LVM Administrator's Guide

Configuration and
Administration

5.2

Q® redhat.

Cluster_Logical_Volume_Manager
ISBN: N/A
Publication date: July 2008

LVM Administrator's Guide

This book describes the LVM logical volume manager for Red Hat Enterprise Linux 5.2,
including information on running LVM in a clustered environment. The content of this document
is specific to the LVM2 release.

LVM Administrator's Guide: Configuration and Administration
Copyright © 2008 Red Hat, Inc.

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Open Publication License, V1.0 or later with the restrictions noted below (the latest version of the OPL is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the
copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 2086 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://www.opencontent.org/openpub/

LVM Administrator's Guide

)0 7o LU o 1T o iX

1. ADOUL THIS GUITE ..eeniiteii e e e e e e e eenas ix
P 0 [o 1= o Lo PP iX
3. SOftWAINE VEISIONS ...eiiiiiii ettt ettt e e e et e et e eanaas (¢
4. Related DOCUMENTALIONoiieiiiiie e e e iX
B FEEADACK ... X
6. DOCUMENE CONVENLIONStiiit ettt e et e e e e e e e e eees X
1. The LVM Logical VOIUME MANAGETviieiiiiieiiiii ettt 1
I o o To= L Y 0] 11 =P 1
2. LVM ArcChiteCture OVEIVIEWciouiiiiiiieii et e e e e e e e 2
3. RUNNING LYM N @ CIUSTET ...iieiiiiii et e e e e e e 3
4. DOCUMENT OVEIVIEWnieieiit et e et e et et et e e e e et e e et e et e e e et e e eanaaeanaas 5
2. LVM COMPONENES .ottt ettt et r et et et e e e e et e e e eaa e eees 7
1. PhySICal VOIUMES . ..eiiiici e e e e 7
1.1. LVM Physical VoIumMe LayOutc.iiiiiiiiiiaiii e 7

1.2. Multiple Partitions 0n @ DiSKcccuuuiiiiiiiiiiiiiii e 8

Y 11U T3 U= €] o TH] o 1N 9
3. LVM LOGICal VOIUMES ...ttt 9
3.1, LINEAr VOIUMES ..ot 9

3.2. Striped Logical VOIUMESoiiiiiiiie e 12

3.3. Mirrored Logical VOIUMESoiiiiiiiiiiiii e 13

3.4, SNapShot VOIUMEScoovniiiiiii e 15

3. LVM AdMINIStration OVEIVIEWcieuiiiii et e e e e e e e eane e 17
1. Creating LVM Volumes in @ CIUSLETooiiiiiiiiiiiii e 17
2. Logical Volume Creation OVEIVIEWc..viueiieiiieiieeie e eeieeeee e aeaeeaneeanes 17
3. Growing a File System on a Logical VOoIUMEec.cooiiiiiiiiiiiiiie e 18
4. Logical VoIUME BACKUPuivviiieiiiieii e e e e e e e e e e e e e e 18
LT oo [|1 o RSP PTR 19
4. LVM Administration with CLI COmMmMandsccciiiiiiiiiiieiieceeee e 21
1. Using CLI COMMANAS ...uiiiiiiiiicii et e e e e e e e e eans 21
2. Physical Volume AdminiStrationc.oioiiuiiiii e 23
2.1. Creating Physical VOIUMEScoouuiiiiiiiiiie e 23

2.2. Displaying Physical VOIUMEScccoiiiiiiiiicic e 24

2.3. Preventing Allocation on a Physical Volumeoociiiiiiiiiiien, 25

2.4, Resizing a Physical VOIUMEcooiiiiiiiii e 25

2.5. Removing Physical VOIUMESoiiiiiiii e 26

3. Volume Group ADMINISIratioNiviiiiiiieiii e 26
3.1. Creating VolumME GrOUPSuoveinieiiii e e e e e e e e e e e e eanae e 26

3.2. Adding Physical Volumes to a Volume Groupcc.veeeuieeiiieiinnaeennnes 27

3.3. Displaying VOIUME GrOUPSuveieeuiieiiiiieeieiie et 27

3.4. Scanning Disks for Volume Groups to Build the Cache File 28

3.5. Removing Physical Volumes from a Volume Groupccoevevvieennnnne. 29

3.6. Changing the Parameters of a Volume Groupcccooevvvvvveiiiiiiineninnenns 29

3.7. Activating and Deactivating Volume Groupscc.veeeuniiiiiiaiiineennns 30

3.8. Removing VOIUME GrOUPSuieieiiiieiiiii ettt 30

3.9. Splitting @ VOIUME GrOUP ...cvvniiiiieiii e e e e 30

LVM Administrator's Guide

3.10. Combining VOIUME GrOUPScoeviiieiiiiieeieiie et 31
3.11. Backing Up Volume Group Metadatacccoeevveiiiiiiiiniieiiiciiin e 31
3.12. Renaming a VOIUME GrOUPociuuniiiiiieiieeie e e 31
3.13. Moving a Volume Group to Another Systemccooeveiiiiiiiiiineeiininnnn. 32
3.14. Recreating a Volume Group DIreCtOrycceveviiieviiiiiiiiecii e 33

4. Logical Volume AdminIiStrationco..viiuiiiiiii e 33
4.1. Creating Logical VOIUMESccoiiiiiiiiiiiiiieei e 33

4.2. Persistent Device NUMDETSocoiiiiiiiiiiiieeeie e 38

4.3. Resizing Logical VOIUMESccoouiiiiiiiiiiec e 38

4.4. Changing the Parameters of a Logical Volume Groupcccoeevvvnnn. 38

4.5. Renaming Logical VOIUMESc..iiiiiiiiiiii e 39

4.6. Removing Logical VOIUMEScc.uiiiiiiiiiiiii e 39

4.7. Displaying Logical VOIUMESc.oiiiiiiiiiiccie e 39

4.8. Growing Logical VOIUMESc.uiiiiiiiiie e 40

4.9. Extending a Striped VOIUMEoiiiiiiiiiiiii e 41
4.10. Shrinking Logical VOIUMEScoiiiiiiiiii e, 43

5. Creating SNapshot VOIUMEScoooiiiiiiiii et 43
6. Controlling LVM Device Scans with Filtersccoooviiviiiiiiiii e 44
7. 0nline Data REIOCALIONcvvviiieiiii et 45
8. Activating Logical Volumes on Individual Nodes in a Clusterc.cccceveeennn. 46
9. Customized Reporting for LVM ... a7
9.1, FOrmMat CONIOLeeieei et e e 47

9.2. ODBJECE SEIECHON ...uuiiiiii e 49

9.3. S0ortiNg LVM REPOIS ...ivviiiiiieiiiiieie e e e e e e e e e eane e 56

9.4. SPeCifyiNg UNItSooiiiiiiiii e 57

5. LVM Configuration EXAmMPIESco.uiiiiiiii e e e e e e e e e e 59
1. Creating an LVM Logical Volume on Three DiSKScccocoiiiiiiiiiiiiiiiinieeen, 59
1.1. Creating the Physical VOIUMESccooiiiiiiiiiiiii e 59

1.2. Creating the VOIUME GrOUPcvvviiii e e e e e e 59

1.3. Creating the Logical VOIUME ..o 59

1.4. Creating the File SYSemccouiiiiiiiii e 60

2. Creating a Striped Logical VOIUMEoiiiiiiiiii e 60
2.1. Creating the Physical VOIUMEScoouiiiiiiiiiiii e 60

2.2. Creating the VOoIUME GIOUPccvuiiiiiieir e ee e e e e e e 61

2.3. Creating the Logical VOIUME ... 61

2.4. Creating the File SYStemcoioiiiiiiiii e 61

3. Splitting @ VOIUME GrOUD ...uveeiiiii e e e e e e e e 62
3.1. Determining Fre@ SPACEc.uiiuuiiiii i 62

3.2. MOVING the DAt@oiiiiiiiiiii e 63

3.3. Splitting the VOIUME GrOUP ...cvvviiiiiceiie e e e 63

3.4. Creating the New Logical VOIUMEcooiiiiiiiiiiiiiicecc e 64

3.5. Making a File System and Mounting the New Logical Volume 64

3.6. Activating and Mounting the Original Logical Volumecccceeeeuneie. 64

4. Removing a Disk from a Logical VOIUMEccooeiiiiiiiiiiiiic e 64
4.1. Moving Extents to Existing Physical Volumesccooveviiiiiiiiniineennn, 65

4.2. Moving Extents to @ New DiSKcccuiiiiiiiiiiiii e, 66

6. LVM TroubleShOOtING ...ccovuiiiiiiiieiiii e 69

vi

1. Troubleshooting DIiagNOSLICSviiiiiiiiiiiii e 69

2. Displaying Information on Failed DeVICESc.cvvvviiiiiiiieiiiiciiieee e 69

3. Recovering from LVM Mirror Failure ..o 71

4. Recovering Physical Volume Metadatacoeevviiiiieiiiiiiiceiieeec e 74

5. Replacing a Missing Physical Volumecocoooiiiiiiiiie e 76

6. Removing Lost Physical Volumes from a Volume Groupccoeeveiiieennneennnn. 76

7. Insufficient Free Extents for a Logical Volumeccoooiiiiiiiiiiiiiiicci, 76

7. LVM Administration with the LVM GUI ... 79
A. The DEVICE MEAPPET ...ttt ettt e e e e e 81
1. Device Table MapPiNgS ...ccuuieeiierii e e e e e e e e e e e e e e e e eans 81

1.1. The linear Mapping Targetoveeuieiiiaiiee e 82

1.2. The striped Mapping Targetcoc.ooieiiiiiiieiiii e 83

1.3. The mirror Mapping Targetcoveeuiieiiiieiie e e e eans 84

1.4. The snapshot and snapshot-origin Mapping Targetscccoovveueeennnn. 87

1.5. The error Mapping Targelc..uoieieiiiiieiiiii et 89

1.6. The zero Mapping Targetccvuiiiiiiiei e eaas 89

1.7. The multipath Mapping Targetcoveveeiiieiiiiiie e 89

1.8. The crypt Mapping Targetcccuuiieeeieeiieeie e e e e e e e e ean s 92

2. The dmsetup COMMANGoouiiiiiii e 93

2.1. The dmsetup info COMMANGoviiiiiiiiiiii e 93

2.2. The dmsetup Is CommaNdcc.iiviiiiiiiiiiii e 95

2.3. The dmsetup status ComMMANGoeeuiiiiiiiieei e 95

2.4. The dmsetup deps COMMANGcooeieiiiiiiiiiiinieci e 96

B. The LVM Configuration FilESooiiiiiiiii e e 97
1. The LVM Configuration FileScoouuiiiiiiiiiiieii e 97

2. Sample IVMLCONTF FIlE ... 97
(ORI @] o] [=Tod i Ir-To [S TP 107
1. Adding and Removing ODJECt TAGSvuiiiiiiiniiiiiiii e 107

A 0 S S = o L 107

3. Controlling Activation With Tagsc.eeeiiiiiii e 108

D. LVM Volume Group Metadataccceuuiieiiiiiieiiiiine et 109
1. The Physical Volume Labelcoooiiiiiiiii e 109

2. Metadata CONLENLSiiie e e e aeens 110

3. Sample Metadatalvvieiee e 110
00 = PRSPPI 113

Vii

viii

Introduction

1. About This Guide

This book describes the Logical Volume Manager (LVM), including information on running LVM
in a clustered environment. The content of this document is specific to the LVM2 release.

2. Audience

This book is intended to be used by system administrators managing systems running the Linux
operating system. It requires familiarity with Red Hat Enterprise Linux 5 and GFS file system
administration.

3. Software Versions

Software Description
RHEL5 refers to RHEL5 and higher
GFS refers to GFS for RHEL5 and higher

Table 1. Software Versions

4. Related Documentation

For more information about using Red Hat Enterprise Linux, refer to the following resources:

* Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of
Red Hat Enterprise Linux 5.

« Red Hat Enterprise Linux Deployment Guide — Provides information regarding the

deployment, configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the
following resources:

« Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster
Suite.

» Configuring and Managing a Red Hat Cluster — Provides information about installing,
configuring and managing Red Hat Cluster components.

» Global File System: Configuration and Administration — Provides information about installing,
configuring, and maintaining Red Hat GFS (Red Hat Global File System).

Introduction

« Using Device-Mapper Multipath — Provides information about using the Device-Mapper
Multipath feature of Red Hat Enterprise Linux 5.

» Using GNBD with Global File System — Provides an overview on using Global Network Block
Device (GNBD) with Red Hat GFS.

« Linux Virtual Server Administration — Provides information on configuring high-performance
systems and services with the Linux Virtual Server (LVS).

+ Red Hat Cluster Suite Release Notes — Provides information about the current release of

Red Hat Cluster Suite.

Red Hat Cluster Suite documentation and other Red Hat documents are available in HTML,
PDF, and RPM versions on the Red Hat Enterprise Linux Documentation CD and online at
http://www.redhat.com/docs/.

5. Feedback

If you spot a typo, or if you have thought of a way to make this manual better, we would love to
hear from you. Please submit a report in Bugzilla (http://bugzilla.redhat.com/bugzilla/) against
the component r h-cs.

Be sure to mention the manual's identifier:

Bugzi | | a conponent: Documnentati on-cl uster
Book identifier: duster_Logical Vol une_Manager (EN)-5.2 (2008-07-31T15: 20)
By mentioning this manual's identifier, we know exactly which version of the guide you have.

If you have a suggestion for improving the documentation, try to be as specific as possible. If
you have found an error, please include the section number and some of the surrounding text
so we can find it easily.

6. Document Conventions

Certain words in this manual are represented in different fonts, styles, and weights. This
highlighting indicates that the word is part of a specific category. The categories include the
following:

Courier font
Courier font represents commands, fil e names and pat hs, and pronpts .

When shown as below, it indicates computer output:

Deskt op about . ht m | ogs paul west er berg. png

http://www.redhat.com/docs/
http://bugzilla.redhat.com/bugzilla/

Document Conventions

Mai | backupfil es mai | reports

bol d Courier font
Bold Courier font represents text that you are to type, such as: servi ce jonas start

If you have to run a command as root, the root prompt (#) precedes the command:

gconftool -2

italic Courier font
Italic Courier font represents a variable, such as an installation directory:
instal | _dir/bin/

bold font
Bold font represents application programs and text found on a graphical interface.

When shown like this: OK , it indicates a button on a graphical application interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information.
In order of how critical the information is to you, these items are marked as follows:

Note

A note is typically information that you need to understand the behavior of the
system.

Tip

A tip is typically an alternative way of performing a task.

Important

Important information is necessary, but possibly unexpected, such as a
configuration change that will not persist after a reboot.

Xi

Introduction

Caution

A caution indicates an act that would violate your support agreement, such as
recompiling the kernel.

Warning

A warning indicates potential data loss, as may happen when tuning hardware
for maximum performance.

Xii

Chapter 1.

The LVM Logical Volume Manager

This chapter provides a high-level overview of the components of the Logical Volume Manager
(LVM).

1. Logical Volumes

Volume management creates a layer of abstraction over physical storage, allowing you to
create logical storage volumes. This provides much greater flexibility in a number of ways than
using physical storage directly.

A logical volume provides storage virtualization. With a logical volume, you are not restricted to
physical disk sizes. In addition, the hardware storage configuration is hidden from the software
so it can be resized and moved without stopping applications or unmounting file systems. This
can reduce operational costs.

Logical volumes provide the following advantages over using physical storage directly:

* Flexible capacity

When using logical volumes, file systems can extend across multiple disks, since you can
aggregate disks and partitions into a single logical volume.

» Resizeable storage pools

You can extend logical volumes or reduce logical volumes in size with simple software
commands, without reformatting and repartitioning the underlying disk devices.

¢ Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your
system is active. Data can be rearranged on disks while the disks are in use. For example,
you can empty a hot-swappable disk before removing it.

« Convenient device naming

Logical storage volumes can be managed in user-defined groups, which you can name
according to your convenience.

* Disk striping

You can create a logical volume that stripes data across two or more disks. This can
dramatically increase throughput.

e Mirroring volumes
Logical volumes provide a convenient way to configure a mirror for your data.

¢ Volume Snapshots

Chapter 1. The LVM Logical Volume Manager

Using logical volumes, you can take device snapshots for consistent backups or to test the
effect of changes without affecting the real data.

The implementation of these features in LVM is described in the remainder of this document.

2. LVM Architecture Overview

For the RHEL 4 release of the Linux operating system, the original LVM1 logical volume
manager was replaced by LVM2, which has a more generic kernel framework than LVM1. LVM2
provides the following improvements over LVM1:

flexible capacity

« more efficient metadata storage
 better recovery format

* new ASCIl metadata format

« atomic changes to metadata

redundant copies of metadata

LVMZ2 is backwards compatible with LVM1, with the exception of snapshot and cluster support.
You can convert a volume group from LVM1 format to LVM2 format with the vgconvert
command. For information on converting LVM metadata format, see the vgconvert (8) man

page.

The underlying physical storage unit of an LVM logical volume is a block device such as a
partition or whole disk. This device is initialized as an LVM physical volume (PV).

To create an LVM logical volume, the physical volumes are combined into a volume group (VG).
This creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated. This
process is analogous to the way in which disks are divided into partitions. A logical volume is
used by file systems and applications (such as databases).

Figure 1.1, “LVM Logical Volume Components” shows the components of a simple LVM logical
volume:

Running LVM in a Cluster

Logical Logical
Volume Volume

Volume Group

4

[I |

Physical Physical Physical
Volume Volume Volume

Figure 1.1. LVM Logical Volume Components

For detailed information on the components of an LVM logical volume, see Chapter 2, LVM
Components.

3. Running LVM in a Cluster

The Clustered Logical Volume Manager (CLVM) is a set of clustering extensions to LVM. These
extensions allow a cluster of computers to manage shared storage (for example, on a SAN)
using LVM.

The cl nvd daemon is the key clustering extension to LVM. The ¢l vid daemon runs in each
cluster computer and distributes LVM metadata updates in a cluster, presenting each cluster
computer with the same view of the logical volumes.

Figure 1.2, “CLVM Overview” shows a CLVM overview in a Red Hat cluster.

Chapter 1. The LVM Logical Volume Manager

Red Hat cluster nodes

LVMZ LVM2 LVM2 LVM2 LVM2 clvmd distributes LVM
Metadata Metadata Metadata Metadata Metadata metadata updates in a

cluster

Logical Volumes presented
Shared Storage to each cluster node

\/0

Logical Velumes

O

Figure 1.2. CLVM Overview

Logical volumes created with CLVM on shared storage are visible to all computers that have
access to the shared storage.

CLVM allows a user to configure logical volumes on shared storage by locking access to
physical storage while a logical volume is being configured. CLVM uses the locking services
provided by the high availability symmetric infrastructure.

Note

Shared storage for use in Red Hat Cluster Suite requires that you be running the
cluster logical volume manager daemon (c! vnd) or the High Availability Logical
Volume Management agents (HA-LVM). If you are not able to use either the

cl vimd daemon or HA-LVM for operational reasons or because you do not have
the correct entitlements, you must not use single-instance LVM on the shared
disk as this may result in data corruption. If you have any concerns please
contact your Red Hat service representative.

Document Overview

Note

CLVM requires changes to the | vm conf file for cluster-wide locking. For

information on configuring the | vm conf file to support CLVM, see Section 1,
“Creating LVM Volumes in a Cluster”.

You configure LVM volumes for use in a cluster with the standard set of LVM commands or the
LVM graphical user interface, as described in Chapter 4, LVM Administration with CLI
Commands and Chapter 7, LVM Administration with the LVM GUI.

For information on installing LVM in a Red Hat Cluster, see Configuring and Managing a Red
Hat Cluster.

4. Document Overview

This remainder of this document includes the following chapters:
e Chapter 2, LVM Components describes the components that make up an LVM logical
volume.

e Chapter 3, LVM Administration Overview provides an overview of the basic steps you perform
to configure LVM logical volumes, whether you are using the LVM Command Line Interface
(CLI) commands or the LVM Graphical User Interface (GUI).

e Chapter 4, LVM Administration with CLI Commands summarizes the individual administrative
tasks you can perform with the LVM CLI commands to create and maintain logical volumes.

« Chapter 5, LVM Configuration Examples provides a variety of LVM configuration examples.

» Chapter 6, LVM Troubleshooting provide instructions for troubleshooting a variety of LVM
issues.

e Chapter 7, LVM Administration with the LVM GUI summarizes the operating of the LVM GUI.

» Appendix A, The Device Mapper describes the Device Mapper that LVM uses to map logical
and physical volumes.

* Appendix B, The LVM Configuration Files describes the LVM configuration files.
» Appendix C, LVM Object Tags describes LVM object tags and host tags.

* Appendix D, LVM Volume Group Metadata describes LVM volume group metadata, and
includes a sample copy of metadata for an LVM volume group.

Chapter 2.

LVM Components

This chapter describes the components of an LVM Logical volume.

1. Physical Volumes

The underlying physical storage unit of an LVM logical volume is a block device such as a
partition or whole disk. To use the device for an LVM logical volume the device must be
initialized as a physical volume (PV). Initializing a block device as a physical volume places a
label near the start of the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default
by placing the label on any of the first 4 sectors. This allows LVM volumes to co-exist with other
users of these sectors, if necessary.

