225 Supplemental material

The $N_{\text{Tracks}}^{\text{PV}}$ distributions for three categories of events, namely minimum-bias events, D_s^+ signal events, and D^+ signal events, with the additional requirement of one reconstructed primary vertex for each category, are shown in Fig. 4. The distributions for D_s^+ and D^+ signal events are extracted from data; background is removed using the *sPlot* method 35.

Figure 4: Distribution of the number of charged tracks used to reconstruct the PV for $D_{(s)}^+$ signal and minimum-bias events in (left) forward and (right) backward configurations, each with only one primary vertex. The vertical scale is arbitrary.

The results of the fits to the invariant-mass and $\log_{10}(\chi^2_{IP})$ distributions in the forward and backward rapidity intervals are shown in Fig. 5-8.

Figure 5: Distributions of (left) $M(KK\pi)$ and (right) $\log_{10}(\chi_{\rm IP}^2)$ for inclusive D_s^+ mesons in the forward data sample in the interval of $2.0 < p_{\rm T} < 4.0 \,{\rm GeV}/c$, $2.3 < y^* < 2.8$ and $100 < N_{\rm Tracks}^{\rm PV} < 120$. The fit results are overlaid. For the $\log_{10}(\chi_{\rm IP}^2)$ fit, the data are weighted using the *sPlot* method to subtract the background component.

The differential cross-section for prompt D_s^+ and D^+ mesons in both forward and backward rapidities are shown in Fig. 9-12. The corresponding numerical values are listed

Figure 6: Distributions of (left) $M(KK\pi)$ and (right) $\log_{10}(\chi_{\rm IP}^2)$ for inclusive D_s^+ mesons in the backward data sample in the interval of $2.0 < p_{\rm T} < 4.0 \,{\rm GeV}/c, -3.8 < y^* < -3.3$ and $100 < N_{\rm Tracks}^{\rm PV} < 120$. The fit results are overlaid. For the $\log_{10}(\chi_{\rm IP}^2)$ fit, the data are weighted using the *sPlot* method to subtract the background component.

Figure 7: Distributions of (left) $M(K\pi\pi)$ and (right) $\log_{10}(\chi_{\rm IP}^2)$ for inclusive D^+ mesons in the forward data sample in the interval of $2.0 < p_{\rm T} < 4.0 \,{\rm GeV}/c$, $2.3 < y^* < 2.8$ and $100 < N_{\rm Tracks}^{\rm PV} < 120$. The fit results are overlaid. For the $\log_{10}(\chi_{\rm IP}^2)$ fit, the data are weighted using the *sPlot* method to subtract the background component.

in Tables 2-7.

The nuclear modification factor R_{pPb} for prompt D_s^+ and D^+ mesons in both forward and backward rapidities are shown in Fig. 13–15. The corresponding numerical values are listed in Tables 8–13.

The numerical values for the forward and backward production ratio $R_{\rm FB}$ of prompt D_s^+ and D^+ mesons are given in Tables 14 and 15.

The production cross-section ratio of D_s^+ over D^+ mesons $\sigma_{D_s^+}/\sigma_{D^+}$ in both forward and backward rapidities are shown in Fig. 16–18. The corresponding numerical values are listed in Tables 16 and 17.

Figure 8: Distributions of (left) $M(K\pi\pi)$ and (right) $\log_{10}(\chi_{\rm IP}^2)$ for inclusive D^+ mesons in the backward data sample in the interval of $2.0 < p_{\rm T} < 4.0 \,{\rm GeV}/c, -3.8 < y^* < -3.3$ and $100 < N_{\rm Tracks}^{\rm PV} < 120$. The fit results are overlaid. For the $\log_{10}(\chi_{\rm IP}^2)$ fit, the data are weighted using the *sPlot* method to subtract the background component.

Figure 9: Double-differential cross-section of prompt D_s^+ production in *p*Pb collisions at (left) forward and (right) backward rapidities. The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties.

Figure 10: Double-differential cross-section of prompt D^+ production in pPb collisions at (left) forward and (right) backward rapidities. The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties.

Figure 11: Differential cross-section of prompt D_s^+ production in *p*Pb collisions as a function of (left) p_T and (right) y^* . The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties.

Figure 12: Differential cross-section of prompt D^+ production in pPb collisions as a function of (left) $p_{\rm T}$ and (right) y^* . The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties.

third the cor	related systematic comp	onent.			
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^*$	[1.5, 2]	[2, 2.5]	$d^2\sigma/(dp_Tdy^*) [mb/(GeV/c)] (Forward)$ [2.5, 3]	[3, 3.5]	[3.5, 4]
[1,2]	$7.006 \pm 0.422 \pm 1.613 \pm 0.861$	$7.658 \pm 0.220 \pm 0.745 \pm 0.775$	$8.021 \pm 0.270 \pm 0.441 \pm 0.763$	$7.770 \pm 0.334 \pm 0.389 \pm 0.733$	$5.197 \pm 0.583 \pm 0.378 \pm 0.536$
[2, 3]	$5.653 \pm 0.156 \pm 0.157 \pm 0.625$	$5.464 \pm 0.049 \pm 0.244 \pm 0.520$	$5.337 \pm 0.048 \pm 0.187 \pm 0.485$	$4.877 \pm 0.073 \pm 0.212 \pm 0.456$	$3.105 \pm 0.093 \pm 0.149 \pm 0.296$
[3, 4]	$3.027 \pm 0.120 \pm 0.051 \pm 0.310$	$2.961 \pm 0.042 \pm 0.094 \pm 0.273$	$2.694 \pm 0.026 \pm 0.034 \pm 0.245$	$2.314 \pm 0.032 \pm 0.064 \pm 0.215$	$1.521 \pm 0.055 \pm 0.074 \pm 0.146$
[4, 5]	$1.518 \pm 0.029 \pm 0.026 \pm 0.147$	$1.514 \pm 0.020 \pm 0.020 \pm 0.137$	$1.362 \pm 0.015 \pm 0.030 \pm 0.123$	$1.020 \pm 0.024 \pm 0.013 \pm 0.095$	$0.689 \pm 0.028 \pm 0.017 \pm 0.066$
[5, 6]	$0.792 \pm 0.022 \pm 0.017 \pm 0.075$	$0.755 \pm 0.014 \pm 0.012 \pm 0.068$	$0.686 \pm 0.010 \pm 0.014 \pm 0.062$	$0.543 \pm 0.011 \pm 0.016 \pm 0.051$	$0.376 \pm 0.016 \pm 0.014 \pm 0.037$
[6, 7]	$0.429 \pm 0.012 \pm 0.026 \pm 0.041$	$0.421 \pm 0.005 \pm 0.011 \pm 0.038$	$0.347 \pm 0.006 \pm 0.008 \pm 0.031$	$0.276 \pm 0.011 \pm 0.015 \pm 0.026$	$0.213 \pm 0.016 \pm 0.018 \pm 0.022$
[7, 8]	$0.235 \pm 0.008 \pm 0.012 \pm 0.022$	$0.245 \pm 0.005 \pm 0.007 \pm 0.022$	$0.197 \pm 0.005 \pm 0.004 \pm 0.018$	$0.150 \pm 0.007 \pm 0.008 \pm 0.014$	$0.126 \pm 0.017 \pm 0.011 \pm 0.014$
[8, 9]	$0.152 \pm 0.011 \pm 0.013 \pm 0.014$	$0.141 \pm 0.004 \pm 0.010 \pm 0.013$	$0.115 \pm 0.003 \pm 0.004 \pm 0.010$	$0.081 \pm 0.004 \pm 0.004 \pm 0.008$	Ι
[9, 10]	$0.093 \pm 0.008 \pm 0.004 \pm 0.009$	$0.083 \pm 0.002 \pm 0.005 \pm 0.008$	$0.069 \pm 0.002 \pm 0.003 \pm 0.006$	$0.048 \pm 0.003 \pm 0.003 \pm 0.003 \pm 0.005$	Ι
[10, 11]	$0.063 \pm 0.003 \pm 0.006 \pm 0.006$	$0.050 \pm 0.002 \pm 0.003 \pm 0.005$	$0.044 \pm 0.002 \pm 0.002 \pm 0.004$	$0.032 \pm 0.003 \pm 0.007 \pm 0.003$	Ι
[11, 12]	$0.041 \pm 0.002 \pm 0.002 \pm 0.004$	$0.033 \pm 0.001 \pm 0.002 \pm 0.003$	$0.025 \pm 0.001 \pm 0.002 \pm 0.002$	$0.018 \pm 0.003 \pm 0.002 \pm 0.002$	Ι
[12, 13]	$0.025 \pm 0.001 \pm 0.002 \pm 0.002$	$0.022 \pm 0.002 \pm 0.002 \pm 0.002$	$0.020 \pm 0.002 \pm 0.001 \pm 0.002$	I	I
			$1^2\sigma/(dp_Tdy^*) [mb/(GeV/c)] (Backward)$		
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^{*}$	[-3, -2.5]	[-3.5, -3]	[-4, -3.5]	[-4.5, -4]	[-5, -4.5]
[1,2]	$9.278 \pm 0.410 \pm 1.364 \pm 1.446$	$9.981 \pm 0.361 \pm 0.477 \pm 1.269$	$8.240 \pm 0.334 \pm 0.392 \pm 1.070$	$8.061 \pm 0.321 \pm 0.699 \pm 1.180$	$4.832 \pm 0.441 \pm 1.035 \pm 0.526$
[2, 3]	$6.553 \pm 0.128 \pm 0.205 \pm 0.913$	$6.009 \pm 0.135 \pm 0.244 \pm 0.726$	$5.355 \pm 0.054 \pm 0.125 \pm 0.626$	$4.031 \pm 0.065 \pm 0.137 \pm 0.446$	$2.379 \pm 0.120 \pm 0.136 \pm 0.293$
[3, 4]	$3.264 \pm 0.032 \pm 0.101 \pm 0.420$	$2.965 \pm 0.071 \pm 0.047 \pm 0.356$	$2.449 \pm 0.043 \pm 0.043 \pm 0.289$	$1.754 \pm 0.024 \pm 0.052 \pm 0.203$	$1.027 \pm 0.039 \pm 0.067 \pm 0.125$
[4, 5]	$1.556 \pm 0.037 \pm 0.034 \pm 0.194$	$1.399 \pm 0.015 \pm 0.026 \pm 0.165$	$1.063 \pm 0.022 \pm 0.022 \pm 0.122$	$0.733 \pm 0.009 \pm 0.021 \pm 0.077$	$0.355 \pm 0.016 \pm 0.027 \pm 0.046$
[5, 6]	$0.712 \pm 0.021 \pm 0.022 \pm 0.089$	$0.654 \pm 0.008 \pm 0.020 \pm 0.079$	$0.504 \pm 0.007 \pm 0.011 \pm 0.056$	$0.330 \pm 0.010 \pm 0.018 \pm 0.041$	$0.163 \pm 0.011 \pm 0.017 \pm 0.023$
[6, 7]	$0.334 \pm 0.014 \pm 0.018 \pm 0.041$	$0.304 \pm 0.004 \pm 0.008 \pm 0.036$	$0.214 \pm 0.005 \pm 0.007 \pm 0.026$	$0.137 \pm 0.004 \pm 0.007 \pm 0.016$	$0.059 \pm 0.008 \pm 0.011 \pm 0.008$
[7, 8]	$0.188 \pm 0.005 \pm 0.006 \pm 0.021$	$0.167 \pm 0.004 \pm 0.006 \pm 0.019$	$0.126 \pm 0.003 \pm 0.005 \pm 0.015$	$0.071 \pm 0.003 \pm 0.004 \pm 0.009$	I
[8, 9]	$0.117 \pm 0.004 \pm 0.005 \pm 0.012$	$0.095 \pm 0.002 \pm 0.005 \pm 0.013$	$0.059 \pm 0.005 \pm 0.003 \pm 0.007$	$0.035 \pm 0.002 \pm 0.004 \pm 0.005$	Ι
[9, 10]	$0.062 \pm 0.003 \pm 0.003 \pm 0.008$	$0.052 \pm 0.002 \pm 0.003 \pm 0.006$	$0.035 \pm 0.001 \pm 0.002 \pm 0.004$	$0.017 \pm 0.002 \pm 0.003 \pm 0.002$	I
[10, 11]	$0.041 \pm 0.002 \pm 0.003 \pm 0.005$	$0.037 \pm 0.001 \pm 0.003 \pm 0.004$	$0.021 \pm 0.001 \pm 0.002 \pm 0.003$	$0.008 \pm 0.002 \pm 0.002 \pm 0.001$	I
[11, 12]	$0.025 \pm 0.001 \pm 0.002 \pm 0.003$	$0.022 \pm 0.001 \pm 0.002 \pm 0.003$	$0.011 \pm 0.001 \pm 0.001 \pm 0.001$	I	I
[12, 13]	$0.019 \pm 0.002 \pm 0.002 \pm 0.002$	$0.012 \pm 0.001 \pm 0.001 \pm 0.002$	$0.008 \pm 0.001 \pm 0.001 \pm 0.001$	I	I

