
Preprint typeset in JHEP style - PAPER VERSION March 16, 2011
POWHEG BOX @ rev. ***************************

(release 1.0)

The POWHEG BOX user manual:

common features

Simone Alioli

Deutsches Elektronen-Synchrotron DESY
Platanenallee 6, D-15738 Zeuthen, Germany
E-mail: simone.alioli@desy.de

Paolo Nason

INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
E-mail: Paolo.Nason@mib.infn.it

Carlo Oleari

Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca
Piazza della Scienza 3, 20126 Milan, Italy
E-mail: Carlo.Oleari@mib.infn.it

Emanuele Re

Institute for Particle Physics Phenomenology, Department of Physics
University of Durham, Durham, DH1 3LE, UK
E-mail: emanuele.re@durham.ac.uk

Abstract: This note documents the use of the package POWHEG BOX. In this document the
user will find a description of the general features of the package. Issues related to specific
processes are discussed in dedicated manuals available in the corresponding folders.

Keywords: POWHEG, Shower Monte Carlo, NLO.

Contents

1. Introduction 1

2. Organization of the package 2

3. Modes of operation 3
3.1 The analysis routines 5

4. Input parameters 5
4.1 Mandatory parameters 6
4.2 Optional parameters 9

5. Special modes of operation 10
5.1 Weighted-event generation 10

5.1.1 Generation cut and Born suppression factor 11
5.2 The pdfreweight flag 13
5.3 The manyseeds flag 14

6. Counters and statistics 16

7. Random number generator 17

1. Introduction

The POWHEG BOX program is a framework to implement Next-to-Leading-Order (NLO) cal-
culations in Shower Monte Carlo (SMC) programs according to the POWHEG method. An
explanation of the method and a detailed discussion of how the code is organized can be
found in refs. [1, 2, 3]. The code is distributed according to the “MCNET GUIDELINES
for Event Generator Authors and Users” and can be found in

http://powhegbox.mib.infn.it.

The latest version of the package can be downloaded trough SVN:

$ svn checkout --username anonymous --password anonymous

svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX

Previous revisions are available using the [--revision n] option. Periodic releases of
the code will be available in svn://powhegbox.mib.infn.it/tags.

– 1 –

2. Organization of the package

In the POWHEG BOX directory (the main directory, from now on) there are the common
source files, an include directory, a Docs directory and several other process folders, with
a name reminiscent of the process to which they correspond: the Z folder contains the
code to simulate the Drell-Yan process at NLO with POWHEG, Zj the code to simulate Z in
association with 1 jet at NLO, and so on.

Each folder contains a Makefile and some specific source files which are compiled and
linked with the common files to build an independent program. Therefore, an executable
built in a process directory is a self-contained program: it needs only to be linked to
dynamic libraries, according to the corresponding Makefile. In the following, we denote
a generic process folder as proc dir.

Once downloaded, an executable related to a given process can be built with the fol-
lowing commands:

$ cd POWHEG-BOX/proc dir

$ make <target>

where the choice of the <target> depends upon the way one wants to interface the program
with a Shower Monte Carlo. Specifically, <target> needs to refer to one of the targets con-
tained in the Makefile. All the process directories contain in their Makefile instructions
to build the following programs:

pwhg main

lhef analysis

main-HERWIG-lhef

main-PYTHIA-lhef

For some processes, other executables can be built. If this is the case, we refer to the
specific process manual for more details. In the next section, we will briefly describe the
purpose of the aforementioned programs.

From release 1.0, the POWHEG BOX program also includes a stand-alone PDF package,
originally due to M.L. Mangano. In order to use this package, it is enough to set the
Makefile variable PDF equal to native. When this is done, the program doesn’t need to
be linked against any external PDF library as LHAPDF, and therefore can be run out-of-the-
box. Some data files needed for this package are in the POWHEG-BOX/pdfdata directory, and
a symbolic link of the data file to the directory where the run is performed is needed. The
name of the link should not include the .tbl or .dat ending of the data file (for example
cteq6m.tbl should be linked to cteq6m).1

If instead one needs other PDF sets, the user is asked to have the LHAPDF library [4] in-
stalled on his/her system and to take care to insert its correct search path in the Makefile,
or, simply, to add the path of the lhapdf-config executable to the $PATH environmental

1In several testrun directories the user will find the link already present.

– 2 –

variable. We remind that in case of linking against ”dynamic” shared library, the correct
LHAPDF library path should also be added to the $LD LIBRARY PATH environmental variable,
otherwise run time errors may occur.

For some processes, the default analysis routine that comes with the package relies
on jet algorithms, as can be inferred from the Makefile or by direct inspection of the
pwhg analysis.f file in proc dir. When this is the case, in order to build the program the
user needs to have the FASTJET library [5] installed. It is up to the user to correctly install it
and to modify the Makefile accordingly. For most systems, adding the fastjet-config

executable to the $PATH environmental variable is enough. A dummy analysis file not
invoking FASTJET is also provided, for users that have problems linking the FASTJET library.

