Supplementary material for LHCb-PAPER-2019-045

Excited $\Lambda_{\rm b}^{**0}$ or $\Sigma_{\rm b}^{**0}$?

The new observed baryon state can be either an excited isosinglet Λ_b^{**0} state or a neutral component of the excited Σ_b^{**} isotriplet. If it corresponds to the Σ_b^{**0} state, the production of two charged $\Sigma_b^{**\pm}$ states is also expected with similar rates. For Σ_b^{**} states, two decay modes are possible, $\Sigma_b^{**} \to \Lambda_b^0 \pi$ and $\Sigma_b^{**} \to \Lambda_b^0 \pi \pi$ with the $\pi \pi$ pair in an isovector (I = 1) state. The sum of partial decay widths should be equal to the total decay width, $\Gamma_{tot} = \Gamma_{\Lambda_b^0 \pi \pi} + \Gamma_{\Lambda_b^0 \pi}$, and possible contributions from radiative decays are expected to be negligible. The partial decay widths of exited Σ_b^{**} states into the $\Lambda_b^0 (\pi \pi)_{I=1}$ final state are calculated in Ref. [1], and they do not exceed 3.6 MeV for any P-wave or low-mass D-wave excitations.

The expected signal in the $\Lambda_b^0 \pi^{\pm}$ final state from the isospin partners $\Sigma_b^{**\pm}$ states can be estimated as

$$\frac{N_{\Lambda_{\rm b}^0\pi^{\pm}}}{N_{\Lambda_{\rm b}^0\pi^{+}\pi^{-}}} = \frac{\Gamma_{\Lambda_{\rm b}^0\pi}}{\Gamma_{\Lambda_{\rm b}^0\pi\pi}} \frac{\epsilon_{\Lambda_{\rm b}^0\pi^{\pm}}}{\epsilon_{\Lambda_{\rm b}^0\pi^{+}\pi^{-}}} \, .$$

where ϵ denotes the corresponding efficiency. Conservatively taking $\Gamma_{\Lambda_b^0 \pi \pi} = 4$ MeV and rescaling the expectation to the Run 1 dataset for comparison with Ref. [2], the expected yield is

$$N_{\Lambda_{\rm b}^0\pi^{\pm}} = 8.5 \times 10^3 \left(\frac{\epsilon_{\Lambda_{\rm b}^0\pi^{\pm}}}{\epsilon_{\Lambda_{\rm b}^0\pi^{+}\pi^{-}}} \right) \,. \tag{1}$$

It is natural to expect that the ratio of efficiencies is $\frac{\epsilon_{\Lambda_b^0 \pi^{\pm}}}{\epsilon_{\Lambda_b^0 \pi^+ \pi^-}} > 1$. If the newly observed peak corresponds to a neutral component of the excited Σ_b^{**} isotripet, then very large signals from the decays of the corresponding charged components of the isotriplet, $\Sigma_b^{**\pm} \to \Lambda_b^0 \pi^{\pm}$ should be observed in Run 1 analysis of $\Lambda_b^0 \pi^{\pm}$ spectra [2]. Figures 1 and 2 show the $\Lambda_b^0 \pi^{\pm}$ mass spectra from Ref. [2] with the expected signals from $\Sigma_b^{**\pm}$ states superimposed. The ratio of efficiencies is conservatively taken to be 1. Since no such large signals are observed, the interpretation of the new state as neutral member of Σ_b^{**} isotriplet is disfavoured.

Figure 1: The $\Lambda_b^0 \pi^-$ mass spectrum from Ref. [2] with the expected signal from the $\Sigma_b^{**-} \to \Lambda_b^0 \pi^-$ decays superimposed.

Figure 2: The $\Lambda_b^0 \pi^+$ mass spectrum from Ref. [2] with the expected signal from the $\Sigma_b^{**+} \to \Lambda_b^0 \pi^+$ decays superimposed.

Is it a neutral component of the $\Sigma_{\rm b}(6097)$ triplet?

Is the new baryon a neutral member of the $\Sigma_{\rm b}(6097)$ triplet? The parameters are summarised in Table 1.