Table 2: Double-differential cross-section for prompt D_s^+ production as a function of p_T and y^* in pPb collisions at forward and backward rapidities. The first uncertainty is statistical, the second the component of the systematic uncertainty that is uncorrelated between bins and the

$\begin{array}{c} \frac{(\operatorname{GeV}/c] \sqrt{y^*}}{[1,2]} \\ [2,3] \\ [3,4] \\ [3,4] \\ [4,5] \\ [5,6] \\ [5,6] \\ [6,7] \\ [7,8] \\ [7,8] \\ [8,0] \end{array}$	$\begin{array}{c} [1.5,2] \\ 1.5,2] \\ 18.276\pm 0.305\pm 0.884\pm 1.481 \\ 12.215\pm 0.059\pm 0.364\pm 0.886 \\ 6.286\pm 0.025\pm 0.171\pm 0.414 \\ 3.168\pm 0.014\pm 0.086\pm 0.192 \\ 1.664\pm 0.008\pm 0.047\pm 0.097 \\ 0.876\pm 0.018\pm 0.002\pm 0.014\pm 0.050 \\ 0.491\pm 0.005\pm 0.014\pm 0.028 \\ 0.491\pm 0.005\pm 0.013\pm 0.028 \\ 0.491\pm 0.005\pm 0.001\pm 0.013\pm 0.028 \\ 0.491\pm 0.005\pm 0.001\pm 0.0028 \\ 0.012\pm 0.0028 \\ 0.0028 $	$\begin{array}{c} [2,2.5] \\ 18.390\pm0.095\pm0.563\pm1.209 \\ 12.020\pm0.024\pm0.352\pm0.701 \\ 6.172\pm0.014\pm0.174\pm0.343 \\ 3.020\pm0.005\pm0.154\pm0.161 \\ 1.543\pm0.005\pm0.046\pm0.082 \\ 0.840\pm0.005\pm0.046\pm0.0082 \\ 0.482\pm0.003\pm0.007\pm0.0026 \\ 0.380\pm0.000\pm0.000\pm0.0000\pm0.00126 \\ 0.380\pm0.000\pm0.000\pm0.00026 \\ 0.380\pm0.000\pm0.000\pm0.00026 \\ 0.380\pm0.000\pm0.000\pm0.00026 \\ 0.380\pm0.000\pm0.000\pm0.00026 \\ 0.000\pm0.000\pm0.00026 \\ 0.000\pm0.000\pm0.00026 \\ 0.000\pm0.000\pm0.00026 \\ 0.000\pm0.00026 \\ 0.000\pm0.00000000000000000 \\ 0.000\pm0.0000000000$	$\frac{d^2\sigma/(dp_Tdy^*) \left[mb/(GeV/c) \right] (Forward)}{[2.5, 3]}$ $17.369 \pm 0.020 \pm 0.607 \pm 1.013$ $11.018 \pm 0.083 \pm 0.372 \pm 0.597$ $5.410 \pm 0.010 \pm 0.141 \pm 0.290$ $2.708 \pm 0.009 \pm 0.103 \pm 0.145$ $1.350 \pm 0.009 \pm 0.103 \pm 0.072$ $0.730 \pm 0.004 \pm 0.031 \pm 0.039$ $0.405 \pm 0.002 \pm 0.012 \pm 0.022$	$\begin{array}{c} [3,3.5] \\ 15.329\pm0.080\pm0.439\pm0.885 \\ 9.205\pm0.026\pm0.260\pm0.506 \\ 4.552\pm0.010\pm0.231\pm0.249 \\ 2.160\pm0.008\pm0.117\pm0.118 \\ 1.062\pm0.005\pm0.062\pm0.059 \\ 0.568\pm0.004\pm0.037\pm0.032 \\ 0.308\pm0.003\pm0.0015\pm0.018 \\ 0.001\pm0.0018 \\ 0.015\pm0.0018 \\ 0.018\pm0.0018 \\ 0.018\pm0.0018 \\ 0.018\pm0.0018 \\ 0.018\pm0.0018 \\ $	$\begin{array}{c} [3.5,4] \\ \hline 11.032\pm0.108\pm0.632\pm0.631 \\ 7.066\pm0.035\pm0.608\pm0.400 \\ 3.498\pm0.020\pm0.245\pm0.198 \\ 1.566\pm0.014\pm0.133\pm0.092 \\ 0.757\pm0.009\pm0.065\pm0.046 \\ 0.373\pm0.015\pm0.049\pm0.024 \\ 0.200\pm0.008\pm0.026\pm0.014 \\ 0.112\pm0.010\pm0.014\pm0.004 \\ 0.000\pm0.000\pm0.0004 \\ 0.000\pm0.000\pm0.000\pm0.0004 \\ 0.000\pm0.000\pm0.000\pm0.000\pm0.0004 \\ 0.000\pm00\pm$
$\begin{array}{c} [0, y] \\ [0, 10] \\ [10, 11] \\ [11, 12] \\ [12, 13] \\ [13, 14] \\ \hline \\ [GeV/c] \backslash y^{*} \end{array}$	$\begin{array}{c} 0.0306\pm0.0000\pm0.0015\pm0.0010\\ 0.184\pm0.0000\pm0.007\pm0.0011\\ 0.122\pm0.002\pm0.001\pm0.001\pm0.005\\ 0.090\pm0.001\pm0.003\pm0.003\\ 0.037\pm0.001\pm0.003\pm0.002\\ \hline -3,-2.5 \end{bmatrix}$	$\begin{bmatrix} 0.176 \pm 0.001 \pm 0.007 \pm 0.010 \\ 0.176 \pm 0.001 \pm 0.007 \pm 0.010 \\ 0.0110 \pm 0.002 \pm 0.004 \pm 0.006 \\ 0.047 \pm 0.001 \pm 0.002 \pm 0.003 \\ 0.032 \pm 0.001 \pm 0.002 \pm 0.002 \\ \end{bmatrix}$	$\begin{array}{c} 0.2 \pm 0.002 \pm 0.001 \pm 0.001 \pm 0.008 \\ 0.141 \pm 0.002 \pm 0.007 \pm 0.008 \\ 0.091 \pm 0.001 \pm 0.004 \pm 0.004 \\ 0.039 \pm 0.001 \pm 0.003 \pm 0.002 \\ 0.029 \pm 0.001 \pm 0.002 \pm 0.002 \\ 0.029 \pm 0.001 \pm 0.002 \pm 0.002 \\ \hline \end{array} \\ \begin{array}{c} d^2 \sigma / (dp_T dy^*) \ [mb/(GeV/c)] \ (Backward) \\ \hline [-4, -3.5] \end{array}$	$0.011 \pm 0.000 \pm 0.010 \pm 0.001$ $0.110 \pm 0.002 \pm 0.010 \pm 0.004$ $0.039 \pm 0.002 \pm 0.004 \pm 0.003$ - - [-4.5, -4]	0.112 ± 0.0010 ± 0.0114 ± 0.009 - - - - - - - - - - - - -
[1,2] [1,2] [5,6] [7,8] [7,8] [10,11] [11,12] [13,13] [13,14] [13,13]	$\begin{array}{c} 20.016 \pm 0.220 \pm 0.866 \pm 2.666\\ 12.676 \pm 0.044 \pm 0.377 \pm 1.373\\ 5.957 \pm 0.018 \pm 0.154 \pm 0.629\\ 2.788 \pm 0.010 \pm 0.091 \pm 0.276\\ 1.356 \pm 0.006 \pm 0.042 \pm 0.130\\ 0.687 \pm 0.007 \pm 0.016 \pm 0.065\\ 0.382 \pm 0.009 \pm 0.012 \pm 0.035\\ 0.214 \pm 0.002 \pm 0.007 \pm 0.012\\ 0.035 \pm 0.001 \pm 0.005 \pm 0.013\\ 0.053 \pm 0.001 \pm 0.003 \pm 0.005\\ 0.035 \pm 0.001 \pm 0.002 \pm 0.003\\ 0.035 \pm 0.001 \pm 0.002 \pm 0.003\\ 0.003 \pm 0.001 \pm 0.001 \pm 0.002\\ 0.002 \pm 0.001 \pm 0.002\\ 0.002 \pm 0.001 \pm 0.002\\ 0.002 \pm 0.001\\ 0.002 \pm 0.002\\ 0.002 $	$\begin{array}{c} 18.689 \pm 0.079 \pm 0.568 \pm 2.120 \\ 11.864 \pm 0.022 \pm 0.334 \pm 1.214 \\ 5.600 \pm 0.010 \pm 0.162 \pm 0.530 \\ 2.522 \pm 0.006 \pm 0.065 \pm 0.230 \\ 1.188 \pm 0.002 \pm 0.035 \pm 0.105 \\ 0.593 \pm 0.001 \pm 0.020 \pm 0.053 \\ 0.175 \pm 0.001 \pm 0.002 \pm 0.010 \pm 0.029 \\ 0.175 \pm 0.001 \pm 0.004 \pm 0.006 \\ 0.002 \pm 0.001 \pm 0.002 \pm 0.001 \\ 0.002 \pm 0.001 \pm 0.002 \pm 0.006 \\ 0.001 \pm 0.002 \pm 0.001 \\ 0.002 \pm 0.001 \pm 0.002 \pm 0.004 \\ 0.002 \pm 0.001 \pm 0.002 \pm 0.002 \\ 0.017 \pm 0.000 \pm 0.001 \pm 0.002 \\ 0.017 \pm 0.000 \pm 0.001 \pm 0.002 \\ 0.0117 \pm 0.000 \pm 0.001 \pm 0.002 \\ 0.0117 \pm 0.000 \pm 0.001 \pm 0.002 \\ 0.0117 \pm 0.000 \pm 0.001 \pm 0.002 \\ 0.001 \pm 0.001 \pm 0.002 \\ 0.001 \pm 0.001 \pm 0.002 \\ 0.001 \pm 0.001 \\ 0.002 \pm 0.001 \\ 0.001 \pm 0.002 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.$	$\begin{array}{c} 17.293\pm0.065\pm0.508\pm1.756\\ 10.054\pm0.018\pm0.233\pm0.955\\ 4.519\pm0.008\pm0.138\pm0.418\\ 1.996\pm0.006\pm0.104\pm0.175\\ 0.912\pm0.005\pm0.039\pm0.079\\ 0.428\pm0.001\pm0.018\pm0.037\\ 0.226\pm0.001\pm0.012\pm0.020\\ 0.118\pm0.001\pm0.002\pm0.002\\ 0.011\pm0.001\pm0.002\pm0.002\\ 0.041\pm0.001\pm0.002\pm0.002\\ 0.011\pm0.000\pm0.0002\pm0.002\\ 0.011\pm0.000\pm0.001\pm0.002\\ 0.001\pm0.000\pm0.001\\ \end{array}$	$\begin{array}{c} 14.348 \pm 0.206 \pm 0.683 \pm 1.395\\ 7.692 \pm 0.020 \pm 0.248 \pm 0.678\\ 3.246 \pm 0.010 \pm 0.155 \pm 0.284\\ 1.368 \pm 0.005 \pm 0.078 \pm 0.121\\ 0.585 \pm 0.003 \pm 0.038 \pm 0.054\\ 0.277 \pm 0.002 \pm 0.013 \pm 0.014\\ 0.071 \pm 0.002 \pm 0.011 \pm 0.014\\ 0.071 \pm 0.002 \pm 0.007 \pm 0.008\\ 0.033 \pm 0.001 \pm 0.005 \pm 0.003\\ 0.018 \pm 0.001 \pm 0.005 \pm 0.002\\ 0.0122 \pm 0.002 \pm 0.005 \pm 0.002\\ 0.002 \pm 0.001 \pm 0.005 \pm 0.002\\ 0.002 \pm 0.002 \pm 0.002\\ 0.002 \pm 0.001 \pm 0.005 \pm 0.002\\ 0.002 \pm 0.002 \pm 0.002\\ 0.002 \pm 0$	$ \begin{array}{c} 10.639 \pm 0.057 \pm 0.815 \pm 1.036 \\ 5.165 \pm 0.025 \pm 0.526 \pm 0.478 \\ 2.046 \pm 0.014 \pm 0.150 \pm 0.199 \\ 0.766 \pm 0.009 \pm 0.077 \pm 0.071 \\ 0.298 \pm 0.006 \pm 0.029 \pm 0.029 \\ 0.117 \pm 0.004 \pm 0.015 \pm 0.014 \\ 0.068 \pm 0.007 \pm 0.014 \pm 0.009 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $

Table 3: Double-differential cross-section for prompt D^+ production as a function of p_T and y^* in pPb collisions at forward and backward

Table 4: Differential cross-section for prompt D_s^+ production as a function of p_T in pPb collisions at forward and backward rapidities. The first uncertainty is statistical, the second the component of the systematic uncertainty that is uncorrelated between bins and the third the correlated systematic component.

