EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2016-086 LHCb-PAPER-2016-009 April 18, 2016

Model-independent evidence for $J/\psi p$ contributions to $\Lambda^0_b \to J/\psi p K^-$ decays

Supplemental material

The LHCb collaboration

C CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

Appendix: Supplemental material

Contents

1	Data sample	1
2	Simulations based on amplitude models	2

1 Data sample

The definition of the signal and sideband regions is illustrated in Fig. 7. The backgroundsubtracted and efficiency-corrected distribution of the data on the rectangular Dalitz plane $(m_{Kp}, \cos \theta_{\Lambda^*})$ is shown in Fig. 8.

Figure 7: Distribution of $m_{J/\psi pK}$ in the data with the fit of signal and background components superimposed [1]. The fit is used to determine the background fraction β in the $\pm 2\sigma$ signal region around the Λ_b^0 peak (shown by the vertical red bars). The sidebands used in the background subtraction are also shown.

Figure 8: Background-subtracted and efficiency-corrected distribution of the cosine of the Λ^* helicity angle versus m_{Kp} for the data.

2 Simulations based on amplitude models

The rectangular Dalitz plane $(m_{Kp}, \cos \theta_{\Lambda^*})$ distributions for the large statistics pseudosamples generated from the amplitude model with only the Λ^* resonances and from the amplitude model with only the $P_c(4380)^+$ and $P_c(4450)^+$ resonances are shown in Figs. 9 and 10, respectively. Parameters of the models, without and with the P_c^+ states, were determined by fitting the amplitude models to the data as described in Ref. [1].

The Legendre moments of $\cos \theta_{\Lambda^*}$ distributions $(\langle P_l^U \rangle^k)$ in various bins of m_{Kp} are compared between these two simulated pseudo-samples in Fig. 11. The $l \leq l_{\max}(m_{Kp})$ filter, used in forming a numerical representation of the hypothesis that only K^-p contributions are present (H_0) , is also illustrated in Fig. 11: moments in the shaded regions $(l > l_{\max}(m_{Kp}))$ are neglected. The pentaquark resonances can induce significant values of the moments in these regions, as illustrated with the example amplitude model containing only P_c^+ states. The P_c^+ states also contribute significantly to the unshaded $l \leq l_{\max}(m_{Kp})$ regions, thus feeding into the numerical representation of the H_0 hypothesis, and decreasing the sensitivity of the model-independent approach to exotic hadron contributions. This is especially true for wide resonances, which contribute very little to high moments, as illustrated for the $P_c(4380)^+$ state in Fig. 12. The example amplitude model with only Λ^* resonances contributes to the unshaded regions only, as expected.

Figure 9: Distribution in a pseudoexperiment of the cosine of the Λ^* helicity angle versus m_{Kp} for the amplitude model with Λ^* resonances only.

Figure 10: Distribution in a pseudoexperiment of the cosine of the Λ^* helicity angle versus m_{Kp} for the amplitude model with the $P_c(4380)^+$ and $P_c(4450)^+$ resonances only.

Figure 11: Legendre moments of $\cos \theta_{\Lambda^*}$ as a function of m_{Kp} for the simulated data from the amplitude models with only Λ^* (solid blue lines) and with only $P_c(4380)^+$, $P_c(4450)^+$ contributions (dashed red lines), scaled by 0.5. The regions excluded by the $l \leq l_{\max}(m_{Kp})$ filter are shaded.

References

[1] LHCb collaboration, R. Aaij et al., Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi p K^-$ decays, Phys. Rev. Lett. **115** (2015) 072001, arXiv:1507.03414.

Figure 12: Legendre moments of $\cos \theta_{\Lambda^*}$ as a function of m_{Kp} for the simulated data from amplitude models with only $P_c(4380)^+$ (solid blue lines) and only $P_c(4450)^+$ contributions (dashed red line).