An LVM label provides correct identification and device ordering for a physical device, since
devices can come up in any order when the system is booted. An LVM label remains persistent
across reboots and throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique
identifier (the UUID) for the physical volume. It also stores the size of the block device in bytes,
and it records where the LVM metadata will be stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your
system. By default, an identical copy of the metadata is maintained in every metadata area in
every physical volume within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1 or 2 identical copies of its metadata on each physical
volume. The default is 1 copy. Once you configure the number of metadata copies on the
physical volume, you cannot change that number at a later time. The first copy is stored at the
start of the device, shortly after the label. If there is a second copy, it is placed at the end of the
device. If you accidentally overwrite the area at the beginning of your disk by writing to a
different disk than you intend, a second copy of the metadata at the end of the device will allow
you to recover the metadata.

For detailed information about the LVM metadata and changing the metadata parameters, see
Appendix D, LVM Volume Group Metadata.

1.1. LVM Physical Volume Layout

Figure 2.1, “Physical Volume layout” shows the layout of an LVM physical volume. The LVM
label is on the second sector, followed by the metadata area, followed by the usable space on
the device.

Chapter 2. LVM Components

In the Linux kernel (and throughout this document), sectors are considered to be

512 bytes in size.

4= VM Label (Second sector)
o Metadata
‘h

Usable Space

Figure 2.1. Physical Volume layout

1.2. Multiple Partitions on a Disk

LVM allows you to create physical volumes out of disk partitions. It is generally recommended
that you create a single partition that covers the whole disk to label as an LVM physical volume
for the following reasons:

* Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This
becomes patrticularly true if a disk fails. In addition, multiple physical volumes on a single disk
may cause a kernel warning about unknown partition types at boot-up.

 Striping performance

LVM can not tell that two physical volumes are on the same physical disk. If you create a
striped logical volume when two physical volumes are on the same physical disk, the stripes
could be on different partitions on the same disk. This would result in a decrease in
performance rather than an increase.

Although it it is not recommended, there may be specific circumstances when you will need to
divide a disk into separate LVM physical volumes. For example, on a system with few disks it
may be necessary to move data around partitions when you are migrating an existing system to

Volume Groups

LVM volumes. Additionally, if you have a very large disk and want to have more than one
volume group for administrative purposes then it is necessary to partition the disk. If you do
have a disk with more than one partition and both of those patrtitions are in the same volume
group, take care to specify which partitions are to be included in a logical volume when creating
striped volumes.

2. Volume Groups

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out
of which logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size
called extents. An extent is the smallest unit of space that can be allocated, Within a physical
volume, extents are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The
extent size is thus the same for all logical volumes in the volume group. The volume group
maps the logical extents to physical extents.

3. LVM Logical Volumes

In LVM, a volume group is divided up into logical volumes. There are three types of LVM logical
volumes: linear volumes, striped volumes, and mirrored volumes. These are described in the
following sections.

3.1. Linear Volumes

A linear volume aggregates multiple physical volumes into one logical volume. For example, if
you have two 60GB disks, you can create a 120GB logical volume. The physical storage is
concatenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in
order. For example, as shown in Figure 2.2, “Extent Mapping” logical extents 1 to 99 could map
to one physical volume and logical extents 100 to 198 could map to a second physical volume.
From the point of view of the application, there is one device that is 198 extents in size.

Chapter 2. LVM Components

Application

Logical Volume
198 logical extents

Volume Group

maps logical extents to
physical extents

Physical Volume Physical Velume
99 physical extents 99 physical extents

Figure 2.2. Extent Mapping

The physical volumes that make up a logical volume do not have to be the same size.

Figure 2.3, “Linear Volume with Unequal Physical Volumes” shows volume group VGL with a
physical extent size of 4MB. This volume group includes 2 physical volumes named PV1 and
PV2. The physical volumes are divided into 4MB units, since that is the extent size. In this
example, PV1 is 100 extents in size (400MB) and PV2 is 200 extents in size (800MB). You can
create a linear volume any size between 1 and 300 extents (4MB to 1200MB). In this example,
the linear volume named LV1 is 300 extents in size.

10

Linear Volumes

Lv1
300 extents
{1200 MB)
. Vi1
r Y
r PV1 PV2
200 extents 100 extents
(800 MEB) (400 ME)

Figure 2.3. Linear Volume with Unequal Physical Volumes

You can configure more than one linear logical volume of whatever size you desire from the
pool of physical extents. Figure 2.4, “Multiple Logical Volumes” shows the same volume group
as in Figure 2.3, “Linear Volume with Unequal Physical Volumes”, but in this case two logical
volumes have been carved out of the volume group: LV1, which is 250 extents in size (1000MB)
and LV2 which is 50 extents in size (200MB).

LV1

Lvz

250 extents

{1000 MB) r 50 extents
(200 MB)

r ~

PV1 -

200 extents r L

(B0O0 MB) :4uui:taf" 5

11

Chapter 2. LVM Components

Figure 2.4. Multiple Logical Volumes

3.2. Striped Logical Volumes

When you write data to an LVM logical volume, the file system lays the data out across the
underlying physical volumes. You can control the way the data is written to the physical volumes
by creating a striped logical volume. For large sequential reads and writes, this can improve the
efficiency of the data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes
in round-round fashion. With striping, I/O can be done in parallel. In some situations, this can
result in near-linear performance gain for each additional physical volume in the stripe.

The following illustration shows data being striped across three physical volumes. In this figure:

the first stripe of data is written to PV1
« the second stripe of data is written to PV2

« the third stripe of data is written to PV3

the fourth stripe of data is written to PV1

In a striped logical volume, the size of the stripe cannnot exceed the size of an extent.

12

Mirrored Logical Volumes

Logical
Volume

Volume
Group

Physical Physical Physical
Volume Volume Volume

Figure 2.5. Striping Data Across Three PVs

Striped logical volumes can be extended by concatenating another set of devices onto the end
of the first set. In order extend a striped logical volume, however, there must be enough free
space on the underlying physical volumes that make up the volume group to support the stripe.
For example, if you have a two-way stripe that uses up an entire volume group, adding a single
physical volume to the volume group will not enable you to extend the stripe. Instead, you must
add at least two physical volumes to the volume group. For more information on extending a
striped volume, see Section 4.9, “Extending a Striped Volume”.

3.3. Mirrored Logical Volumes

A mirror maintains identical copies of data on different devices. When data is written to one
device, it is written to a second device as well, mirroring the data. This provides protection for
device failures. When one leg of a mirror fails, the logical volume becomes a linear volume and
can still be accessed.

13

Chapter 2. LVM Components

LVM supports mirrored volumes. When you create a mirrored logical volume, LVM ensures that
data written to an underlying physical volume is mirrored onto a separate physical volume. With
LVM, you can create mirrored logical volumes with multiple mirrors.

An LVM mirror divides the device being copied into regions that are typically 512KB in size.
LVM maintains a small log which it uses to keep track of which regions are in sync with the
mirror or mirrors. This log can be kept on disk, which will keep it persistent across reboots, or it
can be maintained in memory.

Figure 2.6, “Mirrored Logical Volume” shows a mirrored logical volume with one mirror. In this
configuration, the log is maintained on disk.

Logical
Volume

Volume Group

4
|

«~Log

Physical Physical Physical

Volume Volume Volume
Mirror leg Mirror I-q o

Figure 2.6. Mirrored Logical Volume

Note

Mirrored logical volumes are not currently supported in a cluster.

For information on creating and modifying mirrors, see Section 4.1.3, “Creating Mirrored
Volumes”.

14

Snapshot Volumes

3.4. Snapshot Volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular
instant without causing a service interruption. When a change is made to the original device (the
origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area
as it was prior to the change so that it can reconstruct the state of the device.

Note

LVM snapshots are not supported across the nodes in a cluster.

Because a snapshot copies only the data areas that change after the snapshot is created, the
snapshot feature requires a minimal amount of storage. For example, with a rarely updated
origin, 3-5 % of the origin's capacity is sufficient to maintain the snapshot.

Note

Snapshot copies of a file system are virtual copies, not actual media backup for a
file system. Snapshots do not provide a substitute for a backup procedure.

If a snapshot runs full, the snapshot is dropped. This is to be sure that there is enough space for
the origin file system. You should regularly monitor the size of the snapshot. Snapshots are fully
resizeable, however, so if you have the storage capacity you can increase the size of the
shapshot volume to prevent it from getting dropped. Conversely, if you find that the snapshot
volume is larger than you need, you can reduce the size of the volume to free up space that is
needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible.
If a chunk on a snapshot is changed, that chunk is marked and never gets copied from the
original volume.

There are several uses for the snapshot feature:
« Most typically, a snapshot is taken when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

* You can execute the f sck command on a snapshot file system to check the file system
integrity and determine whether the original file system requires file system repair.

» Because the snapshot is read/write, you can test applications against production data by
taking a snapshot and running tests against the snapshot, leaving the real data untouched.

* You can create volumes for use with the Xen virtual machine monitor. You can use the
shapshot feature to create a disk image, snapshot it, and modify the snapshot for a particular

15

Chapter 2. LVM Components

domU instance. You can then create another snapshot and modify it for another domuU
instance. Since the only storage used is chunks that were changed on the origin or snapshot,
the majority of the volume is shared.

16

Chapter 3.

LVM Administration Overview

This chapter provides an overview of the administrative procedures you use to configure LVM
logical volumes. This chapter is intended to provide a general understanding of the steps
involved. For specific step-by-step examples of common LVM configuration procedures, see
Chapter 5, LVM Configuration Examples.

For descriptions of the CLI commands you can use to perform LVM administration, see
Chapter 4, LVM Administration with CLI Commands. Alternately, you can use the LVM GUI,
which is described in Chapter 7, LVM Administration with the LVM GUI.

1. Creating LVM Volumes in a Cluster

Creating LVM logical volumes in a cluster environment is identical to creating LVM logical
volumes on a single node. There is no difference in the LVM commands themselves, or in the
LVM GUI interface. In order to enable the LVM volumes you are creating in a cluster, the cluster
infrastructure must be running and the cluster must be quorate.

Note

Shared storage for use in Red Hat Cluster Suite requires that you be running the
cluster logical volume manager daemon (cl vnd) or the High Availability Logical
Volume Management agents (HA-LVM). If you are not able to use either the

cl vid daemon or HA-LVM for operational reasons or because you do not have
the correct entitlements, you must not use single-instance LVM on the shared
disk as this may result in data corruption. If you have any concerns please
contact your Red Hat service representative.

For information on how to set up the cluster infrastructure, see Configuring and Managing a Red
Hat Cluster.

2. Logical Volume Creation Overview

The following is a summary of the steps to perform to create an LVM logical volume.

1. Initialize the partitions you will use for the LVM volume as physical volumes (this labels
them).

2. Create a volume group.

3. Create a logical volume.

After creating the logical volume you can create and mount the file system. The examples in this
document use GFS file systems.

17

Chapter 3. LVM Administration Overview

1. Create a GFS file system on the logical volume with the gf s_nkf s command.

2. Create a new mount point with the nkdi r command. In a clustered system, create the mount
point on all nodes in the cluster.

3. Mount the file system. You may want to add a line to the f st ab file for each node in the
system.

Alternately, you can create and mount the GFS file system with the LVM GUI.

Creating the LVM volume is machine independent, since the storage area for LVM setup
information is on the physical volumes and not the machine where the volume was created.
Servers that use the storage have local copies, but can recreate that from what is on the
physical volumes. You can attach physical volumes to a different server if the LVM versions are
compatible.

3. Growing a File System on a Logical Volume

To grow a file system on a logical volume, perform the following steps:

1. Make a new physical volume.

2. Extend the volume group that contains the logical volume with the file system you are
growing to include the new physical volume.

3. Extend the logical volume to include the new physical volume.

4. Grow the file system.

If you have sufficient unallocated space in the volume group, you can use that space to extend
the logical volume instead of performing steps 1 and 2.

4. Logical Volume Backup

Metadata backups and archives are automatically created on every volume group and logical
volume configuration change unless disabled in the | vm conf file. By default, the metadata
backup is stored in the / et ¢/ | vl backup file and the metadata archives are stored in the
/etc/1vm archi ve file. How long the the metadata archives stored in the / et ¢/ | vii ar chi ve
file are kept and how many archive files are kept is determined by parameters you can set in the
I vm conf file. A daily system backup should include the contents of the / et ¢/ | vmdirectory in
the backup.

Note that a metadata backup does not back up the user and system data contained in the
logical volumes.

You can manually back up the metadata to the / et ¢/ | v backup file with the vgcf gbackup
command. You can restore metadata with the vgcf gr est or e command. The vgcf gbackup and

18

Logging

vgcf grest or e commands are described in Section 3.11, “Backing Up Volume Group
Metadata”.

5. Logging

All message output passes through a logging module with independent choices of logging levels
for:

 standard output/error

 syslog

* log file

 external log function

The logging levels are setinthe /etc/1vm | vm conf file, which is described in Appendix B,
The LVM Configuration Files.

19

20

Chapter 4.

LVM Administration with CLI
Commands

This chapter summarizes the individual administrative tasks you can perform with the LVM
Command Line Interface (CLI) commands to create and maintain logical volumes.

Note

If you are creating or modifying an LVM volume for a clustered environment, you

must ensure that you are running the cl vid daemon. For information, see see
Section 1, “Creating LVM Volumes in a Cluster”.

1. Using CLI Commands

There are several general features of all LVM CLI commands.

When sizes are required in a command line argument, units can always be specified explicitly. If
you do not specify a unit, then a default is assumed, usually KB or MB. LVM CLI commands do
not accept fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m
is equivalent, for example, and powers of 2 (multiples of 1024) are used. However, when
specifying the - - uni t s argument in a command, lower-case indicates that units are in multiples
of 1024 while upper-case indicates that units are in multiples of 1000.

Where commands take volume group or logical volume names as arguments, the full path name
is optional. A logical volume called | vol 0 in a volume group called vg0o can be specified as

vgo/ | vol 0. Where a list of volume groups is required but is left empty, a list of all volume
groups will be substituted. Where a list of logical volumes is required but a volume group is
given, a list of all the logical volumes in that volume group will be substituted. For example, the

I vdi spl ay vg0 command will display all the logical volumes in volume group vgo.

All LVM commands accept a - v argument, which can be entered multiple times to increase the
output verbosity. For example, the following examples shows the default output of the | vcreat e
command.

lvcreate -L 50MB new_vg
Roundi ng up size to full physical extent 52.00 MB
Logi cal volume "Ivol 0" created

The following command shows the output of the | vcr eat e command with the - v argument.

21

Chapter 4. LVM Administration with CLI Commands

lvcreate -v -L 50MB new_vg
Fi ndi ng vol unre group "new vg"
Roundi ng up size to full physical extent 52.00 MB
Archi ving vol ume group "new vg" netadata (seqno 4).
Creating |ogical volume [volO
Creating volunme group backup "/etc/lvnm backup/ new_vg" (seqno 5).
Found vol une group "new vg"
Creating new vg-Ivol O
Loadi ng new _vg-1vol 0 table
Resumi ng new_vg-1vol 0 (253:2)
Clearing start of |ogical volune "Il vol 0"
Creating volunme group backup "/etc/lvnm backup/ new vg" (seqno 5).
Logi cal volunme "l vol 0" created

You could also have used the - vv, - vvv or the - vvvv argument to display increasingly more
details about the command execution. The - vvvv argument provides the maximum amount of
information at this time. The following example shows only the first few lines of output for the

| ver eat e command with the - vvvv argument specified.

lvcreate -vvvv -L 50MB new_vg

vocrdl i ne. c: 913 Processing: |vcreate -vvvv -L 50MB new_vg

#| vohedl i ne. c: 916 O D RECT will be used

#confi g/ config.c: 864 Setting gl obal /Il ocking type to 1

#1 ocki ng/ | ocki ng. c: 138 Fi | e-based | ocki ng sel ect ed.

#confi g/ config.c: 841 Setting global/locking dir to /var/lock/lvm
#activate/activate. c: 358 Getting target version for |inear
#ioctl/libdmiface.c: 1569 dm versi on OF [16384]
#ioctl/libdmiface.c: 1569 dm ver si ons OF [16384]
#activate/activate. c: 358 Getting target version for striped
#ioctl/libdmiface.c: 1569 dm ver si ons OF [16384]

#confi g/ config. c: 864 Setting activation/mrror_regi on_size to 512

You can display help for any of the LVM CLI commands with the - - hel p argument of the
command.

commandnane --hel p

To display the man page for a command, execute the man command:

man conmandnanme

The man | vmcommand provides general online information about LVM.

All LVM objects are referenced internally by a UUID, which is assigned when you create the

22

Physical Volume Administration

object. This can be useful in a situation where you remove a physical volume called / dev/ sdf
which is part of a volume group and, when you plug it back in, you find that it is now / dev/ sdk.
LVM will still find the physical volume because it identifies the physical volume by its UUID and
not its device name. For information on specifying the UUID of a physical volume when creating
a physical volume, see see Section 4, “Recovering Physical Volume Metadata”.

2. Physical Volume Administration

This section describes the commands that perform the various aspects of physical volume
administration.

2.1. Creating Physical Volumes
The following subsections describe the commands used for creating physical volumes.
2.1.1. Setting the Partition Type

If you are using a whole disk device for your physical volume, the disk must have no partition
table. For DOS disk partitions, the partition id should be set to 0x8e using the f di sk or cf di sk
command or an equivalent. For whole disk devices only the partition table must be erased,
which will effectively destroy all data on that disk. You can remove an existing partition table by
zeroing the first sector with the following command:

dd i f=/dev/zero of =Physi cal Vol ume bs=512 count =1

2.1.2. Initializing Physical Volumes

Use the pvcr eat e command to initialize a block device to be used as a physical volume.
Initialization is analogous to formatting a file system.

The following command initializes / dev/ sdd1, / dev/ sdel, and / dev/ sdf 1 for use as LVM
physical volumes.

pvcreate /dev/sddl /dev/sdel /dev/sdf1l

To initialize partitions rather than whole disks: run the pvcr eat e command on the partition. The
following example initializes / dev/ hdb1 as an LVM physical volume for later use as part of an
LVM logical volume.

pvcreate /dev/ hdbl

2.1.3. Scanning for Block Devices

23

Chapter 4. LVM Administration with CLI Commands

You can scan for block devices that may be used as physical volumes with the | vndi skscan
command, as shown in the following example.

| vidi skscan

/ dev/ ranD [16. 00 MB]
/ dev/ sda [17. 15 GB]
/ dev/ r oot [13. 69 GB]
[dev/ram [16. 00 MB]
/ dev/ sdal [17.14 GB] LVM physical vol une
/ dev/ Vol Gr oup00/ LogVol 01 [512. 00 MB]
[dev/ r an? [16. 00 MB]
/ dev/ new_vg/ | vol O [52.00 MB]
[dev/ ranB [16. 00 MB]
/ dev/ pkl _new_vg/ sparkie_|v [7.14 GB]
[dev/ r an¥ [16. 00 MB]
/ dev/ r anb [16. 00 MB]
[dev/ r anb [16. 00 MB]
[dev/ r anv [16. 00 MB]
[dev/ran8 [16. 00 MB]
[dev/ rand [16. 00 MB]
[dev/ rantl0 [16. 00 MB]
/dev/ranll [16. 00 MB]
/ dev/raml2 [16. 00 MB]
/dev/ranl3 [16. 00 MB]
[dev/ r anl4 [16. 00 MB]
[dev/ r ani5 [16. 00 MB]
/ dev/ sdb [17. 15 GB]
/ dev/ sdbl [17.14 GB] LWM physical vol unme
/ dev/ sdc [17. 15 GB]
/ dev/ sdcl [17.14 GB] LVM physical vol une
/ dev/ sdd [17. 15 GB]
/ dev/ sdd1 [17.14 GB] LWM physical vol ume

7 di sks

17 partitions

0 LVM physi cal vol une whol e di sks
4 LVM physi cal vol unes

2.2. Displaying Physical Volumes

There are three commands you can use to display properties of LVM physical volumes: pvs,
pvdi spl ay, and pvscan.

The pvs command provides physical volume information in a configurable form, displaying one
line per physical volume. The pvs command provides a great deal of format control, and is
useful for scripting. For information on using the pvs command to customize your output, see
Section 9, “Customized Reporting for LVM”.

The pvdi spl ay command provides a verbose multi-line output for each physical volume. It
displays physical properties (size, extents, volume group, etc.) in a fixed format.

The following example shows the output of the pvdi spl ay command for a single physical

24

Preventing Allocation on a Physical Volume

volume.
pvdi spl ay
--- Physical volunme ---
PV Nane / dev/ sdcl
VG Nane new vg
PV Si ze 17.14 GB / not usable 3.40 MB
Al | ocat abl e yes
PE Si ze (KByte) 4096
Total PE 4388
Free PE 4375
Al |l ocated PE 13
PV UUI D Joql ch- yW5j - kuEn- | dwMt 01S9- XCBM ntpsVe

The pvscan command scans all supported LVM block devices in the system for physical
volumes.

The following command shows all physical devices found:

pvscan
PV / dev/ sdb2 VG vg0 lvnR [964.00 MB/ O free]
PV /dev/sdcl VG vg0 lvnR [964.00 MB / 428.00 MB free]
PV / dev/ sdc2 | v2 [964. 84 MB]
Total: 3 [2.83 GB] / inuse: 2 [1.88 GB] / in no VG 1 [964.84 MB]

You can define a filter in the | vm conf so that this command will avoid scanning specific
physical volumes. For information on using filters to control which devices are scanned, see
Section 6, “Controlling LVM Device Scans with Filters”.

2.3. Preventing Allocation on a Physical Volume

You can prevent allocation of physical extents on the free space of one or more physical
volumes with the pvchange command. This may be necessary if there are disk errors, or if you
will be removing the physical volume.