$p_{\rm T}[{\rm GeV}/c]$	$d\sigma/dp_{\rm T} \; [{\rm mb}/({\rm GeV}/c)]$ (Forward)
[1, 2]	$17.826 \pm 0.433 \pm 0.955 \pm 1.808$
[2, 3]	$12.218 \pm 0.104 \pm 0.216 \pm 1.177$
[3,4]	$6.259 \pm 0.072 \pm 0.074 \pm 0.591$
[4, 5]	$3.051 \pm 0.027 \pm 0.025 \pm 0.283$
[5,6]	$1.576 \pm 0.017 \pm 0.017 \pm 0.146$
[6,7]	$0.843 \pm 0.012 \pm 0.019 \pm 0.079$
[7, 8]	$0.476 \pm 0.011 \pm 0.010 \pm 0.045$
[8, 9]	$0.244 \pm 0.006 \pm 0.009 \pm 0.023$
[9, 10]	$0.147 \pm 0.005 \pm 0.004 \pm 0.014$
[10, 11]	$0.095 \pm 0.003 \pm 0.005 \pm 0.009$
[11, 12]	$0.059 \pm 0.002 \pm 0.002 \pm 0.006$
[12, 13]	$0.034 \pm 0.002 \pm 0.001 \pm 0.003$
$p_{\rm T}[{\rm GeV}/c]$	$d\sigma/dp_{\rm T} \; [{\rm mb}/({\rm GeV}/c)] \; ({\rm Backward})$
$\frac{p_{\rm T}[{\rm GeV}\!/c]}{[1,2]}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [\text{mb}/(\text{GeV}/c)] \ (\text{Backward})}{20.196 \pm 0.421 \pm 0.975 \pm 2.700} \\ 12.163 \pm 0.119 \pm 0.196 \pm 1.490$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [\text{mb}/(\text{GeV}/c)] \ (\text{Backward})}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$ $1.182 \pm 0.014 \pm 0.020 \pm 0.143$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$ $1.182 \pm 0.014 \pm 0.020 \pm 0.143$ $0.524 \pm 0.009 \pm 0.012 \pm 0.063$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$ $1.182 \pm 0.014 \pm 0.020 \pm 0.143$ $0.524 \pm 0.009 \pm 0.012 \pm 0.063$ $0.276 \pm 0.004 \pm 0.005 \pm 0.031$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$ $1.182 \pm 0.014 \pm 0.020 \pm 0.143$ $0.524 \pm 0.009 \pm 0.012 \pm 0.063$ $0.276 \pm 0.004 \pm 0.005 \pm 0.031$ $0.153 \pm 0.004 \pm 0.004 \pm 0.018$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700}$ $12.163 \pm 0.119 \pm 0.196 \pm 1.490$ $5.729 \pm 0.050 \pm 0.073 \pm 0.694$ $2.553 \pm 0.025 \pm 0.029 \pm 0.300$ $1.182 \pm 0.014 \pm 0.020 \pm 0.143$ $0.524 \pm 0.009 \pm 0.012 \pm 0.063$ $0.276 \pm 0.004 \pm 0.005 \pm 0.031$ $0.153 \pm 0.004 \pm 0.004 \pm 0.018$ $0.083 \pm 0.002 \pm 0.003 \pm 0.011$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \\ [10,11] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700} \\12.163 \pm 0.119 \pm 0.196 \pm 1.490 \\5.729 \pm 0.050 \pm 0.073 \pm 0.694 \\2.553 \pm 0.025 \pm 0.029 \pm 0.300 \\1.182 \pm 0.014 \pm 0.020 \pm 0.143 \\0.524 \pm 0.009 \pm 0.012 \pm 0.063 \\0.276 \pm 0.004 \pm 0.005 \pm 0.031 \\0.153 \pm 0.004 \pm 0.004 \pm 0.018 \\0.083 \pm 0.002 \pm 0.003 \pm 0.011 \\0.053 \pm 0.002 \pm 0.003 \pm 0.007 \\\end{bmatrix}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}/c] \\ \hline [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \\ [10,11] \\ [11,12] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(\ GeV/c)] \ (Backward)}{20.196 \pm 0.421 \pm 0.975 \pm 2.700} \\12.163 \pm 0.119 \pm 0.196 \pm 1.490 \\5.729 \pm 0.050 \pm 0.073 \pm 0.694 \\2.553 \pm 0.025 \pm 0.029 \pm 0.300 \\1.182 \pm 0.014 \pm 0.020 \pm 0.143 \\0.524 \pm 0.009 \pm 0.012 \pm 0.063 \\0.276 \pm 0.004 \pm 0.005 \pm 0.031 \\0.153 \pm 0.004 \pm 0.004 \pm 0.018 \\0.083 \pm 0.002 \pm 0.003 \pm 0.011 \\0.053 \pm 0.002 \pm 0.003 \pm 0.007 \\0.029 \pm 0.001 \pm 0.001 \pm 0.003 \\\end{bmatrix}$

Table 5: Differential cross-section for prompt D^+ production as a function of p_T in pPb collisions at forward and backward rapidities. The first uncertainty is statistical, the second the component of the systematic uncertainty that is uncorrelated between bins and the third the correlated systematic component.

$p_{\rm T}[{\rm GeV}/c]$	$d\sigma/dp_{\rm T} \; [{\rm mb}/({\rm GeV}/c)]$ (Forward)
[1, 2]	$40.198 \pm 0.174 \pm 0.717 \pm 2.291$
[2, 3]	$25.763 \pm 0.057 \pm 0.456 \pm 1.326$
[3, 4]	$12.959 \pm 0.019 \pm 0.219 \pm 0.638$
[4, 5]	$6.311 \pm 0.012 \pm 0.135 \pm 0.300$
[5, 6]	$3.188 \pm 0.007 \pm 0.064 \pm 0.151$
[6,7]	$1.693 \pm 0.012 \pm 0.042 \pm 0.081$
[7,8]	$0.943 \pm 0.005 \pm 0.022 \pm 0.045$
[8, 9]	$0.559 \pm 0.005 \pm 0.014 \pm 0.028$
[9, 10]	$0.306 \pm 0.001 \pm 0.008 \pm 0.015$
[10, 11]	$0.194 \pm 0.002 \pm 0.004 \pm 0.010$
[11, 12]	$0.130 \pm 0.001 \pm 0.004 \pm 0.007$
[12, 13]	$0.071 \pm 0.001 \pm 0.002 \pm 0.004$
[13, 14]	$0.048 \pm 0.001 \pm 0.002 \pm 0.003$
$p_{\rm T}[{\rm GeV}\!/c]$	$d\sigma/dp_{\rm T} \; [{\rm mb}/({\rm GeV}\!/c)] \; ({\rm Backward})$
$\frac{p_{\rm T}[{\rm GeV}\!/c]}{[1,2]}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)]}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$
$p_{\rm T}[{ m GeV}/c]$ [1, 2] [2, 3]	$\frac{d\sigma/dp_{\rm T} \ [\text{mb}/(\text{GeV}/c)] \ (\text{Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ $23.726 \pm 0.031 \pm 0.402 \pm 2.241$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [\text{mb}/(\text{GeV}/c)] \ (\text{Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ $23.726 \pm 0.031 \pm 0.402 \pm 2.241$ $10.684 \pm 0.014 \pm 0.170 \pm 0.981$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ $23.726 \pm 0.031 \pm 0.402 \pm 2.241$ $10.684 \pm 0.014 \pm 0.170 \pm 0.981$ $4.720 \pm 0.008 \pm 0.094 \pm 0.414$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [\text{mb}/(\text{GeV}/c)] \ (\text{Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ 23.726 ± 0.031 ± 0.402 ± 2.241 10.684 ± 0.014 ± 0.170 ± 0.981 4.720 ± 0.008 ± 0.094 ± 0.414 2.170 ± 0.005 ± 0.041 ± 0.188
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ $23.726 \pm 0.031 \pm 0.402 \pm 2.241$ $10.684 \pm 0.014 \pm 0.170 \pm 0.981$ $4.720 \pm 0.008 \pm 0.094 \pm 0.414$ $2.170 \pm 0.005 \pm 0.041 \pm 0.188$ $1.050 \pm 0.004 \pm 0.020 \pm 0.093$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317} \\ 23.726 \pm 0.031 \pm 0.402 \pm 2.241 \\ 10.684 \pm 0.014 \pm 0.170 \pm 0.981 \\ 4.720 \pm 0.008 \pm 0.094 \pm 0.414 \\ 2.170 \pm 0.005 \pm 0.041 \pm 0.188 \\ 1.050 \pm 0.004 \pm 0.020 \pm 0.093 \\ 0.557 \pm 0.006 \pm 0.013 \pm 0.051 \\ \end{bmatrix}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{40.492 \pm 0.161 \pm 0.785 \pm 4.317}$ $23.726 \pm 0.031 \pm 0.402 \pm 2.241$ $10.684 \pm 0.014 \pm 0.170 \pm 0.981$ $4.720 \pm 0.008 \pm 0.094 \pm 0.414$ $2.170 \pm 0.005 \pm 0.041 \pm 0.188$ $1.050 \pm 0.004 \pm 0.020 \pm 0.093$ $0.557 \pm 0.006 \pm 0.013 \pm 0.051$ $0.289 \pm 0.002 \pm 0.007 \pm 0.026$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \end{array}$	$\frac{d\sigma/dp_{\rm T} \ [{\rm mb}/({\rm GeV}/c)] \ ({\rm Backward})}{40.492 \pm 0.161 \pm 0.785 \pm 4.317} \\ 23.726 \pm 0.031 \pm 0.402 \pm 2.241 \\ 10.684 \pm 0.014 \pm 0.170 \pm 0.981 \\ 4.720 \pm 0.008 \pm 0.094 \pm 0.414 \\ 2.170 \pm 0.005 \pm 0.041 \pm 0.188 \\ 1.050 \pm 0.004 \pm 0.020 \pm 0.093 \\ 0.557 \pm 0.006 \pm 0.013 \pm 0.051 \\ 0.289 \pm 0.002 \pm 0.007 \pm 0.026 \\ 0.166 \pm 0.001 \pm 0.004 \pm 0.015 \\ \end{bmatrix}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \\ [10,11] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{40.492 \pm 0.161 \pm 0.785 \pm 4.317} \\ 23.726 \pm 0.031 \pm 0.402 \pm 2.241 \\ 10.684 \pm 0.014 \pm 0.170 \pm 0.981 \\ 4.720 \pm 0.008 \pm 0.094 \pm 0.414 \\ 2.170 \pm 0.005 \pm 0.041 \pm 0.188 \\ 1.050 \pm 0.004 \pm 0.020 \pm 0.093 \\ 0.557 \pm 0.006 \pm 0.013 \pm 0.051 \\ 0.289 \pm 0.002 \pm 0.007 \pm 0.026 \\ 0.166 \pm 0.001 \pm 0.004 \pm 0.015 \\ 0.101 \pm 0.001 \pm 0.003 \pm 0.010 \\ \end{bmatrix}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \\ [10,11] \\ [11,12] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{40.492 \pm 0.161 \pm 0.785 \pm 4.317} \\ 23.726 \pm 0.031 \pm 0.402 \pm 2.241 \\ 10.684 \pm 0.014 \pm 0.170 \pm 0.981 \\ 4.720 \pm 0.008 \pm 0.094 \pm 0.414 \\ 2.170 \pm 0.005 \pm 0.041 \pm 0.188 \\ 1.050 \pm 0.004 \pm 0.020 \pm 0.093 \\ 0.557 \pm 0.006 \pm 0.013 \pm 0.051 \\ 0.289 \pm 0.002 \pm 0.007 \pm 0.026 \\ 0.166 \pm 0.001 \pm 0.004 \pm 0.015 \\ 0.101 \pm 0.001 \pm 0.003 \pm 0.007 \\ 0.069 \pm 0.001 \pm 0.003 \pm 0.007 \\ \end{bmatrix}$
$\begin{array}{c} p_{\rm T}[{\rm GeV}\!/c] \\ [1,2] \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \\ [9,10] \\ [10,11] \\ [11,12] \\ [12,13] \end{array}$	$\frac{d\sigma/dp_{T} \ [mb/(GeV/c)] \ (Backward)}{40.492 \pm 0.161 \pm 0.785 \pm 4.317} \\ 23.726 \pm 0.031 \pm 0.402 \pm 2.241 \\ 10.684 \pm 0.014 \pm 0.170 \pm 0.981 \\ 4.720 \pm 0.008 \pm 0.094 \pm 0.414 \\ 2.170 \pm 0.005 \pm 0.041 \pm 0.188 \\ 1.050 \pm 0.004 \pm 0.020 \pm 0.093 \\ 0.557 \pm 0.006 \pm 0.013 \pm 0.051 \\ 0.289 \pm 0.002 \pm 0.007 \pm 0.026 \\ 0.166 \pm 0.001 \pm 0.004 \pm 0.015 \\ 0.101 \pm 0.001 \pm 0.003 \pm 0.010 \\ 0.069 \pm 0.001 \pm 0.003 \pm 0.007 \\ 0.038 \pm 0.000 \pm 0.002 \pm 0.003 \\ \end{bmatrix}$

