
Petr Kovář Petr Kovář

Red Hat Developer Toolset 2.x
Software Collections Guide

A guide to Software Collections for Red Hat Enterprise Linux





Red Hat Developer Toolset 2.x Software Collections Guide

A guide to Software Collections for Red Hat Enterprise Linux

Pet r Kovář
Red Hat  Engineering Cont ent  Services
pkovar@redhat .com



Legal Notice

Copyright 2013 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons

Attribution-ShareAlike 3.0 Unported License. If  you distribute this document, or a modif ied version of  it,

you must provide attribution to Red Hat, Inc. and provide a link to the original. If  the document is modif ied,

all Red Hat trademarks must be removed. Red Hat, as the licensor of  this document, waives the right to

enforce, and agrees not to assert, Section 4d of  CC-BY-SA to the fullest extent permitted by applicable

law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Inf inity Logo,

and RHCE are trademarks of  Red Hat, Inc., registered in the United States and other countries. Linux is

the registered trademark of  Linus Torvalds in the United States and other countries. Java is a registered

trademark of  Oracle and/or its aff iliates. XFS is a trademark of  Silicon Graphics International Corp. or its

subsidiaries in the United States and/or other countries. MySQL is a registered trademark of  MySQL AB

in the United States, the European Union and other countries. Node.js is an off icial trademark of  Joyent.

Red Hat Software Collections is not formally related to or endorsed by the off icial Joyent Node.js open

source or commercial project. The OpenStack Word Mark and OpenStack Logo are either registered

trademarks/service marks or trademarks/service marks of  the OpenStack Foundation, in the United

States and other countries and are used with the OpenStack Foundation's permission. We are not

aff iliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community. All

other trademarks are the property of  their respective owners.

Keywords

Abstract

The Software Collections Guide provides an explanation of  Software Collections and details how to build

and package them. Developers and system administrators who have a basic understanding of  software

packaging with RPM packages, but who are new to the concept of  Software Collections, can use this

Guide to get started with Software Collections.



4
4
4
5
6
6
6
7
7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8
8
8
9

10
10
10
10
11
11
11
11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12
12
12
13
13
14
14
14
14
15
15
16
17
17
18
19
21
21
21
22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23
23
23
23
24
25
26
27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

Preface
1. Document Conventions

1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. Getting Help and Giving Feedback
2.1. Do You Need Help?
2.2. We Need Feedback

3. Acknowledgments

Chapter 1. Introducing Software Collections
1.1. Why Package Software with RPM?
1.2. What Are Software Collections?
1.3. Enabling Support for Software Collections
1.4. Installing a Software Collection
1.5. Listing Installed Software Collections
1.6. Enabling a Software Collection

1.6.1. Running an Application Directly
1.6.2. Running a Shell with Multiple Software Collections Enabled
1.6.3. Running Commands Stored in a File

1.7. Listing Enabled Software Collections
1.8. Uninstalling a Software Collection

Chapter 2. Packaging Software Collections
2.1. Creating Your Own Software Collections
2.2. The File System Hierarchy
2.3. The Software Collection Root Directory
2.4. The Software Collection Prefix
2.5. Software Collection Package Names
2.6. Software Collection Scriptlets
2.7. Package Layout

2.7.1. Metapackage
2.7.2. Creating a Metapackage

Example of the Metapackage
2.8. Software Collection Macros

2.8.1. Macros Specific to a Software Collection
2.8.2. Macros Not Specific to a Software Collection

2.9. Converting a Conventional Spec File
Example of the Converted Spec File

2.10. Uninstalling all Software Collection directories
2.11. Using a Software Collection in Your Application
2.12. Building a Software Collection

2.12.1. Rebuilding a Software Collection without build subpackages

Chapter 3. Advanced Topics
3.1. Software Collection Initscript Support
3.2. Software Collection Library Support

3.2.1. Using a Library Outside of the Software Collection
3.2.2. Prefixing the Library Major soname with the Software Collection Name

3.3. Software Collection .pc Files Support
3.4. Software Collection manpath Support
3.5. Software Collection cronjob Support

Table of Contents 

1



28
28
29
29
29
29
30
31

32
32
32
32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6. Software Collection Log File Support
3.7. Software Collection logrotate Support
3.8. Software Collection Lock File Support
3.9. Software Collection Configuration Files Support
3.10. Software Collection Kernel Module Support
3.11. Software Collection SELinux Support
3.12. Software Collection Macro Files Support
3.13. Packaging Wrappers for Software Collections

Chapter 4 . Getting More Information
4.1. Red Hat Enterprise Linux Developer Program
4.2. Installed Documentation
4.3. Accessing Red Hat Documentation

Revision History

Red Hat Developer Toolset 2.x Software Collections Guide

2



Table of Contents 

3



Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later include the Liberation
Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part of
a key combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first example highlights a particular key to press. The second example highlights a key combination:
a set of three keys pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem  for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse  from the main menu bar to launch Mouse
Preferences. In the Buttons tab, select the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit  file, choose Applications → Accessories →

Red Hat Developer Toolset 2.x Software Collections Guide

4

https://fedorahosted.org/liberation-fonts/


Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit  → Paste  from the gedit  menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com  and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

Preface 

5



static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
                 struct kvm_assigned_pci_dev *assigned_dev)
{
         int r = 0;
         struct kvm_assigned_dev_kernel *match;

         mutex_lock(&kvm->lock);

         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
                                       assigned_dev->assigned_dev_id);
         if (!match) {
                 printk(KERN_INFO "%s: device hasn't been assigned before, "
                   "so cannot be deassigned\n", __func__);
                 r = -EINVAL;
                 goto out;
         }

         kvm_deassign_device(kvm, match);

         kvm_free_assigned_device(kvm, match);

out:
         mutex_unlock(&kvm->lock);
         return r;
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer

Red Hat Developer Toolset 2.x Software Collections Guide

6



Portal at http://access.redhat.com. Through the customer portal, you can:

search or browse through a knowledgebase of technical support articles about Red Hat products.

submit a support case to Red Hat Global Support Services (GSS).

access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you. Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Developer Toolset.

When submitting a bug report, be sure to mention the manual's identifier: doc-
Software_Collections_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

3. Acknowledgments
The author of this book would like to thank the following people for their valuable contributions: Jindř ich
Nový, Marcela Mašláňová, Bohuslav Kabrda, Honza Horák, Jan Zelený, Martin Čermák, Langdon White,
Florian Nadge, Stephen Wadeley, Douglas Silas, and Vít Ondruch, among many others.