The following command disallows the allocation of physical extents on / dev/ sdk1.
pvchange -x n /dev/sdkl

You can also use the - xy arguments of the pvchange command to allow allocation where it had
previously been disallowed.

2.4. Resizing a Physical Volume

If you need to change the size of an underlying block device for any reason, use the pvresi ze
command to update LVM with the new size. You can execute this command while LVM is using

25

Chapter 4. LVM Administration with CLI Commands

the physical volume.

2.5. Removing Physical Volumes

If a device is no longer required for use by LVM, you can remove the LVM label with the
pvremove command. Executing the pvr enove command zeroes the LVM metadata on an empty
physical volume.

If the physical volume you want to remove is currently part of a volume group, you must remove
it from the volume group with the vgr educe command, as described in Section 3.5, “Removing
Physical Volumes from a Volume Group”.

pvrenmove /dev/raml5
Label s on physical volunme "/dev/raml5" successfully w ped

3. Volume Group Administration

This section describes the commands that perform the various aspects of volume group
administration.

3.1. Creating Volume Groups

To create a volume group from one or more physical volumes, use the vgcr eat e command.
The vgcr eat e command creates a new volume group by name and adds at least one physical
volume to it.

The following command creates a volume group named vgl that contains physical volumes
/ dev/ sdd1 and / dev/ sdel.

vgcreate vgl /dev/sddl /dev/sdel

When physical volumes are used to create a volume group, its disk space is divided into 4MB
extents, by default. This extent is the minimum amount by which the logical volume may be
increased or decreased in size. Large numbers of extents will have no impact on I/O
performance of the logical volume.

You can specify the extent size with the vgcr eat e command if the default is not suitable with
the - s argument. You can put limits on the number of physical or logical volumes the volume
group can have by using the - p and - | arguments of the vgcr eat e command.

By default, a volume group allocates physical extents according to common-sense rules such as
not placing parallel stripes on the same physical volume. This is the nor mal allocation policy.
You can use the - - al | oc argument of the vgcr eat e command to specify an allocation policy of
conti guous, anywher e, or cl i ng.

26

Adding Physical Volumes to a Volume

The cont i guous policy requires that new extents are adjacent to existing extents. If there are
sufficient free extents to satisfy an allocation request but a nor mal allocation policy would not
use them, the anywher e allocation policy will, even if that reduces performance by placing two
stripes on the same physical volume. The cl i ng policy places new extents on the same
physical volume as existing extents in the same stripe of the logical volume. These policies can
be changed using the vgchange command.

In general, allocation policies other than nor nal are required only in special cases where you
need to specify unusual or nonstandard extent allocation.

LVM volume groups and underlying logical volumes are included in the device special file
directory tree in the / dev directory with the following layout:

[dev/vg/ |l v/

For example, if you create two volume groups myvgl and nyvg2, each with three logical
volumes named | vol, | vo2, and | vo3, this create six device special files:

/ dev/ myvgl/|vO1l
/ dev/ myvgl/ | v02
/ dev/ myvgl/ | v03
[dev/ myvg2/ | v01
[dev/ myvg2/ | v02
[dev/ nyvg2/1 v03

The maximum device size with LVM is 8 Exabytes on 64-bit CPUs.

3.2. Adding Physical Volumes to a Volume Group

To add additional physical volumes to an existing volume group, use the vgext end command.
The vgext end command increases a volume group's capacity by adding one or more free
physical volumes.

The following command adds the physical volume / dev/ sdf 1 to the volume group vg1.

vgextend vgl /dev/sdf1l

3.3. Displaying Volume Groups

There are two commands you can use to display properties of LVM volume groups: vgs and
vgdi spl ay.

The vgscan command will also display the volume groups, although its primary purpose is to
scan all the disks for volume groups and rebuild the LVM cache file. For information on the

27

Chapter 4. LVM Administration with CLI Commands

vgscan command, see Section 3.4, “Scanning Disks for Volume Groups to Build the Cache
File”.

The vgs command provides volume group information in a configurable form, displaying one
line per volume group. The vgs command provides a great deal of format control, and is useful
for scripting. For information on using the vgs command to customize your output, see

Section 9, “Customized Reporting for LVM”.

The vgdi spl ay command displays volume group properties (such as size, extents, number of
physical volumes, etc.) in a fixed form. The following example shows the output of a vgdi spl ay
command for the volume group new_vg. If you do not specify a volume group, all existing
volume groups are displayed.

vgdi spl ay new _vg
--- Vol une group ---

VG Nane new_vg

System | D

For mat | v

Met adat a Ar eas 3

Met adat a Sequence No 11

VG Access read/ wite

VG St at us resi zabl e

MAX LV 0

Cur LV 1

Open LV 0

Max PV 0

Cur PV 3

Act PV 3

VG Si ze 51.42 GB

PE Si ze 4.00 MB

Tot al PE 13164

Alloc PE/ Size 13 / 52.00 MB
Free PE / Size 13151 / 51.37 GB
VG UUl D j XxQJ0a- ZKk0- OpM>- 0118- nl wO- wwgd- f D5D32

3.4. Scanning Disks for Volume Groups to Build the Cache File

The vgscan command scans all supported disk devices in the system looking for LVM physical
volumes and volume groups. This builds the LVM cache in the / et ¢/ | vni . cache file, which
maintains a listing of current LVM devices.

LVM runs the vgscan command automatically at system startup and at other times during LVM
operation, such as when you execute a vgcr eat e command or when LVM detects an
inconsistency. You may need to run the vgscan command manually when you change your
hardware configuration, causing new devices to be visible to the system that were not present
at system bootup. This may be necessary, for example, when you add new disks to the system
on a SAN or hotplug a new disk that has been labeled as a physical volume.

You can define a filter in the | vm conf file to restrict the scan to avoid specific devices. For
information on using filters to control which devices are scanned, see Section 6, “Controlling

28

Group

LVM Device Scans with Filters”.

The following example shows the output of a vgscan command.

vgscan
Readi ng all physical volunmes. This may take a while...
Found vol une group "new_vg" using netadata type |vnR
Found vol une group "of ficevg" using nmetadata type |vnR

3.5. Removing Physical Volumes from a Volume Group

To remove unused physical volumes from a volume group, use the vgr educe command. The
vgr educe command shrinks a volume group's capacity by removing one or more empty
physical volumes. This frees those physical volumes to be used in different volume groups or to
be removed from the system.

Before removing a physical volume from a volume group, you can make sure that the physical
volume is not used by any logical volumes by using the pvdi spl ay command.

pvdi spl ay /dev/hdal

-- Physical volune ---

PV Nane / dev/ hdal

VG Nane myvg

PV Si ze 1.95 GB / NOT usable 4 MB [LVM 122 KB]
PV# 1

PV St atus avai |l abl e

Al | ocat abl e yes (but full)

Cur LV 1

PE Si ze (KByte) 4096

Total PE 499

Free PE 0

Al |l ocated PE 499

PV UU D Sd44t K- 91 Rw Sr MC- Mkn- 76i P-i ftz- OvSen7

If the physical volume is still being used you will have to migrate the data to another physical
volume using the pvnove command. Then use the vgr educe command to remove the physical
volume:

The following command removes the physical volume / dev/ hdal from the volume group

nmy_vol une_gr oup.

vgreduce my_vol ume_group /dev/ hdal

3.6. Changing the Parameters of a Volume Group

29

Chapter 4. LVM Administration with CLI Commands

There are several volume group parameters that you can change for an existing volume group
with the vgchange command. Primarily, however, this command is used to deactivate and
activate volume groups, as described in Section 3.7, “Activating and Deactivating Volume
Groups”,

The following command changes the maximum number of logical volumes of volume group
vg0o0 to 128.

vgchange -1 128 /dev/vg00

For a description of the volume group parameters you can change with the vgchange command,
see the vgchange(8) man page.

3.7. Activating and Deactivating Volume Groups

When you create a volume group it is, by default, activated. This means that the logical volumes
in that group are accessible and subject to change.

There are various circumstances for which you you need to make a volume group inactive and
thus unknown to the kernel. To deactivate or activate a volume group, use the - a
(- - avai | abl e) argument of the vgchange command.

The following example deactivates the volume group ny_vol une_gr oup.

vgchange -a n my_vol ume_group

If clustered locking is enabled, add 'e’ to activate or deactivate a volume group exclusively on
one node or 'I' to activate or/deactivate a volume group only on the local node. Logical volumes
with single-host snapshots are always activated exclusively because they can only be used on
one node at once.

You can deactivate individual logical volumes with the | vchange command, as described in
Section 4.4, “Changing the Parameters of a Logical Volume Group”, For information on
activating logical volumes on individual nodes in a cluster, see Section 8, “Activating Logical
Volumes on Individual Nodes in a Cluster”.

3.8. Removing Volume Groups

To remove a volume group that contains no logical volumes, use the vgr enove command.

vgrenove officevg
Vol une group "of ficevg" successfully renoved

30

Combining Volume Groups

3.9. Splitting a Volume Group

To split the physical volumes of a volume group and create a new volume group, use the
vgspl it command.

Logical volumes cannot be split between volume groups. Each existing logical volume must be
entirely on the physical volumes forming either the old or the new volume group. If necessary,
however, you can use the pvnove command to force the split.

The following example splits off the new volume group smal | vg from the original volume group
bi gvg.

vgsplit bigvg smallvg /dev/ranl5
Vol une group "snall vg" successfully split from "bigvg"

3.10. Combining Volume Groups

Two combine two volume groups into a single volume group, use the vgner ge command. You
can merge an inactive "source" volume with an active or an inactive "destination" volume if the
physical extent sizes of the volume are equal and the physical and logical volume summaries of
both volume groups fit into the destination volume groups limits.

The following command merges the inactive volume group ny_vg into the active or inactive
volume group dat abases giving verbose runtime information.

vgnmer ge -v dat abases my_vg

3.11. Backing Up Volume Group Metadata

Metadata backups and archives are automatically created on every volume group and logical
volume configuration change unless disabled in the | vm conf file. By default, the metadata
backup is stored in the / et ¢/ | vl backup file and the metadata archives are stored in the
/etc/lvm archi ves file. You can manually back up the metadata to the / et ¢/ | vni backup file
with the vgcf gbackup command.

The vgcfrest or e command restores the metadata of a volume group from the archive to all the
physical volumes in the volume groups.

For an example of using the vgcf gr est or e command to recover physical volume metadata,
see Section 4, “Recovering Physical Volume Metadata”.

3.12. Renaming a Volume Group

Use the vgr enane command to rename an existing volume group.

Either of the following commands renames the existing volume group vg02 to nmy_vol ume_gr oup

31

Ch

apter 4. LVM Administration with CLI Commands

3.

Yo

vgr enane /dev/vg02 /dev/ my_vol ume_gr oup

vgr ename vg02 my_vol ume_group

13. Moving a Volume Group to Another System

u can move an entire LVM volume group to another system. It is recommended that you use

the vgexport and vgi nport commands when you do this.

Th

e vgexport command makes an inactive volume group inaccessible to the system, which

allows you to detach its physical volumes. The vgi nport command makes a volume group
accessible to a machine again after the vgexport command has made it inactive.

To

move a volume group form one system to another, perform the following steps:

. Make sure that no users are accessing files on the active volumes in the volume group, then

unmount the logical volumes.

. Use the - a n argument of the vgchange command to mark the volume group as inactive,

which prevents any further activity on the volume group.

. Use the vgexport command to export the volume group. This prevents it from being

accessed by the system from which you are removing it.

After you export the volume group, the physical volume will show up as being in an exported
volume group when you execute the pvscan command, as in the following example.

[root @ng3-1] # pvscan
PV / dev/ sdal is in exported VG myvg [17.15 GB / 7.15 GB free]
PV / dev/sdcl is in exported VG nmyvg [17.15 GB / 15.15 GB free]
PV / dev/ sdd1l is in exported VG myvg [17.15 GB / 15.15 GB free]

When the system is next shut down, you can unplug the disks that constitute the volume
group and connect them to the new system.

. When the disks are plugged into the new system, use the vgi nport command to import the

volume group, making it accessible to the new system.

. Activate the volume group with the - a y argument of the vgchange command.

. Mount the file system to make it available for use.

32

Logical Volume Administration

3.14. Recreating a Volume Group Directory

To recreate a volume group directory and logical volume special files, use the vgnknodes
command. This command checks the LVM2 special files in the / dev directory that are needed
for active logical volumes. It creates any special files that are missing removes unused ones.

You can incorporate the vgnknodes command into the vgscan command by specifying the
- - nknodes argument to the command.

4. Logical Volume Administration

This section describes the commands that perform the various aspects of logical volume
administration.

4.1. Creating Logical Volumes

To create a logical volume, use the | vcr eat e command. You can create linear volumes, striped
volumes, and mirrored volumes, as described in the following subsections.

If you do not specify a name for the logical volume, the default name | vol # is used where # is
the internal number of the logical volume.

The following sections provide examples of logical volume creation for the three types of logical
volumes you can create with LVM.

4.1.1. Creating Linear Volumes

When you create a logical volume, the logical volume is carved from a volume group using the
free extents on the physical volumes that make up the volume group. Normally logical volumes
use up any space available on the underlying physical volumes on a next-free basis. Modifying
the logical volume frees and reallocates space in the physical volumes.

The following command creates a logical volume 10 gigabytes in size in the volume group vg1.

|l vcreate -L 10G vgl

The following command creates a 1500 megabyte linear logical volume named t est | v in the
volume group t est vg, creating the block device / dev/testvg/test!v.

| vcreate -L1500 -n testlv testvg

The following command creates a 50 gigabyte logical volume named gf sl v from the free
extents in volume group vgo.

| vcreate -L 50G -n gfslv vgO0

33

Chapter 4. LVM Administration with CLI Commands

You can use the -1 argument of the | vcr eat e command to specify the size of the logical
volume in extents. You can also use this argument to specify the percentage of the volume
group to use for the logical volume. The following command creates a logical volume called
nyl v that uses 60% of the total space in volume group t est vol .

lvcreate -1 60%W/G -n nylv testvg

You can also use the -1 argument of the | ver eat e command to specify the percentage of the
remaining free space in a volume group as the size of the logical volume. The following
command creates a logical volume called your | v that uses all of the unallocated space in the
volume group t est vol .

lvcreate -1 100%-REE -n yourlv testvg

You can use -1 argument of the | vcr eat e command to create a logical volume that uses the
entire volume group. Another way to create a logical volume that uses the entire volume group
is to use the vgdi spl ay command to find the "Total PE" size and to use those results as input
to the the | vcr eat e command.

The following commands create a logical volume called ny! v that fills the volume group named
testvg.

vgdi splay testvg | grep "Total PE"
Total PE 10230
lvcreate -1 10230 testvg -n nylv

The underlying physical volumes used to create a logical volume can be important if the
physical volume needs to be removed, so you may need to consider this possibility when you
create the logical volume. For information on removing a physical volume from a volume group,
see Section 3.5, “Removing Physical Volumes from a Volume Group”.

To create a logical volume to be allocated from a specific physical volume in the volume group,
specify the physical volume or volumes at the end at the | vcr eat e command line. The following
command creates a logical volume named t est | v in volume group t est vg allocated from the
physical volume / dev/ sdg1,

| vcreate -L 1500 -ntestlv testvg /dev/sdgl

You can specify which extents of a physical volume are to be used for a logical volume. The

34

Creating Logical Volumes

following example creates a linear logical volume out of extents 0 through 25 of physical volume
/ dev/ sdal and extents 50 through 125 of physical volume / dev/ sdb1 in volume group t est vg.

|lvcreate -1 100 -n testlv testvg /dev/sdal: 0-25 /dev/sdbl: 50- 125

The following example creates a linear logical volume out of extents 0 through 25 of physical
volume / dev/ sdal and then continues laying out the logical volume at extent 100.

| vcreate -1 100 -n testlv testvg /dev/sdal: 0-25: 100-

The default policy for how the extents of a logical volume are allocated is i nheri t, which
applies the same policy as for the volume group. These policies can be changed using the

| vehange command. For information on allocation policies, see Section 3.1, “Creating Volume
Groups”.

4.1.2. Creating Striped Volumes

For large sequential reads and writes, creating a striped logical volume can improve the
efficiency of the data 1/0. For general information about striped volumes, see Section 3.2,
“Striped Logical Volumes”.

When you create a striped logical volume, you specify the number of stripes with the - i
argument of the | vcr eat e command. This determines over how many physical volumes the
logical volume will be striped. The number of stripes cannot be greater than the number of
physical volumes in the volume group (unless the - - al | oc anywher e argument is used).

The stripe size should be tuned to a power of 2 between 4kB and 512kB, and matched to the
application's I/O that is using the striped volume. The -1 argument of the | vcr eat e command
specifies the stripe size in kilobytes.

If the underlying physical devices that make up a striped logical volume are different sizes, the
maximum size of the striped volume is determined by the smallest underlying device. For
example, in a two-legged stripe, the maximum size is twice the size of the smaller device. In a
three-legged stripe, the maximum size is three times the size of the smallest device.

The following command creates a striped logical volume across 2 physical volumes with a stride
of 64kB. The logical volume is 50 gigabytes in size, is named gf sl v, and is carved out of
volume group vgo.

|l vcreate -L 50G -i2 -164 -n gfslv vg0

As with linear volumes, you can specify the extents of the physical volume that you are using for
the stripe. The following command creates a striped volume 100 extents in size that stripes

35

Chapter 4. LVM Administration with CLI Commands

across two physical volumes, is named st ri pel v and is in volume group t est vg. The stripe will
use sectors 0-50 of / dev/ sdal and sectors 50-100 of / dev/ sdb1.

lvcreate -1 100 -i2 -nstripelv testvg /dev/sdal: 0-50 /dev/sdbl: 50- 100
Usi ng default stripesize 64.00 KB
Logi cal volune "stripelv" created

4.1.3. Creating Mirrored Volumes

When you create a mirrored volume, you specify the number of copies of the data to make with
the - margument of the | vcr eat e command. Specifying - niL creates one mirror, which yields
two copies of the file system: a linear logical volume plus one copy. Similarly, specifying - n
creates two mirrors, yielding three copies of the file system.

The following command creates a mirrored logical volume with a single mirror. The volume is 50
gigabytes in size, is named ni rror | v, and is carved out of volume group vgo:

lvcreate -L 50G -nll -n gfslv vgOo

An LVM mirror divides the device being copied into regions that, by default, are 512KB in size.
You can use the - Rargument to specify the region size in MB. LVM maintains a small log which
it uses to keep track of which regions are in sync with the mirror or mirrors. By default, this log is
kept on disk, which keeps it persistent across reboots. You can specify instead that this log be
kept in memory with the - - cor el og argument; this eliminates the need for an extra log device,
but it requires that the entire mirror be resynchronized at every reboot.

The following command creates a mirrored logical volume from the volume group bi gvg. The
logical is named ondi skni rvol and has a single mirror. The volume is 12MB in size and keeps
the mirror log in memory.

lvcreate -L 12MB -mL --corel og -n ondi skni rvol bigvg
Logi cal vol une "ondi skmrvol" created

When a mirror is created, the mirror regions are synchronized. For large mirror components, the
sync process may take a long time. When you are creating a new mirror that does not need to
be revived, you can specify the nosync argument to indicate that an initial synchronization from
the first device is not required.

You can specify which devices to use for the mirror logs and log, and which extents of the
devices to use. To force the log onto a particular disk, specify exactly one extent on the disk on
which it will be placed. LVM does not necessary respect the order in which devices are listed in
the command line. If any physical volumes are listed that is the only space on which allocation
will take place. Any physical extents included in the list that are already allocated will get

36

Creating Logical Volumes

ignored.

The following command creates a mirrored logical volume with a single mirror. The volume is
500 megabytes in size, it is named nmi rror | v, and it is carved out of volume group vgo0. The first
leg of the mirror is on device / dev/ sdal, the second leg of the mirror is on device / dev/ sdb1l,
and the mirror log is on / dev/ sdc1.

Ivcreate -L 500M-mL -n mrrorlv vg0 /dev/sdal /dev/sdbl /dev/sdcl

The following command creates a mirrored logical volume with a single mirror. The volume is
500 megabytes in size, it is named ni rror | v, and it is carved out of volume group vg0. The first
leg of the mirror is on extents 0 through 499 of device / dev/ sdal, the second leg of the mirror is
on extents 0 through 499 of device / dev/ sdb1, and the mirror log starts on extent 0 of device

/ dev/ sdcl. These are 1MB extents. If any of the specified extents have already been allocated,
they will be ignored.

Ivcreate -L 500M -mlL -n mirrorlv vgO /dev/sdal: 0-499 /dev/sdbl: 0-499
/ dev/sdc1: 0

4.1.4. Changing Mirrored Volume Configuration

You can convert a logical volume from a mirrored volume to a linear volume or from a linear
volume to a mirrored volume with the | vconvert command. You can also use this command to
reconfigure other mirror parameters of an existing logical volume, such as cor el og.

When you convert a logical volume to a mirrored volume, you are basically creating mirror legs
for an existing volume. This means that your volume group must contain the devices and space
for the mirror legs and for the mirror log.

If you lose a leg of a mirror, LVM converts the volume to a linear volume so that you still have
access to the volume, without the mirror redundancy. After you replace the leg, you can use the
I vconvert command to restore the mirror. This procedure is provided in Section 3, “Recovering
from LVM Mirror Failure”.