- The mass difference between $\Lambda_{\rm b}^{**}$ and $\Sigma_{\rm b}(6097)^{\pm}$ is hardly compatible with the hypothesis of isotopic partners.
- The difference in the widths is even larger, close to a factor of two. The different multiplet component indeed can have different widths, *e.g.*, if due to mass splitting certain decay modes are forbidden for some multiplet components, but in this case there are no forbidden modes and thus all the widths must be similar.
- The observed yields of the $\Sigma_{\rm b}(6097)^{\pm}$ states for the Run 1 dataset are significantly smaller than the projected yield from Eq. (1). To make the yields compatible, the ratio of efficiencies $\frac{\epsilon_{\Lambda_b^0\pi}}{\epsilon_{\Lambda_b^0\pi\pi}}$ should be around 0.1 instead of exceeding unity.

Considering the differences in mass, width and yields, the interpretation of the newly observed $\Lambda_{\rm b}^{**}$ state as a neutral member of the $\Sigma_{\rm b}(6097)$ triplet is unlikely.

	Mass [MeV]	Width [MeV]	Run 1 yield
$\Sigma_{\rm b}(6097)^+$ $\Sigma_{\rm b}(6097)^-$	$\begin{array}{c} 6095.8 \pm 1.7 \pm 0.4 \\ 6098.0 \pm 1.7 \pm 0.5 \end{array}$	$\begin{array}{rrr} 28.9 \pm & 4.2 \pm 0.9 \\ 31.0 \pm & 5.5 \pm 0.7 \end{array}$	$900 \pm 110 \\ 880 \pm 100$
$\Lambda_{ m b}^{**}$	$6071.3 \pm 2.9 \pm 0.6$	$72 \pm 11 \pm 2$	

Table 1: Masses and widths of $\Sigma_{\rm b}^{\pm}$ states from Ref. [2].

Mass spectra of $\Lambda_{\rm b}^0 \pi^{\pm}$ combinations from the $\Lambda_{\rm b}^{**0}$ decays

The $\Lambda_b^0 \pi^{\pm}$ mass spectra from $\Lambda_b^0 \pi^+ \pi^-$ and $\Lambda_b^0 \pi^{\pm} \pi^{\pm}$ combinations with $\Lambda_b^0 \to \Lambda_c^+ \pi^$ from the Λ_b^{**0} signal-enhanced region 6.00 $< m_{\Lambda_b^0 \pi \pi} < 6.14 \,\text{GeV}$ are shown in Fig. 3. The $\Lambda_b^0 \pi^{\pm}$ mass spectrum from the signal Λ_b^{**0} decays is obtained assuming that the $\Lambda_b^0 \pi^{\pm}$ spectra from the same-sign $\Lambda_b^0 \pi^{\pm} \pi^{\pm}$ combinations represent the background. The background-subtracted spectrum is consistent with the presence of relatively small contributions from $\Lambda_b^{**0} \to \Sigma_b^{\pm} \pi^{\mp}$ and $\Lambda_b^{**0} \to \Sigma_b^{*\pm} \pi^{\mp}$ decays and a dominant contribution from nonresonant $\Lambda_b^{**0} \to \Lambda_b^0 \pi^+ \pi^-$ decays.

Figure 3: (Top) Spectra of $\Lambda_b^0 \pi^{\pm}$ mass with $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ for $\Lambda_b^0 \pi^+ \pi^-$ combinations (red points with error bars) and $\Lambda_b^0 \pi^{\pm} \pi^{\pm}$ combinations (open blue histogram). (Bottom) Difference between $\Lambda_b^0 \pi$ mass spectra from $\Lambda_b^0 \pi^+ \pi^-$ and $\Lambda_b^0 \pi^{\pm} \pi^{\pm}$ combinations. A fit with the $\Sigma_b^{\pm} \to \Lambda_b^0 \pi^{\pm}$ and $\Sigma_b^{*\pm} \to \Lambda_b^0 \pi^{\pm}$ contributions and a smooth nonresonant component is superimposed.

References

- C. Mu et al., Dipion decays of heavy baryons, Chin. Phys. C38 (2014) 113101, arXiv:1405.3128.
- [2] LHCb collaboration, R. Aaij *et al.*, Observation of two resonances in the $\Lambda_b^0 \pi^{\pm}$ systems and precise measurement of Σ_b^{\pm} and $\Sigma_b^{*\pm}$ properties, Phys. Rev. Lett. **122** (2019) 012001, arXiv:1809.07752.