The Makefile is set up to use the compiler gfortran on Linux platforms. If one wishes
to use g77, one should change the appropriate lines in the Makefile. The ifort compiler
has also been tested for some specific processes.

For some processes, other special actions are needed to install the program. In those
cases, we refer again to the specific process manuals.

3. Modes of operation

The main purpose of our implementations of the POWHEG method is to generate hard events
that can then be fed into a SMC program for subsequent showering. To this aim, POWHEG
BOX saves the hard event information according to the conventions of the Les Houches
Interface for User Processes (LHIUP from now on) [6]. The SMC should also comply with
these conventions (as is the case for PYTHIA and HERWIG) in order to be used in conjunction
with the POWHEG BOX.

Having this in mind, we now briefly explain the purpose of the 4 programs we mentioned
above.

• pwhg main: when this executable is run, the program performs several steps, which
are documented in detail in [3]. The final output is the file with extension .lhe

(standing for Les Houches events), that contains the generated hard events, written
according to the format described in ref. [7]. Several other files are produced where
internal information are stored (the most important ones are .dat files), and some
.top files with plots. Since this is the main program, a more detailed description
on how to run the program, write or modify input cards and interpret the results is
given later in this document.

• lhef analysis: when this executable is run, the program performs an analysis of
the events in the .lhe file. The purpose of this program is to allow a quick analysis
of partonic events before showering them. Therefore it is useful mainly for devel-
opers rather than for users. The output is the file LHEF analysis.top, where NLO
distributions with (N)LL resummation of soft gluon effects are present.

• main-HERWIG-lhef and main-PYTHIA-lhef: these programs are used to feed the
events stored in the .lhe file to the HERWIG or PYTHIA program, to obtain a full event

– 3 –

simulation. The corresponding main sources (main-HERWIG.f and main-PYTHIA.f)
are located in the main directory. However, some of the routines called therein need
to be customized differently for different processes: for this reason, their source code
has been placed in the process-dependent files setup-HERWIG-lhef.f and
setup-PYTHIA-lhef.f.2 These files are also important because they show how to
call the template analysis at the end of the event generation. Having said this, we
also recall that these drivers should be considered as templates to write an interface
to use POWHEG within the experimental collaboration software, since the information
in the .lhe files are already written according to a standard, documented format [7].

The typical procedure to simulate events with our POWHEG implementation is performed
in two stages, which we briefly describe in the following:

1. Generating the hard events
The first step of a POWHEG simulation is to generate and store the hard events in a
file, which we call the event file. The format of the event file supported by POWHEG

BOX is the “Standard format for Les Houches event files”, documented in ref. [7].
Les Houches Event Files (LHEF from now on) generated with our program have the
suffix .lhe. The program for the generation of LHEF can be built from a proc dir

with the command

$ make pwhg main

The program must be executed in a directory where the file powheg.input is present.
The only libraries needed by this program to work are LHAPDF and, in some cases,
FASTJET. The event file is named pwgevents.lhe. By using an input card with a
prefix, the user is given the possibility to change the name of this file and of all the
other output files, as documented in sec. 4.

2. Perform the parton shower
The subsequent step is to read the events and process them with the SMC. An ex-
ample program that reads the event file, showers it with HERWIG and analyzes the
results can be built as follows

$ make main-HERWIG-lhef

A similar program, named main-PYTHIA-lhef, is provided for PYTHIA, and can be
built with the command

$ make main-PYTHIA-lhef

2Notice that this structure has been introduced from release 1.0, whereas in previous versions all

the driver files were placed in the processes subdirectories, and were named main-HERWIG-lhef.f and

main-PYTHIA-lhef.f

– 4 –

A version of PYTHIA and HERWIG is included in the POWHEG BOX package. These can
be substituted by the user’s favorite version. In the case of HERWIG, the appropriate
include files should also be substituted.

3.1 The analysis routines

The file pwhg analysis.f contains a template analysis, that one can take as a starting
point for more complex analysis. It uses pwhg bookhist, the histogramming package of
M.L. Mangano with minor modifications, and it produces topdrawer outputs. The routines
in pwhg analysis.f are adequate for both fortran HERWIG and PYTHIA since they rely on
the standard common blocks of ref. [8]. If the user wants to use other analysis routines,
he/she can simply modify the pwhg analysis.f file or write his/her own.3

4. Input parameters

When generating the hard events, the pwhg main program needs to set some physical and
some technical parameters. Some of these parameters are mandatory, some other are not.
Moreover, there are some parameters which are needed only for some processes. In the
POWHEG BOX an independent facility to set these input parameters is available. All parame-
ters are stored in a file, named powheg.input. If the file powheg.input is not present, the
program asks the user to enter a prefix, and then looks for the file <prefix>-powheg.input.
In this case, all the output files created by POWHEG BOX in the current run will carry the
prefix <prefix>- instead of pwg.

Examples of powheg.input files can be found in the testrun subdirectory of proc dir.
The format of these files is as follows

1. Lines are no more than 100 characters long.

2. Empty (blank) lines are ignored

3. If a # or a ! appears at any point in a line, the part of the line starting from the # or !
symbol up to its end is blanked.

