Supplementary material for LHCb-PAPER-2014-063

Figure 1: Distribution of the $\mu^+\mu^-$ mass versus the $\pi^+\pi^-\mu^+\mu^-$ mass, before the vetoes to remove dimuon resonances. The black lines define the regions to veto $\phi \rightarrow \mu^+\mu^-$, $J/\psi \rightarrow \mu^+\mu^-$, and $\psi(2S) \rightarrow \mu^+\mu^-$ decays; they are 1.010–1.030 GeV/ c^2 , 2.796–3.216 GeV/ c^2 , and 3.436–3.806 GeV/ c^2 , respectively.

Figure 2: Distribution of the $\mu^+\mu^-$ mass in the range 2–4.5 GeV/ c^2 to show the J/ψ and $\psi(2S)$ resonances with their radiative tails. All candidates with $\pi^+\pi^-\mu^+\mu^-$ invariant mass in the range 5.19–6.99 GeV/ c^2 are considered. The red lines define the regions to veto $J/\psi \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow \mu^+\mu^-$ decays; they are 2.796–3.216 GeV/ c^2 and 3.436–3.806 GeV/ c^2 , respectively.

Figure 3: Distribution of the pion $\text{DLL}(\pi-K)$ versus the $\pi^+\pi^-\mu^+\mu^-$ mass; for each candidate, the minimum value between the $\text{DLL}(\pi-K)$ of the two pions is considered. The $B_{(s)}^0 \to J/\psi \pi^+\pi^$ and $B_{(s)}^0 \to \pi^+\pi^-\mu^+\mu^-$ candidates are merged together. The variable $\text{DLL}(\pi-K)$ is the difference of the logarithm of the likelihood of a track to be a π or a K. The accumulation of events at $\text{DLL}(\pi-K)=0$ is given by particles with momentum below the Cherenkov threshold in the RICH detectors. The accumulation of candidates in the region around 5.2 GeV/ c^2 for $\text{DLL}(\pi-K)<1$ is due to $B^0 \to J/\psi K^*(892)^0$ and $B^0 \to K^*(892)^0 \mu^+\mu^-$ decays, where the kaon is misidentified with a pion. The band around 5.37 GeV/ c^2 is given by $B_s^0 \to J/\psi \pi^+\pi^-$ and $B_s^0 \to \pi^+\pi^-\mu^+\mu^-$ decays candidates; the band around 5.28 GeV/ c^2 is due to $B^0 \to J/\psi \pi^+\pi^-$ and $B^0 \to \pi^+\pi^-\mu^+\mu^-$ decays candidates. In the analysis, the requirement $\text{DLL}(\pi-K)>1$ is set to suppress the misidentified decays.

Figure 4: Distribution of the $\pi^+\pi^-$ mass versus the $\pi^+\pi^-\mu^+\mu^-$ mass. The $B^0_{(s)} \to J/\psi \pi^+\pi^$ and $B^0_{(s)} \to \pi^+\pi^-\mu^+\mu^-$ candidates are merged together.

Figure 5: Selection efficiency for $B_s^0 \to \pi^+\pi^-\mu^+\mu^-$ decays as a function of the $\pi^+\pi^-$ mass for simulated events. The black curve represents the fit to the simulated data with a second-order polynomial. The variation of the efficiency is of the order of 15%.

Figure 6: Likelihood profiles of (a) \mathcal{R}_d and (b) \mathcal{R}_s . For each value of \mathcal{R}_d (\mathcal{R}_s) probed, all other parameters are floating in the minimisation of the likelihood. Systematic uncertainties are not included.

Figure 7: Background-subtracted $\pi^+\pi^-$ mass distributions of $B^0_{(s)} \to J/\psi \ \pi^+\pi^-$ candidates.