Preface 

7

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/


Chapter 1. Introducing Software Collections
This chapter introduces you to the concept and usage of Software Collections or SCLs for short.

1.1. Why Package Software with RPM?
The RPM Package Manager (RPM) is a package management system that runs on Red Hat Enterprise
Linux. RPM makes it easier for you to distribute, manage, and update software that you create for Red
Hat Enterprise Linux. Many software vendors distribute their software via a conventional archive file
(such as a tarball). However, there are several advantages in packaging software into RPM packages.
These advantages are outlined below.

With RPM, you can:

Install, reinstall, remove, upgrade and verify packages.
Users can use standard package management tools (for example Yum or PackageKit) to
install, reinstall, remove, upgrade and verify your RPM packages.

Use a database of installed packages to query and verify packages.
Because RPM maintains a database of installed packages and their files, users can easily
query and verify packages on their system.

Use metadata to describe packages, their installation instructions, and so on.
Each RPM package includes metadata that describes the package's components, version,
release, size, project URL, installation instructions, and so on.

Package pristine software sources into source and binary packages.
RPM allows you to take pristine software sources and package them into source and binary
packages for your users. In source packages, you have the pristine sources along with any
patches that were used, plus complete build instructions. This design eases the maintenance
of the packages as new versions of your software are released.

Add packages to Yum repositories.
You can add your package to a Yum repository that enables clients to easily find and deploy
your software.

Digitally sign your packages.
Using a GPG signing key, you can digitally sign your package so that users are able to verify
the authenticity of the package.

For in-depth information on what is RPM and how to use it, refer to the Red Hat Enterprise Linux 6
Deployment Guide or the Red Hat Enterprise Linux 5 Deployment Guide.

1.2. What Are Software Collections?
With Software Collections, you can build and concurrently install multiple versions of the same software
components on your system. Software Collections have no impact on the system versions of the
packages installed by any of the conventional RPM package management utilities.

Red Hat Developer Toolset 2.x Software Collections Guide

8

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html


Software Collections:

Do not overwrite system files
Software Collections are distributed as a set of several components, which provide their full
functionality without overwriting system files.

Are designed to avoid conflicts with system files
Software Collections make use of a special file system hierarchy to avoid possible conflicts
between a single Software Collection and the base system installation.

Require no changes to the RPM package manager
Software Collections require no changes to the RPM package manager present on the host
system.

Need only minor changes to the spec file
To convert a conventional package to a single Software Collection, you only need to make minor
changes to the package spec file.

Allow you to build a conventional package and a Software Collection package with a
single spec file

With a single spec file, you can build both the conventional package and the Software Collection
package.

Uniquely name all included packages
With Software Collection's namespace, all packages included in the Software Collection are
uniquely named.

Do not conflict with updated packages
Software Collection's namespace ensures that updating packages on your system causes no
conflicts.

Can depend on other Software Collections
Because one Software Collection can depend on another, you can define multiple levels of
dependencies.

1.3. Enabling Support for Software Collections
To enable support for Software Collections on your system so that you can enable and build Software
Collections, you need to have installed the packages scl-utils and scl-utils-build.

If the packages scl-utils and scl-utils-build are not already installed on your system, you can install them
by typing the following at a shell prompt as root:

yum install scl-utils scl-utils-build

The scl-utils package provides the scl tool that lets you enable Software Collections on your system. For

Chapter 1. Introducing Software Collections 

9



more information on enabling Software Collections, refer to Section 1.6, “Enabling a Software Collection”.

The scl-utils-build package provides macros that are essential for building Software Collections. For
more information on building Software Collections, refer to Section 2.12, “Building a Software Collection”.

1.4. Installing a Software Collection
To ensure that a Software Collection is on your system, install the so-called metapackage of the
Software Collection. You can use conventional tools like Yum or PackageKit  for this task because
Software Collections are fully compatible with the RPM Package Manager.

For example, to install a Software Collection with the metapackage named software_collection_1,
run the following command:

 yum install software_collection_1 

This command will automatically install all the packages that are part of the Software Collection. Also, if
you install an application that depends on a Software Collection, the Software Collection will be installed
along with the rest of the application's dependencies.

For detailed information on Software Collection metapackages, see Section 2.7.1, “Metapackage”.

For detailed information on Yum and PackageKit  usage, see the Red Hat Enterprise Linux 6
Deployment Guide.

1.5. Listing Installed Software Collections
To get a list of Software Collections that are currently installed on the system, run the following
command:

 scl --list 

1.6. Enabling a Software Collection
The scl tool is used to enable a Software Collection and to run applications in the Software Collection
environment.

General usage of the scl tool can be described using the following syntax:

 scl action software_collection_1 software_collection_2 command 

1.6.1. Running an Application Directly
For example, to directly run Perl with the --version option in the Software Collection named
software_collection_1 , execute the following command:

 scl enable software_collection_1 'perl --version' 

Alternatively, you can create a wrapper script that shortens the commands for running applications in the
Software Collection environment. For more information on wrappers, see Section 3.13, “Packaging
Wrappers for Software Collections”.

Red Hat Developer Toolset 2.x Software Collections Guide

10

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


1.6.2. Running a Shell with Multiple Software Collections Enabled
To run the Bash shell in the environment with multiple Software Collections enabled, execute the
following command:

 scl enable software_collection_1 software_collection_2 bash 

The command above enables two Software Collections, named software_collection_1  and
software_collection_2 , and runs a child process (subshell) of the shell. Running the command again
then creates a subshell of the subshell.

See Section 1.7, “Listing Enabled Software Collections” for information on how to list enabled Software
Collections for the current subshell.

1.6.3. Running Commands Stored in a File
To execute a number of commands, which are stored in a file, in the Software Collection environment,
run the following command:

 cat cmd | scl enable software_collection_1 - 

The command above executes commands, which are stored in the cmd file, in the environment of the
Software Collection named software_collection_1 .

1.7. Listing Enabled Software Collections
To get a list of Software Collections that are enabled in the current session, print the $X_SCLS
environment variable by running the following command:

echo $X_SCLS 

1.8. Uninstalling a Software Collection
You can use conventional tools like Yum or PackageKit  when uninstalling a Software Collection
because Software Collections are fully compatible with the RPM Package Manager. For example, to
uninstall all packages and subpackages that are part of a Software Collection named 
software_collection_1, run the following command:

 yum remove software_collection_1\* 

You can also use the yum remove command to remove the scl utility.

For detailed information on Yum and PackageKit  usage, refer to the Red Hat Enterprise Linux 6
Deployment Guide.