4. An entry has the format:
name value

usually followed by a ! and a comment to clarify the meaning of the variable. The
name keyword has no more than 20 characters, and value is an integer or floating point
number.

5. A maximum of 100 keywords are allowed.

The order in which the lines are written is not important, although it is a good practice to
put the mandatory tokens at the beginning of the file.

3During the integration stage and/or during the generation of the event file, the possibility to perform

a NLO analysis or an analysis at the level of the POWHEG output, before interfacing to the shower, is left to

the user. In these cases, the analysis is executed with the string WHCPRG set to ’NLO’.

– 5 –

The input parameters are read by the (real * 8) function powheginput(string),
whose source code is in the file powheginput.f. The statement

rvalue=powheginput(’myparm’)

returns the value of the token myparm stored in powheg.input. If the token is not found in
the input file, a message is printed, and the program is stopped. The file is read only once,
on the first invocation of the function powheginput, and token-value pairs are stored in
internal arrays, so that subsequent calls to powheginput are relatively fast. The statement

rvalue=powheginput(’#myparm’)

also returns the value of the token myparm. However, in case the token myparm is not
present, the program does not stop, and returns the value −106. This is used for optional
keywords, that are given a default value when absent.

The file powheginput.f is a stand-alone code, and can be linked to any program. In
this way, a SMC that is reading an event file may get parameters of the POWHEG BOX run,
if needed.

In the rest of this section we describe the typical lines of an input file.

4.1 Mandatory parameters

numevts 100000 ! number of events to be generated

ih1 1 ! hadron 1 type (1: proton; -1: antiproton)

ih2 1 ! hadron 2 type (1: proton; -1: antiproton)

lhans1 10050 ! pdf set for hadron 1 (LHAGLUE number)

lhans2 10050 ! pdf set for hadron 2 (LHAGLUE number)

ndns1 131 ! pdf for hadron 1 (when using the hvqpdf package)

ndns2 131 ! pdf for hadron 2 (when using the hvqpdf package)

The first entry is self-explanatory. The integers ih1,ih2 and lhans1,lhans2 (or ndns1,ndns2)
characterize instead the hadron type and the PDF set used by POWHEG BOX. The hadron
type in ih1 and ih2 can be 1 for a proton or -1 for an antiproton. When in the Makefile

one sets PDF=native,4 one of the 2 internal PDF sets is used (see sec. 2). In this case, the
set is chosen accordingly to the value of the tokens ndns1, ndns2, where the hvqpdf num-
bering is assumed. Otherwise, if the Makefile variable PDF is set equal to lhapdf, then the
program uses the LHAPDF library, and the set is chosen according to the tokens lhans1,
lhans2. In this case, the numbering scheme is that of the LHAGLUE interface, leaving
the possibility of re-evaluate pdf’s on the fly (using number corresponding to .LHpdf file)
or to interpolate from a previously calculated grid (number corresponding to .LHgrid file),
as explained in ref. [4]. In the example above, 10050 corresponds to the central value of

4From release 1.0 this is the default behaviour of the program as it is distributed.

– 6 –

the CTEQ6M set in this latter case.

ebeam1 7000 ! energy of beam 1 in GeV

ebeam2 7000 ! energy of beam 2 in GeV

These are the energies of the two beams given in GeV. We assume that beam 1 and 2
move along the third axis in the positive and negative direction respectively.

! Parameters to allow or not the use of stored data

use-old-grid 1

use-old-ubound 1

The meaning of these tokens requires a little knowledge of the operation of POWHEG BOX.
Before events can be generated, the program goes through an initialization stage. It first
computes the importance sampling grid for the computation of the inclusive cross section.
The importance sampling data is stored in the file pwgxgrid.dat. Then, the integral is
computed, and an upper bounding envelope is found for the unweighted generation of the
underlying Born configurations. This envelope, together with the importance sampling
data and the cross section are stored in the file pwggrid.dat. Afterwords, a grid for the
normalization of the upper bounding function for the generation of radiation is computed.
The normalization grid is stored in the file pwgubound.dat.

The generation of the grids is time consuming, but the time spent in this calculation
is negligible in a normal run, when hundreds of thousands of events are generated. On the
other hand, sometimes it is useful (for example, when debugging an analysis program) to
skip the grid generation stage. For this purpose, if the use-old-grid token is set equal to
1, and if pwggrid.dat exists and is consistent, it is loaded, and the old grid and old value
of the cross section are used. Otherwise, first the program checks if a pwgxgrid.dat file
exists. If it does, the file is loaded, and the generation of the importance sampling grid
is skipped. Observe that the program does check the file for consistency with the current
run, but the check is not exhaustive. The user should make sure that a consistent grid is
used.
The token use-old-ubound has the same role as use-old-grid, but it applies to the step
where the normalization of the upper bounding function is filled.
The following parameters are used to control the generation of these grids:

