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1 Details of the matrix element for the decay ampli-

tude

1.1 Helicity formalism and notation

For each two-body decay A→ B C, a coordinate system is set up in the rest frame of A,
with ẑ being1 the direction of quantization for its spin. We denote this coordinate system
as (x

{A}
0 , y

{A}
0 , z

{A}
0 ), where the superscript “{A}” means “in the rest frame of A”, while

the subscript “0” means the initial coordinates. For the first particle in the decay chain
(Λ0

b), the choice of these coordinates is arbitrary.2 However, once defined, these coordinates
must be used consistently between all decay sequences described by the matrix element.
For subsequent decays, e.g. B → DE, the choice of these coordinates is already fixed by
the transformation from the A to the B rest frames, as discussed below. Helicity is defined
as the projection of the spin of the particle onto the direction of its momentum. When
the z axis coincides with the particle momentum, we denote its spin projection onto it
(i.e. the mz quantum number) as λ. To use the helicity formalism, the initial coordinate
system must be rotated to align the z axis with the direction of the momentum of one
of the child particles, e.g. the B. A generalized rotation operator can be formulated in
three-dimensional space, R(α, β, γ), that uses Euler angles. Applying this operator results
in a sequence of rotations: first by the angle α about the ẑ0 axis, followed by the angle β
about the rotated ŷ1 axis and then finally by the angle γ about the rotated ẑ2 axis. We use
a subscript denoting the axes, to specify the rotations which have been already performed
on the coordinates. The spin eigenstates of particle A, |JA,mA〉, in the (x

{A}
0 , y

{A}
0 , z

{A}
0 )

coordinate system can be expressed in the basis of its spin eigenstates, |JA,m′A〉, in the

rotated (x
{A}

3 , y
{A}

3 , z
{A}

3 ) coordinate system with the help of Wigner’s D-matrices

|JA,mA〉 =
∑
m′A

D JA
mA,m

′
A

(α, β, γ)∗ |JA,m′A〉, (1)

where
D J
m,m′(α, β, γ)∗ = 〈J,m|R(α, β, γ)|J,m′〉∗ = eimα d Jm,m′(β) eim

′γ, (2)

and where the small-d Wigner matrix contains known functions of β that depend on
J,m,m′. To achieve the rotation of the original ẑ

{A}
0 axis onto the B momentum (~p

{A}
B ),

it is sufficient to rotate by α = φ
{A}
B , β = θ

{A}
B , where φ

{A}
B , θ

{A}
B are the azimuthal and

polar angles of the B momentum vector in the original coordinates i.e. (x̂
{A}

0 , ŷ
{A}

0 , ẑ
{A}

0 ).
This is depicted in Fig. 1, for the case when the quantization axis for the spin of A is its

1The “hat” symbol denotes a unit vector in a given direction.
2When designing an analysis to be sensitive (or insensitive) to a particular case of polarization, the

choice is not arbitrary, but this does not change the fact that one can quantize the Λ0
b spin along any

well-defined direction. The Λ0
b polarization may be different for different choices.
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momentum in some other reference frame. Since the third rotation is not necessary, we
set γ = 0.3 The angle θ

{A}
B is usually called “the A helicity angle”, thus to simplify the

notation we will denote it as θA. For compact notation, we will also denote φ
{A}
B as φB.

These angles can be determined from4

φB = atan2
(
p
{A}
B y, p

{A}
B x

)
= atan2

(
ŷ
{A}

0 · ~p {A}B , x̂
{A}

0 · ~p {A}B

)
= atan2

(
(ẑ
{A}

0 × x̂ {A}0 ) · ~p {A}B , x̂
{A}

0 · ~p {A}B

)
, (3)

cos θA = ẑ
{A}

0 · p̂ {A}B . (4)

Angular momentum conservation requires m′A = m′B + m′C = λB − λC (since ~p
{A}
C

points in the opposite direction to ẑ
{A}

3 , m′C = −λC). Each two-body decay contributes a
multiplicative term to the matrix element

HA→BC
λB , λC

D JA
mA, λB−λC (φB, θA, 0)∗. (5)