Chapter 1. Introducing Software Collections 

11

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


Chapter 2. Packaging Software Collections
This chapter introduces you to packaging Software Collections.

2.1. Creating Your Own Software Collections
In general, you can use one of the following two approaches to deploy an application that depends on an
existing Software Collection:

install all required Software Collections and packages manually and then deploy your application, or

create a new Software Collection for your application.

When creating a new Software Collection for your application:

Create a Software Collection metapackage
Each Software Collection includes a metapackage, which installs a minimal subset of essential
packages. See Section 2.7.1, “Metapackage” for more information on creating metapackages.

Specify the location of the Software Collection root directory
Ensure that the location of the Software Collection root directory is specified by setting the 
%_scl_prefix macro in the Software Collection spec file. For more information, see
Section 2.3, “The Software Collection Root Directory”.

Prefix the name of your Software Collection packages
Ensure that the name of your Software Collection packages is prefixed with the vendor and
Software Collection's name. For more information, see Section 2.4, “The Software Collection
Prefix”.

Specify all Software Collections and other packages required by your application as
dependencies

Ensure that all Software Collections and other packages required by your application are
specified as dependencies of your Software Collection. For more information, see Section 2.11,
“Using a Software Collection in Your Application”.

Convert existing conventional packages or create new Software Collection packages
Ensure that all macros in your Software Collection package spec files use conditionals. See
Section 2.9, “Converting a Conventional Spec File” for more information on how to convert an
existing package spec file.

Build your Software Collection
After you create the Software Collection metapackage and convert or create packages for your
Software Collection, you can build the Software Collection with the rpmbuild utility. For more
information, see Section 2.12, “Building a Software Collection”.

2.2. The File System Hierarchy
The root directory of Software Collections is normally located in the /opt/ directory to avoid possible

Red Hat Developer Toolset 2.x Software Collections Guide

12



conflicts between Software Collections and the base system installation. The use of the /opt/ directory
is recommended by the Filesystem Hierarchy Standard (FHS).

Below is an example of the file system hierarchy layout with two Software Collections, Software 
Collection 1 and Software Collection 2:

opt
`-- provider
    |-- Software Collection 1
    |   |-- Software Collection root directory
    |   `-- Software Collection scriptlets
    |
    `-- Software Collection 2
        |-- Software Collection root directory
        `-- Software Collection scriptlets

As you can see in the example above, each of the Software Collections directories contains two
subdirectories: the Software Collection root directory and a directory containing the Software Collection
scriptlets. For more information on the Software Collection scriptlets, refer to Section 2.6, “Software
Collection Scriptlets”.

2.3. The Software Collection Root Directory
You can change the location of the root directory by setting the %_scl_prefix macro in the spec file,
as in the following example:

%_scl_prefix /opt/provider

where provider is the provider (vendor) name registered, where applicable, with the Linux Foundation
and the subordinated Linux Assigned Names and Numbers Authority (LANANA), in conformance with the
Filesystem Hierarchy Standard.

Each organization or project that builds and distributes Software Collections should use its own provider
name, which conforms to the Filesystem Hierarchy Standard (FHS) and avoids possible conflicts
between Software Collections and the base system installation.

You are advised to make the file system hierarchy conform to the following layout:

/opt/provider/prefix-application-version/

For more information on the Filesystem Hierarchy Standard, see http://www.pathname.com/fhs/.

For more information on the Linux Assigned Names and Numbers Authority, see http://www.lanana.org/.

2.4. The Software Collection Prefix
When naming your Software Collection, it is important to prefix the name of your Software Collection as
described below in order to avoid possible name conflicts with the system versions of the packages that
are part of your Software Collection.

The Software Collection prefix consists of two parts:

the provider part, which defines the provider name, and

the name of the Software Collection itself.

Chapter 2. Packaging Software Collections 

13

http://www.pathname.com/fhs/
http://www.lanana.org/


These two parts of the Software Collection prefix are separated by an underscore (_), as in the following
example:

myorganization_ruby193

In this example, myorganization is the provider name, and ruby193 is the name of the Software
Collection.

2.5. Software Collection Package Names
The Software Collection package name consists of two parts:

the prefix part, discussed in Section 2.4, “The Software Collection Prefix”, and

the name and version number of the application that is a part of the Software Collection.

These two parts of the Software Collection package name are separated by a dash (-), as in the
following example:

myorganization_ruby193-foreman-1.1

In this example, myorganization_ruby193 is the prefix, and foreman-1.1 is the name and version
number of the application.

2.6. Software Collection Scriptlets
The Software Collection scriptlets are simple shell scripts that change the current system environment
so that the group of packages in the Software Collection is preferred over the corresponding group of
conventional packages installed on the system.

To utilize the Software Collection scriptlets, use the scl tool. For more information on scl, refer to
Section 1.6, “Enabling a Software Collection”.

2.7. Package Layout
Each Software Collection's layout consists of the metapackage, which installs a subset of other
packages, and a number of the Software Collection's packages, which are installed within the Software
Collection namespace.

2.7.1. Metapackage
Each Software Collection includes a metapackage, which installs a minimal subset of essential
packages. For example, the essential packages can provide the Perl language interpreter, but no Perl
extension modules. The metapackage contains a basic file system hierarchy and delivers a number of
the Software Collection's scriptlets.

The purpose of the metapackage is to make sure that all essential packages in the Software Collection
are properly installed and that it is possible to enable the Software Collection.

The metapackage produces the following packages that are also part of the Software Collection:

The main package: %scl
The main package in the Software Collection contains dependencies of the base packages,
which are included in the Software Collection. The main package does not contain any files.

Red Hat Developer Toolset 2.x Software Collections Guide

14



For example, if the name of the Software Collection is myorganization_ruby193, then the
main package macro is expanded to:

myorganization_ruby193

The runtime subpackage: name-runtime
The runtime subpackage in the Software Collection owns the Software Collection's file system
and delivers the Software Collection's scriptlets.

For example, if the name of the Software Collection is myorganization_ruby193, then the
runtime subpackage macro is expanded to:

myorganization_ruby193-runtime

The build subpackage: name-build
The build subpackage in the Software Collection delivers the Software Collection's build
configuration. The build subpackage is optional and can be excluded from the Software
Collection.

For example, if the name of the Software Collection is myorganization_ruby193, then the
build subpackage macro is expanded to:

myorganization_ruby193-build

2.7.2. Creating a Metapackage
When creating a new metapackage:

You are advised to add Requires: scl-utils-build to the build subpackage.

Add any macros you need to use to the macros.%{scl}-config file in the build subpackage.