! Parameters that control the grid for Born variables generation

ncall1 50000 ! number of calls for initializing the integration grid

itmx1 5 ! number of iterations for initializing the integration grid

ncall2 50000 ! number of calls for computing integral

itmx2 5 ! number of iterations for computing integral

foldcsi 1 ! number of folds on x integration

foldy 1 ! number of folds on y integration

foldphi 1 ! number of folds on phi integration

– 7 –

nubound 50000 ! number of calls to setup upper bounds for radiation

iymax 1 ! <=100, number of intervals in y grid to compute upper bounds

icsimax 1 ! <=100, number of intervals in csi grid

xupbound 2 ! increase upper bound for radiation generation by given factor

In the proc dir directories there are example powheg.input files with the settings of
these variables that have been found to be satisfactory for the specific parameters that
have been used. The values of some of the tokens may be changed in the following cases:

• The integration does not seem to converge well, and the file pwgbtlgrid.top repre-
senting the importance sampling subdivision of each integration coordinate for each
iteration itmx1, does not seem to converge well. In this case, ncall1, and if that
does not work also itmx1 should be increased.

• The integration results have large errors. One may try to increase ncall2, itmx2.

• The number of upper bound failure for the generation of the inclusive cross section,
reported in pwgcounters.dat, is an important fraction of the total number of gen-
erated events. As a rule of thumb, one might expect that fraction to represent the
error on the generated distribution. In this case, increase ncall2, itmx2.

• If the fraction of negative weights is large, one may perform a so-called “folded
integration”. This procedure has been described in refs. [2, 3, 9], to which we refer
the reader more details. The procedure is enabled by setting at least one of the
parameters foldcsi, foldy, foldphi to a value different from 1: allowed values are
1, 2, 5, 10, 25, 50. The speed of the program is inversely proportional to the product
of these numbers, so that a reasonable compromise should be found. For processes
where the fraction of negative weights in the B̄ calculation is non negligible, the
corresponding input card comes already with reasonable folding parameters set.

• If there are too many upper bound violations in the generation of radiation, one may
increase nubound, and/or xupbound.

• If the efficiency in the generation of radiation is too small, one may try to increase
iymax, icsimax.

In order to check whether any of these conditions occurs, the user should inspect the files
pwgstat.dat and pwgcounters.dat at the end of the run, as explained in section 6. In-
formation present in these files are also printed on the shell during the run.

The input cards of some processes need more parameters, such as the value of masses,
widths, couplings, etc. Specific information can be found in the corresponding dedicated
manual.

The tokens to control scale variations are not mandatory parameters. However, we
describe them here:

– 8 –

facscfact 1 ! factorization scale factor: mufact=muref*facscfact

renscfact 1 ! renormalization scale factor: muren=muref*renscfact

Factorization and renormalization scale factors appearing here have to do with the com-
putation of the inclusive cross section (i.e. the B̄ function [1, 2, 3]), and can be varied by
a factor of order 1 to study scale dependence. As usual, the value used as central value
depends on the process at hand. The exact details for the process at hand can be found in
the dedicated manual. The relevant fortran code can be found in the set fac ren scales

routine (Born phsp.f file), which the experienced user can modify at his/her will and risk.

4.2 Optional parameters

In addiction to the mandatory parameters presented above, POWHEG BOX also accepts other
parameters.
For some processes, the use of these parameters is actually needed (in some cases, they are
mandatory!). In these cases, proper warnings and instructions are present in the dedicated
manual, and the input files have the corresponding lines uncommented and with the tokens
set to proper values.
In general, however, the user should not worry if these parameters are not present or are
commented. This means that there is no need to use them, and the default values are used.
In the following, we describe them, since they can be useful for a more advanced use of the
program: who is not interested can safely skip this section.

QCDlambda5 0.25 ! for not equal pdf sets

ptsqmin 0.8 ! (default 0.8 GeV) minimum pt for generation of radiation

charmthr 1.5 ! (default 1.5 GeV) charm threshold for gluon splitting

bottomthr 5.0 ! (default 5.0 GeV) bottom threshold for gluon splitting

charmthrpdf 1.5 ! (default 1.5 GeV) pdf charm threshold

bottomthrpdf 5.0 ! (default 5.0 GeV) pdf bottom threshold

The first token can be used to set explicitly the value of ΛQCD to a given value. In a
standard run, there is no need to perform this operation (actually it may produce wrong
results), because, by default, the value read from the PDF table is properly used. The
other parameters are cutoff used in the programs: the first three are the cutoff for gener-
ating emission off light, c and b quarks respectively. They are also used to set heavy flavor
thresholds in the strong coupling running. Instead, the last two parameters control the
threshold values at which heavy flavor PDF’s start to be nonzero.

withdamp 1 ! (default 0, do not use) use Born-zero damping factor

hfact 100 ! (default no dumping factor) dump factor for high-pt radiation:

! > 0 dampfac=h**2/(pt2+h**2)

These tokens control the separation of the full real matrix element in a singular and a

