# <sup>540</sup> 8 Supplementary material for LHCb-PAPER-2017 <sup>541</sup> 007

This appendix contains supplementary material that will be posted on the public cds record but will not appear in the paper.

## <sup>544</sup> 8.1 Significance of the fraction $\frac{N_{\eta_c(2S)}}{N_{\eta_c(1S)}}$

Figure 12 shows the increase in  $\chi^2$  with respect to the best fit value as a function of the  $N_{\eta_c(2S)}/N_{\eta_c(1S)}$  yield ratio, taking into account only the statistical uncertainties. The ratio is different from zero with a significance of 3.7 standard deviations.



Figure 12: Change in  $\chi^2$  with respect to the best fit value as a function of the  $\frac{\eta_c(2S)}{\eta_c(1S)}$  yield ratio.

#### 548 8.2 Comparison between different results of $b \rightarrow \chi_c X$

549 Figure 13 shows a summary of the branching fraction measurements for inclusive decays

of light *B*-mesons,  $\mathcal{B}(B \to \chi_c X)$ , and of mixtures of all *b* hadrons,  $\mathcal{B}(b \to \chi_c X)$ . Also

<sup>551</sup> indicated are the PDG averages and averages including the results from this paper. The

<sup>552</sup> LHCb result for *b*-hadron decays to  $\chi_{c0}$  is the only available result and is not shown in the figure.



Figure 13: Summary of the branching fraction measurements for inclusive decays of light B mesons,  $\mathcal{B}(B \to \chi_c X)$ , and of all b hadrons,  $\mathcal{B}(b \to \chi_c X)$ , shown in each plot above and below the dashed line, respectively. The branching fractions for the decays to  $\chi_{c1}$  and  $\chi_{c2}$  are shown in the top and bottom plots, respectively. The world averages noted "PDG2016" do not include the LHCb results.

## 8.3 Decomposition of the systematic uncertainties for charmo nium mass measurements

<sup>556</sup> The list of the systematic uncertainties for the charmonium mass measurements is shown in Table 7.

Table 7: Systematic uncertainties in the measurement of charmonium masses and natural widths in MeV.

| Systematic uncertainty             | $M_{\eta_c(1S)}$ | $M_{\chi_{c0}}$ | $M_{\chi_{c1}}$ | $M_{\chi_{c2}}$ | $M_{\eta_c(2S)}$ | $\Gamma_{\eta_c(1S)}$ |
|------------------------------------|------------------|-----------------|-----------------|-----------------|------------------|-----------------------|
| Including other states             | 0.01             | 0.02            | < 0.01          | 0.08            | 0.01             | 0.55                  |
| Description of detector resolution | 0.02             | 0.02            | 0.04            | 0.03            | 0.13             | 0.64                  |
| Description of signal resonances   | < 0.01           | < 0.01          | < 0.01          | < 0.01          | 0.19             | 0.14                  |
| Background model                   | 0.04             | 0.05            | 0.05            | 0.10            | 0.21             | 1.58                  |
| 2D fit functions                   | 0.11             | 0.05            | 0.03            | 0.01            | 0.02             | 0.89                  |
| Momentum scale calibration         | 0.43             | 0.62            | 0.66            | 0.66            | 0.69             | _                     |
| Total                              | 0.45             | 0.62            | 0.66            | 0.66            | 0.69             | 2.01                  |

557 558

The list of the systematic uncertainties for the measurement of charmonium mass differences is shown in Table 8.

Table 8: Systematic uncertainties in the measurement of charmonium mass differences (in MeV).

| Systematic uncertainty             | $M_{\chi_{c1}} - M_{\chi_{c0}}$ | $M_{\chi_{c2}} - M_{\chi_{c0}}$ | $M_{\eta_c(2S)} - M_{\eta_c(1S)}$ |
|------------------------------------|---------------------------------|---------------------------------|-----------------------------------|
| Including other states             | 0.03                            | 0.11                            | 0.01                              |
| Description of detector resolution | 0.05                            | 0.05                            | 0.04                              |
| Description of signal resonances   | 0.01                            | 0.01                            | 0.19                              |
| Background model                   | 0.02                            | 0.10                            | 0.24                              |
| 2D fit functions                   | 0.08                            | 0.05                            | 0.12                              |
| Momentum scale calibration         | 0.04                            | 0.04                            | 0.26                              |
| Total                              | 0.11                            | 0.17                            | 0.42                              |

### 560 8.4 Feynman diagrams for $B_s^0$ decays to $\phi$ mesons

In the SM the decay  $B_s^0 \to \phi \phi$  proceeds via a gluonic penguin process,  $b \to s \bar{s} s$ , with four strange quarks in the final state. Its quark-level diagram is shown in Fig. 14.

![](_page_3_Figure_2.jpeg)

Figure 14: Diagram describing the  $B^0_s \to \phi \phi$  decay.

562

The three-body  $B_s^0 \to \phi \phi \phi$  decay can be described by a penguin diagram shown in Fig. 15. This diagram is similar to the diagram describing the  $B_s^0 \to \phi \phi$  decay mode, (Fig. 14) and involves creation of an additional  $s\overline{s}$  quark pair. The transition thus leads to the final state with six strange quarks. Alternatively, this transition can proceed via intermediate resonances, e.g.  $B_s^0 \to \eta_c(1S)(\to \phi \phi)\phi$ , as shown in Fig. 16.

![](_page_3_Figure_6.jpeg)

Figure 15: Diagram describing the three-body  $B_s^0 \rightarrow \phi \phi \phi$  decay.

![](_page_3_Figure_8.jpeg)

Figure 16: Diagram describing the  $B_s^0 \to \eta_c \phi$  decay.

### <sup>568</sup> 8.5 Symmetrized Dalitz plot to search for intermediate reso-<sup>569</sup> nances in the $B_s^0 \rightarrow \phi \phi \phi$ decay

A symmetrized Dalitz plot is constructed following Ref. [59] for the  $B_s^0$  signal region (Fig. 17, left) and sidebands (4.925 - 5.325 GeV and 5.415 - 5.815 GeV, Fig. 17, right), using the  $X = \sqrt{3}(T_1 - T_2)/Q$  and  $Y = 3T_3/Q - 1$  axes, where  $T_{1,2,3}$  are kinetic energies of  $\phi$  mesons in the rest frame of  $B_s^0$  and Q is the energy released in the  $B_s^0 \rightarrow \phi \phi \phi$  decay. The  $B_s^0$  candidates are constrained to the known  $B_s^0$  mass. No evidence for resonant contributions is observed within the available statistics.

![](_page_4_Figure_2.jpeg)

Figure 17: Symmetrized Dalitz plot [59] for (left) the  $B_s^0$  signal and (right) the sideband regions. The  $B_s^0$  candidates are constrained to the known  $B_s^0$  mass.

### <sup>576</sup> 8.6 Polarization of $\phi$ mesons in the $B_s^0 \rightarrow \phi \phi \phi$ decay

To quantify the fraction of transverse polarization,  $f_{\rm T}$ , in the data, the probability density function (PDF) for  $f_{\rm T}$  is shown in Fig. 18. The most probable value is  $f_{\rm T} = 0.86$ . Assuming a uniform prior in the physically allowed range, a Bayesian lower limit of  $f_{\rm T} > 0.28$  at

95% CL is found.

![](_page_5_Figure_3.jpeg)

Figure 18: The PDF for the fraction of transverse  $\phi$  meson polarization  $f_{\rm T}$  for the  $B_s^0 \to \phi \phi \phi$  candidates. The 95% Bayesian lower limit is shown by the red vertical line.