The manyseeds flag

If the manyseeds flag is set to 1, the BOX looks for a file named pwgseeds.dat. The program
stops if this file is not found. If the file is found the program asks for an integer j for input. Let
us say that this integer is 17, for sake of clarity. This integer indicates the line in pwgseed.dat
where a random number seed is stored. This feature is used for running the BOX on several
nodes of a cluster. In order to do this, follow the steps

1. Prepare a powheg.input file with the manyseeds flag is set to 1. Set the number of
events nev to 0.

2. Prepare a file pugseeds.dat, containing a sequence (one per line) of different random
number seeds. For example: first line 1, second line 2, etc. (but any number will do).

3. Run the pwhg_main program. It will ask an integer for input. Input an integer. That
integer is the line number of the random seed to be used for the current run. Assuming
that the number 17 is given as input to the pwhg_main program, the run will produce
files named pwgxgrid.dat and pwggrid-0017.dat. The pwhg_main program can be run
with different integers as input. Each run can be sent, for example, to a different node of
a cluster.

At the end of this step, a bunch of pwggrid-[?777].dat, pwgubound-[?7777] .dat files
ans pwgNLO-[?777].top files will be present in the run directory. The pwgNLO-
[?777] .top files are statistically independent topdrawer histograms. They can be com-
bined to provide a higher statistics NLO analysis of the current analysis routines.

If the subsequent runs are sent after the file pwgxgrid.dat was already produced, and if
the flag use-old-grid is set to one, the importance sampling grid will be loaded from
the pwgxgrid.dat. Otherwise it will be recreated.

4. Now set the nev token to a given number, make sure that the flag use-o0ld-grid is set to
one, and run a bunch of copies of the pwhg_main program, each with the same integers as
input. The program will now load all the pwggrid-[?7?77].dat and pwgubound-
[??777] .dat that it can find, and combines them adequately, assuming that they are all
statistically independent, and will start to generate events. The events will be in files
pwgevent-[7777] .1he, and they will all be independent statistically.

The sequence above is a quite simple two step procedure. It is useful, however, to better clarify
the logic that the BOX follows in this procedure.

There are 3 steps in the initialization phase of POWEG. First of all, an importance sampling grid
is determined. Let us call this stage ISG (Importance Sampling Grid). The second step is the
calculation of the integrals, and the determination of an upper bounding envelope for the B
function, to be used for the generation of underlying Born configurations. We call this stage the
UBB (Uppe Bounds for underlying Born). As a third step, the upper bound normalization for
radiation is determined. We call this stage UBR (Upper Bounds for Radiation).

First of all, we remark that, if the use-old-grid flag is not set to 1, no grid file is loaded.

Similarly, if the use-old-ubound flag is not set to 1, no ubound file is loaded. In other words, if
these flags are set, looking for a corresponding file will always yield a negative result. The reader
should keep this in mind when reading the following procedure. If the flag manyseeds is set, the
pwhg_main program asks for an integer. We will call cj this integer, between 0 and 9999. We
denote with [cj] the corresponding string of four digits (leading digits are set to 0; thus if ic=1
[cj1=0001. We will denote as [?777] any four digit string. The logic of grid loading in the
BOX is as follows:

1. If a file pwggrid.dat exist and is consistent, this file is loaded, and steps ISG and UBB
are skipped (go to 6).



10.

. If the above fails, if the manyseeds flag is not set, or if it is set and a file named pwg-

grid-[cjl.dat already exists and is consistent, all files of the form pwggrid-[?777].dat
are loaded and suitably combined, and the steps ISG and UBB are skipped (go to 6).

If the above fails, if a file pugxgrid.dat exist and is consistent, this file is loaded, and
steps ISG is skipped (go to 5).

Step ISG is performed. The resulting grid is stored in the file pwgxgrid.dat. This step,
whether the manyseeds flag is set or not, is performed using the default initial seed value
(i.e. not the seed found at the cj line of the pwgseeds.dat file). In this way, all copies of
the program being run will use the same importance sampling greed. This is mandatory
if we want to combine results.

Step UBB is performed. If the manyseeds flag is set, this step is performed using the seed
found at the cj line of the pwgseeds.dat file, and the result is storedin the file pwggrid-
[cj].dat. Otherwise, the current seed value is used, and the result is stored in a file
named pwggrid.dat.

If a file named pwgubound.dat exists and is consistent it is loaded. The UBR step is
skipped (goto 10).

If a file named pwgubound.dat exists and is consistent it is loaded. The UBR step is
skipped (goto 10).

If the above fails, if the manyseeds flag is not set, or if it is set and a file named
pwgubound- [cJ] .dat exists and is consistent, all files with names of the form
pwgubound- [?7?77] .dat are loaded and combined. The UBR step is skpped (go to 10).

The UBR step is performed. If the manyseeds flag is not set, the result is stored in a file
named pwgubound.dat. Otherwise, it is stored in the file pwgubound- [cj] .dat.

Now nev events are generated. If the manyseeds flag is not set, the result is stored in a
file named pwgevents.lhe. Otherwise, it is stored in the file pwgevents-[cj] .dat.

This logic has the purpose to allow several possible combinations of actions. For example, one
can use grids generated in parallel runs to produce events without using the manyseeds flag. Or
one can use grids generated without the manyseeds flag for generating events in parallel with
the manyseeds flag set.