You are not required to use conditionals for Software Collection-specific macros in the metapackage.

Consider specifying all packages in your Software Collection that are essential for the Software
Collection run time as dependencies of the metapackage. That way you can ensure that the
packages are installed with the Software Collection metapackage.

Include any path redefinition that the packages in your Software Collection may require in the 
enable scriptlet.

For example, to run Software Collection binary files, add 
PATH=%{_bindir}\${PATH:+:\${PATH}} to the enable scriptlet.

Always make sure that the metapackage spec file contains the %setup -c -T  command in the 
%prep section, otherwise building the metapackage will fail.

This is because the %setup command defines and creates the %buildsubdir directory, which is
normally used for storing temporary files at build time. If you do not define %setup in your
metapackage spec file, files in the %buildsubdir directory will be overwritten, causing the build to
fail.

Example of the Metapackage
To get an idea of what a typical Software Collection metapackage looks like, see the following example:

Chapter 2. Packaging Software Collections 

15



%global scl software_collection
%scl_package %scl
%_scl_prefix /opt/myorganization

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
Requires: %{scl_prefix}less
BuildRequires: scl-utils-build

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build

%description build
Package shipping essential configuration macros to build %scl Software Collection.

%prep
%setup -c -T

%install
rm -rf %{buildroot}
mkdir -p %{buildroot}%{_scl_scripts}/root
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH=%{_bindir}\${PATH:+:\${PATH}}
EOF
%scl_install

%files

%files runtime
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%changelog
* Fri Aug 30 2013 John Doe <jdoe@example.com> 1-1
- Initial package

2.8. Software Collection Macros
The Software Collection packaging macro scl relocates the file structure, which is part of the Software
Collection, to a file system that is used exclusively by the Software Collection.

The scl macro also defines files ownership for the Software Collection's metapackage and provides

Red Hat Developer Toolset 2.x Software Collections Guide

16



additional packaging macros to use in the Software Collection environment.

When using Software Collection macros in the spec file, you must prefix them with %{?scl:macro}, as
in the following example:

%{?scl:Requires:%scl_runtime}

In the example above, the %scl_runtime macro is the value of the Requires tag. Both the macro and
the tag use the %{?scl: prefix.

2.8.1. Macros Specific to a Software Collection
The table below shows a list of all macros specific to a particular Software Collection.

Table 2.1. Software Collection Specific Macros

Macro Description Example value

%scl_name name of the Software Collection software_collection_1

%scl_prefix name of the Software Collection
with a dash appended at the
end

software_collection_1-

%pkg_name name of the original package perl

%_scl_prefix root of the Software Collection
(not package's root)

/opt/provider/

%_scl_scripts location of Software Collection's
scriptlets

/opt/provider/software_c
ollection_1/

%_scl_root installation root (install-root) of
the package

/opt/provider/software_c
ollection_1/root/

%_scl_require_package depend on a particular package
from the Software Collection

software_collection_1-
package_2

2.8.2. Macros Not Specific to a Software Collection
The table below shows a list of macros that are not specific to a particular Software Collection. Because
these macros are not relocated and do not point to the Software Collection file system, they allow you to
point to the system root file system. These macros use _root as a prefix.

Chapter 2. Packaging Software Collections 

17



Table 2.2. Software Collection Non-Specific Macros

Macro Description Relocated Example value

%_root_prefix Software Collection's 
%_prefix macro

no /usr/

%_root_exec_prefi
x

Software Collection's 
%_exec_prefix
macro

no /usr/

%_root_bindir Software Collection's 
%_bindir macro

no /usr/bin/

%_root_sbindir Software Collection's 
%_sbindir macro

no /usr/sbin/

%_root_datadir Software Collection's 
%_datadir macro

no /usr/share/

%_root_sysconfdir Software Collection's 
%_sysconfdir macro

no /etc/

%_root_libexecdir Software Collection's 
%_libexecdir macro

no /usr/libexec/

%_root_sharedstat
edir

Software Collection's 
%_sharedstatedir
macro

no /usr/com/

%_root_localstate
dir

Software Collection's 
%_localstatedir
macro

no /usr/var/

%_root_includedir Software Collection's 
%_includedir macro

no /usr/include/

%_root_infodir Software Collection's 
%_infodir macro

no /usr/share/info/

%_root_mandir Software Collection's 
%_mandir macro

no /usr/share/man/

%_root_initddir Software Collection's 
%_initddir macro

no /etc/rc.d/init.d/

%_root_libdir Software Collection's 
%_libdir macro, this
macro does not work if
Software Collection's
metapackage is
platform-independent

no /usr/lib/

2.9. Converting a Conventional Spec File
The following steps show how to convert a conventional spec file into a Software Collection spec file so
that the Software Collection spec file that you can use in both the conventional package and the
Software Collection.

Procedure 2.1. Converting a Conventional Spec File into a Software Collection Spec File

1. Add the %scl_package macro to the spec file. Place the macro in front of the spec file preamble

Red Hat Developer Toolset 2.x Software Collections Guide

18



as follows:

%{?scl:%scl_package package_name}

2. You are advised to define the %pkg_name macro in the spec file in case the package is not built
for the Software Collection:

%{!?scl:%global pkg_name %{name}}

Consequently, you can use the %pkg_name macro to define the original name of the package
wherever it is needed in the spec file that you can then use for building both the conventional
package and the Software Collection.

3. Change the Name tag in the spec file preamble as follows:

Name: %{?scl_prefix}package_name

4. To check that all essential Software Collection's packages are dependencies of the main
metapackage, add the following macro after the BuildRequires or Requires tags in the spec
file:

%{?scl:Requires: %scl_runtime}

5. Prefix the Obsoletes, Conflicts and BuildConflicts tags with %{?scl_prefix}. This is
to ensure that the Software Collection can be used to deploy new packages to older systems
without having the packages specified, for example, by Obsolete removed from the base system
installation. For example:

Obsoletes: %{?scl_prefix}lesspipe < 1.0

6. Prefix the Provides tag with %{?scl_prefix}, as in the following example:

Provides: %{?scl_prefix}more

7. For any subpackages that define their name with the -n option, prefix their name with %{?
scl_prefix}, as in the following example:

%package -n %{?scl_prefix}more

8. Edit the %setup macro in the %prep section of the spec file so that the macro can deal with a
different package name in the Software Collection environment:

%setup -q -n %{pkg_name}-%{version}

Example of the Converted Spec File
To see what the diff file comparing a conventional spec file with a converted spec file looks like, see the
following example:

Chapter 2. Packaging Software Collections 

19



--- a/less.spec
+++ b/less.spec
@@ -1,10 +1,13 @@
+%{?scl:%scl_package less}
+%{!?scl:%global pkg_name %{name}}
+
 Summary: A text file browser similar to more, but better
-Name: less
+Name: %{?scl_prefix}less
 Version: 444
 Release: 7%{?dist}
 License: GPLv3+
 Group: Applications/Text
-Source: http://www.greenwoodsoftware.com/less/%{name}-%{version}.tar.gz
+Source: http://www.greenwoodsoftware.com/less/%{pkg_name}-%{version}.tar.gz
 Source1: lesspipe.sh
 Source2: less.sh
 Source3: less.csh
@@ -19,6 +22,7 @@ URL: http://www.greenwoodsoftware.com/less/
 Requires: groff
 BuildRequires: ncurses-devel
 BuildRequires: autoconf automake libtool
-Obsoletes: lesspipe < 1.0
+Obsoletes: %{?scl_prefix}lesspipe < 1.0
+%{?scl:Requires: %scl_runtime}
 
 %description
 The less utility is a text file browser that resembles more, but has
@@ -31,7 +35,7 @@ You should install less because it is a basic utility for 
viewing text
 files, and you'll use it frequently.
 
 %prep
-%setup -q
+%setup -q -n %{pkg_name}-%{version}
 %patch1 -p1 -b .Foption
 %patch2 -p1 -b .search
 %patch4 -p1 -b .time
@@ -51,16 +55,16 @@ make CC="gcc $RPM_OPT_FLAGS -D_GNU_SOURCE -
D_LARGEFILE_SOURCE -D_LARGEFILE64_SOU
 %install
 rm -rf $RPM_BUILD_ROOT
 make DESTDIR=$RPM_BUILD_ROOT install
-mkdir -p $RPM_BUILD_ROOT/etc/profile.d
+mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 install -p -c -m 755 %{SOURCE1} $RPM_BUILD_ROOT/%{_bindir}
-install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT/etc/profile.d
-install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT/etc/profile.d
-ls -la $RPM_BUILD_ROOT/etc/profile.d
+install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+ls -la $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 
 %files
 %defattr(-,root,root,-)
 %doc LICENSE
-/etc/profile.d/*
+%{_sysconfdir}/profile.d/*
 %{_bindir}/*
 %{_mandir}/man1/*

Red Hat Developer Toolset 2.x Software Collections Guide

20



2.10. Uninstalling all Software Collection directories
Keep in mind that the yum remove command does not uninstall directories provided by those Software
Collection packages and subpackages that are removed after the Software Collection runtime
subpackage is removed.

To ensure that all directories are uninstalled, make those packages and subpackages depend on the
runtime subpackage. To do so, add the following line to the spec file of each of those packages and
subpackages:

%{?scl:Requires: %{scl}-runtime}

Adding the above line ensures that all directories provided by those packages and subpackages are
removed correctly as long as the runtime subpackage does not depend on any of those packages and
subpackages.

2.11. Using a Software Collection in Your Application
To use a Software Collection in your application, you need to adjust the BuildRequires and 
Requires tags in your application's spec file so that these tags properly define dependencies on
Software Collections.

For example, to define dependencies on two Software Collections named software_collection_1  and
software_collection_2 , add the following three lines to your application's spec file:

BuildRequires: scl-utils-build
Requires: %scl_require software_collection_1
Requires: %scl_require software_collection_2

Ensure that the spec file also contains the %scl_package macro in front of the spec file preamble, for
example:

%{?scl:%scl_package less}

Note that the %scl_package macro must be included in every spec file of your Software Collection.

You can also use the %scl_require_package macro to define dependencies on a particular package
from a specific Software Collection, as in the following example:

BuildRequires: scl-utils-build
Requires: %scl_require_package software_collection_1 package_name

2.12. Building a Software Collection
To build a Software Collection on your system, run the following command:

 rpmbuild -ba package.spec --define 'scl name' 

The difference between the command shown above and the standard command to build conventional
packages (rpmbuild -ba package.spec) is that you have to append the --define option to the 

Chapter 2. Packaging Software Collections 

21



rpmbuild command when building a Software Collection.

The --define option defines the scl macro, which uses the Software Collection configured in the
Software Collection spec file (package.spec).

2.12.1. Rebuilding a Software Collection without build subpackages
If you wish to rebuild a Software Collection that is distributed without build subpackages
(software_collection-build) and you do not want or cannot use the rpmbuild -ba package.spec --
define 'scl name' command to build the Software Collection, you can have the build subpackages
created by rebuilding the Software Collection metapackage. Note that you need to have the scl-utils-build
package installed on your system, otherwise rebuilding the Software Collection metapackage with the 
rpmbuild command will fail.

Red Hat Developer Toolset 2.x Software Collections Guide

22



Chapter 3. Advanced Topics
This chapter discusses advanced topics on packaging Software Collections.

3.1. Software Collection Initscript Support
Ensure that users can directly manage any services provided by the Software Collection or one of the
associated applications with the system default tools, like service  or chkconfig.

To avoid possible name conflicts with the system versions of the services that are part of the Software
Collection, make sure to adjust the %install section of the spec file as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/rc.d/init.d/%{?scl_prefix}service_name

With this configuration in place, you can then refer to the version of the service included in the Software
Collection as follows:

%{?scl_prefix}service_name

3.2. Software Collection Library Support
In case you distribute libraries that you intend to use only in the Software Collection environment or in
addition to the libraries available on the system, adjust the LD_LIBRARY_PATH environment variable in
the spec file as follows:

export LD_LIBRARY_PATH=%{_libdir}${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

This configuration ensures that the version of the library in the Software Collection is preferred over the
version of the library available on the system if the Software Collection is enabled.

Note

In case you distribute a private shared library in the Software Collection, consider using the 
DT_RUNPATH attribute instead of the LD_LIBRARY_PATH environment variable to make the
private shared library accessible in the Software Collection environment.

3.2.1. Using a Library Outside of the Software Collection
If you distribute libraries that you intend to use outside of the Software Collection environment, you can
use the directory /etc/ld.so.conf.d/ for this purpose.

Chapter 3. Advanced Topics 

23



Warning

Do not use /etc/ld.so.conf.d/ for libraries already available on the system. Using 
/etc/ld.so.conf.d/ is only recommended for a library that is not available on the system, as
otherwise the version of the library in the Software Collection might get preference over the
system version of the library. That could lead to undesired behavior of the system versions of the
applications, including unexpected termination and data loss.