The helicity couplings HA→BC
λB , λC

are complex constants. Their products from subsequent
decays are to be determined by the fit to the data (they represent the decay dynamics). If
the decay is strong or electromagnetic, it conserves parity which reduces the number of
independent helicity couplings via the relation

HA→BC
−λB ,−λC = PA PB PC (−1)JB+JC−JAHA→BC

λB , λC
, (6)

where P stands for the intrinsic parity of a particle.
After multiplying terms given by Eq. (5) for all decays in the decay sequence, they

must be summed up coherently over the helicity states of intermediate particles, and
incoherently over the helicity states of the initial and final-state particles. Possible helicity
values of B and C particles are constrained by |λB| ≤ JB, |λC | ≤ JC and |λB − λC | ≤ JA.

When dealing with the subsequent decay of the child, B → DE, four-vectors of all
particles must be first Lorentz boosted to the rest frame of B, along the ~p

{A}
B i.e. ẑ

{A}
3

direction (this is the z axis in the rest frame of A after the Euler rotations; we use the
subscript “3” for the number of rotations performed on the coordinates, because of the
three Euler angles, however, since we use the γ = 0 convention these coordinates are the
same as after the first two rotations). This is visualized in Fig. 1, with B → DE particle
labels replaced by A → B C labels. This transformation does not change vectors that
are perpendicular to the boost direction. The transformed coordinates become the initial

3An alternate convention is to set γ = −α. The two conventions lead to equivalent formulae.
4The function atan2(x, y) is the tan−1(y/x) function with two arguments. The purpose of using

two arguments instead of one is to gather information on the signs of the inputs in order to return the
appropriate quadrant of the computed angle.
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coordinate system quantizing the spin of B in its rest frame,

x̂
{B}

0 = x̂
{A}

3 ,

ŷ
{B}

0 = ŷ
{A}

3 ,

ẑ
{B}

0 = ẑ
{A}

3 . (7)

The processes of rotation and subsequent boosting can be repeated until the final-state
particles are reached. In practice, there are two equivalent ways to determine the ẑ

{B}
0

direction. Using Eq. (7) we can set it to the direction of the B momentum in the A rest
frame

ẑ
{B}

0 = ẑ
{A}

3 = p̂
{A}
B . (8)

C

A

Rest frame of A

Helicity frame of A

boost

C

B

B

y
{A}

0

x
{A}

0

x
{A}

0

y
{A}

0

z
{A}

0

z
{A}

0
z
{A}

2 = z
{B}

0

φ {A}B

θ {A}B

Figure 1: Coordinate axes for the spin quantization of particle A (bottom part), chosen to be
the helicity frame of A (ẑ0||~pA in the rest frame of its parent particle or in the laboratory frame),

together with the polar (θ
{A}
B ) and azimuthal (φ

{A}
B ) angles of the momentum of its child B in

the A rest frame (top part). Notice that the directions of these coordinate axes, denoted as

x̂
{A}

0 , ŷ
{A}

0 , and ẑ
{A}

0 , do not change when boosting from the helicity frame of A to its rest frame.

After the Euler rotation R(α = φ
{A}
B , β = θ

{A}
B , γ = 0) (see the text), the rotated z axis, ẑ

{A}
2 , is

aligned with the B momentum; thus the rotated coordinates become the helicity frame of B. If
B has a sequential decay, then the same boost-rotation process is repeated to define the helicity
frame for its decay products.
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Alternatively, we can make use of the fact that B and C are back-to-back in the rest frame
of A, ~p

{A}
C = −~p {A}B . Since the momentum of C is antiparallel to the boost direction from

the A to B rest frames, the C momentum in the B rest frame will be different, but it will
still be antiparallel to this boost direction

ẑ
{B}

0 = −p̂ {B}C . (9)