– 9 –

nonsingular part. Their use may be needed in presence of processes where the Born cross
section vanishes in some phase-space region. They are also useful to test the behavior of
the program in presence of large K-factors. Their exact meaning is explained in ref. [3].
For testing the correct behavior of the program and to obtain NLO distributions, we added
other parameters that may also be useful for developers. The normal user is asked not to
change them, since their invocation is time consuming and/or may cause some conflicts
with other settings. If instead the user is interested in changing them, a detailed explana-
tion of their behavior can be found on ref. [3].

testsuda 0 ! (default 0, do not test) tests the Sudakov FF by

! numerical integration

testplots 0 ! (default 0, do not) do NLO and PWHG distributions

bornonly 0 ! (default 0) if 1 do Born only

smartsig 0 ! (default 1) remember equal amplitudes (0 do not remember)

withsubtr 0 ! (default 1) subtract real counterterms (0 do not subtract)

radregion 1 ! (default all regions) only generate radiation in the

! selected singular region

iupperisr 1 ! (default 1) choice of ISR upper bounding functional form

iupperfsr 2 ! (default 2) choice of FSR upper bounding functional form

flg debug 1 ! (default 0) write extra information on LHEF

Other technical parameters have been introduced for more specific debugging purposes:
for example par diexp, par 2gsupp,jacsing were relevant for dijets. As already stated,
we refer to the process manual for details on other specific parameters.

5. Special modes of operation

In this subsection, we describe some special features that were added to our package to
comply with experimental needs or to deal with complicated processes, namely V + j and
dijets.

5.1 Weighted-event generation

In normal conditions, the events generated by POWHEG are unweighted, i.e. all come with
the same weight. At times, however, this feature has some drawbacks. In this subsection
we describe how the generation of weighted events can be performed and we specify when
this is particularly needed.

Two flags control the nature of the output in the POWHEG BOX: withnegweights and
bornsuppfact.5 If neither of these flags is set, events are output with weight 1, i.e. the
XWGTUP variable is set to 1. The IDWTUP variable in the Les Houches interface is set to 3
in this case. The total cross section is stored in the xsecup variable. Negative weighted
events are neglected with this choice.

5In old versions, the flag bornsuppfact was named ptsupp, which is now deprecated.

– 10 –

If withnegweights is set to 1 (true in our convention), negative weighted events are
not discarded. The IDWTUP variable in the Les Houches interface is set to -4, and the weight
of the event is set to its sign times the sum of the total cross section for positive weighted
events plus the absolute value of the cross section for negative weighted events. In this way,
the average value of XWGTUP equals the real cross section, as required by the Les Houches
convention when the IDWTUP variable is set to -4. The variable xsecup always stores the
real cross section.

If the bornsuppfact token is set, a suppression factor that depends upon the under-
lying Born configuration of each event is supplied with it. The cross section computed
by the pwhg main program is in this case not valid. It is the integral of the cross section
times the suppression factor. Events are generated using this “fake” cross section, and
thus are weighted with the inverse of the suppression factor. The IDWTUP variable in the
Les Houches interface is set to -4. The weight of the event is in this case the sign, times
the total cross section for positive weighted events plus the absolute value of the cross
section for negative weighted events, times the inverse of the weighting factor. The weight
factor is returned by the user routine born suppression, that can use the value of the
bornsuppfact token as a parameter to compute the suppression factor. Also in this case,
the average value of the weight of the event is equal to the real cross section. This option
can be active in conjunction with the withnegweights flag.

These flags have many uses. On one side, one might like to know where negative
weighted events end up. Even if they constitute a small fraction, we may worry that they
could end up in some tiny tail of some important distribution. One may also prefer to
work with negative weight in cases when getting rid of them requires high folding numbers
(the foldcsi, foldy and foldphi tokens), and thus has a high cost in computer time.
The bornsuppfact feature can be use to enhance a region of phase space (like a high kT

tail) where it would be otherwise difficult to get high statistics. These features, however,
become really useful for processes where the Born contribution itself is singular. The
simplest examples are the Z + jet and the dijet production processes. Here we discuss
Z + jet. The dijet case is fully analogous.

5.1.1 Generation cut and Born suppression factor

The Z + 1j process differs substantially from all processes previously implemented in
POWHEG, in the fact that the Born diagram itself is collinear and infrared divergent. In
all previous implementations, the Born diagram was finite, and it was thus possible to
generate an unweighted set of underlying Born configurations covering the whole phase
space. In the present case, this is not possible, since they would all populate the very low
transverse momentum region. Of course, this problem is also present in standard Shower
Monte Carlo programs, where it is dealt with by generating the Born configuration with a
cut kgen on the transverse momentum of the Z boson. After the shower, one must discard
all events that fail some transverse momentum analysis cut kan in order to get a realistic
sample. The analysis cut kan may be applied to the transverse momentum of the Z, or to
the hardest jet. We assume here, for sake of discussion that the analysis cut is applied to
the Z transverse momentum.