The following command converts the linear logical volume vg00/ | vol 1 to a mirrored logical
volume.

| vconvert -ml vgO0O/|vol 1

The following command converts the mirrored logical volume vg00/ | vol 1 to a linear logical
volume, removing the mirror leg.

| vconvert -nD vgO00/Ivol 1

37

Chapter 4. LVM Administration with CLI Commands

4.2. Persistent Device Numbers

Major and minor device numbers are allocated dynamically at module load. Some applications
work best if the block device always is activated with the same device (major and minor)
number. You can specify these with the | vcr eat e and the | vchange commands by using the
following arguments:

--persistent y --major major --mnor mnor

Use a large minor number to be sure that it hasn't already been allocated to another device
dynamically.

If you are exporting a file system using NFS, specifying the f si d parameter in the exports file
may avoid the need to set a persistent device number within LVM.

4.3. Resizing Logical Volumes

To change the size of a logical volume, use the | vr educe command. If the logical volume
contains a file system, be sure to reduce the file system first (or use the LVM GUI) so that the
logical volume is always at least as large as the file system expects it to be.

The following command reduces the size of logical volume | vol 1 in volume group vg00 by 3
logical extents.

| vreduce -1 -3 vg00/Ivol 1

4.4. Changing the Parameters of a Logical Volume Group

To change the parameters of a logical volume, use the | vchange command. For a listing of the
parameters you can change, see the | vchange(8) man page.

You can use the | vchange command to activate and deactivate logical volumes. To activate
and deactivate all the logical volumes in a volume group at the same time, use the vgchange
command, as described in Section 3.6, “Changing the Parameters of a Volume Group”.

The following command changes the permission on volume | vol 1 in volume group vgoo0 to be
read-only.

| vchange -pr vg00/Ivol 1

38

Removing Logical Volumes

4.5. Renaming Logical Volumes

To rename an existing logical volume, use the | vr enanme command.

Either of the following commands renames logical volume | vol d in volume group vg02 to
| vhew.

| vrenane /dev/vg02/1vold /dev/vg02/I| vnew

| vrenane vg02 Ivold | vnew

For more information on activating logical volumes on individual nodes in a cluster, see
Section 8, “Activating Logical Volumes on Individual Nodes in a Cluster”.

4.6. Removing Logical Volumes

To remove an inactive logical volume, use the | vr enove command. You must close a logical
volume with the unount command before it can be removed. In addition, in a clustered
environment you must deactivate a logical volume before it can be removed.

If the logical volume is currently mounted, unmount the volume before removing it.

The following command removes the logical volume / dev/ t est vg/ t est | v. from the volume
group t est vg. Note that in this case the logical volume has not been deactivated.

[root@ng3-1 | vnj# | vrenove /dev/testvg/testlv
Do you really want to renove active |logical volune "testlv"? [y/n]: y
Logi cal volume "testlv" successfully renoved

You could explicitly deactivate the logical volume before removing it with the | vchange -an
command, in which case you would not see the prompt verifying whether you want to remove
an active logical volume.

4.7. Displaying Logical Volumes

There are three commands you can use to display properties of LVM logical volumes: | vs,
| vdi spl ay, and | vscan.

The | vs command provides logical volume information in a configurable form, displaying one
line per logical volume. The | vs command provides a great deal of format control, and is useful
for scripting. For information on using the | vs command to customize your output, see

Section 9, “Customized Reporting for LVM”.

The | vdi spl ay command displays logical volume properties (such as size, layout, and

39

Chapter 4. LVM Administration with CLI Commands

mapping) in a fixed format.

The following command shows the attributes of | vol 2 in vg00. If snapshot logical volumes have
been created for this original logical volume, this command shows a list of all snapshot logical
volumes and their status (active or inactive) as well.

| vdi splay -v /dev/vg00/I vol 2

The | vscan command scans for all logical volumes in the system and lists them, as in the
following example.

| vscan
ACTI VE '/ dev/vg0O/gfslv' [1.46 GB] inherit

4.8. Growing Logical Volumes

To increase the size of a logical volume, use the | vext end command.

After extending the logical volume, you will need to increase the size of the associated file
system to match.

When you extend the logical volume, you can indicate how much you want to extend the
volume, or how large you want it to be after you extend it.

The following command extends the logical volume / dev/ myvg/ honevol to 12 gigabytes.

| vextend -L12G /dev/ nyvg/ honmevol

| vextend -- extending |ogical volume "/dev/nyvg/ honevol" to 12 GB
| vextend -- doing automatic backup of vol une group "myvg"
| vextend -- |ogical volune "/dev/ nmyvg/ honevol " successful ly extended

The following command adds another gigabyte to the logical volume / dev/ myvg/ homevol .

| vextend -L+1G /dev/ nmyvg/ honmevol

| vextend -- extending |ogical volume "/dev/nyvg/ honevol" to 13 GB
| vextend -- doing automatic backup of vol une group "myvg"
| vextend -- |ogical volunme "/dev/myvg/ homevol " successful |l y extended

As with the | vcr eat e command, you can use the -1 argument of the | vext end command to
specify the number of extents by which to increase the size of the logical volume. You can also
use this argument to specify a percentage of the volume group, or a percentage of the
remaining free space in the volume group. The following command extends the logical volume
called t est | v to fill all of the unallocated space in the volume group nyvg.

40

Extending a Striped Volume

[root@ng3-1 ~]# |vextend -1 +100%-REE /dev/ myvg/testlv
Ext endi ng | ogi cal volune testlv to 68.59 GB
Logi cal volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to
match.

By default, most file system resizing tools will increase the size of the file system to be the size
of the underlying logical volume so you do not need to worry about specifying the same size for
each of the two commands.

4.9. Extending a Striped Volume

In order to increase the size of a striped logical volume, there must be enough free space on the
underlying physical volumes that make up the volume group to support the stripe. For example,
if you have a two-way stripe that that uses up an entire volume group, adding a single physical
volume to the volume group will not enable you to extend the stripe. Instead, you must add at
least two physical volumes to the volume group.

For example, consider a volume group vg that consists of two underlying physical volumes, as
displayed with the following vgs command.

vgs
VG #PV #LV #SN Attr VSi ze VFr ee
Vg 2 0 0 wz--n- 271.31G 271. 31G

You can create a stripe using the entire amount of space in the volume group.

lvcreate -n stripel -L 271.31G -i 2 vg
Usi ng default stripesize 64.00 KB
Roundi ng up size to full physical extent 271.31 GB
Logi cal volunme "stripel" created
lvs -a -0 +devices
LV VG Attr LSi ze Oigin Snap% Myve Log Copy% Devices
stripel vg -wi -a- 271.31G
/ dev/ sdal(0), /dev/sdbl(0)

Note that the volume group now has no more free space.

vgs
VG #PV #LV #SN Attr VSi ze VFree
Vg 2 1 0 wz--n- 271.31G 0

41

Chapter 4. LVM Administration with CLI Commands

The following command adds another physical volume to the volume group, which then has
135G of additional space.

vgextend vg /dev/sdcl
Vol ume group "vg" successfully extended

vgs
VG #PV #LV #SN Attr VSi ze VFr ee
Vg 3 1 0 wz--n- 406.97G 135. 66G

At this point you cannot extend the striped logical volume to the full size of the volume group,
because two underlying devices are needed in order to stripe the data.

| vextend vg/stripel -L 406G

Using stripesize of |ast segnent 64.00 KB

Ext endi ng | ogi cal volune stripel to 406.00 GB

Insufficient suitable allocatable extents for |ogical volune stripel:
34480
nore required

To extend the striped logical volume, add another physical volume and then extend the logical
volume. In this example, having added two physical volumes to the volume group we can
extend the logical volume 5A to the full size of the volume group.

vgextend vg /dev/sddl
Vol ume group "vg" successfully extended

vgs
VG #PV #LV #SN Attr VSize VFree
vg 4 1 0 wz--n- 542.62G 271. 31G

| vextend vg/stripel -L 542G
Using stripesize of |ast segnent 64.00 KB
Ext endi ng | ogi cal volume stripel to 542.00 GB
Logi cal volunme stripel successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is
possible to extend the volume anyway if it does not matter that the extension is not striped,
which may result in uneven performance. When adding space to the logical volume, the default
operation is to use the same striping parameters of the last segment of the existing logical
volume, but you can override those parameters. The following example extends the existing
striped logical volume to use the remaining free space after the initial | vext end command fails.

| vextend vg/stripel -L 406G

Usi ng stripesize of |ast segnent 64.00 KB

Ext endi ng | ogi cal volume stripel to 406.00 GB

I nsufficient suitable allocatable extents for |ogical volune stripel:
34480

42

Shrinking Logical Volumes

nore required
lvextend -il1l -1 +100%REE vg/stripel

4.10. Shrinking Logical Volumes

To reduce the size of a logical volume, first unmount the file system. You can then use the
I vr educe command to shrink the volume. After shrinking the volume, remount the file system.

Caution

It is important to reduce the size of the file system or whatever is residing in the
volume before shrinking the volume itself, otherwise you risk losing data.

Shrinking a logical volume frees some of the volume group to be allocated to other logical
volumes in the volume group.

The following example reduces the size of logical volume | vol 1 in volume group vg00 by 3
logical extents.

| vreduce -1 -3 vg00/Ivol 1

5. Creating Snapshot Volumes

Use the - s argument of the | vcr eat e command to create a snapshot volume. A snapshot
volume is writeable.

LVM snapshots are not cluster-aware, so they require exclusive access to a volume. For
information on activating logical volumes on individual nodes in a cluster, see Section 8,
“Activating Logical Volumes on Individual Nodes in a Cluster”.

The following command creates a snapshot logical volume that is 100 megabytes in size named
/ dev/ vg00/ snap. This creates a snapshot of the origin logical volume named

/ dev/ vgO0o0/ | vol 1. If the original logical volume contains a file system, you can mount the
snapshot logical volume on an arbitrary directory in order to access the contents of the file
system to run a backup while the original file system continues to get updated.

| vcreate --size 100M --snapshot --nane snap /dev/vg00/Ilvol 1

After you create a snapshot logical volume, specifying the origin volume on the | vdi spl ay
command yields output that includes a a list of all snapshot logical volumes and their status
(active or inactive).

43

Chapter 4. LVM Administration with CLI Commands

The following example shows the status of the logical volume / dev/ new vg/ | vol 0, for which a
snapshot volume / dev/ new_vg/ newgsnap has been created.

| vdi spl ay /dev/ new vg/lvol 0
--- Logical volune ---

LV Narme / dev/ new_vg/ | vol O
VG Name new_vg
LV UUI D LBy1Tz-sr23-Q sl -LT03- nHLC- y8XW EhC 78
LV Wite Access read/ wite
LV snapshot status source of
/ dev/ new_vg/ newgsnapl [active]
LV Status avail abl e
open 0
LV Si ze 52. 00 MB
Current LE 13
Segnent s 1
Al l ocati on i nherit
Read ahead sectors 0
Bl ock device 253: 2

The | vs command, by default, displays the origin volume and the current percentage of the
shapshot volume being used for each snapshot volume. The following example shows the
default output for the | vs command for a system that includes the logical volume

/ dev/ new_vg/ | vol 0, for which a snapshot volume / dev/ new_vg/ newgsnap has been created.

lvs
LV VG Attr LSize Oigin Snap% Myve Log Copy%
| vol O new_vg ow -a- 52.00M
newgsnapl new vg swi-a- 8.00MlvolO 0. 20

Note

Because the snapshot increases in size as the origin volume changes, it is
important to monitor the percentage of the snapshot volume regularly with the

I vs command to be sure it does not fill. A snapshot that is 100% full is lost
completely, as a write to unchanged parts of the origin would be unable to
succeed without corrupting the snapshot.

6. Controlling LVM Device Scans with Filters

At startup, the vgscan command is run to scan the block devices on the system looking for LVM
labels, to determine which of them are physical volumes and to read the metadata and build up
a list of volume groups. The names of the physical volumes are stored in the cache file of each

node in the system, / et c/ | v . cache. Subsequent commands may read that file to avoiding

44

Online Data Relocation

rescanning.

You can control which devices LVM scans by setting up filters in the | vm conf configuration file.
The filters consist of a series of simple regular expressions that get applied to the device names
in the / dev directory to decide whether to accept or reject each block device found.

The following examples show the use of filters to control which devices LVM scans. Note that
some of these examples do not necessarily represent best practice, as the regular expressions
are matched freely against the complete pathname. For example, a/ | oop/ is equivalent to

al/ . *1 oop. */ and would match / dev/ sol ooperati on/ | vol 1.

The following filter adds all discovered devices, which is the default behavior as there is no filter
configured in the configuration file:

filter = ["al.*/"]

The following filter removes the cdrom device in order to avoid delays if the drive contains no
media:

filter = ["r|/dev/cdrom "]

The following filter adds all loop and removes all other block devices:

filter = ["alloop.*/", "r/.*/"]

The following filter adds all loop and IDE and removes all other block devices:

filter = "alloop.*|", "a|/dev/hd.*|", "r|.*|"]

The following filter adds just partition 8 on the first IDE drive and removes all other block
devices:

filter = ["a|~/ dev/hda8$|", "r/.*/"]

For more information on the | vm conf file, see Appendix B, The LVM Configuration Files and
the | vm conf (5) man page.

7. Online Data Relocation

You can move data while the system is in use with the pvnmove command.

45

Chapter 4. LVM Administration with CLI Commands

The pvnove command breaks up the data to be moved into sections and creates a temporary
mirror to move each section. For more information on the operation of the pvnmove command,
see the pvnove(8) man page.

Because the pvnove command uses mirroring, it is not cluster-aware and needs exclusive
access to a volume. For information on activating logical volumes on individual nodes in a
cluster, see Section 8, “Activating Logical Volumes on Individual Nodes in a Cluster”.

The following command moves all allocated space off the physical volume / dev/ sdc1 to other
free physical volumes in the volume group:

pvinove /dev/sdcl
The following command moves just the extents of the logical volume MyLV.
pvmove -n M/LV /dev/sdcl

Since the pvnove command can take a long time to execute, you may want to run the command
in the background to avoid display of progress updates in the foreground. The following
command moves all extents allocated to to the physical volume / dev/ sdc1 over to / dev/ sdf 1
in the background.

pviove -b /dev/sdcl /dev/sdfl

The following command reports the progress of the move as a percentage at five second
intervals.

pviove -i5 /dev/sddl

8. Activating Logical Volumes on Individual Nodes in a
Cluster

If you have LVM installed in a cluster environment, you may at times need to activate logical
volumes exclusively on one node. For example, the pvnove command is not cluster-aware and
needs exclusive access to a volume. LVM snapshots require exclusive access to a volume as
well.

To activate logical volumes exclusively on one node, use the | vchange -aey command.
Alternatively, you can use | vchange -al y command to activate logical volumes only on the
local node but not exclusively. You can later activate them on additional nodes concurrently.

46

Customized Reporting for LVM

You can also activate logical volumes on individual nodes by using LVM tags, which are
described in Appendix C, LVM Object Tags. You can also specify activation of nodes in the
configuration file, which is described in Appendix B, The LVM Configuration Files.

9. Customized Reporting for LVM

You can produce concise and customizable reports of LVM objects with the pvs, | vs, and vgs
commands. The reports that these commands generate include one line of output for each
object. Each line contains an ordered list of fields of properties related to the object. There are
five ways to select the objects to be reported: by physical volume, volume group, logical volume,
physical volume segment, and logical volume segment.

The following sections provide:

< A summary of command arguments you can use to control the format of the generated report.

A list of the fields you can select for each LVM object.

« A summary of command arguments you can use to sort the generated report.

Instructions for specifying the units of the report output.

9.1. Format Control

Whether you use the pvs, | vs, or vgs command determines the default set of fields displayed
and the sort order. You can control the output of these commands with the following arguments:

* You can change what fields are displayed to something other than the default by using the - o
argument. For example, the following output is the default display for the pvs command
(which displays information about physcial volumes).

pvs
PV VG Fmt Attr PSize PFree
/dev/sdbl new vg v a- 17. 14G 17. 14G
/dev/sdcl new_vg |lvn2 a- 17.14G 17. 09G
/dev/sddl new vg lvn2 a- 17. 14G 17. 14G

The following command displays only the physical volume name and size.

pvs -0 pv_nane, pv_size
PV PSi ze
/dev/sdbl 17.14G
/dev/sdcl 17.14G
/dev/sddl 17.14G

47

Chapter 4. LVM Administration with CLI Commands

* You can append a field to the output with the plus sign (+), which is used in combination with
the -0 argument.

The following example displays the UUID of the physical volume in addition to the default
fields.

pvs -0 +pv_uuid
PV VG Fmt Attr PSize PFree PV UU D
/dev/sdbl new vg |vn2 a- 17. 14G 17. 14G
onFF2w- 1f LC- ughJ- D9eB- M7i v- 6 XqA- dqGeXY
/ dev/sdcl new vg |vn2 a- 17. 14G 17. 09G
Jogl ch- yW5j - KUEn- | dwivt 01S9- X08M ntpsVe
/dev/sddl new vg lvn2 a- 17. 14G 17. 14G
yvf vZK- Cf 31-j 75k- dECm ORZ3- 0dGW Ugk CS

« Adding the - v argument to a command includes some extra fields. For example, the pvs -v
command will display the DevSi ze and PV UUI Dfields in addition to the default fields.

pvs -V
Scanni ng for physical vol ume nanes
PV VG Fnt Attr PSize PFree DevSize PV UU D
/dev/sdbl new vg lvnR2 a- 17. 14G 17. 14G 17. 14G
onFF2w 1f LC- ughJ- D9eB- Mi v- 6 XqA- dqGeXY
/dev/sdcl new vg lvnR2 a- 17. 14G 17.09G 17. 14G
Joql ch- yW5j - kuEn- | dwMt 01S9- XCBM ntpsVe
/dev/sddl new vg |vnR a- 17. 14G 17. 14G 17. 14G
yvfvZK- Cf 31-j 75k- dECm ORZ3- 0dGW t UgkCS

e The - - noheadi ngs argument suppresses the headings line. This can be useful for writing
scripts.

The following example uses the - - noheadi ngs argument in combination with the pv_nane
argument, which will generate a list of all physical volumes.

pvs --noheadings -0 pv_nane
/ dev/ sdbl
/ dev/ sdcl
/ dev/sdd1l

e The --separator separator argument uses separ at or to separate each field. This can be
useful in a script if you are running a gr ep command on the output.

The following example separates the default output fields of the pvs command with an equals
sign (=).

pvs --separator =

48

Object Selection

PV=VG=Fnt =At t r =PSi ze=PFr ee

/ dev/ sdbl=new vg=l vnR=a- =17. 14G=17. 14G
/ dev/ sdcl=new vg=l vm2=a- =17. 14G=17. 09G
/ dev/ sdd1l=new vg=l vn2=a- =17. 14G=17. 14G

To keep the fields aligned when using the separ at or argument, use the separ at or argument
in conjunction with the - - al i gned argument.

pvs --separator = --aligned
PV =VG =Fnmt =Attr=PSi ze =PFree
/ dev/ sdbl =new_vg=l vmR=a- =17.14G=17.14G
/dev/ sdcl =new vg=l vnR=a- =17.14G=17.09G
/dev/ sdd1l =new vg=l vnmR=a- =17.14G=17.14G

You can use the - P argument of the | vs or vgs command to display information about a failed
volume that would otherwise not appear in the output. For information on the output this
argument yields, see Section 2, “Displaying Information on Failed Devices”.

For a full listing of display arguments, see the pvs(8), vgs(8) and I vs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment)
fields or with logical volume (and logical volume segment) fields, but physical volume and logical
volume fields cannot be mixed. For example, the following command will display one line of
output for each physical volume.

vgs -0 +pv_nanme
VG #PV #LV #SN Attr VSize VFree PV
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdcl
new_vg 3 1 0 wz--n- 51.42G 51. 37G / dev/ sdd1
new_vg 3 1 0 wz--n- 51.42G 51. 37G / dev/ sdbl

9.2. Object Selection

This section provides a series of tables that list the information you can display about the LVM
objects with the pvs, vgs, and | vs commands.

For convenience, a field name prefix can be dropped if it matches the default for the command.
For example, with the pvs command, name means pv_name, but with the vgs command, nane is
interpreted as vg_nare.

Executing the following command is the equivalent of executing pvs -o pv_free.

pvs -0 free
PFr ee
17. 14G

49

Chapter 4. LVM Administration with CLI Commands

17. 09G
17. 14G
The pvs Command

Table 4.1, “pvs Display Fields” lists the display arguments of the pvs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description

dev_si ze DevSize The size of the underlying device on which the physical
volume was created

pe_start 1st PE Offset to the start of the first physical extent in the underlying
device

pv_attr Attr Status of the physical volume: (a)llocatable or e(x)ported.

pv_fnt Fmt The metadata format of the physical volume (I vin2 or | virl)

pv_free PFree The free space remaining on the physical volume

pv_name PV The physical volume name

pv_pe_al | oc_célloc Number of used physical extents

pv_pe_count PE Number of physical extents

pvseg_size | SSize The segment size of the physical volume

pvseg_start Start The starting physical extent of the physical volume segment

pv_si ze PSize The size of the physical volume

pv_tags PV Tags LVM tags attached to the physical volume

pv_used Used The amount of space currently used on the physical volume

pv_uui d PV UUID The UUID of the physical volume

Table 4.1. pvs Display Fields

The pvs command displays the following fields by default: pv_nane, vg_name, pv_fnt, pv_attr,
pv_si ze, pv_free. The display is sorted by pv_nane.

pvs
PV VG Fnmt Attr PSize PFree
/dev/sdbl new vg |vn2 a- 17. 14G 17. 14G
/dev/sdcl new_vg |lvn2 a- 17. 14G 17. 09G
/dev/sddl new vg lvn2 a- 17. 14G 17. 13G

Using the - v argument with the pvs command adds the following fields to the default display:
dev_si ze, pv_uui d.

