach (40].