Table 6: Differential cross-section for prompt D_s^+ production as a function of y^* in pPb collisions at forward and backward rapidities. The first uncertainty is statistical, the second the component of the systematic uncertainty that is uncorrelated between bins and the third the correlated systematic component.

y^*	$d\sigma/dy^*$ [mb] (Forward)
[1.5, 2.0]	$19.032 \pm 0.467 \pm 1.622 \pm 2.098$
[2.0, 2.5]	$19.347 \pm 0.231 \pm 0.790 \pm 1.854$
[2.5, 3.0]	$18.918 \pm 0.276 \pm 0.482 \pm 1.749$
[3.0, 3.5]	$17.129 \pm 0.344 \pm 0.449 \pm 1.606$
[3.5, 4.0]	$11.227 \pm 0.594 \pm 0.414 \pm 1.113$
y^*	$d\sigma/dy^*$ [mb] (Backward)
[-2.5, -3.0]	$22.148 \pm 0.434 \pm 1.383 \pm 3.142$
[-3.0, -3.5]	$21.695 \pm 0.392 \pm 0.539 \pm 2.667$
[-3.5, -4.0]	$18.086 \pm 0.342 \pm 0.414 \pm 2.214$
[-4.0, -4.5]	$15.176 \pm 0.329 \pm 0.714 \pm 1.962$
[-4.5, -5.0]	$8.814 \pm 0.459 \pm 1.047 \pm 1.002$

Table 7: Differential cross-section for prompt D^+ production as a function of y^* in pPb collisions at forward and backward rapidities. The first uncertainty is statistical, the second the component of the systematic uncertainty that is uncorrelated between bins and the third the correlated systematic component.

y^*	$d\sigma/dy^*$ [mb] (Forward)
[1.5, 2.0]	$43.77 \pm 0.31 \pm 0.98 \pm 2.90$
[2.0, 2.5]	$43.18 \pm 0.10 \pm 0.71 \pm 2.26$
[2.5, 3.0]	$39.59 \pm 0.09 \pm 0.74 \pm 1.88$
[3.0, 3.5]	$33.58 \pm 0.09 \pm 0.58 \pm 1.62$
[3.5, 4.0]	$24.60 \pm 0.12 \pm 0.92 \pm 1.22$
y^*	$d\sigma/dy^*$ [mb] (Backward)
[-3.0, -2.5]	$44.40 \pm 0.23 \pm 0.96 \pm 4.73$
[-3.5, -3.0]	$41.19 \pm 0.08 \pm 0.68 \pm 3.80$
[-4.0, -3.5]	$35.70 \pm 0.07 \pm 0.59 \pm 3.47$
[-4.5, -4.0]	$27.78 \pm 0.21 \pm 0.75 \pm 2.74$
[-5.0, -4.5]	$19.10 \pm 0.06 \pm 0.99 \pm 2.13$

Figure 13: Nuclear modification factor R_{pPb} for prompt D_s^+ production as a function of p_T in different y^* intervals. The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties. The coloured bands represent the theoretical calculations using the HELAC-Onia generator [47], [48], incorporating nPDFs EPPS16 (grey) [50] and nCTEQ15 (blue) [51].

Figure 14: Nuclear modification factor R_{pPb} for prompt D^+ production as a function of p_T in different y^* intervals. The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties. The coloured bands represent the theoretical calculations using the HELAC-Onia generator [47,48], incorporating nPDFs EPPS16 (grey) [50] and nCTEQ15 (blue) [51]. The coloured line represent the CGC2 (red) calculations [59].

Figure 15: Nuclear modification factor as a function of y^* for prompt D^+ and D_s^+ mesons integrated over $1 < p_{\rm T} < 10 \,{\rm GeV}/c$. The vertical error bars show the statistical uncertainties and the boxes show the systematic uncertainties. The LHCb D^0 results at $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ [7] and theoretical calculations at $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ are also shown [50, 51, 57]-59.

Table 8: Nuclear modification factor R_{pPb} for prompt D_s^+ production as a function of p_T at forward (integrated over the common rapidity region of $2.0 < y^* < 4.0$) and backward (integrated over the common rapidity region of $-4.5 < y^* < -2.5$) rapidity. The first uncertainty is statistical, the second systematic.

$p_{\rm T} \; [{\rm GeV} / c \;]$	$R_{p\rm Pb}$ (Forward)
[1,2]	$0.800 \pm 0.021 \pm 0.112$
[2, 3]	$0.705 \pm 0.005 \pm 0.066$
[3,4]	$0.731 \pm 0.006 \pm 0.057$
[4, 5]	$0.742 \pm 0.007 \pm 0.058$
[5, 6]	$0.764 \pm 0.008 \pm 0.063$
[6, 7]	$0.816 \pm 0.014 \pm 0.080$
[7, 8]	$0.829 \pm 0.022 \pm 0.090$
[8, 9]	$0.852 \pm 0.016 \pm 0.117$
[9, 10]	$0.845 \pm 0.019 \pm 0.109$
$p_{\rm T} [\text{GeV}/c]$	R_{pPb} (Backward)
	1
[1,2]	$0.957 \pm 0.022 \pm 0.160$
[1,2] [2,3]	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \end{array}$
$ \begin{bmatrix} [1,2] \\ [2,3] \\ [3,4] \end{bmatrix} $	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \end{array}$
$ \begin{bmatrix} 1, 2\\ 2, 3\\ [3, 4]\\ [4, 5] \end{bmatrix} $	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \\ 0.928 \pm 0.009 \pm 0.099 \end{array}$
	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \\ 0.928 \pm 0.009 \pm 0.099 \\ 0.896 \pm 0.010 \pm 0.107 \end{array}$
$ \begin{bmatrix} 1,2 \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \end{bmatrix} $	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \\ 0.928 \pm 0.009 \pm 0.099 \\ 0.896 \pm 0.010 \pm 0.107 \\ 0.817 \pm 0.015 \pm 0.100 \end{array}$
$ \begin{bmatrix} 1,2 \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \end{bmatrix} $	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \\ 0.928 \pm 0.009 \pm 0.099 \\ 0.896 \pm 0.010 \pm 0.107 \\ 0.817 \pm 0.015 \pm 0.100 \\ 0.883 \pm 0.013 \pm 0.110 \end{array}$
$ \begin{bmatrix} 1,2 \\ [2,3] \\ [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \end{bmatrix} $	$\begin{array}{c} 0.957 \pm 0.022 \pm 0.160 \\ 0.967 \pm 0.009 \pm 0.111 \\ 0.956 \pm 0.008 \pm 0.101 \\ 0.928 \pm 0.009 \pm 0.099 \\ 0.896 \pm 0.010 \pm 0.107 \\ 0.817 \pm 0.015 \pm 0.100 \\ 0.883 \pm 0.013 \pm 0.110 \\ 0.862 \pm 0.018 \pm 0.136 \end{array}$

Table 9: Nuclear modification factor R_{pPb} for prompt D_s^+ production as a function of y^* , integrated over $1 < p_T < 10 \text{ GeV}/c$. The first uncertainty is statistical, the second systematic.

y^*	$R_{p\mathrm{Pb}}$
[-4.5, -4.0]	$1.172 \pm 0.012 \pm 0.147$
[-4.0, -3.5]	$1.016 \pm 0.019 \pm 0.123$
[-3.5, -3.0]	$0.941 \pm 0.017 \pm 0.112$
[-3.0, -2.5]	$0.869 \pm 0.017 \pm 0.144$
[2.0, 2.5]	$0.887 \pm 0.011 \pm 0.131$
[2.5, 3.0]	$0.742 \pm 0.011 \pm 0.072$
[3.0, 3.5]	$0.743 \pm 0.015 \pm 0.067$
[3.5, 4.0]	$0.635 \pm 0.034 \pm 0.069$

Table 10: Nuclear modification factor R_{pPb} for prompt D_s^+ production as a function of p_T and y^* . The first uncertainty is statistical, the second systematic.