50

Object Selection

DevSi ze PV UU D

pvs -v
Scanni ng for physical vol ume nanes
PV VG Fnmt Attr PSize PFree
/dev/sdbl new vg |vn2 a- 17. 14G 17. 14G 17. 14G

onFF2w- 1f LC- ughJ- D9eB- M7i v- 6 XqA- dqGeXY
/dev/sdcl new vg lvnR2 a-
Jogl ch- yW5j - KUEn- | dwivt 01S9- XC8M ntpsVe
/dev/sddl new vg |vn2 a-
yvf vZK- Cf 31-j 75k- dECm ORZ3- 0dGW t Ugk CS

17.14G 17.09G 17. 14G

17.14G 17. 13G 17. 14G

You can use the - - segnment s argument of the pvs command to display information about each
physical volume segment. A segment is a group of extents. A segment view can be useful if you

want to see whether your logical volume is fragmented.

The pvs --segnent s command displays the following fields by default: pv_nane, vg_nane,
pv_fnt,pv_attr, pv_size, pv_free, pvseg_start, pvseg_si ze. The display is sorted by

pv_name and pvseg_si ze within the physical volume.

pvs --segnents

PV VG Fnt Attr PSize PFree Start SSize
/ dev/ hda2 Vol Group00 |vnR a- 37.16G 32. 00M 0 1172
/dev/ hda2 Vol G oup00 |vn2 a- 37.16G 32.00M 1172 16
/dev/ hda2 Vol G oup00 |vn2 a- 37.16G 32.00M 1188 1
/dev/sdal vg v a- 17. 14G 16. 75G 0 26
/dev/ sdal vg v a- 17. 14G 16. 75G 26 24
/ dev/ sdal vg v a- 17. 14G 16. 75G 50 26
/dev/ sdal vg v a- 17. 14G 16. 75G 76 24
[dev/sdal vg v a- 17. 14G 16. 75G 100 26
/dev/ sdal vg v a- 17. 14G 16. 75G 126 24
/dev/ sdal vg v a- 17. 14G 16. 75G 150 22
/dev/ sdal vg v a- 17. 14G 16. 75G 172 4217
/dev/ sdbl vg v a- 17. 14G 17. 14G 0 4389
/dev/sdcl vg v a- 17. 14G 17. 14G 0 4389
/ dev/ sdd1l vg v a- 17. 14G 17. 14G 0 4389
/ dev/ sdel vg v a- 17. 14G 17. 14G 0 4389
/dev/sdf1 vg v a- 17. 14G 17. 14G 0 4389
/ dev/sdgl vg lvnR a- 17. 14G 17. 14G 0 4389

You can use the pvs -a command to see devices detected by LVM that have not been

initialized as LVM physical volumes.

pvs -a
PV
/ dev/ Vol Gr oup00/ LogVol 01
/ dev/ new_vg/ | vol O
/ dev/ram
[dev/ramD
[dev/ r an?
/ dev/ ranB
/ dev/rand

VG

Fnt Attr

PSi ze

OO O0OO0OOoOOoOOo

PFr ee

OO O0OO0OOoOOoOo

51

Chapter 4. LVM Administration with CLI Commands

/ dev/ r anb -- 0 0
/ dev/ r anb -- 0 0
/ dev/ r oot -- 0 0
/ dev/ sda -- 0 0
/ dev/ sdb -- 0 0
/ dev/ sdbl new vg |vnR2 a- 17. 14G 17. 14G
/ dev/ sdc -- 0 0
/ dev/ sdcl new vg |vnR2 a- 17. 14G 17. 09G
/ dev/ sdd -- 0 0
/ dev/ sdd1 new vg |vn2 a- 17.14G 17. 14G

The vgs Command

Table 4.2, “vgs Display Fields” lists the display arguments of the vgs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description
| v_count #LV The number of logical volumes the volume group contains
max_| v MaxLV The maximum number of logical volumes allowed in the

volume group (O if unlimited)

max_pv MaxPV The maximum number of physical volumes allowed in the
volume group (0 if unlimited)

pv_count #PV The number of physical volumes that define the volume group

snap_count #SN The number of snapshots the volume group contains

vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly,
resi(z)eable, e(x)ported, (p)artial and (c)lustered.

vg_ext ent _coukEXt The number of physical extents in the volume group

vg_extent _si z&xt The size of the physical extents in the volume group

vg_fm Fmt The metadata format of the volume group (I vn2 or | vir)

vg_free VFree Size of the free space remaining in the volume group

vg_free_count Free Number of free physical extents in the volume group

vg_nane VG The volume group name

vg_seqno Seq Number representing the revision of the volume group

vg_si ze VSize The size of the volume group

vg_sysid SYSID LVM1 System ID

vg_t ags VG Tags LVM tags attached to the volume group

vg_uui d VG UUID The UUID of the volume group

Table 4.2. vgs Display Fields

The vgs command displays the following fields by default: vg_name, pv_count, | v_count,
snap_count,vg_attr, vg_size, vg_free. The display is sorted by vg_nane.

52

Object Selection

vgs
VG #PV #LV #SN Attr VSi ze VFree
new_vg 3 1 1 wz--n- 51.42G 51. 36G

Using the - v argument with the vgs command adds the following fields to the default display:
vg_extent _size, vg_uui d.

vgs -V
Fi ndi ng all vol ume groups
Fi ndi ng vol ume group "new_vg"
VG Attr Ext #PV #LV #SN VSi ze VFree VG UUID
new_vg wz--n- 4.00M 3 1 1 51.42G 51. 36G
j xQJ0a- ZKk0- OpMO- 0118- nl wO- wwgd- f D5D32

The lvs Command

Table 4.3, “Ilvs Display Fields” lists the display arguments of the | vs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description

Chunk Unit size in a snapshot volume
chunksi ze
chunk_si ze

copy_percent Copy% The synchronization percentage of a mirrored logical volume;
also used when physical extents are being moved with the
pv_nove command

devi ces Devices The underlying devices that make up the logical volume: the
physical volumes, logical volumes, and start physical extents
and logical extents

Iv_attr Attr The status of the logical volume. The logical volume attribute
bits are as follows:

Bit 1: Volume type: (m)irrored, (M)irrored without initial sync,
(o)rigin, (p)vmove, (s)napshot, invalid (S)napshot, (v)irtual
Bit2: Permissions: (w)riteable, (r)ead-only

Bit 3: Allocation policy: (c)ontiguous, (n)ormal, (a)nywhere,
()nherited. This is capitalized if the volume is currently locked
against allocation changes, for example while executing the
pviove command.

Bit 4: fixed (m)inor

Bit 5 State: (a)ctive, (s)uspended, (l)nvalid snapshot, invalid
(S)uspended snapshot, mapped (d)evice present without
tables, mapped device present with (i)nactive table

Bit 6: device (0)pen

53

Chapter 4. LVM Administration with CLI Commands

Argument

Header

| v_kernel _maj &Ma]

I v_kernel _m n&MIN

| v_maj or

I v_m nor

I v_nane
lv_size
lv_tags
lv_uuid
mrror_|og

nodul es
nmove_pv
origin

regi onsi ze
regi on_si ze
seg_count
seg_si ze
seg_start
seg_t ags

segt ype

snap_per cent

stripes

stripesi ze
stripe_size

Maj

Min

LV

LSize

LV Tags
LV UUID
Log

Modules

Move

Origin

Region

#Seg
SSize
Start

Seg Tags
Type

Snap%
#Str
Stripe

Description
Actual major device number of the logical volume (-1 if
inactive)

Actual minor device number of the logical volume (-1 if
inactive)

The persistent major device number of the logical volume (-1
if not specified)

The persistent minor device number of the logical volume (-1
if not specified)

The name of the logical volume

The size of the logical volume

LVM tags attached to the logical volume
The UUID of the logical volume.

Device on which the mirror log resides

Corresponding kernel device-mapper target necessary to use
this logical volume

Source physical volume of a temporary logical volume created
with the pvmove command

The origin device of a snapshot volume

The unit size of a mirrored logical volume

The number of segments in the logical volume

The size of the segments in the logical volume

Offset of the segment in the logical volume

LVM tags attached to the segments of the logical volume

The segment type of a logical volume (for example: mirror,
striped, linear)

Current percentage of a snapshot volume that is in use
Number of stripes or mirrors in a logical volume

Unit size of the stripe in a striped logical volume

Table 4.3. lvs Display Fields

The | vs command displays the following fields by default: | v_name, vg_name, I v_at tr,
| v_size, origi n, snap_per cent, nove_pv, mirror_| og, copy_per cent . The default display is
sorted by vg_name and | v_nane within the volume group.

54

Object Selection

lvs
LV VG Attr LSize Oigin Snap% Myve Log Copy%
| vol O new_vg ow -a- 52.00M
newgsnapl new vg swi-a- 8.00MIvolO 0. 20

Using the - v argauament with the | vs command adds the following fields to the default display:
seg_count,lv_mgjor,|lv_mnor,|v_kernel _major,|v_kernel _m nor,|v_uuid.

lvs -v
Fi ndi ng all | ogical vol unes
LV VG #Seg Attr LSize Maj Mn KMpj KM n Oigin Snap% Mve
Copy% Log LV UU D
| vol O new_vg 1 owi-a- 52.00M -1 -1 253 3
LBy1Tz-sr23-Q sl -LT03- nHLC- y8XW EhCl 78
newgsnapl new_vg 1 swi-a- 8.00M -1 -1 253 5 I vol O 0. 20

lyelQU- 1cl u- 079k- 20h2- ZGFO- qCIm Cf bsl x

You can use the - - segnent s argument of the | vs command to display information with default
columns that emphasize the segment information. When you use the segnent s argument, the
seg prefix is optional. The | vs - -segnent s command displays the following fields by default:

| v_name, vg_name, | v_attr, stripes, segtype, seg_si ze. The default display is sorted by
vg_naneg, | v_nane within the volume group, and seg_st art within the logical volume. If the
logical volumes were fragmented, the output from this command would show that.

lvs --segnents
LV VG Attr #Str Type SSi ze
LogVol 00 Vol G oup00 - wi - ao 1 linear 36.62G

LogVol 01 Vol Group00 -wi -ao 1 linear 512. 00M
v vg - Wi - a- 1 linear 104.00M
| v vg -W - a- 1 linear 104.00M
| v vg -W - a- 1 linear 104.00M
| v vg -Wi - a- 1 linear 88.00M

Using the - v argument with the | vs - - segnent s command adds the following fields to the
default display: seg_start, stri pesi ze, chunksi ze.

lvs -v --segnents

Finding all |ogical volunes
LV VG Attr Start SSize #Str Type Stri pe Chunk
I vol O new_vg Ow - a- 0 52.00M 1 linear 0 0
newgsnapl new_vg sw - a- 0 8.00M 1 linear 0 8.00K

The following example shows the default output of the | vs command on a system with one
logical volume configured, followed by the default output of the | vs command with the segnent s

55

Chapter 4. LVM Administration with CLI Commands

argument specified.

lvs
LV VG Attr LSize Oigin Snap% Myve Log Copy%
I vol 0 new vg -wi -a- 52. 00M
lvs --segnents
LV VG Attr #Str Type SSi ze
I vol 0 new vg -wi - a- 1 linear 52.00M

9.3. Sorting LVM Reports

Normally the entire output of the | vs, vgs, or pvs command has to be generated and stored
internally before it can be sorted and columns aligned correctly. You can specify the
- - unbuf f er ed argument to display unsorted output as soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the - Oargument of any of the
reporting commands. It is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume
name, size, and free space.

pvs -0 pv_nane, pv_si ze, pv_free
PV PSi ze PFree
[dev/sdbl 17.14G 17.14G
/dev/sdcl 17.14G 17.09G
/dev/sddl 17.14G 17. 14G

The following example shows the same output, sorted by the free space field.

pvs -0 pv_nane, pv_size,pv_free -O pv_free
PV PSi ze PFree
/dev/sdcl 17.14G 17.09G
/dev/sddl 17.14G 17.14G
[dev/sdbl 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

pvs -0 pv_nane, pv_size -0 pv_free
PV PSi ze
/dev/sdcl 17.14G
/dev/sddl 17.14G
/dev/sdbl 17.14G

To display a reverse sort, precede a field you specify after the - Oargument with the - character.

56

Specifying Units

pvs -0 pv_nane, pv_size,pv_free -O -pv_free
PV PSi ze PFree
/dev/sddl 17.14G 17. 14G
[dev/sdbl 17.14G 17.14G
/dev/sdcl 17.14G 17.09G

9.4. Specifying Units

To specify the unit for the LVM report display, use the - - uni t s argument of the report
command. You can specify (b)ytes, (K)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes,
(e)xabytes, (p)etabytes, and (h)uman-readable. The default display is human-readable. You can
override the default by setting the uni t s parameter in the gl obal section of the | vm conf file.

The following example specifies the output of the pvs command in megabytes rather than the
default gigabytes.

pvs --units m
PV VG Fmt Attr PSize PFree
/ dev/ sdal lvnR -- 17555. 40M 17555. 40M
/dev/sdbl new vg |vn2 a- 17552. 00M 17552. 0O0OM
/dev/sdcl new vg lvnR2 a- 17552. 00M 17500. OOM
/dev/sddl new vg lvnR a- 17552. 00M 17552. O0OM

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be
displayed in multiples of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs
PV VG Fnmt Attr PSize PFree
/dev/ sdbl new vg lvn2 a- 17. 14G 17. 14G
/dev/sdcl new vg lvnR2 a- 17. 14G 17. 09G
/dev/sddl new vg |vn2 a- 17. 14G 17. 14G

The following command displays the output as a multiple of 1000.

pvs --units G
PV VG Fmt Attr PSize PFree
/dev/ sdbl new_vg |vn2 a- 18. 40G 18. 40G
/dev/sdcl new vg |vn2 a- 18. 40G 18. 35G
/dev/sddl new vg lvnR2 a- 18. 40G 18. 40G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

57

Chapter 4. LVM Administration with CLI Commands

The following example displays the output of the pvs command as a number of sectors.

pvs --units s
PV VG Fmt Attr PSize PFr ee
/dev/sdbl new vg |vn2 a- 35946496S 35946496S
/dev/sdcl new.vg |vn2 a- 35946496S 35840000S
/dev/sddl new vg |vnR a- 35946496S 35946496S

The following example displays the output of the pvs command in units of 4 megabytes.

pvs --units 4m
PV VG Fmt Attr PSize PFr ee
/dev/sdbl new vg lvnR2 a- 4388. 00U 4388. 00U
/dev/sdcl new vg lvnR2 a- 4388. 00U 4375. 00U
/dev/sddl new vg |vn2 a- 4388. 00U 4388. 00U

58

Chapter 5.

LVM Configuration Examples

This chapter provides some basic LVM configuration examples.

1. Creating an LVM Logical Volume on Three Disks

This example creates an LVM logical volume called new_| ogi cal _vol une that consists of the
disks at / dev/ sdal, / dev/ sdbl, and / dev/ sdc1.

1.1. Creating the Physical Volumes

To use disks in a volume group, you label them as LVM physical volumes.

Caution

This command destroys any data on / dev/ sdal, / dev/ sdb1, and / dev/ sdc1.

[root @ng3-1 ~]# pvcreate /dev/sdal /dev/sdbl /dev/sdcl
Physi cal vol une "/dev/sdal" successfully created
Physi cal vol une "/dev/sdbl" successfully created
Physi cal vol une "/dev/sdcl" successfully created

1.2. Creating the Volume Group

The following command creates the volume group new _vol _gr oup.

[root @ng3-1 ~]# vgcreate new_vol _group /dev/sdal /dev/sdbl /dev/sdcl
Vol ume group "new_vol _group" successfully created

You can use the vgs command to display the attributes of the new volume group.

[root@ng3-1 ~]# vgs
VG #PV #LV #SN Attr VSi ze VFree
new vol _group 3 0 0 wz--n- 51.45G 51.45G

1.3. Creating the Logical Volume

The following command creates the logical volume new_| ogi cal _vol ume from the volume
group new_vol _group. This example creates a logical volume that uses 2GB of the volume

group.

59

Chapter 5. LVM Configuration Examples

[root@ng3-1 ~]# |vcreate -L2G -n new_| ogi cal _vol une new_vol _group
Logi cal vol une "new_| ogi cal _vol une" created

1.4. Creating the File System

The following command creates a GFS file system on the logical volume.

[root@ng3-1 ~]# gfs_nkfs -plock_nolock -j 1
/ dev/ new_vol _group/ new_| ogi cal _vol une
This will destroy any data on /dev/ new_vol _group/ new_| ogi cal _vol une.

Are you sure you want to proceed? [y/n] y

Devi ce: / dev/ new_vol _group/ new_| ogi cal _vol une
Bl ocksi ze: 4096

Fi | esystem Si ze: 491460

Jour nal s: 1

Resource G oups: 8

Locki ng Protocol : | ock_nol ock

Lock Tabl e:

Synci ng. . .

Al | Done

The following commands mount the logical volume and report the file system disk space usage.

[root @ng3-1 ~]# nount /dev/new_vol _group/ new_| ogi cal _vol une / mt
[root @ng3-1 ~]# df

Fi | esystem 1K- bl ocks Used Avail abl e Use% Munt ed on
/ dev/ new_vol _group/ new_| ogi cal _vol une
1965840 20 1965820 1%/ mmt

2. Creating a Striped Logical Volume

This example creates an LVM striped logical volume called st ri ped_I ogi cal _vol ure that
stripes data across the disks at / dev/ sdal, / dev/ sdbl, and / dev/ sdc1.

2.1. Creating the Physical Volumes

Label the disks you will use in the volume groups as LVM physical volumes.

Caution

60

Creating the Volume Group

This command destroys any data on / dev/ sdal, / dev/ sdb1, and / dev/ sdc1.

[root@ng3-1 ~]# pvcreate /dev/sdal /dev/sdbl /dev/sdcl
Physi cal vol une "/dev/sdal" successfully created
Physi cal vol une "/dev/sdbl" successfully created
Physi cal vol une "/dev/sdcl" successfully created

2.2. Creating the Volume Group

The following command creates the volume group st ri ped_vol _group.

[root @ng3-1 ~]# vgcreate striped_vol _group /dev/sdal /dev/sdbl /dev/sdcl
Vol une group "striped_vol _group" successfully created

You can use the vgs command to display the attributes of the new volume group.

[root @ng3-1 ~]# vgs
VG #PV #LV #SN Attr VSi ze VFree
striped_vol _group 3 0 0 wz--n- 51.45G 51. 45G

2.3. Creating the Logical Volume

The following command creates the striped logical volume st ri ped_| ogi cal _vol une from the
volume group st ri ped_vol _gr oup. This example creates a logical volume that is 2 gigabytes in
size, with three stripes and a stripe size of 4 kilobytes.

[root@ng3-1 ~]# |lvcreate -i3 -14 -L2G -nstriped_| ogi cal _vol une

stri ped_vol _group
Roundi ng size (512 extents) up to stripe boundary size (513 extents)
Logi cal volunme "striped_| ogi cal _vol une" created

2.4. Creating the File System
The following command creates a GFS file system on the logical volume.
[root@ng3-1 ~]# gfs_nkfs -plock_nolock -j 1

/dev/striped_vol _group/striped_| ogi cal _vol une
This will destroy any data on /dev/striped_vol _group/striped_| ogi cal _vol une.

61

Ch

apter 5. LVM Configuration Examples

Are you sure you want to proceed? [y/n] y

Devi ce:
Bl ocksi ze: 4096

Fi |l esystem Si ze: 492484

Jour nal s: 1

Resource G oups: 8

Locki ng Protocol : | ock_nol ock
Lock Tabl e:

Synci ng. . .
Al | Done

/dev/striped_vol _group/striped_| ogi cal _vol une

The following commands mount the logical volume and report the file system disk space usage.

[root @ng3-1 ~]# nount /dev/striped_vol _group/striped_| ogi cal _vol ume /mt

[root @ng3-1 ~]# df

Fi | esystem 1K- bl ocks Used Avail abl e Use% Mount ed on

/ dev/ mapper / Vol G oup00- LogVol 00
13902624 1656776 11528232

/ dev/ hdal 101086 10787 85080

t npf s 127880 0 127880

/dev/striped_vol _group/striped_| ogical _vol une
1969936 20 1969916

3. Splitting a Volume Group

13% /
12% / boot
0% / dev/ shm

1% / mt

In this example, an existing volume group consists of three physical volumes. If there is enough
unused space on the physical volumes, a new volume group can be created without adding new
disks.

In the initial set up, the logical volume nyl v is carved from the volume group nyvol , which in
turn consists of the three physical volumes, / dev/ sdal, / dev/ sdb1l, and / dev/ sdc1.

After completing this procedure, the volume group myvg will consist of / dev/ sdal and
/ dev/ sdb1. A second volume group, your vg, will consist of / dev/ sdc1.

3.

1. Determining Free Space

You can use the pvscan command to determine how much free space is currently available in
the volume group.

