The WTW™* 55 and W~W ~ 55 POWHEG BOX manual

The Wp_Wp_j_j program is an implementation of the W+W j5 and W =W ~ jj production cross
section within the POWHEG BOX framework with the W bosons decaying to leptons.

This document describes the input parameters that are specific to this implementation. The
parameters that are common to all POWHEG BOX implementation are given in the manual-
BOX.pdf document, in the POWHEG-BOX/Docs directory. The decay mode of the W bosons can be
fixed by setting vdecaymodel and vdecaymode2 in the powheg.input file. These flags spacify the
charged leptons the bosons decay to (-11 e-; -13 mu-; -15 tau-; 11 e+; 13 mu+; 15 tau+). vde-
caymodel and vdecaymode2 must have the same sign. In the case of identical leptons in the
final state interference effects are neglected, so that the cross-section is exactly half that of dis-
tinct leptons.

If you use this program, please quote [1], [2], [3].

Running the program

Download the POWHEG BOX, do

$ cd POWHEG-BOX/Wp_Wp_j_j

Running is most conveniently done in a separate directory, for instance do
$ mkdir testrun

The directory must contain the powheg.input file and a pwgseeds.dat file (see manual-
BOX. pdf).

Before compiling make sure that:
— fastjet is installed and fastjet-config is in the path
— ifort and/or gfortran is in the path
— ifort/gfortran libraries are in the environment variable LD_LIBRARY_PATH

It is possible to compile both with ifort or gfortran at the same time, independently, retaining
the objects files of each architecture. The executables itself are instead unique.

Create the main program by doing

$ make COMPILER=ifort pwhg_main

or

$ make COMPILER=gfortran pwhg_main

If you use LHAPDF, make sure that you have a version compatible with the compiler you are
using, and insert the appropriate path for LHAPDFCONFIG in the Makefile.

The gfortran version we tested was 4.4.3. For older versions, the compiler may not recognize the
-J option in F90/Makefile.gfortran. One may need to replace it with the -M option.

Enter the testrun directory:
$ cd testrun
A powheg.input, and a pwgseeds.dat file is present there. When executing

$../pwhg_main



enter which seed

the program will require to enter an index in the pwgseeds.dat file, that specifies the line
number where the seed of the random number generator to be used for the run is stored. All
results generated by the run will be stored in files named *-[index|.*. When running on parallel
CPU’s, make sure that each parallel run has a different index.

The program must be run in several steps. Each new step requires the completion of the pre-
vious step.

The timings given in the following refer to the program compiled with ifort.

Step 1

Consists of a single run to generate the importance sampling grid. The grid must be generated
with the option fakevirt 1 in powheg.input, which means that the virtual term is replaced by
a fake one proportional to the Born term.

One needs at least 1000000 events and 2 iterations. Set the following tokens in the
powheg. input file:

ncalll 1000000

itmx1l 2

ncall2 O

fakevirt 1

Run the program

$../pwhg_main

enter which seed

enter 1 or any other valid seed number.

It takes roughly 20 hours of CPU. By setting ncall2 0 in the powheg.input file the program
stops after the complition of this step.

Step 2

Runs in parallel can be performed now. Comment out the fakevirt token from powheg.input.
The runs must be performed in the same directory where Step 1 was performed.

The integration and upper bound for the generation of btilde can be performed with 50-100 runs
with 2500-5000 calls. Set

ncall2 5000
itmx2 1
in powheg.input.

Folding numbers that are appropriate for runs at LHC energy are

foldcsi & ! number of folds on csi integration
foldy 5 ! number of folds on y integration
foldphi 10 ! number of folds on phi integration

Time is about 100 hours of cpu for each run with ncall2=5000.

Setting



nubound 0O

in powheg.input causes the program to stop after the completion of this step.
In order to run, for example, 100 parallel processes do:

$../pwhg_main

enter which seed

enter an index for each run, (from 1 to 100). The pwgseeds.dat must contain at least 100 lines,
each with a different seed.

Step 3

This step can be run in parallel. The number of processes cannot be larger than the one used in
the previous step. The run must be performed in the same directory, after all processes in Step
2 are completed. Setting

numevts 0

nubounds 100000

takes roughly 7 hours per process.

The setting "numevts 0" causes the program to stop after completion of this step.

The parallel execution of the program is performed as in the previous step.

Step 4
Set
numevts 100000

(for example) and run in parallel. The number of processes cannot be larger than the one used
in the previous step.

At this point, files of the form pwgevents-[index] .1lhe are present in the run directory.
Count the events:

$ grep ’/event’ pwgevents-*.lhe

Analyzing the events

It should be easy to feed the *.lhe events into generic shower Monte Carlo programs, within
the analysis framework of each experiment. We also provide a sample analysis, that computes
several histograms and stores them in topdrawer output.

Doing (from the Wp_Wp_j_j directory:

$ make lhef_analysis

$ cd testrun

$ ../lhef_analysis

analyzes the bare POWHEG BOX output, creating the topdrawer file LHEF_analysis.top at the
end. The targets main-HERWIG-lhef and main-PYTHIA-lhef are instead used to perform the
analysis on events fully showered using HERWIG or PYTHIA.

Bibliography

[1] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, W' W™ plus dijet production in the
POWHEGBOX, 1102.4846. * Temporary entry *.

[2] T. Melia, K. Melnikov, R. Rontsch, and G. Zanderighi, Next-to-leading order QCD predictions for
WHW+jj production at the LHC, JHEP 1012 (2010) 053, [1007.5313].

[3] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in
shower Monte Carlo programs: the POWHEG BOX, JHEP 1006 (2010) 043, [1002.2581].