$\begin{array}{c c} p_{\mathrm{T}}[\mathrm{GeV/c}] \backslash y^{*} & [2,2.5] \\ \hline [1,2] & 1.080 \pm 0.031 \pm 0.2 \\ [2,3] & 0.764 \pm 0.007 \pm 0.0 \\ [3,4] & 0.816 \pm 0.012 \pm 0.0 \\ [4,5] & 0.842 \pm 0.011 \pm 0.0 \\ [5,6] & 0.785 \pm 0.015 \pm 0.0 \\ [5,6] & 0.761 \pm 0.014 \pm 0.0 \\ [8,9] & 0.946 \pm 0.029 \pm 0.1 \\ [9,10] & 0.850 \pm 0.019 \pm 0.1 \\ [1,2] & 0.881 \pm 0.039 \pm 0.1 \\ [2,3] & 0.865 \pm 0.017 \pm 0.1 \\ [3,4] & 0.878 \pm 0.009 \pm 0.1 \\ [4,5] & 0.849 \pm 0.020 \pm 0.0 \\ [5,6] & 0.860 \pm 0.020 \pm 0.0 \\ [5,6] & 0.860 \pm 0.020 \pm 0.0 \\ [5,6] & 0.860 \pm 0.030 \pm 0.0 \\ [6,7] & 0.707 \pm 0.030 \pm 0.0 \\ \end{array}$	$\begin{array}{c} \pm \ 0.232 \\ \pm \ 0.232 \\ \pm \ 0.098 \\ \pm \ 0.081 \\ \pm \\ 0.076 \\ \pm \\ 0.074 \\ \pm \\ 0.073 \\ \pm \\ 0.107 \\ \pm \\ 0.107 \\ \end{array}$	$\begin{array}{c} [2.5,3] \\ \hline .762 \pm 0.026 \pm 0.097 \\ \hline .704 \pm 0.006 \pm 0.057 \\ \hline .724 \pm 0.007 \pm 0.047 \\ \hline .743 \pm 0.008 \pm 0.052 \\ \hline .828 \pm 0.012 \pm 0.064 \\ \hline .737 \pm 0.013 \pm 0.056 \\ \hline .877 \pm 0.013 \pm 0.056 \\ \hline .895 \pm 0.021 \pm 0.071 \\ \hline .895 \pm 0.021 \pm 0.105 \\ \hline .893 \pm 0.031 \pm 0.100 \\ \hline \end{array}$	$\begin{bmatrix} [3, 3.5] \\ 0.763 \pm 0.033 \pm 0.081 \\ 0.717 \pm 0.011 \pm 0.058 \\ 0.750 \pm 0.010 \pm 0.051 \\ 0.700 \pm 0.017 \pm 0.048 \\ 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \\ 0.779 \pm 0.055 \pm 0.122 \\ \end{bmatrix}$	$ \begin{bmatrix} 3.5, 4 \end{bmatrix} \\ 0.647 \pm 0.073 \pm 0.086 \\ 0.608 \pm 0.018 \pm 0.052 \\ 0.597 \pm 0.022 \pm 0.050 \\ 0.630 \pm 0.025 \pm 0.056 \\ 0.713 \pm 0.031 \pm 0.072 \\ 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ \end{bmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.232 \\ \pm \ 0.098 \\ \pm \ 0.098 \\ \pm \ 0.076 \\ \pm \\ 0.076 \\ \pm \\ 0.074 \\ \pm \\ 0.073 \\ \pm \\ 0.125 \\ \pm \\ 0.107 \\ \end{array}$	$.762 \pm 0.026 \pm 0.097$ $.704 \pm 0.006 \pm 0.057$ $.724 \pm 0.007 \pm 0.047$ $.743 \pm 0.008 \pm 0.052$ $.828 \pm 0.012 \pm 0.064$ $.737 \pm 0.013 \pm 0.056$ $.877 \pm 0.021 \pm 0.071$ $.895 \pm 0.022 \pm 0.105$ $.893 \pm 0.031 \pm 0.100$	$\begin{array}{c} 0.763 \pm 0.033 \pm 0.081 \\ 0.717 \pm 0.011 \pm 0.058 \\ 0.750 \pm 0.010 \pm 0.051 \\ 0.700 \pm 0.017 \pm 0.048 \\ 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.825 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \\ 0.779 \pm 0.055 \pm 0.122 \end{array}$	$0.647 \pm 0.073 \pm 0.086$ $0.608 \pm 0.018 \pm 0.052$ $0.597 \pm 0.022 \pm 0.050$ $0.630 \pm 0.025 \pm 0.056$ $0.713 \pm 0.031 \pm 0.072$ $0.910 \pm 0.069 \pm 0.131$ $0.911 \pm 0.121 \pm 0.163$ -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.098 \ (6) \\ \pm \ 0.081 \ (6) \\ \pm \ 0.081 \ (6) \\ \pm \ 0.076 \ (6) \\ \pm \ 0.074 \ (6) \\ \pm \ 0.073 \ (6) \\ \pm \ 0.125 \ (6) \\ \pm \ 0.107 \ (6) \\ \end{array}$	$.704 \pm 0.006 \pm 0.057$ $.724 \pm 0.007 \pm 0.047$ $.743 \pm 0.008 \pm 0.052$ $.828 \pm 0.012 \pm 0.064$ $.737 \pm 0.013 \pm 0.056$ $.877 \pm 0.021 \pm 0.071$ $.895 \pm 0.022 \pm 0.105$ $.893 \pm 0.031 \pm 0.100$	$\begin{array}{c} 0.717 \pm 0.011 \pm 0.058 \\ 0.750 \pm 0.010 \pm 0.051 \\ 0.700 \pm 0.017 \pm 0.048 \\ 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \\ \end{array}$	$\begin{array}{c} 0.608 \pm 0.018 \pm 0.052 \\ 0.597 \pm 0.022 \pm 0.050 \\ 0.630 \pm 0.025 \pm 0.056 \\ 0.713 \pm 0.031 \pm 0.072 \\ 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.081 (± 0.076 (± 0.076 (± 0.074 (± 0.073 (± 0.125 (± 0.107 ($0.724 \pm 0.007 \pm 0.047$ $0.743 \pm 0.008 \pm 0.052$ $0.828 \pm 0.012 \pm 0.064$ $0.737 \pm 0.013 \pm 0.056$ $0.877 \pm 0.021 \pm 0.071$ $0.895 \pm 0.022 \pm 0.105$ $0.893 \pm 0.031 \pm 0.100$	$\begin{array}{c} 0.750 \pm 0.010 \pm 0.051 \\ 0.700 \pm 0.017 \pm 0.048 \\ 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \\ \end{array}$	$\begin{array}{c} 0.597 \pm 0.022 \pm 0.050 \\ 0.630 \pm 0.025 \pm 0.056 \\ 0.713 \pm 0.031 \pm 0.072 \\ 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ - \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.076 \\ \pm \ 0.067 \\ \pm \ 0.067 \\ \pm \ 0.074 \\ \pm \ 0.125 \\ \pm \ 0.107 \\ \end{array}$	$.743 \pm 0.008 \pm 0.052$ $.828 \pm 0.012 \pm 0.064$ $.737 \pm 0.013 \pm 0.056$ $.877 \pm 0.021 \pm 0.071$ $.895 \pm 0.022 \pm 0.105$ $.893 \pm 0.031 \pm 0.100$	$\begin{array}{c} 0.700 \pm 0.017 \pm 0.048 \\ 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \\ \end{array}$	$\begin{array}{c} 0.630 \pm 0.025 \pm 0.056 \\ 0.713 \pm 0.031 \pm 0.072 \\ 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ - \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.067 \\ \pm \ 0.074 \\ \pm \ 0.073 \\ \pm \ 0.125 \\ \pm \ 0.107 \\ \end{array}$	$\begin{array}{c} .828 \pm 0.012 \pm 0.064 \\ .737 \pm 0.013 \pm 0.056 \\ .877 \pm 0.021 \pm 0.071 \\ .895 \pm 0.022 \pm 0.105 \\ .893 \pm 0.031 \pm 0.100 \end{array}$	$\begin{array}{l} 0.704 \pm 0.014 \pm 0.053 \\ 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \end{array}$	$\begin{array}{c} 0.713 \pm 0.031 \pm 0.072 \\ 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ - \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.074 \\ \pm \ 0.073 \\ \pm \ 0.125 \\ \pm \ 0.107 \end{array}$	$0.737 \pm 0.013 \pm 0.056$ $0.877 \pm 0.021 \pm 0.071$ $0.895 \pm 0.022 \pm 0.105$ $0.893 \pm 0.031 \pm 0.100$	$\begin{array}{l} 0.819 \pm 0.034 \pm 0.089 \\ 0.829 \pm 0.040 \pm 0.093 \\ 0.685 \pm 0.030 \pm 0.116 \\ 0.779 \pm 0.055 \pm 0.122 \end{array}$	$\begin{array}{c} 0.910 \pm 0.069 \pm 0.131 \\ 0.911 \pm 0.121 \pm 0.163 \\ - \\ - \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.073 \\ \pm \ 0.125 \\ \pm \ 0.107 \end{array} ($	$0.877 \pm 0.021 \pm 0.071$ $0.895 \pm 0.022 \pm 0.105$ $0.893 \pm 0.031 \pm 0.100$	$0.829 \pm 0.040 \pm 0.093$ $0.685 \pm 0.030 \pm 0.116$ $0.779 \pm 0.055 \pm 0.122$	$\begin{array}{c} 0.911 \pm 0.121 \pm 0.163 \\ - \\ - \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.125 (± 0.107 ()	$0.895 \pm 0.022 \pm 0.105$ $0.893 \pm 0.031 \pm 0.100$	$0.685 \pm 0.030 \pm 0.116$ $0.779 \pm 0.055 \pm 0.122$	1 1
$\begin{array}{c c} [9,10] & 0.850 \pm 0.019 \pm 0.1 \\ \hline p_{T} [\mathrm{GeV}/c] \backslash y^{*} & [-3,-2.5] \\ [1,2] & 0.881 \pm 0.039 \pm 0.1 \\ [2,3] & 0.865 \pm 0.017 \pm 0.1 \\ [2,3] & 0.878 \pm 0.009 \pm 0.1 \\ [3,4] & 0.878 \pm 0.009 \pm 0.1 \\ [4,5] & 0.849 \pm 0.020 \pm 0.0 \\ [5,6] & 0.860 \pm 0.030 \pm 0.0 \\ [6,7] & 0.707 \pm 0.030 \pm 0.0 \end{array}$	± 0.107 ($0.893 \pm 0.031 \pm 0.100$	$0.779 \pm 0.055 \pm 0.122$	I
$\begin{array}{c c} p_{\mathrm{T}}[\mathrm{GeV}/c]\backslash y^{*} & [-3,-2.5] \\ \hline [1,2] & 0.881\pm0.039\pm0.1 \\ [2,3] & 0.865\pm0.017\pm0.1 \\ [3,4] & 0.878\pm0.009\pm0.1 \\ [4,5] & 0.849\pm0.020\pm0.0 \\ [5,6] & 0.860\pm0.026\pm0.1 \\ \hline [6,7] & 0.707\pm0.030\pm0.0 \end{array}$				
$\begin{array}{c c} p_{\rm T} [{\rm GeV}/c] \backslash y^{*} & [-3,-2.5] \\ \hline [1,2] & 0.881 \pm 0.039 \pm 0.1 \\ [2,3] & 0.865 \pm 0.017 \pm 0.1 \\ [3,4] & 0.878 \pm 0.009 \pm 0.1 \\ [4,5] & 0.849 \pm 0.020 \pm 0.0 \\ [5,6] & 0.860 \pm 0.026 \pm 0.1 \\ [6,7] & 0.707 \pm 0.030 \pm 0.0 \end{array}$			$R_{\rm pPb}$ (Backward)	
$ \begin{bmatrix} 1, 2 \\ 2, 3 \end{bmatrix} \begin{array}{c} 0.881 \pm 0.039 \pm 0.1 \\ 2, 3 \end{bmatrix} \begin{array}{c} 0.865 \pm 0.017 \pm 0.1 \\ 3, 4 \end{bmatrix} \begin{array}{c} 0.878 \pm 0.009 \pm 0.1 \\ 14, 5 \end{bmatrix} \begin{array}{c} 0.849 \pm 0.020 \pm 0.0 \\ 0.849 \pm 0.020 \pm 0.0 \\ 0.860 \pm 0.026 \pm 0.1 \\ 6, 7 \end{bmatrix} \begin{array}{c} 0.707 \pm 0.030 \pm 0.0 \end{array} $	2]	[-3.5, -3]	[-4, -3.5]	[-4.5, -4]
$ \begin{bmatrix} 2, 3 \\ 3, 4 \end{bmatrix} \begin{array}{c} 0.865 \pm 0.017 \pm 0.1 \\ 3, 4 \end{bmatrix} \begin{array}{c} 0.878 \pm 0.009 \pm 0.1 \\ 0.849 \pm 0.020 \pm 0.0 \\ 5, 6 \end{bmatrix} \begin{array}{c} 0.849 \pm 0.020 \pm 0.0 \\ 0.860 \pm 0.026 \pm 0.1 \\ 0.707 \pm 0.030 \pm 0.0 \\ \end{array} $	± 0.197 ($0.980 \pm 0.035 \pm 0.133$	$1.026 \pm 0.042 \pm 0.148$	I
$ \begin{bmatrix} 3, 4 \\ 4, 5 \end{bmatrix} 0.878 \pm 0.009 \pm 0.1 \\ \begin{bmatrix} 4, 5 \\ 5, 6 \end{bmatrix} 0.849 \pm 0.020 \pm 0.0 \\ 0.860 \pm 0.026 \pm 0.1 \\ \begin{bmatrix} 6, 7 \end{bmatrix} 0.707 \pm 0.030 \pm 0.0 \\ \end{bmatrix} $	± 0.114 ($0.883 \pm 0.020 \pm 0.097$	$1.049 \pm 0.011 \pm 0.105$	$1.252 \pm 0.020 \pm 0.159$
$ \begin{bmatrix} 4, 5 \\ 5, 6 \end{bmatrix} \begin{array}{c} 0.849 \pm 0.020 \pm 0.0 \\ 0.860 \pm 0.026 \pm 0.1 \\ \hline 6, 7 \end{bmatrix} \begin{array}{c} 0.707 \pm 0.030 \pm 0.0 \end{array} $	± 0.102 ($0.961 \pm 0.023 \pm 0.096$	$0.961 \pm 0.017 \pm 0.094$	$1.125 \pm 0.016 \pm 0.130$
$\begin{bmatrix} 5,6 \\ 6,7 \end{bmatrix} 0.860 \pm 0.026 \pm 0.1 \\ 0.707 \pm 0.030 \pm 0.0 \end{bmatrix}$	± 0.094 ($0.960 \pm 0.011 \pm 0.097$	$0.973 \pm 0.021 \pm 0.105$	$0.992 \pm 0.012 \pm 0.120$
$[6,7] 0.707 \pm 0.030 \pm 0.0$	± 0.101 ($.848 \pm 0.010 \pm 0.091$	$0.956 \pm 0.012 \pm 0.105$	$1.007 \pm 0.030 \pm 0.184$
	± 0.087 ($0.902 \pm 0.012 \pm 0.107$	$0.916 \pm 0.020 \pm 0.124$	Ι
$[7,8] 0.835 \pm 0.022 \pm 0.0$	± 0.088 ($0.921 \pm 0.023 \pm 0.110$	$0.911 \pm 0.021 \pm 0.151$	I
$[8,9] \qquad 0.916 \pm 0.029 \pm 0.1$	± 0.118 ($0.803 \pm 0.020 \pm 0.154$	I	I
$[9, 10] 0.804 \pm 0.042 \pm 0.1$	± 0.119 ($.839 \pm 0.033 \pm 0.139$	Ι	Ι

