Supplementary material for LHCb-PAPER-2015-039

Covariance matrix

In order to account for the correlation between bins of $m_{\mu\mu}$ in the NNPDF uncertainty, the covariance matrix needs to be calculated and inverted. It is given in Table 5.

Table 5: Co are given, b	variance m ut the full	atrix for matrix is	the NNPI 26 by 26.	OF uncert. . The ele	ainty. As ments ha	s the sam ve been r	e uncerta nultiplied	inty is us by a fact	ed for bo tor of 10 ⁶	th years o	mly 13 inv	variant mas	ss bins
$m_{\mu\mu}$ [GeV]	60 -72	72 -81	81 -86	86 -88	88 -89	89 -90	90 -91	91 -92	92 -93	93 -94	94 -98	98 -120	120 -160
60 - 72	94.83	48.27	9.64	0.16	1.79	-11.27	-16.48	-23.09	-34.35	-48.71	-51.67	-81.26	-121.66
72 -81	48.27	46.52	7.52	4.37	0.15	-4.92	-6.08	-13.76	-19.71	-23.62	-29.85	-49.45	-54.30
81 -86	9.64	7.52	11.53	2.11	-0.23	-1.11	-1.64	-2.49	-3.01	-6.56	-8.06	-13.88	-14.03
86 -88	0.16	4.37	2.11	14.42	-2.04	2.19	3.18	-1.13	1.59	9.23	2.36	5.84	25.35
88 -89	1.79	0.15	-0.23	-2.04	10.96	-0.75	-0.42	-0.23	-0.70	-3.58	0.10	-2.59	-5.92
89 -90	-11.27	-4.92	-1.11	2.19	-0.75	12.30	5.16	3.42	7.19	12.95	8.78	22.84	47.00
90 - 91	-16.48	-6.08	-1.64	3.18	-0.42	5.16	12.94	7.30	11.08	20.62	16.39	32.45	61.07
91 -92	-23.09	-13.76	-2.49	-1.13	-0.23	3.42	7.30	13.53	12.99	21.28	22.30	36.99	53.66
92 -93	-34.35	-19.71	-3.01	1.59	-0.70	7.19	11.08	12.99	23.50	30.96	29.71	50.55	83.26
93 -94	-48.71	-23.62	-6.56	9.23	-3.58	12.95	20.62	21.28	30.96	76.25	50.87	94.64	172.16
94 - 98	-51.67	-29.85	-8.06	2.36	0.10	8.78	16.39	22.30	29.71	50.87	60.28	88.13	144.97
98 -120	-81.26	-49.45	-13.88	5.84	-2.59	22.84	32.45	36.99	50.55	94.64	88.13	186.94	297.44
120 -160	-121.66	-54.30	-14.03	25.35	-5.92	47.00	61.07	53.66	83.26	172.16	144.97	297.44	685.86

Unfolding matrices

The data are unfolded to correct for detector effects, and the unfolding matrix is obtained using simulation. The unfolding matrices used for the training are given for $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV in Table 6 and Table 7.

Table 6: Elf for the detec unfolding fo	ments of ctor resolu r FSR is ϵ	the unto ution. Th applied ir	lding mat ie generat i this ana.	rrix obtai ed invari lysis.	ned from ant mass	the PYT is given j	HIA $Z \rightarrow$ in the col	$\mu^{+}\mu^{-}$ san umns and	aple at $\sqrt{1}$	s = 7 Tè normality instructed	V, used t l in the r	o correct t ows. Note	that no
$m_{\mu\mu}$ [GeV]	60 -72	72 -81	81 -86	86 -88	88 -89	89 -90	90 -91	91 -92	92 -93	93 -94	94 -98	98 -120	120 -160
60 -72	0.959	0.027	I	I	I	I	I	I	I	I	I	Ι	I
72 -81	0.038	0.886	0.044	Ι	Ι	Ι	Ι	Ι	I	I	Ι	Ι	0.001
81 -86	0.001	0.077	0.744	0.100	0.010	0.002	Ι	Ι	Ι	Ι	Ι	0.001	0.001
86 -88	Ι	0.003	0.150	0.483	0.150	0.030	0.008	0.003	0.001	0.001	0.001	0.001	0.001
88 -89	Ι	0.001	0.024	0.202	0.302	0.123	0.031	0.010	0.005	0.004	0.002	0.001	Ι
89 -90	0.001	0.001	0.015	0.113	0.291	0.337	0.160	0.054	0.023	0.015	0.008	0.003	0.005
90 - 91	0.001	0.002	0.012	0.065	0.170	0.347	0.443	0.285	0.130	0.073	0.034	0.008	0.001
91 -92	Ι	0.002	0.007	0.029	0.063	0.130	0.290	0.464	0.384	0.221	0.092	0.013	0.009
92 -93	Ι	0.001	0.002	0.006	0.011	0.024	0.057	0.152	0.326	0.313	0.128	0.011	0.002
93 -94	I	Ι	0.001	0.001	0.003	0.004	0.009	0.025	0.103	0.257	0.177	0.011	0.001
94 -98	I	Ι	0.001	0.001	0.001	0.002	0.002	0.006	0.026	0.115	0.525	0.133	0.003
98 -120	I	Ι	Ι	Ι	Ι	I	Ι	I	I	0.001	0.033	0.811	0.067
120 -160	I	I	I	I	I	I	I	I	I	I	I	0.007	0.908