Procedure 3.1. Using /etc/ld.so.conf.d/ for libraries in the Software Collection

1. Create a file named libs.conf and adjust the spec file configuration accordingly:

SOURCE2: %{?scl_prefix}libs.conf

2. In the libs.conf file, include a list of directories where the versions of the libraries associated
with the Software Collection are located. For example:

/opt/provider/software_collection_1/root/usr/lib64/

In the example above, the /usr/lib64/ directory that is part of the Software Collection
software_collection_1  is included in the list.

3. Edit the %install section of the spec file, so the libs.conf file is installed as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/ld.so.conf.d/

3.2.2. Prefixing the Library Major soname with the Software Collection Name
When using libraries included in the Software Collection, always remember that a library with the same
major soname can already be available on the system as a part of the base system installation. It is thus
important not to forget to use the scl enable command when building an application against a library
included in the Software Collection. Failing to do so may result in the application being executed in an
incorrect environment, linked against the incorrect system version of the library.

Warning

Keep in mind that executing your application in an incorrect environment (for example in the
system environment instead of the Software Collection environment) as well as linking your
application against an incorrect library can lead to undesired behavior of your application,
including unexpected termination and data loss.

To ensure that your application is not linked against an incorrect library even if the LD_LIBRARY_PATH
environment variable has not been set properly, change the major soname of the library included in the
Software Collection. The recommended way to change the major soname is to prefix the major soname
version number with the Software Collection name.

Below is an example of the MySQL client library with the mysql55- prefix:

Red Hat Developer Toolset 2.x Software Collections Guide

24



$ rpm -ql mysql55-mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.mysql55-18
/usr/lib64/mysql/libmysqlclient.so.mysql55-18.0.0

On the same system, the system version of the MySQL client library is listed below:

$ rpm -ql mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.18
/usr/lib64/mysql/libmysqlclient.so.18.0.0

3.3. Software Collection .pc Files Support
The .pc files are special metadata files used by the pkg-config program to store information about
libraries available on the system. In case you distribute .pc files that you intend to use only in the
Software Collection environment or in addition to the .pc files installed on the system, adjust the 
PKG_CONFIG_PATH environment variable. Depending on what is defined in your .pc files, adjust the 
PKG_CONFIG_PATH environment variable for the %{_libdir} macro (which expands to the library
directory, typically /usr/lib/ or /usr/lib64/), or for the %{_datadir} macro (which expands to
the share directory, typically /usr/share/).

If the library directory is defined in your .pc files, adjust the PKG_CONFIG_PATH environment variable in
the spec file as follows:

export PKG_CONFIG_PATH=%{_libdir}/pkgconfig:\$PKG_CONFIG_PATH

If the share directory is defined in your .pc files, adjust the PKG_CONFIG_PATH environment variable in
the spec file as follows:

export PKG_CONFIG_PATH=%{_datadir}/pkgconfig:\$PKG_CONFIG_PATH

This configuration ensures that the .pc files in the Software Collection are preferred over the .pc files
available on the system if the Software Collection is enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the .pc files are visible to
the system even if the Software Collection is disabled.

To allow your system to use .pc files from the disabled Software Collection, update the 
PKG_CONFIG_PATH environment variable with the paths to the .pc files associated with the Software
Collection. Depending on what is defined in your .pc files, adjust the PKG_CONFIG_PATH environment
variable for the %{_libdir} macro (which expands to the library directory), or for the %{_datadir}
macro (which expands to the share directory).

Procedure 3.2. Updating the PKG_CONFIG_PATH environment variable for %{_libdir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_libdir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on the
system.

For example, create the following file:

%{?scl_prefix}pc-libdir.sh

2. Use the pc-libdir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to

Chapter 3. Advanced Topics 

25



your .pc files:

export 
PKG_CONFIG_PATH=%{_libdir}/pkgconfig:/opt/provider/software_collection/path
/to/your/pc_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-libdir.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

Procedure 3.3. Updating the PKG_CONFIG_PATH environment variable for %{_datadir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_datadir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on the
system.

For example, create the following file:

%{?scl_prefix}pc-datadir.sh

2. Use the pc-datadir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to
your .pc files:

export 
PKG_CONFIG_PATH=%{_datadir}/pkgconfig:/opt/provider/software_collection/path
/to/your/pc_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-datadir.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

3.4. Software Collection manpath Support
To allow the man command on the system to display manual pages from the enabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages that are
associated with the Software Collection.

To update the MANPATH environment variable, add the following line to the spec file:

export MANPATH=%{_mandir}:\${MANPATH}

Red Hat Developer Toolset 2.x Software Collections Guide

26



This update relocates the %{_mandir} macro to the Software Collection path. So that the manual
pages associated with the Software Collection are not visible as long as the Software Collection is not
enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the manual pages are
visible to the system even if the Software Collection is disabled.

To allow the man command on the system to display manual pages from the disabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages associated
with the Software Collection.

Procedure 3.4 . Updating the MANPATH environment variable for the disabled Software
Collection

1. To update the MANPATH environment variable, create a custom script 
/etc/profile.d/name.sh. The script is preloaded when a shell is started on the system.

For example, create the following file:

%{?scl_prefix}manpage.sh

2. Use the manpage.sh short script that modifies the MANPATH variable to refer to your man path
directory:

export 
MANPATH=/opt/provider/software_collection/path/to/your/man_pages:${MANPATH}

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}manpage.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/profile.d/

3.5. Software Collection cronjob Support
With your Software Collection, you can run regular tasks on the system either with a dedicated service or
with cronjobs. If you intend to use a dedicated service, refer to Section 3.1, “Software Collection Initscript
Support” on how to work with initscripts in the Software Collection environment.

Procedure 3.5. Running regular tasks with cronjobs

1. To use cronjobs for running regular tasks, place a crontab file for your Software Collection in
the /etc/cron.d/ directory with the Software Collection's name.

For example, create the following file:

%{?scl_prefix}crontab

2. Ensure that the contents of the crontab file follow the standard crontab file format, as in the

Chapter 3. Advanced Topics 

27



following example:

0 1 * * Sun root 
/opt/provider/software_collection/architecture/usr/bin/cron_job_name

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}crontab

4. Install the file into the system directory /etc/cron.d/ by adjusting the %install section of the
Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/cron.d/

3.6. Software Collection Log File Support
By default, programs packaged in a Software Collection create log files in the 
/opt/provider/software_collection/root/var/log/ directory. Consider creating the log files
outside of the Software Collection file system hierarchy, that is in the /var/log/ system directory.
When using the system directory, all log files are stored in the same location, which makes it easier for
users to locate and manage them.