– 11 –

Taking kan & kgen is not enough to get a realistic sample. In fact, in an event generated
at the Born level with a given kT < kgen, the shower may increase the transverse momentum
of the jet so that kT > kan. Thus, the generation cut, even if it is below the analysis cut,
may reduce the number of events that pass the analysis cut. Of course, as we lower kgen

keeping kan fixed, we will reach a point when very few events below kgen will pass the
analysis cut kan. In fact, generation of radiation with transverse momentum larger than
kgen is strongly suppressed in POWHEG, and, in turn, radiation from subsequent shower is
required to be not harder than the hardest radiation of POWHEG. Thus, given the fact that
we want to generate a sample with a given kan cut, we should choose kgen small enough,
so that the final sample remains substantially the same if kgen is lowered even further.

A second option for the implementation of processes with a divergent Born contribution
is also available. It requires that we generate weighed events, rather than unweighted ones.
This is done by using a suppressed cross section for the generation of the underlying Born
configurations:

B̄supp = B̄ × F (kT), (5.1)

where B̄ is the inclusive NLO cross section at fixed underlying Born variables, and kT is
the transverse momentum of the vector boson in the underlying Born configuration. In
this way B̄supp is integrable, and one can use it to generate underlying Born configurations
according to its value. The generated event, however, should be given a weight 1/F (kT)
rather than a constant one, in order to compensate for the initial F (kT) suppression factor.
With this method, events do not concentrate in the low kT region. However, their weight in
the low kT region becomes divergent. After shower, if one imposes the analysis cut, one gets
a finite cross section, since it is unlikely that events with small transverse momentum at
the Born level may pass the analysis cut after shower. In fact, shower transverse momenta
larger than the one present in the initial Born process must be suppressed in the Monte
Carlo generator.

In recent POWHEG BOX revisions, both methods can be implemented at the same time.
We wanted in fact to be able to implement the following three options:

• Generate events using a transverse momentum generation cut.

• Generate events using a Born suppression factor, and a small transverse momentum
cut, just enough to avoid unphysical values of the strong coupling constant and of
the factorization scale that appears in the parton density functions.

• Apply a Born suppression factor, and set the transverse momentum cut to zero. In
this case the program cannot be used to generate events. It can be used, however,
to produce NLO fixed order distributions, provided the renormalization and factor-
ization scales are set in such a way that they remain large enough even at small kZ

T .
This feature is only used for the generation of fixed order distributions.

The generation cut is activated by setting the token bornktmin to the desired value in the
powheg.input file. The Born suppression is activated by setting the token bornsuppfact

– 12 –

to a positive real value. The process-specific subroutine born suppression sets the sup-
pression factor to k2

T /(k
2
T + bornsuppfact2). If bornsuppfact is negative, the suppression

factor is set to 1.
In the POWHEG approach, negative weighted events can only arise if one is approaching

a region where the NLO computation is no longer feasible. In our studies for the Z + 1j
process we approach this region at small transverse momentum. In order to better see
what happens there, rather than neglecting negative weights (that is the default behavior
of the POWHEG BOX), we have introduced a new feature in the program, that allows one
to track also the negative weighted events. This feature is activated by setting the token
withnegweights to 1 (true). If withnegweights is set to 1, events with negative weight
can thus appear in the Les Houches event file. While we normally set the IDWTUP flag in
the Les Houches interface to 3, in this case we set it to -4. With this flag, the SMC is
supposed to simply process the event, without taking any other action. Furthermore, the
XWGTUP (Les Houches) common block variable is set by the POWHEG BOX to the sign of the
event times the integral of the absolute value of the cross section, in such a way that its
average equals the true total cross section.

Notice that, if withnegweights is set and a Born suppression factor is also present,
the events will have variable XWGTUP of either signs. In this case XWGTUP is set to the sign of
the event, times the absolute value of the cross section, divided by the suppression factor
bornsuppfact. Also in this case the average value of XWGTUP coincides withe the true
total cross section. We preferred not to use the option -3 in case of signed events with
constant absolute value. This option is advocated by the Les Houches interface precisely in
such cases. However, the Les Houches interface does not provide a standard way to store
the integral of the absolute value of the cross section, that would be needed to compute
correctly the weight of the event. In fact, the XSECUP variable is reserved for the true
total cross section. More specifically, if we have N events of either sign, they should be
weighted with the sum of the positive plus the absolute value of the negative part of the
cross section, in such a way that

N∑
i=1

Wi

(
σ(+) + |σ(−)|

)
= N

(
σ(+) − |σ(−)|

)
= NσNLO, (5.2)

(where Wi are the sign of the event ±1), because∑
iWi

N
=

(
σ(+) − |σ(−)|

)(
σ(+) + |σ(−)|

) . (5.3)

Weighted events are also useful if one wants to generate a homogeneous sample from
relatively low up to very high transverse momenta. It is convenient in this case to pick a
very large bornsuppfact value, of the order of the maximum transverse momentum one is
interested in. The large momentum region will be more populated in this way.

5.2 The pdfreweight flag

Nowadays it is common practice to estimate uncertainties due to PDF’s by reweighting each
event with a weight equal to the ratio between the new and the reference PDF’s values.