$m_{\mu\mu}$ [GeV]	60 -72	72 -81	81 -86	86 -88	88 -89	89 -90	90 -91	91 -92	92 -93	93 -94	94 -98	98 -120	120 -160
60 - 72	0.954	0.029	1	1	1	1	1	1	I	I	I	I	1
72 -81	0.041	0.871	0.048	0.001	I	Ι	Ι	I	I	I	I	I	I
81 -86	0.001	0.087	0.720	0.104	0.010	0.002	0.001	Ι	Ι	Ι	Ι	0.001	0.001
86 -88	Ι	0.003	0.157	0.452	0.146	0.035	0.010	0.004	0.002	0.002	0.002	0.002	0.001
88 -89	Ι	0.001	0.027	0.198	0.271	0.120	0.034	0.012	0.006	0.004	0.002	0.002	0.001
89 -90	0.001	0.002	0.019	0.119	0.287	0.314	0.160	0.061	0.029	0.017	0.010	0.005	0.002
90 -91	0.001	0.003	0.015	0.080	0.189	0.343	0.424	0.286	0.145	0.085	0.041	0.010	0.004
91 -92	0.001	0.003	0.010	0.035	0.077	0.149	0.297	0.446	0.381	0.232	0.105	0.016	0.003
92 -93	Ι	0.001	0.002	0.009	0.016	0.029	0.061	0.156	0.308	0.309	0.144	0.014	0.003
93 -94	Ι	0.001	0.001	0.002	0.003	0.005	0.010	0.029	0.100	0.233	0.175	0.013	0.001
94 -98	Ι	Ι	0.001	0.001	0.001	0.002	0.003	0.008	0.028	0.116	0.486	0.146	0.002
98 -120	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.001	0.035	0.784	0.061
120 -160	I	I	Ι	I	I	I	I	Ι	Ι	I	Ι	0.007	0.919

Calculating the χ^2

In order to calculate the χ^2 for a prediction of $A_{\rm FB}$ one must first combine the covariance matrices corresponding to the statistical, systematic and theoretical uncertainties. To simplify the calculation, one can neglect all off diagonal terms except those from the PDF uncertainties, as they are either zero or negligible. The covariance matrix for the PDF uncertainty is given in Table 5. The remaining diagonal terms to be added to this matrix can be obtained from the numbers corresponding to the statistical and systematic uncertainties from Tables 2 and 3 and the remaining theoretical uncertainties. These are

33.26, 28.2, 16.78, 29.12, 28.17, 15.83, 7.51, 6.89, 21.81, 56.6, 38.2, 28.84, 182.07

for $\sqrt{s} = 7$ TeV and

25.59, 22.83, 10.27, 15.0, 18.02, 7.78, 4.52, 4.7, 10.84, 16.22, 15.38, 14.53, 91.84

for $\sqrt{s} = 8$ TeV. Note that the numbers have been multiplied by a factor of 10^6 and the asymmetries have been averaged. Using C to denote the total covariance and letting V be the vector of the differences between the measured and predicted $A_{\rm FB}$, the χ^2 is given by

$$\chi^2 = V^T C^{-1} V.$$