3.7. Software Collection logrotate Support
With your Software Collection or an application associated with your Software Collection, you can
manage log files with the logrotate  program.

Procedure 3.6. Managing log files with logrotate

1. To manage your log files with logrotate , place a custom logrotate  file for your Software
Collection in the system directory for the logrotate  jobs /etc/logrotate.d/.

For example, create the following file:

%{?scl_prefix}logrotate

2. Ensure that the contents of the logrotate file follow the standard logrotate file format as
follows:

/opt/provider/software_collection/var/log/your_application_name.log {
      missingok
      notifempty
      size 30k
      yearly
      create 0600 root root
  }

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}logrotate

4. Install the file into the system directory /etc/logrotate.d/ by adjusting the %install section

Red Hat Developer Toolset 2.x Software Collections Guide

28



of the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%{!?
scl:%_sysconfdir}/logrotate.d/

3.8. Software Collection Lock File Support
If you store your Software Collection's lock files within the /opt/provider/software_collection/ file
system hierarchy, you can avoid any possible conflicts with the system versions of the applications or
services that can be on the system.

If you want to prevent Software Collection's applications or services from running while the system
version of the respective application or service is running, make sure that your applications or services,
which require a lock, write the lock to the system directory /var/lock/ instead of the Software
Collection's directory /opt/provider/software_collection/var/lock/. In this way, your
applications or services' lock file will not be overwritten. The lock file will not be renamed and the name
stays the same as the system version.

If you want your Software Collection's version of the application or service to run concurrently with the
system version (when the Software Collection version's resources will not conflict with the system
version's resources), ensure that the applications or services write the lock to the Software Collection's
directory /opt/provider/software_collection/var/lock/.

3.9. Software Collection Configuration Files Support
If you store your Software Collection's configuration files within the 
/opt/provider/software_collection/ file system hierarchy, you can avoid any possible conflicts
with the system versions of the configuration files that can be present on the system.

If you cannot store the configuration files within /opt/provider/software_collection/, then ensure
that you properly configure an alternative location for the configuration files. For many programs, this can
be usually done at build or installation time.

3.10. Software Collection Kernel Module Support
Because Linux kernel modules are normally tied to a particular version of the Linux kernel, you must be
careful when you package kernel modules into a Software Collection. This is because the package
management system on Red Hat Enterprise Linux does not automatically update or install an updated
version of the kernel module if an updated version of the Linux kernel is installed. To make packaging
the kernel modules into the Software Collection easier, see the following recommendations. Ensure that:

1. the name of your kernel module package includes the kernel version,

2. the tag Requires, which can be found in your kernel module spec file, includes the kernel version
and revision (in the format kernel-version-revision).

3.11. Software Collection SELinux Support
Because Software Collections are designed to install the Software Collection packages in an alternate
directory, set up the necessary SELinux labels so that SELinux is aware of the alternate directory.

If the file system hierarchy of your Software Collection package imitates the file system hierarchy of the

Chapter 3. Advanced Topics 

29



corresponding conventional package, you can run the semanage fcontext and restorecon
commands to set up the SELinux labels.

For example, if the /opt/provider/software_collection_1/x86_64/root/usr/ directory in
your Software Collection package imitates the /usr/ directory of your conventional package, set up the
SELinux labels as follows:

 semanage fcontext -a -e /usr 
/opt/provider/software_collection_1/x86_64/root/usr 

 restorecon -R -v /opt/provider/software_collection_1/x86_64/root/usr 

The commands above ensure that all directories and files in the 
/opt/provider/software_collection_1/x86_64/root/usr/ directory are labeled by SELinux
as if they were located in the /usr/ directory.

Important

Keep in mind that the semanage -e command, which substitutes the source path for the
destination path during labeling, is not supported in Red Hat Enterprise Linux 5.

3.12. Software Collection Macro Files Support
In some cases, you may need to ship macro files with your Software Collection packages. They are
located in the %{?scl:%{_root_sysconfdir}}%{!?scl:%{_sysconfdir}} directory, which
corresponds to the /etc/rpm/ directory for conventional packages. When shipping macro files, ensure
that:

You rename the macro files by appending .%{scl} to their names so that they do not conflict with
the files from the base system installation.

The macros in the macro files are either not expanded, or they are using conditionals, as in the
following example:

%__python2 %{_bindir}/python
%python2_sitelib %(%{?scl:scl enable %scl '}%{__python2} -c "from 
distutils.sysconfig import get_python_lib; print(get_python_lib())"%{?scl:'})

As another example, there may be a situation where you need to create a Software Collection mypython
that depends on a Software Collection python26. The python26 Software Collection defines the 
%{__python2} macro as in the above sample. This macro will evaluate to 
/opt/provider/mypython/root/usr/bin/python2, but the python2 binary is only available in
the python26 Software Collection (/opt/provider/python26/root/usr/bin/python2).

To be able to build software in the mypython Software Collection environment, ensure that:

The macros.python.python26 macro file, which is a part of the python26-python-devel package,
contains the following line:

%__python26_python2 /opt/provider/python26/root/usr/bin/python2

And the macro file in the python26-build subpackage, and also the build subpackage in any

Red Hat Developer Toolset 2.x Software Collections Guide

30



depending Software Collection, contains the following line:

%scl_package_override() {%global __python2 %__python26_python2}

This will redefine the %{__python2} macro only if the build subpackage from a corresponding Software
Collection is present, which usually means that you want to build software for that Software Collection.

3.13. Packaging Wrappers for Software Collections
Using wrappers is an easy way to shorten commands that the user runs in the Software Collection
environment.

The following is an example of a wrapper from the ruby193 Software Collection that is installed as 
/usr/bin/ruby193-ruby and allows the user to run ruby193-ruby command instead of scl 
enable ruby193 'ruby command':

#!/bin/bash

COMMAND="ruby $@"
scl enable ruby193 "$COMMAND"

It is important to package these wrappers as subpackages of the Software Collection package that will
use them. That way, you can make installation of these wrappers optional, allowing the user not to install
them, for example, on systems with read-only access to the /usr/bin/ directory where the wrappers
would otherwise be installed.

Chapter 3. Advanced Topics 

31



Chapter 4. Getting More Information
For more information on Software Collection packaging, Red Hat Enterprise Linux Developer Program,
Red Hat Developer Toolset, and Red Hat Enterprise Linux, refer to the resources listed below.

