
Weighted events in the BOX

Two flags control the nature of the output in the BOX: withnegweights and ptsupp. If nei-
ther of these flags is set, events are output with weight 1, i.e. the XWGTUP variable is set to 1.
The IDTUP variable in the Les Houches interface is set to 3 in this case. The total cross section
is stored in the xsecup variable. Negative weighted events are neglected with this choice.

If withnegweights is set to 1 (true in our convention), negative weighted events are not dis-
carded. The IDTUP variable in the Les Houches interface is set to -4, and the weight of the event
is set to its sign times the total cross section for positive weighted events plus the (absolute
value) of the cross section for negative weighted events. In this way, the average value of XWGTUP
equals the real cross section, as required by the Les Houches convention when the IDTUP variable
is set to -4. The variable xsecup always stores the real cross section.

If the ptsupp token is set, a suppression factor that depends upon the underlying Born con-
figuration of each event is supplied with it. The cross section computed by the pwhg_main pro-
gram is in this case not valid. It is the integral of the cross section times the suppression factor.
Events are generated using this “fake” cross section, and thus are weighted with the inverse of
the suppression factor. The IDTUP variable in the Les Houches interface is set to -4. The weight
of the event is in this case the sign, times the total cross section for positive weighted events
plus the (absolute value) of the cross section for negative weighted events, times the inverse of
the weighting factor. The weight factor is returned by the user routine born_suppression, that
can use the value of the ptsupp token as a parameter to compute the suppression factor. Also in
this case, the average value of the weight of the event is equal to the real cross section. This
option can be active in conjunction with the withnegweights flag.

These flags have many uses. On one side, one might like to know where negative weighted
events end up. The fact that they constitute a small fraction leaves us to worry that they may
end up in some tiny tail of some important distribution. One may also prefer to work with nega-
tive weight in cases when getting rid of them requires high folding numbers (the foldcsi, foldy
and foldphi tokens), and thus has a high cost in computer time. The ptsupp feature can be
use to enhance a region of phase space (like a high kT tail) where it would be otherwise difficult
to get high statistics. These features, however, become really useful for processes where the
Born contribution itself is singular. The simplest examples are the Z + jet and the dijet produc-
tion processes. Here we discuss Z + jet. The dijet case is fully analogous.

1 Generation cut and Born suppression factor

The Z + 1j process differs substantially from all processes previously implemented in POWHEG, in
the fact that the Born diagram itself is collinear and infrared divergent. In all previous imple-
mentations, the Born diagram was finite, and it was thus possible to generate an unweighted set
of underlying Born configurations covering the whole phase space. In the present case, this is
not possible, since they would all populate the very low transverse momentum region. Of course,
this problem is also present in standard Shower Monte Carlo programs, where it is dealt with by
generating the Born configuration with a cut kgen kgen on the transverse momentum of the Z

boson. After the shower, one must discard all events that fail some transverse momentum anal-
ysis cut kan kan in order to get a realistic sample. The analysis cut kan may be applied to the
transverse momentum of the Z, or to the hardest jet. We assume here, for sake of discussion
that the analysis cut is applied to the Z transverse momentum.

Taking kan & kgen is not enough to get a realistic sample. In fact, in an event generated at
the Born level with a given kT < kgen, the shower may increase the transverse momentum of the
jet so that kT

Z > kan. Thus, the generation cut, even if it is below the analysis cut, may reduce

1

the number of events that pass the analysis cut. Of course, as we lower kgen keeping kan fixed,
we will reach a point when very few events below kgen will pass the analysis cut kan. In fact,
generation of radiation with transverse momentum larger than kgen is strongly suppressed in
POWHEG, and, in turn, radiation from subsequent shower is required to be not harder than the
hardest radiation of POWHEG. Thus, given the fact that we want to generate a sample with a
given kan cut, we should choose kgen small enough, so that the final sample remains substantially
the same if kgen is lowered even further.

A second option for the implementation of processes with a divergent Born contribution is
also available. It requires that we generate weighed events, rather than unweighted ones. This is
done by using a suppressed cross section for the generation of the underlying Born configura-
tions:

B̄supp= B̄ ×F (kT), (1)

wher B̄ is the inclusive NLO cross section at fixed underlying Born variables, and kT is the
transverse momentum of the vector boson in the underlying Born configuration. In this way
B̄supp is integrable, and one can use it to generate underlying Born configurations according to
its value. The generated event, however, should be given a weight 1/F (kT) rather than a con-
stant one, in order to compensate for the initial F (kT) suppression factor. With this method,
events do not concentrate in the low kT region. However, their weight in the low kT region
becomes divergent. After shower, if one imposes the analysis cut, one gets a finite cross section,
since it is unlikely that events with small transverse momentum at the Born level may pass the
analysis cut after shower. In fact, shower transverse momenta larger than the one present in the
initial Born process must be suppressed in the Monte Carlo generator.

