7 Supplementary material: visualization of the $\boldsymbol{C P}$ asymmetry

The time-dependent decay widths in Eq. (1) can be combined into a $C P$ asymmetry explicitly dependent on $m_{h h}$ and decay angles as

$$
\begin{equation*}
\frac{\bar{\Gamma}(t)-\Gamma(t)}{\bar{\Gamma}(t)+\Gamma(t)}=\mathcal{S}\left(m_{h h}, \Omega\right) \sin \left(\Delta m_{d} t\right)-\mathcal{C}\left(m_{h h}, \Omega\right) \cos \left(\Delta m_{d} t\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{S}\left(m_{h h}, \Omega\right)=\frac{2 \mathcal{I} m\left(\mathcal{A}^{*} \overline{\mathcal{A}}\right)}{|\mathcal{A}|^{2}+|\overline{\mathcal{A}}|^{2}}, \quad \text { and } \quad \mathcal{C}\left(m_{h h}, \Omega\right)=\frac{|\mathcal{A}|^{2}-|\overline{\mathcal{A}}|^{2}}{|\mathcal{A}|^{2}+|\overline{\mathcal{A}}|^{2}} \tag{16}
\end{equation*}
$$

Since the asymmetry depends on the location in the $\left(m_{h h}, \Omega\right)$ phase space, the overall asymmetry integrated over the phase space is diluted as both \mathcal{S} and \mathcal{C} change sign. It is also further diluted by other experimental effects, e.g. wrong flavour tagging. In order to view the time dependent asymmetry, we transform the event-by-event decay time by changing t to $t^{\prime}=t+d t\left(m_{h h}, \Omega\right)$ by using

$$
\begin{align*}
\cos \left[\Delta m_{d} d t\left(m_{h h}, \Omega\right)\right] & =\frac{\mathcal{S}\left(m_{h h}, \Omega\right)}{\sqrt{\mathcal{S}\left(m_{h h}, \Omega\right)^{2}+\mathcal{C}\left(m_{h h}, \Omega\right)^{2}}} \\
\sin \left[\Delta m_{d} d t\left(m_{h h}, \Omega\right)\right] & =-\frac{\mathcal{C}\left(m_{h h}, \Omega\right)}{\sqrt{\mathcal{S}\left(m_{h h}, \Omega\right)^{2}+\mathcal{C}\left(m_{h h}, \Omega\right)^{2}}}, \tag{17}
\end{align*}
$$

where $\mathcal{S}\left(m_{h h}, \Omega\right)$ and $\mathcal{C}\left(m_{h h}, \Omega\right)$ are determined by the fit to the data. The asymmetry in Eq. (15) is transformed to a single sine function with positive coefficient:

$$
\begin{equation*}
\frac{\bar{\Gamma}\left(t^{\prime}\right)-\Gamma\left(t^{\prime}\right)}{\bar{\Gamma}\left(t^{\prime}\right)+\Gamma\left(t^{\prime}\right)}=\sqrt{\mathcal{S}\left(m_{h h}, \Omega\right)^{2}+\mathcal{C}\left(m_{h h}, \Omega\right)^{2}} \sin \left(\Delta m_{d} t^{\prime}\right) . \tag{18}
\end{equation*}
$$

The new asymmetry is not diluted by its location in phase space because only positive coefficients are summed. The quantity $\Delta m_{d} t^{\prime}$ is taken to be modulo of 2π. The transformation only depends on the value of $\left(m_{h h}, \Omega\right)$, not the decay time t.

To obtain the data asymmetry distribution as function of t^{\prime}, we first calculate t^{\prime} event-by-event for the data, the pseudo-experimental signal and background samples using the Fit 1 result. The pseudo-experimental samples are generated according to their PDFs used in the fit. The tagged B^{0} and \bar{B}^{0} data t^{\prime} distributions are subtracted by the corresponding background distributions, then asymmetries in bins of t^{\prime} are calculated. The red curve is the expectation from Fit 1, obtained from the pseudo-experimental signal asymmetry distribution. The $C P$ asymmetries for the sum of all resonant components are shown for the decay time in Fig. 7 and for the shifted decay time in Fig. 8. In the latter case the time modulation of the $C P$ asymmetry is clearly seen.

Figure 7: $C P$ asymmetry as a function of decay time for all components in ${ }^{(} \bar{B}^{\prime} 0 \rightarrow J / \psi \pi^{+} \pi^{-}$.

Figure 8: $C P$ asymmetry as function of shifted decay time for all components in ${ }^{\prime} \bar{B}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$.