4.1. Red Hat Enterprise Linux Developer Program
Red Hat Enterprise Linux Developer Program – The Red Hat Enterprise Linux Developer Program
delivers industry-leading developer tools, instructional resources, and an ecosystem of experts to
help Linux programmers maximize productivity in building Linux applications.

Red Hat Enterprise Linux Developer Program Group (requires Red Hat Login) – The Red Hat
Enterprise Linux Developer Program Group contains developer-related information for the
development tools available for Red Hat Enterprise Linux. In addition, users can find there developer-
related papers and videos on topics that are of interest to developers, for example RPM building,
threaded programming, performance tuning, debugging, and so on.

4.2. Installed Documentation
scl(1) – The manual page for the scl tool for enabling Software Collections and running programs in
Software Collection's environment.

scl --help – General usage information for the scl tool for enabling Software Collections and running
programs in Software Collection's environment.

rpmbuild(8) – The manual page for the rpmbuild utility for building both binary and source
packages.

4.3. Accessing Red Hat Documentation
The Red Hat Documentation portal located at https://access.redhat.com/site/documentation/ serves
as a central source of all product documentation. It is translated in 22 languages and for each product, it
provides different kinds of books from release and technical notes to installation, user, and reference
guides in HTML, PDF, and EPUB formats.

The following is a brief list of documents that are directly or indirectly relevant to this book:

Red Hat Developer Toolset 2.0 User Guide – The User Guide for Red Hat Developer Toolset 2.0
contains information about Red Hat Developer Toolset, a Red Hat offering for developers on the Red
Hat Enterprise Linux platform. Using Software Collections, Red Hat Developer Toolset provides
current versions of the GCC compiler, GDB debugger and other binary utilities.

Red Hat Enterprise Linux 6 Developer Guide – The Developer Guide for Red Hat Enterprise Linux 6
provides detailed description of Red Hat Developer Toolset features, as well as information on the
Eclipse IDE, libraries and runtime support, compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 6 Installation Guide – The Installation Guide for Red Hat Enterprise Linux 6
provides more details on getting, installing, and updating the system.

Red Hat Enterprise Linux 5 Installation Guide – The Installation Guide for Red Hat Enterprise Linux 5
provides more details on getting, installing, and updating the system.

Red Hat Enterprise Linux 6 Deployment Guide – The Deployment Guide for Red Hat Enterprise Linux
6 documents relevant information regarding the deployment, configuration, and administration of Red
Hat Enterprise Linux 6.

Red Hat Enterprise Linux 5 Deployment Guide – The Deployment Guide for Red Hat Enterprise Linux
5 documents relevant information regarding the deployment, configuration, and administration of Red

Red Hat Developer Toolset 2.x Software Collections Guide

32

https://access.redhat.com/products/Red_Hat_Enterprise_Linux/Developer/
https://access.redhat.com/groups/red-hat-enterprise-linux-developer-program
https://access.redhat.com/site/documentation/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/2/html/User_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/index.html


Hat Enterprise Linux 5.

Chapter 4. Getting More Information 

33



Revision History
Revision 2.0-11 Tue Sep 10 2013 Petr Kovář

Red Hat Developer Toolset 2.0 release of the Software Collections Guide.

Revision 2.0-8 Tue Aug 06 2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-2 release of the Software Collections Guide.

Revision 2.0-3 Tue May 28 2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-1 release of the Software Collections Guide.

Revision 1.0-2 Tue Apr 23 2013 Petr Kovář
Republished to fix BZ#949000.

Revision 1.0-1 Tue Jan 22 2013 Petr Kovář
Red Hat Developer Toolset 1.1 release of the Software Collections Guide.

Revision 1.0-2 Thu Nov 08 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-2 release of the Software Collections Guide.

Revision 1.0-1 Wed Oct 10 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-1 release of the Software Collections Guide.

Revision 1.0-0 Tue Jun 26 2012 Petr Kovář
Red Hat Developer Toolset 1.0 release of the Software Collections Guide.

Revision 0.0-2 Tue Apr 10 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-2 release of the Software Collections Guide.

Revision 0.0-1 Tue Mar 06 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-1 release of the Software Collections Guide.

Revision 0.0-0 Thu Feb 23 2012 Petr Kovář
Initial creation of book.

Red Hat Developer Toolset 2.x Software Collections Guide

34


	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback

	3. Acknowledgments

	Chapter 1. Introducing Software Collections
	1.1. Why Package Software with RPM?
	1.2. What Are Software Collections?
	1.3. Enabling Support for Software Collections
	1.4. Installing a Software Collection
	1.5. Listing Installed Software Collections
	1.6. Enabling a Software Collection
	1.6.1. Running an Application Directly
	1.6.2. Running a Shell with Multiple Software Collections Enabled
	1.6.3. Running Commands Stored in a File

	1.7. Listing Enabled Software Collections
	1.8. Uninstalling a Software Collection

	Chapter 2. Packaging Software Collections
	2.1. Creating Your Own Software Collections
	2.2. The File System Hierarchy
	2.3. The Software Collection Root Directory
	2.4. The Software Collection Prefix
	2.5. Software Collection Package Names
	2.6. Software Collection Scriptlets
	2.7. Package Layout
	2.7.1. Metapackage
	2.7.2. Creating a Metapackage
	Example of the Metapackage


	2.8. Software Collection Macros
	2.8.1. Macros Specific to a Software Collection
	2.8.2. Macros Not Specific to a Software Collection

	2.9. Converting a Conventional Spec File
	Example of the Converted Spec File

	2.10. Uninstalling all Software Collection directories
	2.11. Using a Software Collection in Your Application
	2.12. Building a Software Collection
	2.12.1. Rebuilding a Software Collection without build subpackages


	Chapter 3. Advanced Topics
	3.1. Software Collection Initscript Support
	3.2. Software Collection Library Support
	3.2.1. Using a Library Outside of the Software Collection
	3.2.2. Prefixing the Library Major soname with the Software Collection Name

	3.3. Software Collection .pc Files Support
	3.4. Software Collection manpath Support
	3.5. Software Collection cronjob Support
	3.6. Software Collection Log File Support
	3.7. Software Collection logrotate Support
	3.8. Software Collection Lock File Support
	3.9. Software Collection Configuration Files Support
	3.10. Software Collection Kernel Module Support
	3.11. Software Collection SELinux Support
	3.12. Software Collection Macro Files Support
	3.13. Packaging Wrappers for Software Collections

	Chapter 4. Getting More Information
	4.1. Red Hat Enterprise Linux Developer Program
	4.2. Installed Documentation
	4.3. Accessing Red Hat Documentation

	Revision History