In recent POWHEG BOX revisions, both methods can be implemented at the same time. We
wanted i fact to be able to implement the following three options:

• Generate events using a transverse momentum generation cut.

• Generate events using a Born suppression factor, and a small transverse momentum cut,
just enough to avoid unphysical values of the strong coupling constant and of the factor-
ization scale that appears in the parton density functions.

• Apply a Born suppression factor, and set the transverse momentum cut to zero. In this
case the program cannot be used to generate events. It can be used, however, to produce
NLO fixed order distributions, provided the renormalization and factorization scales are
set in such a way that they remain large enough even at small kT

Z. This feature is only
used for the generation of fixed order distributions.

The generation cut is activated by setting the token bornktmin to the desired value in the
powheg.input file. The Born suppression is activated by setting the token ptsupp to a positive

real value. The process-specific subroutine born_suppression sets the suppression factor to kT
2 /

(kT
2 + ptsupp2). If psupp is negative, the suppression factor is set to 1.

The need of a transverse momentum cut is not only a technical issue. The NLO calculation
of Z + 1j production holds only if the transverse momentum of the Z is not too small. In fact,
as the kT decreases, large Sudakov logarithms arise in the NLO correction, and the value of the
running coupling increases, up to the point when the cross section at fixed order becomes totally
unreliable. These large logarithms should all be resummed in order to get a sensible answer in
this region. In the POWHEG implementation of Z production, in fact, these logarithms are all
resummed. It is clear then that some sort of merging between the Z + 1j and the Z production
processes should be performed at relatively small transverse momentum, in order to properly
deal with these large logarithms. In the present work we will not attempt to perform such
merging, that we leave for future publications. We will simply remember, when looking at our
results, that we expect to get unphysical distributions when the Z transverse momentum is too
small, and we will discuss this fact in a more quantitative way.

In the POWHEG approach, negative weighted events can only arise if one is approaching a
region where the NLO computation is no longer feasible. In our studies for the Z + 1j process
we approach this region at small transverse momentum. In order to better see what happens
there, rather than neglecting negative weights (that is the default behaviour of the POWHEG BOX),
we have introduced a new feature in the program, that allows one to track also the negative
weighted events. This feature is activated by setting the token withnegweights to 1 (true). If
withnegweights is set to 1, events with negative weight can thus appear in the Les Houches
event file. While we normally set the IDWTUP flag in the Les Houches interface to 3, in this case
we set it to -4. With this flag, the SMC is supposed to simply process the event, without taking
any other action. Furthermore, the XWGTUP (Les Houches) common block variable is set by the
POWHEG-BOX to the sign of the event times the integral of the absolute value of the cross section,
in such a way that its average equals the true total cross section.

Notice that, if withnegweights is set and a Born suppression factor is also present, the
events will have variable XWGTUP of either signs. In this case XWGTUP is set to the sign of the
event, times the absolute value of the cross section, divided by the suppression factor ptsupp.
Also in this case the average value of XWGTUP coincides withe the true total cross section. We
preferred not to use the option -3 in case of signed events with constant absolute value. This
option is advocated by the Les Houches interface precisely in such cases. However, the Les
Houches interface does not provide a standard way to store the integral of the absolute value of
the cross section, that would be needed to compute correctly the weight of the event. In fact,
the XSECUP variable is reserved for the true total cross section. More specifically, if we have N

events of either sign, they should be weighted with the sum of the positive plus the absolute
value of the negative part of the cross section, in such a way that

∑

i=1

N

Wi

(

σ(+)+ |σ(−)|
)

=N
(

σ(+)− |σ(−)|
)

= NσNLO, (2)

(where Wi are the sign of the event ± 1), because

∑

i
Wi

N
=

(

σ(+)− |σ(−)|
)

(

σ(+)+ |σ(−)|
) . (3)

Weighted events are also useful if one wants to generate a homogeneous sample from relatively
low up to very high transverse momenta. It is convenient in this case to pick a very large
ptsupp value, of the order of the maximum transverse momentum one is interested in. The large
momentum region will be more populated in this way.