Table 11: Nuclear modification factor R_{pPb} for prompt D^+ production as a function of p_T at forward (integrated over the common rapidity region of $2.0 < y^* < 4.0$) and backward (integrated over the common rapidity region of $-4.5 < y^* < -2.5$) rapidity. The first uncertainty is statistical, the second systematic.

$p_{\rm T} [\text{GeV}/c]$	$R_{p\rm Pb}$ (Forward)
[1,2]	$0.652 \pm 0.002 \pm 0.058$
[2, 3]	$0.693 \pm 0.002 \pm 0.053$
[3, 4]	$0.715 \pm 0.001 \pm 0.051$
[4, 5]	$0.727 \pm 0.001 \pm 0.059$
[5, 6]	$0.746 \pm 0.002 \pm 0.058$
[6,7]	$0.779 \pm 0.005 \pm 0.070$
[7,8]	$0.787 \pm 0.005 \pm 0.071$
[8, 9]	$0.783 \pm 0.010 \pm 0.078$
[9, 10]	$0.929 \pm 0.006 \pm 0.087$
$p_{\rm T} [\text{GeV}/c]$	R_{pPb} (Backward)
[1,2]	$0.808 \pm 0.004 \pm 0.100$
[2, 3]	$0.850 \pm 0.001 \pm 0.089$
	0.000 - 0.000 - 0.000
[3,4]	$0.834 \pm 0.001 \pm 0.083$
$\begin{matrix} [3,4] \\ [4,5] \end{matrix}$	$\begin{array}{c} 0.834 \pm 0.001 \pm 0.083 \\ 0.831 \pm 0.001 \pm 0.085 \end{array}$
$\begin{matrix} [3,4] \\ [4,5] \\ [5,6] \end{matrix}$	$\begin{array}{c} 0.834 \pm 0.001 \pm 0.083 \\ 0.831 \pm 0.001 \pm 0.085 \\ 0.809 \pm 0.002 \pm 0.085 \end{array}$
$\begin{matrix} [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \end{matrix}$	$\begin{array}{c} 0.834 \pm 0.001 \pm 0.083 \\ 0.831 \pm 0.001 \pm 0.085 \\ 0.809 \pm 0.002 \pm 0.085 \\ 0.808 \pm 0.003 \pm 0.088 \end{array}$
$\begin{matrix} [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \end{matrix}$	$\begin{array}{c} 0.834 \pm 0.001 \pm 0.083 \\ 0.831 \pm 0.001 \pm 0.085 \\ 0.809 \pm 0.002 \pm 0.085 \\ 0.808 \pm 0.003 \pm 0.088 \\ 0.797 \pm 0.008 \pm 0.085 \end{array}$
$\begin{matrix} [3,4] \\ [4,5] \\ [5,6] \\ [6,7] \\ [7,8] \\ [8,9] \end{matrix}$	$\begin{array}{c} 0.834 \pm 0.001 \pm 0.083 \\ 0.831 \pm 0.001 \pm 0.085 \\ 0.809 \pm 0.002 \pm 0.085 \\ 0.808 \pm 0.003 \pm 0.088 \\ 0.797 \pm 0.008 \pm 0.085 \\ 0.758 \pm 0.004 \pm 0.089 \end{array}$

Table 12: Nuclear modification factor R_{pPb} for prompt D^+ production as a function of y^* , integrated over $1 < p_T < 10 \text{ GeV}/c$. The first uncertainty is statistical, the second systematic.

y^*	$R_{p\mathrm{Pb}}$
[-4.5, -4.0]	$0.892 \pm 0.007 \pm 0.096$
[-4.0, -3.5]	$0.854 \pm 0.002 \pm 0.087$
[-3.5, -3.0]	$0.796 \pm 0.002 \pm 0.088$
[-3.0, -2.5]	$0.791 \pm 0.004 \pm 0.102$
[2.0, 2.5]	$0.764 \pm 0.002 \pm 0.078$
[2.5, 3.0]	$0.704 \pm 0.002 \pm 0.053$
[3.0, 3.5]	$0.649 \pm 0.002 \pm 0.045$
[3.5, 4.0]	$0.591 \pm 0.003 \pm 0.055$

Table 13: Nuclear modification factor R_{pPb} for prompt D^+ production as a function of p_T and y^* . The first uncertainty is statistical, the second systematic.

			R_{nPh} (Forward)	
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^{*}$	[2, 2.5]	[2.5, 3]	[3, 3.5]	[3.5, 4]
[1,2]	$0.741 \pm 0.004 \pm 0.091$	$0.697 \pm 0.001 \pm 0.060$	$0.613 \pm 0.003 \pm 0.044$	$0.536 \pm 0.005 \pm 0.044$
[2,3]	$0.787 \pm 0.002 \pm 0.071$	$0.691 \pm 0.005 \pm 0.049$	$0.657 \pm 0.002 \pm 0.040$	$0.614 \pm 0.003 \pm 0.062$
[3,4]	$0.793 \pm 0.002 \pm 0.063$	$0.698 \pm 0.001 \pm 0.042$	$0.684 \pm 0.002 \pm 0.048$	$0.665 \pm 0.004 \pm 0.057$
[4, 5]	$0.742 \pm 0.001 \pm 0.067$	$0.740 \pm 0.002 \pm 0.050$	$0.724 \pm 0.003 \pm 0.054$	$0.683 \pm 0.006 \pm 0.070$
[5,6]	$0.776 \pm 0.002 \pm 0.057$	$0.747 \pm 0.003 \pm 0.052$	$0.733 \pm 0.003 \pm 0.058$	$0.707 \pm 0.008 \pm 0.077$
[6, 7]	$0.786 \pm 0.004 \pm 0.062$	$0.808 \pm 0.005 \pm 0.055$	$0.764 \pm 0.005 \pm 0.066$	$0.735 \pm 0.029 \pm 0.119$
[7, 8]	$0.781 \pm 0.005 \pm 0.056$	$0.822 \pm 0.005 \pm 0.063$	$0.788 \pm 0.008 \pm 0.076$	$0.733 \pm 0.030 \pm 0.118$
[8, 9]	$0.768 \pm 0.005 \pm 0.057$	$0.821 \pm 0.006 \pm 0.068$	$0.788 \pm 0.011 \pm 0.098$	$0.739 \pm 0.065 \pm 0.124$
[9, 10]	$0.958\pm0.008\pm0.072$	$0.915 \pm 0.010 \pm 0.075$	$0.904 \pm 0.015 \pm 0.126$	I
			R_{pPb} (Backward)	
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^{*}$	[-3, -2.5]	[-3.5, -3]	[-4, -3.5]	[-4.5, -4]
[1,2]	$0.803 \pm 0.009 \pm 0.120$	$0.748 \pm 0.003 \pm 0.091$	$0.840 \pm 0.003 \pm 0.090$	$0.866 \pm 0.012 \pm 0.098$
[2,3]	$0.795 \pm 0.003 \pm 0.093$	$0.846 \pm 0.002 \pm 0.090$	$0.874 \pm 0.002 \pm 0.084$	$0.927 \pm 0.002 \pm 0.086$
[3,4]	$0.769 \pm 0.002 \pm 0.084$	$0.842 \pm 0.001 \pm 0.081$	$0.859 \pm 0.002 \pm 0.081$	$0.924 \pm 0.003 \pm 0.092$
[4, 5]	$0.762 \pm 0.003 \pm 0.080$	$0.845 \pm 0.002 \pm 0.078$	$0.870 \pm 0.003 \pm 0.089$	$0.911 \pm 0.003 \pm 0.107$
[5,6]	$0.750 \pm 0.003 \pm 0.075$	$0.819 \pm 0.002 \pm 0.076$	$0.852 \pm 0.005 \pm 0.086$	$0.881 \pm 0.004 \pm 0.140$
[6, 7]	$0.761 \pm 0.008 \pm 0.074$	$0.797 \pm 0.002 \pm 0.077$	$0.843 \pm 0.002 \pm 0.099$	$0.919\pm 0.008\pm 0.153$
[7, 8]	$0.776 \pm 0.018 \pm 0.078$	$0.803 \pm 0.006 \pm 0.084$	$0.827 \pm 0.005 \pm 0.100$	I
[8, 9]	$0.730 \pm 0.008 \pm 0.079$	$0.780 \pm 0.004 \pm 0.092$	$0.777 \pm 0.009 \pm 0.104$	I
[9, 10]	$0.843 \pm 0.005 \pm 0.095$	$0.839 \pm 0.009 \pm 0.104$	I	I

$p_{\rm T} \; [{\rm GeV}\!/c \;]$	$R_{ m FB}$
[1, 2]	$0.763 \pm 0.032 \pm 0.103$
[2, 3]	$0.743 \pm 0.011 \pm 0.079$
[3, 4]	$0.752 \pm 0.011 \pm 0.075$
[4, 5]	$0.764 \pm 0.013 \pm 0.073$
[5, 6]	$0.858 \pm 0.016 \pm 0.084$
[6,7]	$0.982 \pm 0.030 \pm 0.102$
[7, 8]	$0.980 \pm 0.030 \pm 0.089$
[8, 9]	$0.921 \pm 0.028 \pm 0.092$
[9, 10]	$1.028 \pm 0.051 \pm 0.119$
[10, 11]	$0.978 \pm 0.057 \pm 0.148$
[11, 12]	$1.028 \pm 0.074 \pm 0.144$
[12, 13]	$1.068 \pm 0.144 \pm 0.161$
$ y^* $	$R_{ m FB}$
[2.5, 3.0]	$0.854 \pm 0.021 \pm 0.119$
[3.0, 3.5]	$0.790 \pm 0.021 \pm 0.084$
[3.5, 4.0]	$0.623 \pm 0.035 \pm 0.071$

Table 14: Forward and backward production ratio $R_{\rm FB}$ for prompt D_s^+ mesons as a function of $p_{\rm T}$ and y^* . The first uncertainty is statistical, the second systematic.

Table 15: Forward and backward production ratio $R_{\rm FB}$ for prompt D^+ mesons as a function of $p_{\rm T}$ and y^* . The first uncertainty is statistical, the second systematic.