[root @ng3-1 ~]# pvscan

PV /dev/sdal VG nyvg lvn2 [17.15 GB/ O free]

PV / dev/sdbl VG nyvg lvnR [17.15 GB / 12.15 GB free]

PV /dev/sdcl VG nyvg v [17.15 GB / 15.80 GB free]

Total: 3 [51.45 GB] / in use: 3 [51.45 G / inno VG 0[O]

62

Splitting the Volume Group

3.2. Moving the Data

You can move all the used physical extents in / dev/ sdc1 to / dev/ sdbl with the pvnove
command. The pvnmove command can take a long time to execute.

[root @ng3-1 ~]# pvnove /dev/sdcl /dev/sdbl
/dev/sdcl: Moved: 14. 7%
/dev/ sdcl: Moved: 30.3%
/dev/ sdcl: Moved: 45.7%
/ dev/ sdcl: Moved: 61.0%
/dev/ sdcl: Moved: 76.6%
/dev/ sdcl: Moved: 92.2%
/dev/ sdcl: Moved: 100.0%

After moving the data, you can see that all of the space on/ dev/ sdc1l is free.

[root @ng3-1 ~]# pvscan
PV /dev/sdal VG nyvg lvn2 [17.15 GBB/ O free]
PV / dev/ sdbl VG nyvg lvnR [17.15 GB / 10.80 GB free]
PV /dev/sdcl VG nyvg lvnR [17.15 GB / 17.15 GB free]
Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / inno VG 0[O]

3.3. Splitting the Volume Group

To create the new volume group your vg, use the vgspl i t command to split the volume group
nyvg.

Before you can split the volume group, the logical volume must be inactive. If the file system is
mounted, you must unmount the file system before deactivating the logical volume.

You can deactivate the logical volumes with the | vchange command or the vgchange
command. The following command deactivates the logical volume ny! v and then splits the
volume group your vg from the volume group myvg, moving the physical volume / dev/ sdc1 into
the new volume group your vg.

[root@ng3-1 ~]# | vchange -a n /dev/myvg/ nyl v
[root@ng3-1 ~]# vgsplit nyvg yourvg /dev/sdcl
Vol ume group "yourvg" successfully split from"nyvg"

You can use the vgs command to see the attributes of the two volume groups.

[root@ng3-1 ~]# vgs
VG #PV #LV #SN Attr VSi ze VFree
myvg 2 1 0 wz--n- 34.30G 10. 80G
your vg 1 0 0 wz--n- 17.15G 17. 15G

63

Chapter 5. LVM Configuration Examples

3.4. Creating the New Logical Volume

After creating the new volume group, you can create the new logical volume your| v.

[root@ng3-1 ~]# |vcreate -L5G -n yourlv yourvg
Logi cal volume "yourlv" created

3.5. Making a File System and Mounting the New Logical
Volume

You can make a file system on the new logical volume and mount it.

[root@ng3-1 ~]# gfs_nkfs -plock _nolock -j 1 /dev/yourvg/yourlv
This will destroy any data on /dev/yourvg/yourlv.

Are you sure you want to proceed? [y/n] y

Devi ce: / dev/ yourvg/ yourl v
Bl ocksi ze: 4096

Fi | esystem Si ze: 1277816

Jour nal s: 1

Resource G oups: 20

Locki ng Protocol : | ock_nol ock

Lock Tabl e:

Synci ng. . .

Al'l Done

[root @ng3-1 ~]# nount /dev/yourvg/yourlv /mt

3.6. Activating and Mounting the Original Logical Volume

Since you had to deactivate the logical volume nyl v, you need to activate it again before you
can mount it.

root @ng3-1 ~]# lvchange -a y nylv

[root @ng3-1 ~]# nount /dev/nyvg/nmylv / mt
[root @ng3-1 ~]# df

Fi | esystem 1K- bl ocks Used Avail abl e Use% Munt ed on
/ dev/ your vg/ your| v 24507776 32 24507744 1% / mt
[dev/ myvg/ nyl v 24507776 32 24507744 1% / mt

4. Removing a Disk from a Logical Volume

This example shows how you can remove a disk from an existing logical volume, either to

64

Moving Extents to Existing Physical

replace the disk or to use the disk as part of a different volume. In order to remove a disk, you
must first move the extents on the LVM physical volume to a different disk or set of disks.

4.1. Moving Extents to Existing Physical Volumes

In this example, the logical volume is distributed across four physical volumes in the volume
group myvg.

[root @ng3-1] # pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal nyvg lvnR2 a- 17. 15G 12. 15G 5. 00G
/dev/sdbl nyvg |lvnR2 a- 17. 15G 12. 15G 5. 00G
/dev/sdcl nyvg |lvnR2 a- 17. 15G 12. 15G 5. 00G
/dev/sddl nyvg lvnR2 a- 17.15G 2. 15G 15. 00G

We want to move the extents off of / dev/ sdb1 so that we can remove it from the volume group.

If there are enough free extents on the other physical volumes in the volume group, you can
execute the pvnove command on the device you want to remove with no other options and the
extents will be distributed to the other devices.

[root @ng3-1 ~]# pvnove /dev/sdbl
/ dev/ sdbl: Moved: 2.0%

/ dev/ sdbl: Moved: 79.2%

/ dev/ sdb1: Mbved: 100. 0%

After the pvnove command has finished executing, the distribution of extents is as follows:

[root @ng3-1] # pvs -o+pv_used

PV VG Fmt Attr PSize PFree Used
/dev/sdal nyvg lvnR2 a- 17.15G 7. 15G 10. 00G
/dev/sdbl nyvg |lvnR2 a- 17. 15G 17. 15G 0

/dev/sdcl nyvg |lvnR2 a- 17. 15G 12. 15G 5. 00G
/dev/sddl nyvg lvnR2 a- 17.15G 2. 15G 15. 00G

Use the vgr educe command to remove the physical volume / dev/ sdb1 from the volume group.

[root @ng3-1 ~]# vgreduce nmyvg /dev/sdbl
Renmoved "/ dev/sdbl" from vol ume group "nyvg"
[root@ng3-1 ~]# pvs

PV VG Fm Attr PSize PFree
/dev/sdal nyvg lvnR2 a- 17.15G 7. 15G
/ dev/ sdbl lvn2 -- 17. 15G 17. 15G

/dev/sdcl nyvg |lvnR2 a- 17. 15G 12. 15G

65

Chapter 5. LVM Configuration Examples

/dev/sddl nyvg |lvnR2 a- 17.15G 2. 15G

The disk can now be physically removed or allocated to other users.

4.2. Moving Extents to a New Disk

In this example, the logical volume is distributed across three physical volumes in the volume
group nyvg as follows:

[root @ng3-1] # pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal nyvg |lvnR2 a- 17.15G 7. 15G 10. 00G
/dev/sdbl nyvg |lvnR2 a- 17. 15G 15. 15G 2. 00G
/dev/sdcl nyvg lvnR2 a- 17. 15G 15. 15G 2. 00G

We want to move the extents of / dev/ sdbl to a new device, / dev/ sdd1.

4.2.1. Creating the New Physical Volume

Create a new physical volume from / dev/ sdd1.

[root @ng3-1 ~]# pvcreate /dev/sddl
Physi cal vol une "/dev/sddl" successfully created

4.2.2. Adding the New Physical Volume to the Volume Group

Add / dev/ sdd1 to the existing volume group myvg.

[root @ng3-1 ~]# vgextend myvg /dev/sddl
Vol une group "myvg" successful ly extended

[root @ng3-1] # pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/ dev/ sdal myvg | vn2 a- 17.15G 7.15G 10. 00G
/ dev/ sdbl nmyvg | vn2 a- 17. 15G 15. 15G 2. 00G
/ dev/ sdcl nyvg | vn2 a- 17.15G 15. 15G 2. 00G
/ dev/ sdd1 nmyvg |l vn2 a- 17. 15G 17. 15G 0

4.2.3. Moving the Data

Use the pvnove command to move the data from / dev/ sdb1 to / dev/ sdd1.

[root @ng3-1 ~]# pvnove /dev/sdbl /dev/sddl
/ dev/sdbl: Moved: 10.0%

66

Volumes

/ dev/ sdbl:

/ dev/ sdbl: Moved

Moved:

[root @ng3-1] # pvs

PV

/ dev/ sdal
/ dev/ sdbl
/ dev/ sdcl
/ dev/ sdd1

VG

nyvg
nyvg
nyvg
nyvg

79. 7%

100. 0%

- o+pv_used

Frrt

| v
| v
| v
| v

Attr

PSi ze PFree

17.15G 7. 15G
17. 15G 17. 15G
17. 15G 15. 15G
17. 15G 15. 15G

Used
10. 00G
0
2. 00G
2. 00G

4.2.4. Removing the Old Physical Volume from the Volume Group

After you have moved the data off / dev/ sdb1, you can remove it from the volume group.

[root @ng3-1 ~]# vgreduce nmyvg /dev/sdbl
Renmoved "/dev/sdbl" from vol une group "nmyvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

67

68

Chapter 6.

LVM Troubleshooting

This chapter provide instructions for troubleshooting a variety of LVM issues.

1. Troubleshooting Diagnostics

If a command is not working as expected, you can gather diagnostics in the following ways:

e Usethe -v, -vv, -vvv, or - vvvv argument of any command for increasingly verbose levels of
output.

* If the problem is related to the logical volume activation, set ‘activation = 1' in the 'log' section
of the configuration file and run the command with the - vvvv argument. After you have
finished examining this output be sure to reset this parameter to 0, to avoid possible problems
with the machine locking during low memory situations.

* Run the I vmdunmp command, which provides an information dump for diagnostic purposes. For
information, see the | vidunp(8) man page.

e Executethelvs -v,pvs -aordnsetup i nfo -c command for additional system
information.

» Examine the last backup of the metadata in the / et ¢/ | vii backup file and archived versions
inthe /etc/ | vn archi ve file.

» Check the current configuration information by running the | vm dunpconfi g command.

e Check the . cache file in the / et c/ | vmdirectory for a record of which devices have physical
volumes on them.

2. Displaying Information on Failed Devices

You can use the - P argument of the | vs or vgs command to display information about a failed
volume that would otherwise not appear in the output. This argument permits some operations
even though the metatdata is not completely consistent internally. For example, if one of the
devices that made up the volume group vg failed, the vgs command might show the following
output.

[root @i nk-07 tnp]# vgs -0 +devices
Vol une group "vg" not found

If you specify the - P argument of the vgs command, the volume group is still unusable but you
can see more information about the failed device.

[root @i nk-07 tnp]# vgs -P -0 +devices

69

Chapter 6. LVM Troubleshooting

Partial node. Inconplete volume groups will be activated read-only.
VG #PV #LV #SN Attr VSi ze VFree Devices

vg 9 2 0 rz-pn- 2.11T 2. 07T unknown devi ce(0)

vg 9 2 0 rz-pn- 2.11T 2.07T unknown devi ce(5120), /dev/ sdal(0)

In this example, the failed device caused both a linear and a striped logical volume in the
volume group to fail. The | vs command without the - P argument shows the following output.

[root@ink-07 tnp]# |vs -a -0 +devices
Vol une group "vg" not found

Using the - P argument shows the logical volumes that have failed.

[root@ink-07 tnmp]# lvs -P -a -0 +devi ces
Partial node. Inconplete volume groups will be activated read-only.

LV VG Attr LSize Oigin Snap% Myve Log Copy% Devices
l'i near vg -w -a- 20.00G unknown devi ce(0)
stripe vg -wi -a- 20.00G unknown

devi ce(5120), / dev/ sdal(0)

The following examples show the output of the pvs and | vs commands with the - P argument
specified when a leg of a mirrored logical volume has failed.

root @i nk-08 ~]# vgs -a -o +devices -P
Partial node. Inconplete volume groups will be activated read-only.
VG #PV #LV #SN Attr VSi ze VFree Devices
corey 4 4 0 rz-pnc 1.58T 1.34T
nmy_mrror_m mage_0(0), my_mrror_mn mage_1(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdd1(0)
corey 4 4 0 rz-pnc 1.58T 1.34T unknown devi ce(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdb1(0)

[root@ink-08 ~]# Ivs -a -0 +devices -P
Partial node. Inconplete volume groups will be activated read-only.

LV VG Attr LSi ze Oigin Snap% Move Log
Copy% Devi ces
nmy_mrror corey mM -a- 120.00G

nmy_mrror_m og 1.95 my_m rror_m mage_0(0), my_m rror_m mage_1(0)
[my_mrror_mnmage_0] corey iw-ao 120. 000G

unknown devi ce(0)
[my_mrror_mmage_1] corey iw -ao 120. 000G

/ dev/ sdb1(0)
[my_mrror_m og] corey Iw -ao 4. 00M

/ dev/ sdd1(0)

70

Recovering from LVM Mirror Failure

3. Recovering from LVM Mirror Failure

This section provides an example of recovering from a situation where one leg of an LVM
mirrored volume fails because the underlying device for a physical volume goes down. When a
mirror leg fails, LVM converts the mirrored volume into a linear volume, which continues to
operate as before but without the mirrored redundancy. At that point, you can add a new disk
device to the system to use as a replacement physical device and rebuild the mirror.

The following command creates the physical volumes which will be used for the mirror.

[root @i nk-08 ~]# pvcreate /dev/sd[abcdefgh][12]
Physi cal vol une "/dev/sdal" successfully created
Physi cal vol une "/dev/sda2" successfully created
Physi cal vol une "/dev/sdbl" successfully created
Physi cal vol une "/dev/sdb2" successfully created
Physi cal vol une "/dev/sdcl" successfully created
Physi cal vol une "/dev/sdc2" successfully created
Physi cal vol une "/dev/sddl" successfully created
Physi cal vol une "/dev/sdd2" successfully created
Physi cal vol une "/dev/sdel" successfully created
Physi cal vol une "/dev/sde2" successfully created
Physi cal vol une "/dev/sdf 1" successfully created
Physi cal vol une "/dev/sdf 2" successfully created
Physi cal vol une "/dev/sdgl" successfully created
Physi cal vol une "/dev/sdg2" successfully created
Physi cal vol une "/dev/sdhl" successfully created
Physi cal vol une "/dev/sdh2" successfully created

The following commands creates the volume group vg and the mirrored volume gr oupf s.

[root @i nk-08 ~]# vgcreate vg /dev/sd[abcdef gh] [12]

Vol ume group "vg" successfully created
[root @i nk-08 ~]# |vcreate -L 750M -n groupfs -m 1 vg /dev/sdal /dev/sdbl
/ dev/ sdcl

Roundi ng up size to full physical extent 752.00 MB

Logi cal volunme "groupfs" created

You can use the | vs command to verify the layout of the mirrored volume and the underlying
devices for the mirror leg and the mirror log. Note that in the first example the mirror is not yet
completely synced; you should wait until the Copy%field displays 100.00 before continuing.

[root@ink-08 ~]# |Ivs -a -0 +devices

LV VG Attr LSi ze Oigin Snap% Myve Log
Copy% Devi ces
groupfs vg mM - a- 752. 00M groupfs_nl og

21. 28 groupfs_m mage_0(0), groupfs_m nmage_1(0)
[groupfs_m mage 0] vg iw-ao 752. 00M

/ dev/ sdal(0)
[groupfs_m mage_1] vg iw-ao 752. 00M

71

Chapter 6. LVM Troubleshooting

/ dev/ sdb1(0)
[groupfs_m og] vg I wi -ao 4. 00M
[dev/ sdc1(0)
[root@ink-08 ~]# |Ivs -a -0 +devices
LV VG Attr LSi ze Oigin Snap% Myve Log
Copy% Devi ces
groupfs vg mM -a- 752. 00M groupfs_nl og

100. 00 groupfs_m nmage_0(0), groupfs_m mage_1(0)
[groupfs_m mage_0] vg iw-ao 752. 00M

/ dev/ sdal(0)

[groupfs_m mage_1] vg iw-ao 752. 00M
/ dev/ sdb1(0)

[groupfs_ml og] vg Iwi-ao 4.00M i
/ dev/ sdc1(0)

In this example, the primary leg of the mirror / dev/ sda1l fails. Any write activity to the mirrored
volume causes LVM to detect the failed mirror. When this occurs, LVM converts the mirror into a
single linear volume. In this case, to trigger the conversion, we execute a dd command

[root @i nk-08 ~]# dd if=/dev/zero of =/ dev/vg/ groupfs count=10
10+0 records in
10+0 records out

You can use the | vs command to verify that the device is now a linear device. Because of the
failed disk, I/O errors occur.

[root@ink-08 ~]# Ivs -a -0 +devices
/dev/sdal: read failed after O of 2048 at 0O: |nput/output error
/dev/sda2: read failed after O of 2048 at O: |nput/output error
LV VG Attr LSi ze Oigin Snap% Myve Log Copy% Devices
groupfs vg -w -a- 752.00M / dev/ sdb1(0)

At this point you should still be able to use the logical volume, but there will be no mirror
redundancy.

To rebuild the mirrored volume, you replace the broken drive and recreate the physical volume.
If you use the same disk rather than replacing it with a new one, you will see "inconsistent"
warnings when you run the pvcr eat e command.

[root @i nk-08 ~]# pvcreate /dev/sda[12]
Physi cal vol une "/dev/sdal" successfully created
Physi cal vol une "/dev/sda2" successfully created

[root @i nk-08 ~]# pvscan
PV /dev/ sdbl VG vg lvnR [67.83 GB / 67.10 GB free]
PV / dev/ sdb2 VG vg lvnR [67.83 GB / 67.83 GB free]
PV / dev/sdcl VG vg lvnR [67.83 GB / 67.83 GB free]

72

Recovering from LVM Mirror Failure

PV / dev/sdc2 VG vg
PV / dev/sddl VG vg
PV /dev/sdd2 VG vg
PV / dev/sdel VG vg
PV / dev/ sde2 VG vg
PV /dev/sdf 1 VG vg
PV /dev/sdf2 VG vg
PV / dev/ sdgl VG vg
PV / dev/ sdg2 VG vg
PV / dev/sdhl VG vg
PV / dev/ sdh2 VG vg
PV / dev/ sdal

PV [/ dev/ sda2

Tot al :

16 [2.11 TB] /

| vim2
| v
| v
| v
| v
| v
| v
| v
| v
| v
| v
| v
| v

in use:

[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.

83
83
83
83
83
83
83
83
83
83
83

BEEBBEEBBEE

~ — — — — ~— — ~— ~— —

/

[603. 94 GB]
[603. 94 GB]

67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.

83
83
83
83
83
83
83
83
83
83
83

14 [949.65 GB] /

free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]

BEBL8BBEBEEE

Next you extend the original volume group with the new physical volume.

[root @i nk-08 ~]# vgextend vg /dev/sda[12]

Vol ume group "vg" successfully extended

[root @i nk-08 ~]# pvscan

PV /dev/sdbl VG vg
PV /dev/sdb2 VG vg
PV / dev/sdcl VG vg
PV / dev/sdc2 VG vg
PV / dev/sddl VG vg
PV /dev/sdd2 VG vg
PV / dev/sdel VG vg
PV / dev/ sde2 VG vg
PV /dev/sdf 1 VG vg
PV /dev/sdf2 VG vg
PV / dev/ sdgl VG vg
PV / dev/ sdg2 VG vg
PV / dev/sdhl VG vg
PV / dev/ sdh2 VG vg
PV /dev/sdal VG vg
PV / dev/ sda2 VG vg

Tot al :

16 [2.11 TB] /

| v
| v
| v
| v
| vim2
| v
| v
| v
| v
| v
| v
| v
| v
| v
| v
| v

in use:

[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.
[67.

83
83
83
83
83
83
83
83
83
83
83
83
83
83

BEEBBLELEBBE8EEEH

—~— — — — . — — — — — — — o~

67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.
67.

10
83
83
83
83
83
83
83
83
83
83
83
83
83

free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]

BEBLEEBLEBEBEB8EE

[603.93 GB / 603.93 GB free]
[603.93 GB / 603.93 GB free]

16 [2.11 TB] /

Convert the linear volume back to its original mirrored state.

[root @i nk-08 ~]# | vconvert

/ dev/ sdcl
Logi cal

vol ume mrror

convert ed.

inno VG 0[O

You can use the | vs command to verify that the mirror is restored.

[root@ink-08 ~]# |vs -a -0 +devices

LV

VG

Attr

LSi ze

Oigin Snap% Myve Log

inno VG 2 [1.18 TB]

]

-m 1 /dev/vg/groupfs /dev/sdal /dev/sdbl

73

Chapter 6. LVM Troubleshooting

Copy% Devi ces

groupfs vg mmM -a- 752. 00M groupfs_m og
68. 62 groupfs_m nage_0(0), groupfs_m mage_1(0)

[groupfs_m mage_0] vg iw-ao 752. 00M

/ dev/ sdb1(0)

[groupfs_m mage_1] vg iw-ao 752. 00M
/ dev/ sdal(0)

[groupfs_m og] vg | wi -ao 4. 00M
/ dev/ sdc1(0)

4. Recovering Physical Volume Metadata

If the volume group metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you will get an error message indicating that the metadata area is incorrect, or that
the system was unable to find a physical volume with a particular UUID. You may be able to
recover the data the physical volume by writing a new metadata area on the physical volume
specifying the same UUID as the lost metadata.

Caution

You should not attempt this procedure with a working LVM logical volume. You
will lose your data if you specify the incorrect UUID.

The following example shows the sort of output you may see if the metadata area is missing or
corrupted.