To determine x̂
{B}

0 from Eq. (7), we need to find x̂
{A}

3 . After the first rotation by φB about

ẑ
{A}

0 , the x̂
{A}

1 axis is along the component of ~p
{A}
B which is perpendicular to the ẑ

{A}
0 axis

~a
{A}
B⊥z0 ≡ (~p

{A}
B )⊥ẑ {A}0

= ~p
{A}
B − (~p

{A}
B )||ẑ {A}0

,

= ~p
{A}
B − (~p

{A}
B · ẑ {A}0 ) ẑ

{A}
0 ,

x̂
{A}

1 = â
{A}
B⊥z0 =

~a
{A}
B⊥z0
|~a {A}B⊥z0 |

. (10)

After the second rotation by θA about ŷ
{A}

1 , ẑ
{A}

2 ≡ ẑ
{A}

3 = p̂
{A}
B , and x̂

{A}
2 = x̂

{A}
3 is

antiparallel to the component of the ẑ
{A}

0 vector that is perpendicular to the new z axis

i.e. p̂
{A}
B . Thus

~a
{A}
z0⊥B ≡ (ẑ

{A}
0 )⊥~p {A}B

= ẑ
{A}

0 − (ẑ
{A}

0 · p̂ {A}B ) p̂
{A}
B ,

x̂
{B}

0 = x̂
{A}

3 = − â
{A}
z0⊥B = −

~a
{A}
z0⊥B

|~a {A}z0⊥B |
. (11)

Then we obtain ŷ
{B}

0 = ẑ
{B}

0 × x̂ {B}0 .
If C also decays, C → F G, then the coordinates for the quantization of C spin in the

C rest frame are defined by

ẑ
{C}

0 = −ẑ {A}3 = p̂
{A}
C = −p̂ {C}B , (12)

x̂
{C}

0 = x̂
{A}

3 = − â {A}z0⊥B = +â
{A}
z0⊥C , (13)

ŷ
{C}

0 = ẑ
{C}

0 × x̂ {C}0 , (14)

i.e. the z axis is reflected compared to the system used for the decay of particle B (it must
point in the direction of C momentum in the A rest frame), but the x axis is kept the
same, since we chose particle B for the rotation used in Eq. (5).

1.2 Matrix element for the Z−c decay chain

The decay matrix elements for the two interfering decay chains, Λ0
b → J/ψN∗, N∗ → pπ−

and Λ0
b → P+

c π
−, P+

c → J/ψp with J/ψ → µ+µ− in both cases, are identical to those used
in the Λ0

b → J/ψpK− analysis [1], with K− and Λ∗ replaced by π− and N∗. We now turn
to the discussion of the additional interfering decay chain, Λ0

b → Zcfp, Zcf → ψπ− decays
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(denoting J/ψ as ψ), in which we allow more than one tetraquark state, f = 1, 2, . . . .
Superscripts containing the Zc decay chain name without curly brackets, e.g. φZc , will
denote quantities belonging to this decay chain and should not be confused with the
superscript “{Zc}” denoting the Zc rest frame, e.g. φ {Zc}. With only a few exceptions,
we omit the N∗ decay chain label. The angular calculations for the Z−c decay chain are
analogous to that for P+

c by interchange of p and π−, except for the angles to align the
proton helicity.

The weak decay Λ0
b → Zcfp is described by the term,

HΛ0
b→Zcfp

λZc ,λ
Zc
p

D
1
2

λ
Λ0
b
, λZc−λZcp

(φZc , θ
Zc
Λ0
b
, 0)∗, (15)

where HΛ0
b→Zcfp

λZc ,λ
Zc
p

are resonance (i.e. f) dependent helicity couplings. As for |λZc−λZcp | ≤ 1
2
,

there are two different helicity couplings for JZc = 0, and four for higher spin. The above
mentioned φZc , θ

Zc
Λ0
b

symbols refer to the azimuthal and polar angles of Zc in the Λ0
b rest

frame (see Fig. 2).

