Supplementary material for LHCb-PAPER-2020-042

The supplementary material for LHCb-PAPER-2020-042 provides additional details of the analysis. Fig. 1 and Table 1 present results of the BDT training. In Fig. 2 the results of a simulation study for background contamination to signal region are presented. Table 2 shows details of the tagging performance.

Figure 1: Distributions of the BDT variable for both training and test samples of $B_s^0 \rightarrow J/\psi(e^+e^-)\phi$ signal and background events. The signal samples are from simulation (blue) and the background samples derived from the same-sign data combination (red). The black dotted line indicates the chosen minimum BDT requirement.

Table 1: Variables used in the BDT selection: the transverse momenta of the J/ψ and ϕ candidates, $p_{\rm T}$ (J/ψ) and $p_{\rm T}$ (ϕ); the vertex χ^2 of the B_s^0 candidate, $\chi^2_{\rm vtx}$ (B_s^0); the χ^2 of B_s^0 candidate kinematic fit with the J/ψ mass constrained to its PDG value, $\chi^2_{\rm DTF}(B_s^0)$; the electron and kaon identification probabilities as provided mainly from the RICH and calorimeter systems, ${\rm PIDe}(e^{\pm})$ and ${\rm ProbNNK}(K^{\pm})$. The importance is evaluated as the total separation-gain that this variable had in the decision trees (weighted by the number of events) [1].

Variable	Importance	
$PIDe(e^+)$	0.18	
$PIDe(e^{-})$	0.17	
$\log(\text{ProbNNK})(K^+)$	0.14	
$\log(\text{ProbNNK})(K^{-})$	0.13	
$p_{\mathrm{T}}~(J\!/\psi)$	0.11	
$p_{\mathrm{T}}~(\phi)$	0.10	
$\log(\chi^2_{ m DTF})(B^0_s)$	0.09	
$\chi^2_{ m vtx} (B^0_s)$	0.08	

Figure 2: Distribution of the reconstructed mass of simulated B_s^0 candidates. The red area shows the signal $B_s^0 \to J/\psi\phi$ candidates. The green and brown areas areas correspond to candidates selected from $\Lambda_b^0 \to J/\psi p K^-$ and $B^0 \to J/\psi K^* (892)^0$ decays, respectively, that are mis-reconstructed as $B_s^0 \to J/\psi\phi$ due to proton and pion misidentification as kaon or due to partially random combinations with other tracks. The light blue and blue areas show the partially reconstructed background contribution from $B_s^0 \to \psi(2S)\phi$ and $B_s^0 \to \chi_{c1}(1P)\phi$ decays, respectively.

Table 2: Tagging efficiency ε_{tag} , squared average tagging dilution \mathcal{D}^2 and tagging power ε_{eff} of the $B_s^0 \to J/\psi\phi$ signal candidates for the data sample in the three tagging categories. The column "Fraction" reports the fraction of events in each category out of the all tagged events.

Category	$\operatorname{Fraction}(\%)$	$\varepsilon_{ m tag}(\%)$	\mathcal{D}^2	$\varepsilon_{ m eff}(\%)$
OS-only	11.1	10.72 ± 0.73	0.1157 ± 0.0105	1.24 ± 0.09
SSK-only	41.6	40.20 ± 1.14	0.0279 ± 0.0013	1.12 ± 0.04
OS&SSK	25.5	24.70 ± 1.01	0.1097 ± 0.0068	2.71 ± 0.13
Total	78.2	75.62 ± 1.69	0.0670 ± 0.0028	5.07 ± 0.16

References

 H. Voss, A. Hoecker, J. Stelzer, and F. Tegenfeldt, TMVA - Toolkit for Multivariate Data Analysis with ROOT, PoS ACAT (2007) 040.