[root @i nk- 07 backup]# Ivs -a -0 +devices
Coul dn't find device with uuid ' FnGRh3- zhok-i VI 8- 7qTD- S5BI - MAEN- NYMbSK' .
Couldn't find all physical volumes for volume group VG
Coul dn't find device with uuid ' FmGERh3-zhok-i VI 8- 7qTD- S5BI - MAEN- NYMBSK' .
Coul dn't find all physical volunes for volune group VG

You may be able to find the UUID for the physical volume that was overwritten by looking in the
/etc/1vm archi ve directory. Look in the file Vol umeG oupNane_xxxx. vg for the last known
valid archived LVM metadata for that volume group.

Alternately, you may find that deactivating the volume and setting the parti al (- P) argument
will enable you to find the UUID of the missing corrupted physical volume.

[root @i nk-07 backup]# vgchange -an --parti al
Partial nobde. Inconplete volune groups will be activated read-only.
Coul dn't find device with uuid ' FnGRh3- zhok-i VI 8- 7qTD- S5BI - MAEN- NYMBSK' .
Coul dn't find device with uuid ' FnGRh3- zhok-i VI 8- 7qTD- S5BI - MAEN- NYMbSK' .

74

Recovering Physical Volume Metadata

Use the --uui d and - -rest orefi | e arguments of the pvcr eat e command to restore the
physical volume. The following example labels the / dev/ sdh1 device as a physical volume with
the UUID indicated above, FnGRh3- zhok- i VI 8- 7qTD- S5BI - MAEN- NYM6SK. This command
restores the physical volume label with the metadata information contained in VG_00050. vg, the
most recent good archived metatdata for volume group . The rest or ef i | e argument instructs
the pvcr eat e command to make the new physical volume compatible with the old one on the
volume group, ensuring that the the new metadata will not be placed where the old physical
volume contained data (which could happen, for example, if the original pvcr eat e command
had used the command line arguments that control metadata placement, or it the physical
volume was originally created using a different version of the software that used different
defaults). The pvcr eat e command overwrites only the LVM metadata areas and does not affect
the existing data areas.

[root @i nk-07 backup]# pvcreate --uuid
" FnGRh3- zhok- i VI 8- 7qTD- S5BI - MAEN- NYMbSK" --restorefile
/etc/lvm archi ve/ VG_00050. vg / dev/ sdhl

Physi cal vol une "/dev/sdhl" successfully created

You can then use the vgcf gr est or e command to restore the volume group's metadata.

[root @i nk-07 backup] # vgcfgrestore VG
Rest ored vol une group VG

You can now display the logical volumes.

[root @i nk-07 backup]# Ivs -a -0 +devices

LV VG Attr LSi ze Oigin Snap% Myve Log Copy% Devices

stripe VG -w --- 300.00G / dev/ sdhl
(0),/dev/ sdal(0)

stripe VG -w --- 300.00G / dev/ sdhl

(34728) , / dev/ sdb1(0)

The following commands activate the volumes and display the active volumes.

[root @i nk-07 backup]# | vchange -ay /dev/Vd stripe
[root @i nk-07 backup]# |vs -a -0 +devices

LV VG Attr LSi ze Oigin Snap% Myve Log Copy% Devices

stripe VG -wi-a- 300.00G / dev/ sdhl
(0),/dev/ sdal(0)

stripe VG -w -a- 300.00G / dev/ sdhl

(34728), / dev/ sdbl(0)

75

Chapter 6. LVM Troubleshooting

If the on-disk LVM metadata takes as least as much space as what overrode it, this command
can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the f sck command
to recover that data.

5. Replacing a Missing Physical Volume

If a physical volume fails or otherwise needs to be replaced, you can label a new physical
volume to replace the one that has been lost in the existing volume group by following the same
procedure as you would for recovering physical volume metadata, described in Section 4,
“Recovering Physical Volume Metadata”. You can use the - - parti al and --verbose
arguments of the vgdi spl ay command to display the UUIDs and sizes of any physical volumes
that are no longer present. If you wish to substitute another physical volume of the same size,
you can use the pvcr eat e command with the - - restorefi | e and - - uui d arguments to
initialize a new device with the same UUID as the missing physical volume. You can then use
the vgcf grest or e command to restore the volume group's metadata.

6. Removing Lost Physical Volumes from a Volume
Group

If you lose a physical volume, you can activate the remaining physical volumes in the volume
group with the - - parti al argument of the vgchange command. You can remove all the logical
volumes that used that physical volume from the volume group with the - - r enoveni ssi ng
argument of the vgr educe command.

It is recommended that you run the vgr educe command with the - -t est argument to verify
what you will be destroying.

Like most LVM operations, the vgr educe command is reversible in a sense if you immediately
use the vgcf gr est or e command to restore the volume group metadata to its previous state.
For example, if you used the - - r emoveni ssi ng argument of the vgr educe command without
the - - t est argument and find you have removed logical volumes you wanted to keep, you can
still replace the physical volume and use another vgcf gr est or e command to return the volume
group to its previous state.

7. Insufficient Free Extents for a Logical Volume

You may get the error message "Insufficient free extents" when creating a logical volume when
you think you have enough extents based on the output of the vgdi spl ay or vgs commands.
This is because these commands round figures to 2 decimal places to provide human-readable
output. To specify exact size, use free physical extent count instead of some multiple of bytes to
determine the size of the logical volume.

The vgdi spl ay command, by default, includes this line of output that indicates the free physical
extents.

76

Insufficient Free Extents for a Logical

vgdi spl ay
--- Vol une group ---

Free PE / Size 8780 / 34.30 GB

Alternately, you can use the vg_free_count and vg_ext ent _count arguments of the vgs
command to display the free extents and the total number of extents.

[root@ng3-1 ~]# vgs -0 +vg_free_count, vg_ext ent _count
VG #PV #LV #SN Attr VSize VFree Free #Ext
testvg 2 0 0 wz--n- 34.30G 34.30G 8780 8780

With 8780 free physical extents, you can run the following command, using the lower-case |
argument to use extents instead of bytes:

lvcreate -18780 -n testlv testvg

This uses all the free extents in the volume group.

vgs -o +vg free_count, vg_extent count
VG #PV #LV #SN Attr VSi ze VFree Free #Ext
testvg 2 1 0 wz--n- 34.30G 0 0 8780

Alternately, you can extend the logical volume to use a percentage of the remaining free space
in the volume group by using the -1 argument of the | vcr eat e command. For information, see
Section 4.1.1, “Creating Linear Volumes”.

77

78

Chapter 7.

LVM Administration with the LVM
GUI

In addition to the Command Line Interface (CLI), LVM provides a Graphical User Interface (GUI)
which you can use to configure LVM logical volumes. You can bring up this utility by typing
system confi g-1 vm The LVM chapter of the Red Hat Enterprise Linux Deployment Guide
provides step-by-step instructions for configuring an LVM logical volume using this utility.

In addition, the LVM GUI is availalbe as part of the Conga management interface. For
information on using the LVM GUI with Conga, see the online help for Conga.

79

80

Appendix A. The Device Mapper

The Device Mapper is a kernel driver that provides a framework for volume management. It
provides a generic way of creating mapped devices, which may be used as logical volumes. It
does not specifically know about volume groups or metadata formats.

The Device Mapper provides the foundation for a number of higher-level technologies. In
addition to LVM, Device-Mapper multipath and the dnr ai d command use the Device Mapper.
The application interface to the Device Mapper is the i oct | system call. The user interface is
the dnset up command.

LVM logical volumes are activated using the Device Mapper. Each logical volume is translated
into a mapped device. Each segment translates into a line in the mapping table that describes
the device. The Device Mapper supports a variety of mapping targets, including linear mapping,
striped mapping, and error mapping. So, for example, two disks may be concatenated into one
logical volume with a pair of linear mappings, one for each disk. When LVM2 creates a volume,
it creates an underlying device-mapper device that can be queried with the dmset up command.
For information about the format of devices in a mapping table, see Section 1, “Device Table
Mappings”. For information about using the dnset up command to query a device, see

Section 2, “The dmsetup Command”.

1. Device Table Mappings

A mapped device is defined by a table that specifies how to map each range of logical sectors
of the device using a supported Device Table mapping. The table for a mapped device is
constructed from a list of lines of the form:

start | ength nmappi ng [mappi ng_paraneters...]

In the first line of a Device Mapper table, the st art parameter must equal 0. The start +
| engt h parameters on one line must equal the st art on the next line. Which mapping
parameters are specified in a line of the mapping table depends on which mappi ng type is
specified on the line.

Sizes in the Device Mapper are always specified in sectors (512 bytes).

When a device is specified as a mapping parameter in the Device Mapper, it can be referenced
by the device name in the filesystem (for example, / dev/ hda) or by the major and minor
numbers in the format maj or :ni nor . The major:minor format is preferred because it avoids
pathname lookups.

The following shows a sample mapping table for a device. In this table there are four linear
targets:

0 35258368 |inear 8:48 65920
35258368 35258368 |inear 8:32 65920

81

Appendix A. The Device Mapper

70516736 17694720 |inear 8:16 17694976
88211456 17694720 |inear 8:16 256

The first 2 parameters of each line are the segment starting block and the length of the
segment. The next keyword is the mapping target, which in all of the cases in this example is
l'i near. The rest of the line consists of the parameters for a | i near target.

The following subsections describe the format of the following mappings:

e linear

* striped

e mirror

* snapshot and snapshot-origin
* error

* zero

« multipath

e Ccrypt

1.1. The linear Mapping Target

A linear mapping target maps a continuous range of blocks onto another block device. The
format of a linear target is as follows:

start length |inear device offset

start
starting block in virtual device

I ength
length of this segment

devi ce
block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format naj or :ni nor

of f set
starting offset of the mapping on the device

The following example shows a linear target with a starting block in the virtual device of 0, a

82

The striped Mapping Target

segment length of 1638400, a major:minor number pair of 8:2, and a starting offset for the
device of 41146992.

0 16384000 |inear 8:2 41156992

The following example shows a linear target with the device parameter specified as the device
/ dev/ hda

0 20971520 |inear /dev/hda 384

1.2. The striped Mapping Target

The striped mapping target supports striping across physical devices. It takes as arguments the
number of stripes and the striping chunk size followed by a list of pairs of device name and
sector. The format of a striped target is as follows:

start length striped #stripes chunk_size devicel offsetl ... deviceN offsetN

There is one set of devi ce and of f set parameters for each stripe.
start
starting block in virtual device

| ength
length of this segment

#stripes
number of stripes for the virtual device

chunk_si ze
number of sectors written to each stripe before switching to the next; must be power of 2 at
least as big as the kernel page size

devi ce
block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format maj or :mi nor.

of f set
starting offset of the mapping on the device

The following example shows a striped target with three stripes and a chunk size of 128:

0 73728 striped 3 128 8:9 384 8:8 384 8:7 9789824

83

Appendix A. The Device Mapper

starting block in virtual device

73728
length of this segment

striped 3 128

stripe across three devices with chunk size of 128 blocks
8:9

major:minor numbers of first device
384

starting offset of the mapping on the first device
8:8

major:minor numbers of second device
384

starting offset of the mapping on the second device
8:7

major:minor numbers of of third device

9789824
starting offset of the mapping on the third device

The following example shows a striped target for 2 stripes with 256 KiB chunks, with the device
parameters specified by the device names in the file system rather than by the major and minor

numbers.

0 65536 striped 2 512 /dev/hda 0 /dev/hdb O

1.3. The mirror Mapping Target

The mirror mapping target supports the mapping of a mirrored logical device. The format of a

mirrored target is as follows:

start length mrror |og_type #l ogargs |ogargl ...
offsetl ... deviceN offsetN

start

| ogar gN #devs devicel

84

The mirror Mapping Target

starting block in virtual device

I ength
length of this segment

| og_type
The possible log types and their arguments are as follows:

core
The mirror is local and the mirror log is kept in core memory. This log type takes 1 - 3
arguments:

r egi onsi ze [[no]sync] [bl ock_on_error]

di sk
The mirror is local and the mirror log is kept on disk. This log type takes 2 - 4 arguments:

| ogdevi ce regi onsi ze [[no]sync] [bl ock_on_error]

clustered_core
The mirror is clustered and the mirror log is kept in core memory. This log type takes 2 - 4
arguments:

regi onsi ze UUI D[[no]sync] [bl ock_on_error]

cl ustered_di sk
The mirror is clustered and the mirror log is kept on disk. This log type takes 3 - 5
arguments:

| ogdevi ce regi onsi ze UUI D[[no]sync] [bl ock_on_error]

LVM maintains a small log which it uses to keep track of which regions are in sync with the
mirror or mirrors. The r egi onsi ze argument specifies the size of these regions.

In a clustered environment, the UUI D argument is a unique identifier associated with the
mirror log device so that the log state can be maintained throughout the cluster.

The optional [no] sync argument can be used to specify the mirror as "in-sync" or
"out-of-sync". The bl ock_on_error argument is used to tell the mirror to respond to errors
rather than ignoring them.

#l og_args
number of log arguments that will be specified in the mapping

| ogar gs
the log arguments for the mirror; the number of log arguments provided is specified by the
#l og- ar gs parameter and the valid log arguments are determined by the | og_t ype
parameter.

#devs
the number of legs in the mirror; a device and an offset is specifed for each leg.

85

Appendix A. The Device Mapper

devi ce
block device for each mirror leg, referenced by the device name in the filesystem or by the
major and minor numbers in the format maj or ;i nor . A block device and offset is specified
for each mirror leg, as indicated by the #devs parameter.

of f set
starting offset of the mapping on the device. A block device and offset is specified for each
mirror leg, as indicated by the #devs parameter.

The following example shows a mirror mapping target for a clustered mirror with a mirror log
kept on disk.

0 52428800 mirror clustered_disk 4 253:2 1024 UUI D bl ock_on_error 3 253:3 0
253:4 0 253:5 0

starting block in virtual device

52428800
length of this segment

mirror clustered_disk
mirror target with a log type specifying that mirror is clustered and the mirror log is
maintained on disk

4
4 mirror log arguments will follow
253:2
major:minor numbers of log device
1024
region size the mirror log uses to keep track of what is in sync
uul D

UUID of mirror log device to maintain log information throughout a cluster

bl ock_on_error
mirror should respond to errors

number of legs in mirror

253:30253:40253:50
major:minor numbers and offset for devices constituting each leg of mirror

86

The snapshot and snapshot-origin Mapping

1.4. The snapshot and snapshot-origin Mapping Targets

When you create the first LVM snapshot of a volume, four Device Mapper devices are used:

1. A device with a | i near mapping containing the original mapping table of the source volume.

2. A device with a | i near mapping used as the copy-on-write (COW) device for the source
volume; for each write, the original data is saved in the COW device of each snapshot to
keep its visible content unchanged (until the COW device fills up).

3. A device with a snapshot mapping combining #1 and #2, which is the visible snapshot
volume

4. The "original" volume (which uses the device number used by the original source volume),
whose table is replaced by a "snapshot-origin" mapping from device #1.

A fixed naming scheme is used to create these devices, For example, you might use the
following commands to create an LVM volume named base and a snapshot volume named
snap based on that volume.

lvcreate -L 1G -n base vol uneG oup
lvcreate -L 100M - -snapshot -n snap vol umeG oup/ base

This yields four devices, which you can view with the following commands:

dnsetup tabl e| grep vol uneG oup

vol umeG oup- base-real: 0 2097152 |inear 8:19 384

vol uneG oup- snap-cow. 0 204800 |inear 8:19 2097536

vol uneG oup-snap: 0 2097152 snapshot 254: 11 254:12 P 16
vol uneG oup- base: 0 2097152 snapshot-origin 254: 11

1ls -1L /dev/ mapper/vol uneG oup- *

brw------ 1 root root 254, 11 29 ago 18:15

/ dev/ mapper/ vol umeG oup- base-r eal

brw------ 1 root root 254, 12 29 ago 18: 15

/ dev/ mapper/ vol uneG oup- snap- cow

brw------ 1 root root 254, 13 29 ago 18: 15 /dev/ mapper/vol uneG oup- snap
brw ------ 1 root root 254, 10 29 ago 18: 14 /dev/ mapper/vol uneG oup- base

The format for the snapshot - ori gi n target is as follows:

start | ength snapshot-origin origin

start
starting block in virtual device

87

Appendix A. The Device Mapper

| engt h

length of this segment
origin

base volume of snapshot

The snapshot - ori gi n will normally have one or more snapshots based on it. Reads will be
mapped directly to the backing device. For each write, the original data will be saved in the
COW device of each snapshot to keep its visible content unchanged until the COW device fills

up.

The format for the snapshot target is as follows:

start |ength snapshot origin COMdevice P|N chunksize

start
starting block in virtual device

| engt h

length of this segment
origin

base volume of snapshot

COW devi ce
Device on which changed chunks of data are stored

PIN
P (Persistent) or N (Not persistent); indicates whether snapshot will survive after reboot. For
transient snapshots (N) less metadata must be saved on disk; they can be kept in memory
by the kernel.

chunksi ze
Size in sectors of changed chunks of data that will be stored on the COW device

The following example shows a snapshot - ori gi n target with an origin device of 254:11.

0 2097152 snapshot-origin 254: 11

The following example shows a snapshot target with an origin device of 254:11 and a COW
device of 254:12. This snapshot device is persistent across reboots and the chunk size for the
data stored on the COW device is 16 sectors.

0 2097152 snapshot 254:11 254:12 P 16

88

Targets

1.5. The error Mapping Target

With an error mapping target, any 1/0O operation to the mapped sector fails.

An error mapping target can be used for testing. To test how a device behaves in failure, you
can create a device mapping with a bad sector in the middle of a device, or you can swap out
the leg of a mirror and replace the leg with an error target.

An error target can be used in place of a failing device, as a way of avoiding tiemouts and
retries on the actual device. It can serve as an intermediate target while you rearrange LVM
metadata during failures.

The error mapping target takes no additional parameters besides the start and | engt h
parameters.

The following example shows an err or target.

0 65536 error

1.6. The zero Mapping Target

The zer o mapping target is a block device equivalent of / dev/ zer o. A read operation to this
mapping returns blocks of zeros. Data written to this mapping is discarded, but the write
succeeds. The zer o mapping target takes no additional parameters besides the st art and

| engt h parameters.

The following example shows a zer o target for a 16 Tb Device.

0 65536 zero

1.7. The multipath Mapping Target

The multipath mapping target supports the mapping of a multipathed device. The format for the
mul ti pat h target is as follows:

start length nultipath #features [featurel ... featureN] #handl erargs
[handl erargl ... handl erargN] #pat hgroups pat hgroup pat hgroupargsl ...
pat hgr oupar gsN

There is one set of pat hgr oupar gs parameters for each path group.

89

Appendix A. The Device Mapper

start
starting block in virtual device

| engt h
length of this segment

#f eatures
The number of multipath features, followed by those features. If this parameter is zero, then
there is no f eat ur e parameter and the next device mapping parameter is #handl er ar gs.
Currently there is one supported multipath feature, queue_i f _no_pat h. This indicates that
this multipathed device is currently set to queue I/O operations if there is no path available.

For example, if the no_pat h_r et ry option in the mul ti pat h. conf file has been set to
queue 1/O operations only until all paths have been marked as failed after a set number of
attempts have been made to use the paths, the mapping would appear as follows until all
the path checkers have failed the specified number of checks.

0 71014400 nultipath 1 queue_if_no_path O 2 1 round-robin 0 2 1 66:128 \
1000 65:64 1000 round-robin O 2 1 8:0 1000 67: 192 1000

After all the path checkers have failed the specified number of checks, the mapping would
appear as follows.

0 71014400 nultipath 0 0 2 1 round-robin O 2 1 66:128 1000 65: 64 1000 \
round-robin 0 2 1 8:0 1000 67:192 1000

#handl er ar gs
The number of hardware handler arguments, followed by those arguments. A hardware
handler specifies a module that will be used to perform hardware-specific actions when
switching path groups or handling I/O errors. If this is set to 0, then the next parameter is
#pat hgr oups.

#pat hgr oups
The number of path groups. A path group is the set of paths over which a multipathed
device will load balance. There is one set of pat hgr oupar gs parameters for each path
group.

pat hgr oup
The next path group to try.

pat hgr oupsar gs
Each path group consists of the following arguments:

pat hsel ect or #sel ectorargs #paths #pathargs devicel ioreqsl ... deviceN
i oregsN

90

The multipath Mapping Target

There is one set of path arguments for each path in the path group.

pat hsel ect or
Specifies the algorithm in use to determine what path in this path group to use for the next
I/O operation.

#sel ectorargs
The number of path selector arguments which follow this argument in the multipath
mapping. Currently, the value of this argument is always O.

#pat hs
The number of paths in this path group.

#pat har gs
The number of path arguments specified for each path in this group. Currently this number
is always 1, the i or eqs argument.

devi ce
The block device number of the path, referenced by the major and minor numbers in the
format maj or :mi nor

i oregs
The number of I/O requests to route to this path before switching to the next path in the
current group.

Figure A.1, “Multipath Mapping Target” shows the format of a multipath target with two path
groups.

First path group Second path group

8 718144088 multipath @ @ 2 1 ruund LR G G R R LEE) 65: 64 1008 [round-robin @ 2 1 B:8 1808 &7:192 1808

path major : minor numbens
number of path arguments (always 1)
number of paths in this path group

‘ number of selector arguments (always 0)
path selector

next path group to try
number of path groups
number of hwhandler features
number of features

target name

target length in 512-bytes blocks

starting offset of the target

‘ ‘ number of If/Q requests te send to this path before switching

Figure A.1. Multipath Mapping Target

The following example shows a pure failover target definition for the same multipath device. In

91

Appendix A. The Device Mapper

this target there are four path groups, with only one open path per path group so that the
multipathed device will use only one path at a time.