With the direction of Λ0
b in the lab frame p̂

{lab}
Λ0
b

, and the direction of Zc in the Λ0
b rest

frame, the Λ0
b helicity angle in the Zc decay chain can be calculated as,

cos θZc
Λ0
b

= p̂
{lab}
Λ0
b
· p̂ {Λ

0
b}

Zc
. (16)

The φZc angle cannot be set to zero, since we have already defined the x̂
{Λ0
b}

0 axis in

ZZZ
φ   −π

μ

Λ

−

Λ
ψ

−
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θΛ
c

ψ

p

ψ

b

φ   −π

φ −πb rest frame

c rest frame

frame

b

θ
ψ

μ
μ

+μ

μ
+

θψ
−

*N

*N−π−π

Z

ZZZ cZ Z

cZ

cZψ rest frame
cZ

cZ
cZ

Figure 2: Definition of the decay angles in the Z−c decay chain.
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the Λ0
b rest frame by the φN∗ = 0 convention:

~a
{Λ0
b}

N∗⊥z0 = ~p
{Λ0
b}

N∗ − (~p
{Λ0
b}

N∗ · p̂
{lab}
Λ0
b

) p̂
{lab}
Λ0
b
,

x̂
{Λ0
b}

0 =
~a
{Λ0
b}

N∗⊥z0

|~a {Λ
0
b}

N∗⊥z0 |
. (17)

The φZc angle can be determined in the Λ0
b rest frame from

φZc = atan2
(

(p̂
{lab}
Λ0
b
× x̂ {Λ

0
b}

0 ) · p̂ {Λ
0
b}

Zc
, x̂
{Λ0
b}

0 · p̂ {Λ
0
b}

Zc

)
. (18)

The strong decay Zcf → ψπ− is described by a term

HZcf→ψπ
λZcψ

D
JZcf

λZc , λ
Zc
ψ

(φZcψ , θZc , 0)∗ RZcf (Mψπ), (19)

where φZcψ , θZc are the azimuthal and polar angles of the ψ in the Zc rest frame (see Fig. 2).

The ẑ
{Zc}

0 direction is defined by the boost direction from the Λ0
b rest frame, which coincides

with the −~p {Zc}p direction. This leads to

cos θZc = −p̂ {Zc}p · p̂ {Zc}ψ . (20)

The azimuthal angle of the ψ can now be determined in the Zc rest frame (see Fig. 2) from

φZcψ = atan2
(
−(p̂ {Zc}p × x̂ {Zc}0 ) · p̂ {Zc}ψ , x̂

{Zc}
0 · p̂ {Zc}ψ

)
. (21)

The x̂
{Zc}

0 direction is defined by the convention that we used in the Λ0
b rest frame.

Thus, we have

~a
{Λ0
b}

z0⊥Zc = p̂
{lab}
Λ0
b
− (p̂

{lab}
Λ0
b
· p̂ {Λ

0
b}

Zc
) p̂
{Λ0
b}

Zc
,

x̂
{Zc}

0 = −
~a
{Λ0
b}

z0⊥Zc

|~a {Λ
0
b}

z0⊥Zc |
. (22)

Again, the ψ and p helicities are labeled as λZcψ and λZcp , with the Zc superscript to make
it clear that the spin quantization axes are different than in the N∗ decay chain. Since
the ψ is an intermediate particle, this has no consequences after we sum (coherently) over
λZcψ = −1, 0,+1. The proton, however, is a final-state particle. Before the Zc terms in

the matrix element can be added coherently to the N∗ terms, the λZcp states must be
rotated to λp states (defined in the N∗ decay chain). The proton helicity axes are different,
since the proton comes from a decay of different particles in the two decay sequences, the
N∗ and Λ0

b . The quantization axes are along the proton direction in the N∗ and the Λ0
b

rest frames, thus antiparallel to the particles recoiling against the proton: the π− and Zc,
respectively. These directions are preserved when boosting to the proton rest frame. Thus,
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the polar angle between the two proton quantization axes (θZcp ) can be determined from
the opening angle between the π− and Zc mesons in the p rest frame,

cos θZcp = p̂ {p}π · p̂
{p}
Zc
. (23)

The dot product above must be calculated by operating on the ~p
{p}
π and ~p

{p}
Zc

vectors in
the proton rest frame obtained by the same sequence of boost transformations, either
according to the N∗ or Zc decay chains, or even by a direct boost transformation from the
lab frame.