$p_{\rm T} \; [{\rm GeV} / c \;]$	$R_{ m FB}$
[1, 2]	$0.775 \pm 0.004 \pm 0.092$
[2, 3]	$0.785 \pm 0.003 \pm 0.082$
[3, 4]	$0.832 \pm 0.002 \pm 0.083$
[4, 5]	$0.878 \pm 0.003 \pm 0.086$
[5, 6]	$0.913 \pm 0.004 \pm 0.088$
[6, 7]	$0.979 \pm 0.010 \pm 0.097$
[7,8]	$0.993 \pm 0.014 \pm 0.101$
[8,9]	$1.048 \pm 0.022 \pm 0.111$
[9, 10]	$1.081 \pm 0.013 \pm 0.118$
[10, 11]	$1.103 \pm 0.022 \pm 0.127$
[11, 12]	$1.097 \pm 0.028 \pm 0.126$
[12, 13]	$1.101 \pm 0.049 \pm 0.137$
[13, 14]	$1.272 \pm 0.044 \pm 0.163$
$ y^* $	$R_{ m FB}$
[2.5, 3.0]	$0.881 \pm 0.005 \pm 0.104$
[3.0, 3.5]	$0.814 \pm 0.003 \pm 0.086$
[3.5, 4.0]	$0.690 \pm 0.004 \pm 0.072$

Figure 16: The production cross-section ratio $\sigma_{D_s^+}/\sigma_{D^+}$ as a function of $p_{\rm T}$ and y^* in pPb collisions. The error bars show the statistical uncertainty, the red boxes the uncorrelated systematic uncertainty and the blue boxes the correlated systematic uncertainty. The coloured bands correspond to the theoretical calculations, incorporating nPDFs EPPS16 (gray) [50] and nCTEQ15 (cyan) [51].

			$\sigma_{D^+}/\sigma_{D^+}$ (Forward)		
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^{*}$	[1.5, 2]	[2, 2.5]	[2.5,3]	[3, 3.5]	[3.5, 4]
[1,2]	$0.373 \pm 0.023 \pm 0.088 \pm 0.030$	$0.410 \pm 0.012 \pm 0.042 \pm 0.029$	$0.455 \pm 0.015 \pm 0.030 \pm 0.031$	$0.499 \pm 0.022 \pm 0.029 \pm 0.034$	$0.461 \pm 0.052 \pm 0.039 \pm 0.033$
[2,3]	$0.450 \pm 0.013 \pm 0.018 \pm 0.034$	$0.444 \pm 0.004 \pm 0.024 \pm 0.030$	$0.472 \pm 0.006 \pm 0.023 \pm 0.031$	$0.516 \pm 0.008 \pm 0.027 \pm 0.034$	$0.427 \pm 0.013 \pm 0.042 \pm 0.029$
[3, 4]	$0.471 \pm 0.019 \pm 0.015 \pm 0.034$	$0.470 \pm 0.007 \pm 0.020 \pm 0.031$	$0.488 \pm 0.005 \pm 0.014 \pm 0.032$	$0.497 \pm 0.007 \pm 0.029 \pm 0.033$	$0.425 \pm 0.016 \pm 0.036 \pm 0.028$
[4, 5]	$0.470 \pm 0.009 \pm 0.015 \pm 0.032$	$0.493 \pm 0.007 \pm 0.026 \pm 0.032$	$0.494 \pm 0.006 \pm 0.022 \pm 0.032$	$0.464 \pm 0.011 \pm 0.026 \pm 0.030$	$0.429 \pm 0.018 \pm 0.036 \pm 0.029$
[5, 6]	$0.466 \pm 0.013 \pm 0.017 \pm 0.032$	$0.482 \pm 0.009 \pm 0.016 \pm 0.031$	$0.501 \pm 0.007 \pm 0.025 \pm 0.032$	$0.503 \pm 0.010 \pm 0.033 \pm 0.033$	$0.485 \pm 0.022 \pm 0.044 \pm 0.033$
[6, 7]	$0.483 \pm 0.017 \pm 0.032 \pm 0.033$	$0.495 \pm 0.006 \pm 0.028 \pm 0.032$	$0.471 \pm 0.009 \pm 0.023 \pm 0.030$	$0.479 \pm 0.020 \pm 0.040 \pm 0.031$	$0.555 \pm 0.048 \pm 0.080 \pm 0.038$
[7,8]	$0.472 \pm 0.017 \pm 0.028 \pm 0.032$	$0.504 \pm 0.010 \pm 0.023 \pm 0.033$	$0.483 \pm 0.012 \pm 0.025 \pm 0.031$	$0.480 \pm 0.024 \pm 0.041 \pm 0.031$	$0.613 \pm 0.085 \pm 0.094 \pm 0.046$
[8, 9]	$0.487 \pm 0.036 \pm 0.047 \pm 0.033$	$0.502 \pm 0.016 \pm 0.038 \pm 0.033$	$0.475 \pm 0.012 \pm 0.027 \pm 0.031$	$0.447 \pm 0.020 \pm 0.043 \pm 0.029$	I
[9, 10]	$0.500 \pm 0.042 \pm 0.027 \pm 0.034$	$0.467 \pm 0.011 \pm 0.033 \pm 0.030$	$0.485 \pm 0.018 \pm 0.034 \pm 0.031$	$0.434 \pm 0.032 \pm 0.046 \pm 0.029$	I
[10, 11]	$0.508 \pm 0.026 \pm 0.053 \pm 0.035$	$0.457 \pm 0.023 \pm 0.031 \pm 0.030$	$0.480 \pm 0.022 \pm 0.037 \pm 0.031$	$0.478 \pm 0.049 \pm 0.106 \pm 0.032$	I
[11, 12]	$0.447 \pm 0.027 \pm 0.033 \pm 0.030$	$0.474 \pm 0.021 \pm 0.041 \pm 0.031$	$0.412 \pm 0.024 \pm 0.039 \pm 0.027$	$0.432 \pm 0.071 \pm 0.064 \pm 0.031$	I
[12, 13]	$0.441 \pm 0.019 \pm 0.037 \pm 0.030$	$0.460 \pm 0.045 \pm 0.038 \pm 0.030$	$0.514 \pm 0.053 \pm 0.048 \pm 0.034$	1	I
			$\sigma_{D_{+}^{*}}/\sigma_{D^{+}}$ (Backward)		
$p_{\mathrm{T}}[\operatorname{GeV}/c] \backslash y^{*}$	[-3, -2.5]	[-3.5, -3]	[-4, -3.5]	[-4.5, -4]	[-5, -4.5]
[1, 2]	$0.449 \pm 0.020 \pm 0.069 \pm 0.035$	$0.525 \pm 0.019 \pm 0.030 \pm 0.037$	$0.465 \pm 0.019 \pm 0.026 \pm 0.033$	$0.547 \pm 0.023 \pm 0.054 \pm 0.038$	$0.443 \pm 0.040 \pm 0.100 \pm 0.033$
[2, 3]	$0.500 \pm 0.010 \pm 0.021 \pm 0.037$	$0.492 \pm 0.011 \pm 0.024 \pm 0.033$	$0.516 \pm 0.005 \pm 0.017 \pm 0.034$	$0.507 \pm 0.008 \pm 0.024 \pm 0.034$	$0.446 \pm 0.023 \pm 0.052 \pm 0.031$
[3, 4]	$0.531 \pm 0.005 \pm 0.021 \pm 0.037$	$0.516 \pm 0.012 \pm 0.017 \pm 0.034$	$0.529 \pm 0.009 \pm 0.019 \pm 0.035$	$0.526 \pm 0.007 \pm 0.030 \pm 0.035$	$0.488 \pm 0.019 \pm 0.048 \pm 0.034$
[4, 5]	$0.544 \pm 0.013 \pm 0.021 \pm 0.037$	$0.544 \pm 0.006 \pm 0.017 \pm 0.036$	$0.523 \pm 0.011 \pm 0.029 \pm 0.034$	$0.525 \pm 0.006 \pm 0.034 \pm 0.034$	$0.446 \pm 0.020 \pm 0.054 \pm 0.031$
[5,6]	$0.513 \pm 0.015 \pm 0.023 \pm 0.035$	$0.541 \pm 0.007 \pm 0.023 \pm 0.036$	$0.543 \pm 0.008 \pm 0.026 \pm 0.035$	$0.555 \pm 0.017 \pm 0.046 \pm 0.036$	$0.534 \pm 0.038 \pm 0.076 \pm 0.038$
[6, 7]	$0.478 \pm 0.021 \pm 0.029 \pm 0.033$	$0.506 \pm 0.007 \pm 0.022 \pm 0.033$	$0.495 \pm 0.011 \pm 0.025 \pm 0.032$	$0.489 \pm 0.017 \pm 0.043 \pm 0.032$	$0.484 \pm 0.070 \pm 0.102 \pm 0.037$
[7, 8]	$0.485 \pm 0.017 \pm 0.022 \pm 0.033$	$0.526 \pm 0.014 \pm 0.024 \pm 0.035$	$0.553 \pm 0.013 \pm 0.037 \pm 0.036$	$0.557 \pm 0.026 \pm 0.057 \pm 0.038$	I
[8, 9]	$0.541 \pm 0.018 \pm 0.028 \pm 0.037$	$0.541 \pm 0.013 \pm 0.033 \pm 0.036$	$0.493 \pm 0.044 \pm 0.032 \pm 0.032$	$0.474 \pm 0.032 \pm 0.065 \pm 0.033$	I
[9, 10]	$0.471 \pm 0.025 \pm 0.028 \pm 0.032$	$0.507 \pm 0.021 \pm 0.036 \pm 0.034$	$0.512 \pm 0.021 \pm 0.045 \pm 0.034$	$0.482 \pm 0.055 \pm 0.088 \pm 0.036$	I
[10, 11]	$0.504 \pm 0.028 \pm 0.050 \pm 0.035$	$0.590 \pm 0.025 \pm 0.059 \pm 0.040$	$0.505 \pm 0.029 \pm 0.063 \pm 0.034$	$0.408 \pm 0.085 \pm 0.104 \pm 0.032$	I
[11, 12]	$0.458 \pm 0.022 \pm 0.041 \pm 0.032$	$0.548 \pm 0.028 \pm 0.053 \pm 0.037$	$0.475 \pm 0.041 \pm 0.054 \pm 0.032$	Ι	I
[12, 13]	$0.531 \pm 0.051 \pm 0.065 \pm 0.037$	$0.472 \pm 0.038 \pm 0.054 \pm 0.032$	$0.516 \pm 0.060 \pm 0.079 \pm 0.036$	I	I

Figure 17: The production cross-section ratio, $\sigma_{D_s^+}/\sigma_{D^+}$, versus normalized event multiplicity in different *D*-meson $p_{\rm T}$ (2-6 GeV/*c*) and y^* ranges for the (six upper plots) forward and (six lower plots) backward rapidities. The vertical error bars show the statistical uncertainty, the boxes the systematic.