– 13 –

This is done also when using SMC programs. In particular, the evaluation of PDF’s ratio is
performed by saving for each event the momentum fractions of the incoming partons which
are involved in the hard collision and the corresponding values of the reference PDF’s.
Strictly speaking, this procedure is not valid, since the result of a SMC does not depend
linearly on PDF’s, because these enter also in the Sudakov form factors. Nevertheless, it is
common belief that this procedure should capture the dominant part of uncertainties due
to PDF’s also in SMC simulations.

In this respect, the output of POWHEG is affected by the same problems of SMC’s, the
dependence on PDF’s being non-linear. Moreover, in POWHEG, the real contributions are
evaluated with different structure functions and different Feynman’ x’s, so that another
reason to doubt about this procedure is present.

Despite all the aforementioned caveat, we decided to make the information needed for
the reweighting procedure available also in POWHEG, to give the opportunity to perform such
studies.

In particular, when the token pdfreweight is set to 1, at the end of each event in the
LHEF a line is added. The format is the following:

#pdf id1 id2 x1 x2 xmufact xf1 xf2

Apart from the #pdf tag, the other numbers refer to the two id’s of the incoming par-
tons that enter the Born process (PDG conventions), to the two momentum fractions of
these partons, to the value of the factorization scale at which PDF’s were evaluated and,
finally, to the value of the PDF’s times the momentum fractions. With this information,
it should be straightforward to perform the reweighting procedure.

Before concluding this subsection, we would like to stress again that we cannot guaran-
tee that this reweighting procedure gives the same results one would obtain by performing
a completely new run, using different PDF’s from the very beginning.

5.3 The manyseeds flag

The run time needed to produce a large sample of events may become significant, especially
for complicated processes. To circumvent this problem, we introduced a feature that can be
used for running the POWHEG BOX on several nodes of a cluster and optimize the efficiency.

The relevant flag is manyseeds. When it is set to 1, the POWHEG BOX program looks
for a file named pwgseeds.dat and stops if this file is not found. The typical sequence of
operations to perform parallel runs is then the following one.

1. Prepare a powheg.input file with the manyseeds flag is set to 1. Set the number of
events nev to 0.

2. Prepare a file pwgseeds.dat, containing a sequence (one per line) of different random
number seeds. For example: first line 1, second line 2, etc. (but any number will do).

3. Run the pwhg main program. It will ask an integer for input. Input an integer. That
integer is the line number of the random seed to be used for the current run. Assuming

– 14 –

that the number 17 is given as input to the pwhg main program, the run will produce
files named pwgxgrid.dat and pwggrid-0017.dat. The pwhg main program can be run
with different integers as input. Each run can be sent, for example, to a different node
of a cluster.

At the end of this step, a bunch of pwggrid-[????].dat, pwgubound-[????].dat files
and pwgNLO-[????].top files will be present in the run directory. The pwgNLO-[????].top
files are statistically independent topdrawer histograms. They can be combined to pro-
vide a higher statistics NLO analysis of the current analysis routines.

If the subsequent runs are sent after the file pwgxgrid.dat was already produced, and
if the flag use-old-grid is set to one, the importance sampling grid will be loaded from
the pwgxgrid.dat. Otherwise it will be recreated.

4. Now set the nev token to a given number, make sure that the flag use-old-grid

is set to one, and run a bunch of copies of the pwhg main program, each with the
same integers as input. The program will now load all the pwggrid-[????].dat and
pwgubound-[????].dat that it can find, and combines them adequately, assuming that
they are all statistically independent, and will start to generate events. The events will
be in files pwgevent-[????].lhe, and they will all be independent statistically.

The sequence above is a quite simple two step procedure. It is useful, however, to better
clarify the logic that the POWHEG BOX follows in this procedure.

There are 3 steps in the initialization phase of POWHEG. First of all, an importance
sampling grid is determined. Let us call this stage ISG (Importance Sampling Grid). The
second step is the calculation of the integrals, and the determination of an upper bounding
envelope for the B̃ function, to be used for the generation of underlying Born configurations.
We call this stage the UBB (Upper Bounds for underlying Born). As a third step, the upper
bound normalization for radiation is determined. We call this stage UBR (Upper Bounds
for Radiation).

First of all, we remark that, if the use-old-grid flag is not set to 1, no grid file is
loaded. Similarly, if the use-old-ubound flag is not set to 1, no ubound file is loaded.
In other words, if these flags are set, looking for a corresponding file will always yield a
negative result. The reader should keep this in mind when reading the following procedure.
If the flag manyseeds is set, the pwhg main program asks for an integer. We will call cj
this integer, between 0 and 9999. We denote with [cj] the corresponding string of four
digits (leading digits are set to 0; thus if ic=1 [cj]=0001. We will denote as [????] any
four digit string. The logic of grid loading in POWHEG BOX is as follows:

1. If a file pwggrid.dat exist and is consistent, this file is loaded, and steps ISG and UBB
are skipped (go to 6).

2. If the above fails, if the manyseeds flag is not set, or if it is set and a file named
pwggrid-[cj].dat already exists and is consistent, all files of the form pwggrid-[????].dat

are loaded and suitably combined, and the steps ISG and UBB are skipped (go to 6).