Unlike in the Pc decay chain, the azimuthal angle (αZcp ) aligning the two proton helicity
frames is not zero. The angle can be determined from

αZcp = atan2
(

(ẑ
{p}

0
Λ0
b × x̂ {p}0

Λ0
b ) · x̂ {p}0

N∗ , x̂
{p}

0
Λ0
b · x̂ {p}0

N∗
)
, (24)

where all vectors are in the p rest frame, x̂
{p}

0
N∗ is the direction of the x axis when boosting

from the N∗ rest frame, x̂
{p}

0
Λ0
b and ẑ

{p}
0

Λ0
b are the directions of the x and z axes when

boosting from the Λ0
b rest frame. From Eq. (9), ẑ

{p}
0

Λ0
b = −p̂ {p}Zc . Direction of x̂

{p}
0

Λ0
b is

given by Eq.(11) with ẑ
{Λ0
b}

0 = p̂
{lab}
Λ0
b

~a
{Λ0
b}

z0⊥Zc = p̂
{lab}
Λ0
b
− (p̂

{lab}
Λ0
b
· p̂ {Λ

0
b}

Zc
) p̂
{Λ0
b}

Zc
,

x̂
{p}

0
Λ0
b =

~a
{Λ0
b}

z0⊥Zc

|~a {Λ
0
b}

z0⊥Zc |
. (25)

Therefore, the relation between λp and λZcp states is

|λp〉 =
∑
λZcp

D
Jp

λZcp , λp
(αZcp , θ

Zc
p , 0)∗|λZcp 〉 =

∑
λZcp

eiλ
Zc
p αZcp d

Jp

λZcp , λp
(θZcp )|λZcp 〉. (26)

Thus, the term given by Eq. (19) must be preceded by∑
λZcp =± 1

2

eiλ
Zc
p αZcp d

Jp

λZcp , λp
(θZcp ). (27)

Parity conservation in Zcf → ψπ− decays leads to the following relation

HZcf→ψπ
−λZcψ

= Pψ Pπ PZcf (−1)Jψ+JK−JZcf HZcf→ψπ
λZcψ

= PZcf (−1)1−JZcf HZcf→ψπ
λZcψ

, (28)

where PZcf is the parity of the Zcf state. Then the number of independent helicity
couplings to be determined from the data is reduced to two for JZcf ≥ 1 and remains equal
to unity for JZcf = 0. Since the helicity couplings enter the matrix element formula as a
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product, HΛ0
b→Zcfp

λZc , λ
Zc
p
HZcf→ψπ
λZcψ

, the relative magnitude and phase of these two sets must be

fixed by a convention. For example, HZcf→ψπ
λZcψ =0

can be set to (1, 0) for every Zcf resonance,

in which case HZcf→ψπ
λZcψ =1

develops a meaning of the complex ratio of HZcf→ψπ
λZcψ =1

/HZcf→ψπ
λZcψ =0

,

while all HΛ0
b→Zcfp

λZc , λ
Zc
p

couplings should have both real and imaginary parts free in the fit.

The term RZcf (Mψπ) in Eq. (19) describes the ψπ invariant mass distribution of the Zcf

resonance. Angular momentum conservation restricts max(JZcf − 1, 0) ≤ L
Zcf
Λ0
b
≤ JZcf + 1

in Λ0
b → Zcfp decays. Angular momentum conservation also imposes max(|JZcf − 1| , 0) ≤

LZcf ≤ JZcf + 1, which is further restricted by the parity conservation in the Zcf decays,

PZcf = (−1)LZcf . We assume the minimal values of L
Zcf
Λ0
b

and of LZcf in RZcf (mψπ).