Figure 18: The production cross-section ratio, $\sigma_{D_s^+}/\sigma_{D^+}$, versus normalized event multiplicity in different *D*-meson $p_{\rm T}$ (6-12 GeV/*c*) and y^* ranges for the (six upper plots) forward and (six lower plots) backward rapidities. The vertical error bars show the statistical uncertainty, the boxes the systematic.

backward rapid: bins and the thi	ities. The first unc ad the correlated s	certainty is statistic	cal, the second the	e component of th	e systematic unce	rtainty that is unc	orrelated between
$p_{\mathrm{T}}[\operatorname{GeV}/c], y^* \backslash N_{\mathrm{tracks}}^{\mathrm{PV}}$	[10,60]	[60, 80]	$\sigma_{D_s^+}/\sigma_{D^+}$ (Forward) [80, 100]	[100, 120]	[120, 140]	[140, 200]	
[2, 4], [1.8, 2.3]	$0.46 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.02$	$0.52 \pm 0.03 \pm 0.02 \pm 0.02$	$0.47 \pm 0.02 \pm 0.03 \pm 0.02$	$0.49 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.02$	$0.50 \pm 0.02 \pm 0.02 \pm 0.02$	$0.57 \pm 0.02 \pm 0.02 \pm 0.03$	
[2, 4], [2.3, 2.8]	$0.44 \pm 0.01 \pm 0.01 \pm 0.02$	$0.46 \pm 0.02 \pm 0.02 \pm 0.02$	$0.47 \pm 0.02 \pm 0.02 \pm 0.01$	$0.55\pm 0.01\pm 0.02\pm 0.02$	$0.50\pm0.03\pm0.02\pm0.02$	$0.57\pm 0.02\pm 0.02\pm 0.02$	
[2, 4], [2.8, 3.3]	$0.48 \pm 0.03 \pm 0.02 \pm 0.02$	$0.52 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.02$	$0.51\pm 0.02\pm 0.02\pm 0.02$	$0.49 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.02$	$0.55\pm0.02\pm0.02\pm0.02$	$0.63\pm 0.02\pm 0.02\pm 0.02$	
[4, 6], [1.8, 2.3]	$0.49\pm 0.02\pm 0.02\pm 0.02$	$0.48 \pm 0.02 \pm 0.02 \pm 0.02$	$0.48\pm 0.01\pm 0.02\pm 0.01$	$0.53 \pm 0.03 \pm 0.02 \pm 0.02$	$0.50\pm0.02\pm0.02\pm0.02\pm0.02$	$0.59\pm 0.02\pm 0.02\pm 0.02$	
[4, 6], [2.3, 2.8]	$0.44 \pm 0.01 \pm 0.01 \pm 0.02$	$0.48 \pm 0.02 \pm 0.02 \pm 0.01$	$0.52\pm 0.02\pm 0.02\pm 0.01$	$0.51\pm 0.02\pm 0.02\pm 0.02$	$0.50\pm0.02\pm0.02\pm0.01$	$0.62\pm 0.02\pm 0.02\pm 0.02$	
[4, 6], [2.8, 3.3]	$0.46\pm 0.02\pm 0.02\pm 0.02$	$0.47 \pm 0.03 \pm 0.02 \pm 0.01$	$0.49\pm 0.02\pm 0.02\pm 0.01$	$0.56\pm 0.02\pm 0.02\pm 0.02$	$0.51 \pm 0.02 \pm 0.02 \pm 0.01$	$0.59\pm 0.03\pm 0.02\pm 0.02$	
[6, 8], [1.8, 2.3]	$0.49 \pm 0.03 \pm 0.03 \pm 0.02$	$0.49 \pm 0.02 \pm 0.03 \pm 0.02$	$0.51\pm 0.02\pm 0.03\pm 0.01$	$0.50\pm 0.02\pm 0.03\pm 0.02$	$0.52 \pm 0.03 \pm 0.02 \pm 0.02$	$0.59\pm 0.05\pm 0.02\pm 0.02$	
[6, 8], [2.3, 2.8]	$0.44 \pm 0.03 \pm 0.02 \pm 0.02$	$0.46 \pm 0.03 \pm 0.03 \pm 0.01$	$0.50\pm 0.02\pm 0.03\pm 0.01$	$0.51 \pm 0.02 \pm 0.03 \pm 0.01$	$0.55 \pm 0.04 \pm 0.03 \pm 0.01$	$0.52 \pm 0.07 \pm 0.04 \pm 0.01$	
[6, 8], [2.8, 3.3]	$0.48 \pm 0.03 \pm 0.03 \pm 0.02$	$0.48 \pm 0.03 \pm 0.04 \pm 0.01$	$0.47 \pm 0.03 \pm 0.03 \pm 0.03 \pm 0.01$	$0.51 \pm 0.04 \pm 0.03 \pm 0.01$	$0.53 \pm 0.04 \pm 0.03 \pm 0.01$	$0.61\pm 0.05\pm 0.06\pm 0.02$	
[8, 12], [1.8, 2.3]	$0.45 \pm 0.04 \pm 0.04 \pm 0.02$	$0.60 \pm 0.04 \pm 0.04 \pm 0.02$	$0.50\pm 0.03\pm 0.03\pm 0.03\pm 0.01$	$0.49 \pm 0.03 \pm 0.03 \pm 0.03 \pm 0.01$	$0.58\pm0.04\pm0.03\pm0.02$	$0.56\pm 0.04\pm 0.03\pm 0.02$	
[8, 12], [2.3, 2.8]	$0.39 \pm 0.03 \pm 0.03 \pm 0.03 \pm 0.01$	$0.52 \pm 0.04 \pm 0.04 \pm 0.02$	$0.50\pm 0.06\pm 0.04\pm 0.01$	$0.48 \pm 0.04 \pm 0.04 \pm 0.01$	$0.50 \pm 0.04 \pm 0.03 \pm 0.01$	$0.61\pm 0.04\pm 0.03\pm 0.02$	
[8, 12], [2.8, 3.3]	$0.39 \pm 0.04 \pm 0.04 \pm 0.01$	$0.43 \pm 0.05 \pm 0.04 \pm 0.01$	$0.42\pm 0.04\pm 0.04\pm 0.01$	$0.54\pm0.07\pm0.05\pm0.02$	$0.57\pm0.07\pm0.05\pm0.02$	$0.59\pm 0.08\pm 0.04\pm 0.02$	
$m_{ m D} [{ m GeV}/c] n^* \setminus N^{ m PV}$	[10 60]	[60 80]	$\sigma_{D_s^+}/\sigma_{D^+}$ (Backward) [80, 100]	[100 190]	[100 140]	[140-180]	[180-950]
PT UCV/ cJ, y \1 Vtracks	0 L3 1 0 01 1 0 03 1 0 09	00,00 671 668 664 668	00,100	1000, 120] 0 77 0 68 0 68 0 68	[120, 1≇0] 0 70 i 0 00 i 0 00 i 0 00	0 61 1 0 00 1 0 00 1 0 00 1	0.729 0.001, 2.00]
[2, 4], [-3.3, -2.8] [9, 4], [-3.8, -3.3]	$0.53 \pm 0.01 \pm 0.03 \pm 0.02$ $0.47 \pm 0.01 \pm 0.09 \pm 0.01$	$0.31 \pm 0.02 \pm 0.04 \pm 0.03$ $0.51 \pm 0.01 \pm 0.03 \pm 0.02$	$0.51 \pm 0.01 \pm 0.02 \pm 0.02$ $0.54 \pm 0.01 \pm 0.03 \pm 0.09$	$0.33 \pm 0.02 \pm 0.02 \pm 0.02$ $0.53 \pm 0.09 \pm 0.09 \pm 0.09$	$0.30 \pm 0.02 \pm 0.02 \pm 0.02$ $0.57 \pm 0.01 \pm 0.03 \pm 0.02$	$0.61 \pm 0.02 \pm 0.02 \pm 0.02 \pm 0.02$	0.72 ± 0.02 ± 0.04 ± 0.04 0 00 + 0 06 + 0 03 + 0 07
[2, 4], [-4.3, -3.8]	$0.52 \pm 0.01 \pm 0.03 \pm 0.02$	$0.48 \pm 0.02 \pm 0.03 \pm 0.02$	$0.51 \pm 0.01 \pm 0.03 \pm 0.02$	$0.56 \pm 0.02 \pm 0.03 \pm 0.02$	$0.61 \pm 0.02 \pm 0.03 \pm 0.02$	$0.68 \pm 0.02 \pm 0.04 \pm 0.03$	$0.76 \pm 0.08 \pm 0.03 \pm 0.03$
[4, 6], [-3.3, -2.8]	$0.50\pm 0.01\pm 0.03\pm 0.02$	$0.48 \pm 0.02 \pm 0.03 \pm 0.02$	$0.54 \pm 0.01 \pm 0.03 \pm 0.02$	$0.57 \pm 0.03 \pm 0.02 \pm 0.02$	$0.61 \pm 0.02 \pm 0.02 \pm 0.02$	$0.68 \pm 0.02 \pm 0.02 \pm 0.02$	$0.74 \pm 0.03 \pm 0.02 \pm 0.03$
[4, 6], [-3.8, -3.3]	$0.47 \pm 0.01 \pm 0.03 \pm 0.02$	$0.57 \pm 0.02 \pm 0.04 \pm 0.02$	$0.53\pm 0.01\pm 0.03\pm 0.01$	$0.57 \pm 0.02 \pm 0.03 \pm 0.02$	$0.60\pm0.03\pm0.03\pm0.02$	$0.62 \pm 0.02 \pm 0.02 \pm 0.02 = 0.02$	$0.76 \pm 0.04 \pm 0.02 \pm 0.03$
[4, 6], [-4.3, -3.8]	$0.43 \pm 0.02 \pm 0.03 \pm 0.02$	$0.46 \pm 0.02 \pm 0.03 \pm 0.02$	$0.55\pm0.02\pm0.04\pm0.02$	$0.58 \pm 0.02 \pm 0.04 \pm 0.02$	$0.58\pm0.02\pm0.03\pm0.02$	$0.64 \pm 0.03 \pm 0.03 \pm 0.02$	$0.82 \pm 0.05 \pm 0.03 \pm 0.03$
[6, 8], [-3.3, -2.8]	$0.54 \pm 0.03 \pm 0.05 \pm 0.02$	$0.53 \pm 0.03 \pm 0.05 \pm 0.02$	$0.46\pm 0.02\pm 0.04\pm 0.01$	$0.53 \pm 0.03 \pm 0.03 \pm 0.03 \pm 0.02$	$0.51\pm0.02\pm0.03\pm0.02$	$0.68 \pm 0.03 \pm 0.03 \pm 0.02 \pm 0.02$	$0.81 \pm 0.05 \pm 0.06 \pm 0.03$
[6, 8], [-3.8, -3.3]	$0.50\pm0.03\pm0.05\pm0.02$	$0.44 \pm 0.02 \pm 0.04 \pm 0.01$	$0.47\pm 0.02\pm 0.04\pm 0.01$	$0.62 \pm 0.03 \pm 0.05 \pm 0.02$	$0.56\pm0.03\pm0.03\pm0.02$	$0.64 \pm 0.03 \pm 0.03 \pm 0.02$	$0.60 \pm 0.06 \pm 0.11 \pm 0.02$
[6, 8], [-4.3, -3.8]	$0.47\pm0.03\pm0.06\pm0.02$	$0.50 \pm 0.04 \pm 0.07 \pm 0.02$	$0.46\pm 0.03\pm 0.05\pm 0.01$	$0.50\pm 0.04\pm 0.05\pm 0.01$	$0.64\pm0.05\pm0.06\pm0.02$	$0.59 \pm 0.04 \pm 0.04 \pm 0.02$	$0.71 \pm 0.09 \pm 0.05 \pm 0.02$
[8, 12], [-3.3, -2.8]	$0.61 \pm 0.05 \pm 0.08 \pm 0.02$	$0.54 \pm 0.03 \pm 0.07 \pm 0.02$	$0.45 \pm 0.03 \pm 0.04 \pm 0.02$	$0.58 \pm 0.03 \pm 0.05 \pm 0.02$	$0.55 \pm 0.04 \pm 0.05 \pm 0.02$	$0.51 \pm 0.03 \pm 0.03 \pm 0.03 \pm 0.02$	$0.74 \pm 0.06 \pm 0.05 \pm 0.02$
[8, 12], [-3.8, -3.3]	$0.51 \pm 0.04 \pm 0.08 \pm 0.02$	$0.52 \pm 0.03 \pm 0.07 \pm 0.02$	$0.59 \pm 0.04 \pm 0.07 \pm 0.02$	$0.61 \pm 0.09 \pm 0.06 \pm 0.02$	$0.46 \pm 0.05 \pm 0.04 \pm 0.01$	$0.59 \pm 0.04 \pm 0.04 \pm 0.02$	$0.66 \pm 0.08 \pm 0.07 \pm 0.02$
[8, 12], [-4.3, -3.8]	$0.48 \pm 0.00 \pm 0.11 \pm 0.02$	$0.43 \pm 0.00 \pm 0.09 \pm 0.02$	$0.33 \pm 0.07 \pm 0.10 \pm 0.02$	$0.02 \pm 0.08 \pm 0.11 \pm 0.02$	$0.47 \pm 0.06 \pm 0.08 \pm 0.02$	$0.38 \pm 0.08 \pm 0.07 \pm 0.07$	$0.00 \pm 0.13 \pm 0.07 \pm 0.02$

Table 17: The production cross-section ratio $\sigma_{D_s^+}/\sigma_{D^+}$ as a function of $p_{\rm T}$, y^* and $N_{\rm Tracks}^{\rm PV}$ in *p*Pb collisions at (upper) forward and (lower)