– 15 –

3. If the above fails, if a file pwgxgrid.dat exist and is consistent, this file is loaded, and
steps ISG is skipped (go to 5).

4. Step ISG is performed. The resulting grid is stored in the file pwgxgrid.dat. This step,
whether the manyseeds flag is set or not, is performed using the default initial seed
value (i.e. not the seed found at the cj line of the pwgseeds.dat file). In this way, all
copies of the program being run will use the same importance sampling greed. This is
mandatory if we want to combine results.

5. Step UBB is performed. If the manyseeds flag is set, this step is performed using the
seed found at the cj line of the pwgseeds.dat file, and the result is stored in the file
pwggrid-[cj].dat. Otherwise, the current seed value is used, and the result is stored
in a file named pwggrid.dat.

6. If a file named pwgubound.dat exists and is consistent it is loaded. The UBR step is
skipped (goto 10).

7. If a file named pwgubound.dat exists and is consistent it is loaded. The UBR step is
skipped (goto 10).

8. If the above fails, if the manyseeds flag is not set, or if it is set and a file named
pwgubound-[cJ].dat exists and is consistent, all files with names of the form pwgubound-[????].dat

are loaded and combined. The UBR step is skipped (go to 10).

9. The UBR step is performed. If the manyseeds flag is not set, the result is stored in a
file named pwgubound.dat. Otherwise, it is stored in the file pwgubound-[cj].dat.

10. Now nev events are generated. If the manyseeds flag is not set, the result is stored in a
file named pwgevents.lhe. Otherwise, it is stored in the file pwgevents-[cj].dat.

This logic has the purpose to allow several possible combinations of actions. For example,
one can use grids generated in parallel runs to produce events without using the manyseeds
flag. Or one can use grids generated without the manyseeds flag for generating events in
parallel with the manyseeds flag set.

6. Counters and statistics

Several results relevant to the interpretation of the output of the run are written into the
files pwgstat.dat and pwgcounters.dat. The fraction of negative weights, the total cross
section, the number of upper bound failures in the generation of the inclusive cross section,
and the generation efficiency, together with failures and efficiency in the generation of hard
radiation, are printed there. These are quite self-explanatory and we do not comment them
any further. These numbers are sufficient to take action in case of problems, as explained
in sec. 4.

– 16 –

7. Random number generator

POWHEG BOX uses the RM48 random number generator, documented in the CERNLIB write-
ups. This generator has default initialization. If a user wishes to start the program with
different seeds, he/she should add lines similar to

! Random number generator initializing parameters

iseed 6093726 ! initialize random number sequence

rand1 -1 ! initialize random number sequence

rand2 -1 ! initialize random number sequence

to the input card. This results in a call to the rm48in(iseed,rand1,rand2) subroutine
that seeds the generator with the integer iseed, and skip the first rand1+rand2*10**8

numbers, as documented in the CERNLIB manual. This can be useful if one wants to
resume a previous run. In that case, one has simply to use as initializing values those
reported in the <prefix>-events.lhe file. If instead one just wants to change the seed
only, he/she can comment or skip the rand1 and rand2 lines in the input card.

We remind the reader that a change in the random number generator initialization
affects the POWHEG BOX random number sequence, both in the generation of events and in
NLO computation or upper bound searching, when the corresponding grids are not present.
If the program is interfaced to a SMC, the user should also take care to initialize the seeds
of the latter.

References

[1] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms,”
JHEP 0411 (2004) 040 [arXiv:hep-ph/0409146].

[2] S. Frixione, P. Nason and C. Oleari, “Matching NLO QCD computations with Parton Shower
simulations: the POWHEG method,” JHEP 0711 (2007) 070 [arXiv:0709.2092 [hep-ph]].

[3] S. Alioli, P. Nason, C. Oleari and E. Re, “A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX,” JHEP 1006, 043 (2010)
[arXiv:1002.2581 [hep-ph]].

[4] M. R. Whalley, D. Bourilkov and R. C. Group, “The Les Houches accord PDFs (LHAPDF)
and LHAGLUE,” [arXiv:hep-ph/0508110].

[5] M. Cacciari and G. P. Salam, “Dispelling the N3 myth for the kt jet-finder,” Phys. Lett. B
641, 57 (2006) [arXiv:hep-ph/0512210].

[6] E. Boos et al., “Generic user process interface for event generators,” [arXiv:hep-ph/0109068].

[7] J. Alwall et al., “A standard format for Les Houches event files,” Comput. Phys. Commun.
176 (2007) 300 [arXiv:hep-ph/0609017].

[8] T. Sjöstrand et al., in “Z physics at LEP1: Event generators and software,”, eds. G. Altarelli,
R. Kleiss and C. Verzegnassi, Vol 3, pg. 327.

[9] P. Nason, “MINT: a Computer Program for Adaptive Monte Carlo Integration and
Generation of Unweighted Distributions,” arXiv:0709.2085 [hep-ph].

– 17 –