The electromagnetic decay ψ → µ+µ− in the Zc decay chain contributes a term

D 1
λZcψ ,∆λZcµ

(φZcµ , θ
Zc
ψ , 0)∗. (29)

The azimuthal and polar angle of the muon in the ψ rest frame, φZcµ , θZcψ , are different from
φµ, θψ introduced in the N∗ decay chain. The ψ helicity axis is along the boost direction
from the Zc to the ψ rest frames, which is given by

ẑ
{ψ}

0
Zc = − p̂ {ψ}π , (30)

and so
cos θZcψ = −p̂ {ψ}π · p̂ {ψ}µ . (31)

The x axis is inherited from the Zc rest frame (Eq. (11)),

~a
{Zc}
z0⊥ψ = −~p {Zc}p + (~p {Zc}p · p̂ {Zc}ψ ) p̂

{Zc}
ψ

x̂
{ψ}

0
Zc = x̂

{Zc}
3 = −

~a
{Zc}
z0⊥ψ

|~a {Zc}z0⊥ψ |
, (32)

which leads to

φZcµ = atan2
(
−(p̂ {ψ}π × x̂ {ψ}0

Zc) · p̂ {ψ}µ , x̂
{ψ}

0
Zc · p̂ {ψ}µ

)
. (33)

The azimuthal angle αZcµ is defined by

αZcµ = atan2
(

(ẑ
{ψ}

3
Zc × x̂ {ψ}3

Zc) · x̂ {ψ}3
N∗ , x̂

{ψ}
3

Zc · x̂ {ψ}3
N∗
)
, (34)

where ẑ
{ψ}

3
Zc = p̂

{ψ}
µ

Zc , and from Eq. (11)

x̂
{ψ}

3
Zc = − â {ψ}z0⊥µ

Zc , (35)

~a
{ψ}
z0⊥µ

Zc = − p̂ {ψ}π + (p̂ {ψ}π · p̂ {ψ}µ ) p̂ {ψ}µ , (36)
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as well as

x̂
{ψ}

3
N∗ = − â {ψ}z0⊥µ

N∗ , (37)

~a
{ψ}
z0⊥µ

N∗ = − p̂ {ψ}N∗ + (p̂
{ψ}
N∗ · p̂

{ψ}
µ ) p̂ {ψ}µ . (38)

Collecting terms from the three subsequent decays in the Zc chain together,

M Zc
λ
Λ0
b
, λZcp ,∆λZcµ

=e
i λ
Λ0
b
φZc
∑
f

RZcf (Mψπ)
∑
λZcψ

ei λ
Zc
ψ φZcµ d 1

λZcψ ,∆λµ
(θZcψ )

×
∑
λZc

HΛ0
b→Zcfp

λZc , λ
Zc
p

ei λZcφ
Zc
ψ d

1
2

λ
Λ0
b
, λZc−λZcp

(θZc
Λ0
b
)HZcf→ψπ

λZcψ
d
JZcf

λZc , λ
Zc
ψ

(θZc),

(39)

and adding them coherently to the N∗ and the Pc matrix elements, via appropriate relations
of |λp〉|λµ+〉|λµ−〉 to |λPcp 〉|λPcµ+〉|λ

Pc
µ−〉 and |λZcp 〉|λZcµ+〉|λ

Zc
µ−〉 states as discussed above, leads

to the final matrix element squared

|M|2 =
∑

λ
Λ0
b
=± 1

2

∑
λp=± 1

2

∑
∆λµ=±1

∣∣∣∣∣∣MN∗

λ
Λ0
b
, λp,∆λµ + ei∆λµαµ

∑
λPcp

d
1
2

λPcp , λp
(θp)MPc

λ
Λ0
b
, λPcp ,∆λµ

+ ei∆λµα
Zc
µ

∑
λZcp

eiλ
Zc
p αZcp d

1
2

λZcp , λp
(θZcp )MZc

λ
Λ0
b
, λZcp ,∆λµ

∣∣∣∣∣∣
2

. (40)

Assuming approximate CP symmetry, the helicity couplings for Λ0
b and Λ0

b can be made
equal, but the calculation of the angles requires some care, since parity (P ) conservation
does not change polar (i.e. helicity) angles, but does change azimuthal angles. Thus, not
only must ~pµ+ be used instead of ~pµ− for Λ0

b candidates (with π+ and p̄ in the final state)
in Eqs. (31), (33), and (34), but also all azimuthal angles must be reflected before entering
the matrix element formula: φZc → −φZc , φZcψ → −φ

Zc
ψ , φZcµ → −φZcµ , αZcp → −αZcp and

αZcµ → −αZcµ [2].
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