Supplementary material for LHCb-PAPER-2016-052

Figure 1 shows the signal mass resolution as a function of $m(\chi)$. It is obtained from the simulation and is scaled to the resolution observed in data for $J/\psi \rightarrow \mu^+\mu^-$ decays from the normalization channel, where the scaling factor corresponds to $\sigma_{J/\psi \rightarrow \mu^+\mu^-}^{\text{DATA}}/\sigma_{J/\psi \rightarrow \mu^+\mu^-}^{\text{MC}} = 1.167$. The resolution is then interpolated in the entire mass range using cubic splines.

Figure 1: Signal mass resolution as a function of $m(\chi)$. The black points show the resolution obtained from the simulation and scaled to the $J/\psi \to \mu^+\mu^-$ resolution observed in data; the red triangles show the resolution observed in data for $\phi \to \mu^+\mu^-$, $J/\psi \to \mu^+\mu^-$ and $\psi(2S) \to \mu^+\mu^$ decays. The signal resolution is interpolated using cubic splines: the central value is plotted with the solid blue line, while the error band is indicated by the two dashed blue lines.

Figure 2: Top left: total efficiency as a function of the signal mass and lifetime. Fully-vetoed regions corresponding to the $K_{\rm s}^0$, J/ψ , $\psi(2S)$ and $\psi(3770)$ are excluded from the plot. The vetoes which are applied in the prompt decay-time region of the ϕ and $\psi(4160)$ result in a drop of the efficiency at low lifetime. The structure around 1.8 GeV/ c^2 corresponds to the additional particle identification requirements applied around the D^0 mass. Top right and bottom: contribution of each decay-time region to the total signal efficiency for several lifetime hypotheses as a function of mass. The plots show the product of the fraction of events in each decay-time region and the corresponding efficiency. Values are obtained from the simulation before applying any of the ϕ , $K_{\rm s}^0$, J/ψ , $\psi(2S)$, $\psi(2S)$, $\psi(3770)$ and $\psi(4160)$ vetoes.

Figure 3: Excluded branching fraction for the $B^+ \to K^+ \chi(\mu^+ \mu^-)$ decay at the 95% CL for (left) several mass and (right) lifetime hypotheses. Regions corresponding to the fully-vetoed K_s^0 , J/ψ , $\psi(2S)$ and $\psi(3770)$ and to the partially-vetoed ϕ and $\psi(4160)$ are excluded from the figure.

Figure 4: Excluded branching fraction for the $B^+ \to K^+ \chi(\mu^+\mu^-)$ decay as a function of $m(\chi)$ and $\tau(\chi)$ at 90% CL. Regions corresponding to the fully-vetoed $K_{\rm S}^0$, J/ψ , $\psi(2S)$ and $\psi(3770)$ and to the partially-vetoed ϕ and $\psi(4160)$ are excluded from the figure. All systematic uncertainties are included in the calculation of the upper limit.

Figure 5: Excluded branching fraction for the $B^+ \to K^+ \chi(\mu^+ \mu^-)$ decay at the 90% CL for (left) several mass and (right) lifetime hypotheses. Regions corresponding to the fully-vetoed $K_{\rm S}^0$, J/ψ , $\psi(2S)$ and $\psi(3770)$ and to the partially-vetoed ϕ and $\psi(4160)$ are excluded from the figure.

Figure 6: Parameter space of the inflaton model described in Refs. [1–3]. The region excluded at 90% CL by this analysis is shown by the blue hatched area. Direct experimental constraints set by the CHARM experiment [4] and regions forbidden by theory or cosmological constraints [3] are also shown.

References

- B. Batell, M. Pospelov, and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev. D83 (2011) 054005, arXiv:0911.4938.
- [2] F. Bezrukov and D. Gorbunov, Light inflaton hunter's guide, JHEP 05 (2010) 010, arXiv:0912.0390.
- [3] F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, JHEP 07 (2013) 140, arXiv:1303.4395.
- [4] CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. **B157** (1985) 458.