0 71014400 rmultipath 0 0 4 1 round-robin O 1 1 66:112 1000 \
round-robin 0 1 1 67:176 1000 round-robin O 1 1 68:240 1000 \
round-robin 0 1 1 65:48 1000

The following example shows a full spread (multibus) target definition for the same multipathed
device. In this target there is only one path group, which includes all of the paths. In this setup,
multipath spreads the load evenly out to all of the paths.

0 71014400 nmultipath 0 0 1 1 round-robin 0 4 1 66:112 1000 \
67: 176 1000 68: 240 1000 65:48 1000

For further information about multipathing, see the Using Device Mapper Multipath document.

1.8. The crypt Mapping Target

The crypt target encrypts the data passing through the specified device. It uses the kernel
Crypto API.

The format for the crypt target is as follows:

start length crypt cipher key |V-offset device of fset

start
starting block in virtual device

l ength
length of this segment

ci pher
Cipher consists of ci pher [- chai nnode] -i vnode[:iv options].

ci pher
Ciphers available are listed in / pr oc/ cr ypt o (for example, aes).

chai nnode
Always use cbc. Do not use ebc; it does not use an initial vector (V).

i vimode[:iv options]

IV is an initial vector used to vary the encryption. The IV mode is pl ai n or essi v: hash. An
i viode of - pl ai n uses the sector number (plus IV offset) as the IV. Ani vnode of -essi v is
an enhancement avoiding a watermark weakness

92

The dmsetup Command

key
Encryption key, supplied in hex

| V- of f set
Initial Vector (IV) offset

devi ce
block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format naj or :ni nor

of f set
starting offset of the mapping on the device

The following is an example of a crypt target.

0 2097152 crypt aes-plain 0123456789abcdef 0123456789abcdef 0 /dev/hda O

2. The dmsetup Command

The dnset up command is a command line wrapper for communication with the Device Mapper.
For general system information about LVM devices, you may find the i nf o, | s, st at us, and
deps options of the dnset up command to be useful, as described in the following subsections.

For information about additional options and capabilities of the dnset up command, see the
dnset up(8) man page.

2.1. The dmsetup info Command

The dnset up i nfo devi ce command provides summary information about Device Mapper
devices. If you do not specify a device name, the output is information about all of the currently
configured Device Mapper devices. If you specify a device, then this command yields
information for that device only.

The dnset up i nf o command provides information in the following categories:

Name
The name of the device. An LVM device is expressed as the volume group name and the
logical volume name separated by a hyphen. A hyphen in the original name is translated to
two hyphens.

State
Possible device states are SUSPENDED, ACTI VE, and READ- ONLY. The dnset up suspend
command sets a device state to SUSPENDED. When a device is suspended, all I/O operations
to that device stop. The dnset up resume command restores a device state to ACTI VE.

Read Ahead

93

Appendix A. The Device Mapper

The number of data blocks that the system reads ahead for any open file on which read
operations are ongoing. By default, the kernel chooses a suitable value automatically. You
can change this value with the - - r eadahead option of the dnset up command.

Tabl es present
Possible states for this category are LI VE and | NACTI VE. An | NACTI VE state indicates that a
table has been loaded which will be swapped in when a dnset up r esume command
restores a device state to ACTI VE, at which point the table's state becomes LI VE. For
information, see the dnset up man page.

Open count
The open reference count indicates how many times the device is opened. A nount
command opens a device.

Event nunber
The current number of events received. Issuing a dnset up wai t n command allows the
user to wait for the n'th event, blocking the call until it is received.

Maj or, mi nor
Major and minor device number

Nunber of targets
The number of fragments that make up a device. For example, a linear device spanning 3
disks would have 3 targets. A linear device composed of the beginning and end of a disk,
but not the middle would have 2 targets.

UuJl D
UUID of the device.

The following example shows partial output for the dnset up i nf o command.

[root @sk-07 ~]# dnsetup info

Nane: testgfsvg-testgfslvl
St at e: ACTI VE

Read Ahead: 256

Tabl es present: LI VE

Open count: 0

Event nunber: 0

Maj or, minor: 253, 2

Nunmber of targets: 2
UU D: LVM K528WJUGQgPadNXYcFrr f 9LnPl UMswgk CkpgPl gYzSvi gM7 Sf eWCy pddNSW Nzc2N

Narme: Vol G oup00- LogVol 00

St at e: ACTI VE
Read Ahead: 256
Tabl es present: LI VE
Open count: 1
Event nunber: 0

Maj or, mi nor: 253, 0

Nunmber of targets: 1
UU D: LVM t CcS1kgFV9dr b0OX1Vr 8sxeYPOt qcr pdegyqj 51 Zxe45JMd nvt gLmbLpBcenh2L3

94

The dmsetup Is Command

2.2. The dmsetup Is Command

You can list the device names of mapped devices with the dnset up | s command. You can list
devices that have at least one target of a specified type with the dnsetup |'s --target
tar get _t ype command. For other options of the dnset up | s, see the dnset up man page.

The following example shows the command to list the device names of currently configured

mapped devices.

[root @sk-07 ~]# dnsetup Is

(2583,
(2583,
(253,
(253,
(2583,

test gf svg-testgfslv3
test gf svg-testgfslv2
testgfsvg-testgfslvl
Vol Gr oup00- LogVol 01
Vol Gr oup00- LogVol 00

The following example shows the command to list the devices names of currently configured

mirror mappings.

Note to reviewers: We'll come up with better names for the devices here.

[root @rant-01 ~]# dnsetup |s --target mrror
| ock_stress-grant--02.
| ock_stress-grant--01.
| ock_stress-grant--03.
| ock_stress-grant--02.
| ock_stress-grant--03.
| ock_stress-grant--02.
| ock_stress-grant--01.
| ock_stress-grant--01.
| ock_stress-grant--03.

1722
1720
1718
1716
1713
1709
1707
1724
1711

(253,
(253,
(253,
(253,
(253,
(253,
(253,
(253,
(253,

34)
18)
52)
40)
47)
23)
8)

14)
27)

2.3. The dmsetup status Command

The dnset up status devi ce command provides status information for each target in a
specified device. If you do not specify a device name, the output is information about all of the
currently configured Device Mapper devices. You can list the status only of devices that have at
least one target of a specified type with the dnset up status --target target_type

command.

The following example shows the command to list the status of the targets in all currently

configured mapped devices.

[root @sk-07 ~]# dnsetup status
testgfsvg-testgfslv3: 0 312352768 |i near

95

Appendix A. The Device Mapper

testgfsvg-testgfslv2: 0 312352768 |i near
testgfsvg-testgfslvl: 0 312352768 |i near

testgfsvg-testgfslvl: 312352768 50331648 | i near

Vol Gr oup00- LogVol 01: 0 4063232 |i near
Vol Gr oup00- LogVol 00: 0 151912448 | i near

2.4. The dmsetup deps Command

The dnset up deps devi ce command provides a list of (major, minor) pairs for devices
referenced by the mapping table for the specified device. If you do not specify a device name,
the output is information about all of the currently configured Device Mapper devices.

The following example shows the command to list the dependencies of all currently configured

mapped devices.

[root @sk-07 ~]# dnsetup deps

testgfsvg-testgfslv3: 1 dependencies
testgfsvg-testgfslv2: 1 dependencies
testgfsvg-testgfslvl: 1 dependencies

Vol Gr oup00- LogVol 01: 1 dependenci es
Vol Gr oup00- LogVol 00: 1 dependenci es

The following example shows the command to list the dependencies only of the device

| ock_stress-grant--02.1722:

[root @rant-01 ~]# dnsetup deps | ock_stress-grant--02.1722

3 dependenci es

(253, 33) (253, 32) (253, 31)

96

Appendix B. The LVM Configuration
Files

LVM supports multiple configuration files. At system startup, the | vm conf configuration file is
loaded from the directory specified by the environment variable LVM_SYSTEM DI R, which is set to
/ et c/ | vmby default.

The | vm conf file can specify additional configuration files to load. Settings in later files override
settings from earlier ones. To display the settings in use after loading all the configuration files,
execute the | vm dunpconfi g command.

For information on loading additional configuration files, see Section 2, “Host Tags”.

1. The LVM Configuration Files

The following files are used for LVM configuration:

/etc/lvm/lvm.conf
Central configuration file read by the tools.

etc/lvm/lvm_host t ag.conf
For each host tag, an extra configuration file is read if it exists: | vm host t ag. conf . If that
file defines new tags, then further configuration files will be appended to the list of tiles to
read in. For information on host tags, see Section 2, “Host Tags”.

In addition to the LVM configuration files, a system running LVM includes the following files that
affect LVM system setup:

/etc/lvm/.cache
Device name filter cache file (configurable).

/etc/lvm/backup/
Directory for automatic volume group metadata backups (configurable).

/etc/lvm/archive/
Directory for automatic volume group metadata archives (configurable with regard to
directory path and archive history depth).

Ivar/lock/lvm/
In single-host configuration, lock files to prevent parallel tool runs from corrupting the
metadata; in a cluster, cluster-wide DLM is used.

2. Sample lvm.conf File

97

Appendix B. The LVM Configuration Files

The following is a sample | vm conf configuration file.

[root@ng3-1 lvnj# cat /etc/lvm|vm conf

#
#
#
#
#
#
#
#

This is an exanple configuration file for the LVM2 system
It contains the default settings that woul d be used if there was no
/etc/lvmlvmconf file

Refer to 'man Ivmconf' for further information including the file |ayout.

To put this file in a different directory and override /etc/lvm set
the environnment variable LVM SYSTEM DI R before running the tools.

This section allows you to configure which bl ock devices shoul d
be used by the LVM system
devi ces {

\Where do you want your vol une groups to appear ?
dir = "/dev"

An array of directories that contain the device nodes you w sh
to use with LVMR.
scan = ["/dev"]

|If several entries in the scanned directories correspond to the

same bl ock device and the tools need to display a name for device
all the pathnanmes are matched agai nst each itemin the follow ng
list of regular expressions in turn and the first match is used.
preferred_names = []

preferred_nanes = ["~/dev/npath/", "~/dev/[hs]d"]

Afilter that tells LVM2 to only use a restricted set of devices
The filter consists of an array of regular expressions. These
expressi ons can be delimted by a character of your choice, and
prefixed with either an 'a' (for accept) or 'r' (for reject).
The first expression found to match a device nane determines if
the device will be accepted or rejected (ignored). Devices that
don't match any patterns are accepted.

HOH H HH R

Be careful if there there are synbolic links or multiple filesystem
entries for the same device as each nane is checked separately against
the list of patterns. The effect is that if any nane matches any 'a'
pattern, the device is accepted; otherwise if any name matches any 'r
pattern it is rejected; otherwise it is accepted

H H R H H

3+

Don't have nore than one filter line active at once: only one gets

used.

Run vgscan after you change this paraneter to ensure that
the cache file gets regenerated (see bel ow).
If it doesn't do what you expect, check the output of 'vgscan -vvvv'

F*

By default we accept every bl ock device
filter = "al.*/"]

98

Sample lvm.conf File

Exclude the cdromdrive
filter = ["r|/dev/cdrom"]

When testing | like to work with just | oopback devices
filter = ["alloop/™, "r/.*/"]

O maybe all |oops and ide drives except hdc:

filter =["a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|"]
Use anchors if you want to be really specific

filter = ["a|~/dev/hda8%|", "r/.*/"]

The results of the filtering are cached on disk to avoid

rescanni ng dud devi ces (which can take a very long tine).

By default this cache is stored in the /etc/lvnl cache directory
#in a file called '.cache'

It is safe to delete the contents: the tools regenerate it.
(The old setting 'cache' is still respected if neither of

these new ones is present.)

cache_dir = "/etc/lvni cache"

cache file_ prefix =""

You can turn off witing this cache file by setting this to O
wite_cache_state = 1

Advanced settings.

List of pairs of additional acceptable bl ock device types found
in /proc/devices with maxi mum (non-zero) number of partitions
types = ["fd", 16]

If sysfs is nounted (2.6 kernels) restrict device scanning to
the block devices it believes are valid.

1 enabl es; 0 disables.

sysfs _scan = 1

By default, LVM2 will ignore devices used as conponents of
software RAID (nd) devices by |ooking for md superbl ocks.
1 enabl es; 0 disables.

nmd_conponent _detection = 1

1f, while scanning the systemfor PVs, LVM2 encounters a devi ce- napper

device that has its |I/O suspended, it waits for it to becone
accessi bl e

Set this to 1 to skip such devices. This should only be needed

in recovery situations.

i gnor e_suspended_devices = 0

}

This section that allows you to configure the nature of the
informati on that LVM2 reports

| og {

Controls the messages sent to stdout or stderr.
There are three |l evels of verbosity, 3 being the npbst verbose
verbose = 0

99

Appendix B. The LVM Configuration Files

Should we send | og nessages through sysl og?
1 is yes; 0 is no.
syslog = 1

Should we | og error and debug nessages to a file?
By default there is no log file.
#file = "/var/log/lvnR.|og"

Should we overwite the log file each tine the programis run?
By default we append.

overwite =0

What | evel of |og nmessages should we send to the log file and/or

sysl og?
There are 6 syslog-like log levels currently in use - 2 to 7
i ncl usi ve.
7 is the nbst verbose (LOG DEBUG) .
level =0
Format of output nessages
Whether or not (1 or 0) to indent nessages according to their severity
indent = 1
Whether or not (1 or 0) to display the command nane on each |ine
out put
command_nanmes = 0
A prefix to use before the message text (but after the command nane,
if selected). Default is two spaces, so you can see/grep the severity
of each nessage.
prefix =" "
To make the nessages look simlar to the original LVMtools use
indent = 0
command_nanes = 1
prefix =" -- "
Set this if you want | og nessages during activation.
Don't use this in |ow nmenory situations (can deadl ock).
activation = 0
}
Configurati on of netadata backups and archiving. In LVM2 when we

tal k about a 'backup’ we nean maki ng a copy of the nmetadata for the

current system The 'archive' contains old nmetadata configurations.
Backups are stored in a hunman readeabl e text fornmat.

backup {

Should we maintain a backup of the current netadata configuration ?
Use 1 for Yes; O for No

Think very hard before turning this off!

backup = 1

Where shall we keep it ?
Remenber to back up this directory regul arly!
backup_dir = "/etc/|vm backup"

100

Sample lvm.conf File

Should we maintain an archive of old netadata configurations.
Use 1 for Yes; O for No.

On by default. Think very hard before turning this off.
archive = 1

Where should archived files go ?
Renmenber to back up this directory regul arly!
archive dir = "/etc/lvn archive"

What is the m ni mum nunber of archive files you wish to keep ?
retain_mn = 10

What is the minimumtinme you wish to keep an archive file for ?
retai n_days = 30

}

Settings for the running LVM2 in shell (readline) node.
shel | {

Nunber of lines of history to store in ~/.|lvmhistory
hi story_size = 100

M scel | aneous gl obal LVM2 settings
gl obal {
library dir = "/usr/lib"

The file creation mask for any files and directories created.
Interpreted as octal if the first digit is zero.
umask = 077

Allow other users to read the files
#umask = 022

Enabling test node neans that no changes to the on di sk netadata

will be made. Equivalent to having the -t option on every
command. Defaults to off.
test =0

Default value for --units argunent
units = "h"

Whether or not to conmunicate with the kernel device-nmapper.

Set to O if you want to use the tools to manipul ate LVM net adat a
without activating any | ogical vol unes.

|f the devi ce-mapper kernel driver is not present in your kernel
setting this to 0 should suppress the error nessages.

activation = 1

If we can't communi cate with devi ce-mapper, should we try running
the LVML tool s?

This option only applies to 2.4 kernels and is provided to help you
switch between devi ce- mapper kernels and LVML kernel s.

The LVML tools need to be installed with .lvml suffices

e.g. vgscan.lvml and they will stop working after you start using

H O OH OH R

101

Appendix B. The LVM Configuration Files

the new | v on-di sk net adata for mat
The default value is set when the tools are built.
fallback_to_|vnl = 0

The default netadata format that commands should use - "lvnl" or

"lvmR".

The conmmand |ine override is -ML or -M.
Defaults to "lvml" if conpiled in, else "lvm".
format = "l vml"

Location of proc fil esystem
proc = "/proc"

Type of locking to use. Defaults to local file-based |ocking (1).

Turn | ocking off by setting to O (dangerous: risks netadata corruption
if LVM2 commands get run concurrently).

Type 2 uses the external shared library |ocking_library.

Type 3 uses built-in clustered | ocking.

| ocki ng_type = 3

|f using external |ocking (type 2) and initialisation fails,

with this set to 1 an attenpt will be nmade to use the built-in

clustered | ocking.

If you are using a custom sed | ocking_library you should set this to

0.
fal l back_to_clustered_|l ocking = 1
If an attenpt to initialise type 2 or type 3 |l ocking failed, perhaps
because cluster conmponents such as clvnmd are not running, with this
set
#to 1 an attenpt will be made to use |local file-based |ocking (type 1).
If this succeeds, only commands agai nst | ocal vol une groups wll
pr oceed.
Vol ume Groups marked as clustered will be ignored.
fall back_to_l ocal _| ocking = 1
Local non-LV directory that holds file-based | ocks while conmands are
in progress. A directory like /tnmp that may get wiped on reboot is
oK.
| ocking dir = "/var/l ock/| vnt
Other entries can go here to allow you to | oad shared libraries
e.g. if support for LVML nmetadata was conpiled as a shared library use
format_libraries = "liblvnRformatl. so"
Ful |l pathnanmes can be given.
Search this directory first for shared libraries.
library_dir = "/lib"
The external locking library to load if |ocking_ type is set to 2.
| ocking library = "liblvnRcl usterl ock. so"
}

activation {

Device used in place of missing stripes if activating inconplete

vol une.

For now, you need to set this up yourself first (e.g. with 'dnsetup')

102

Sample lvm.conf File

For exanple, you could nake it return I/O errors using the 'error’
target or make it return zeros
m ssing_stripe_filler = "/dev/ioerror"

How much stack (in KB) to reserve for use while devices suspended
reserved_stack = 256

How much nmenmory (in KB) to reserve for use while devices suspended
reserved_nmenory = 8192

N ce val ue used whil e devi ces suspended
process_priority = -18

If volume_list is defined, each LV is only activated if there is a
match against the |ist.

"vgnane" and "vgnane/l vnanme" are matched exactly.

"@ag" matches any tag set in the LV or VG

"@" matches if any tag defined on the host is also set in the LV or
VG

#

volume_list = ["vgl", "vg2/lvol1l", "@agl", "@"]

Size (in KB) of each copy operati on when mirroring
mrror_region_size = 512

Setting to use when there is no readahead val ue stored in the
net adat a

#

"none" - Disabl e readahead.

"auto" - Use default val ue chosen by kernel
r eadahead = "aut o"

'mrror_imge_fault_policy' and "mirror_log fault_policy' define

how a device failure affecting a mirror is handl ed.

A mrror is conposed of mrror inmages (copies) and a | og

A disk log ensures that a mirror does not need to be re-synced

(all copies nade the sane) every time a machi ne reboots or crashes
#

In the event of a failure, the specified policy will be used to

determ ne what happens

#

"remove" - Sinmply renmove the faulty device and run without it. |If
the log device fails, the mirror would convert to using
an in-menmory log. This neans the mirror will not
remenber its sync status across crashes/reboots and

the entire mirror will be re-synced. If a

mrror image fails, the mrror will convert to a
non-mrrored device if there is only one remaini ng good

copy.

"all ocate" - Renpve the faulty device and try to all ocate space on
a new device to be a replacenent for the fail ed device.
Using this policy for the log is fast and nmmi ntains the
ability to remenber sync state through crashes/reboots.
Using this policy for a mirror device is slow, as it
requires the mrror to resynchroni ze the devices, but it
will preserve the mirror characteristic of the device

H O H OH H HH R HH R HH R

103

Appendix B. The LVM Configuration Files

This policy acts |like "renove" if no suitable device and
space can be allocated for the replacenent.
Currently this is not inplenented properly and behaves
simlarly to:
#
"al |l ocate_anywhere" - COperates like "allocate", but it does not
require that the new space being allocated be on a
device is not part of the mirror. For a |og device
failure, this could nean that the log is allocated on
the same device as a mirror device. For a mrror
device, this could nean that the mrror device is
al | ocated on the sane device as another mrror device
This policy would not be wise for mirror devices
because it would break the redundant nature of the
mrror. This policy acts like "renove" if no suitable
devi ce and space can be allocated for the replacenent.
mrror_log fault_policy = "all ocate"
mrror_device fault_policy = "renove"

}

S G

Advanced section

BRI

Metadata settings

#

metadata {

#
#
#

3+

HOoH H H H R HH R HHH H*

B

#}

Def aul t nunber of copies of netadata to hold on each PV. 0, 1 or 2.
You m ght want to override it fromthe comand line with O
when runni ng pvcreate on new PVs which are to be added to | arge VGs.

pvet adat acopies = 1

Approxi mate default size of on-di sk netadata areas in sectors.
You should increase this if you have | arge vol ume groups or
you want to retain a large on-di sk history of your netadata changes

pvnet adat asi ze = 255

List of directories holding |ive copies of text format mnetadata.
These directories nust not be on |ogical volunes!

It's possible to use LVM2 with a couple of directories here,
preferably on different (non-LV) filesystens, and with no ot her
on-di sk nmet adata (pvnetadatacopies = 0). O this can be in
addition to on-di sk netadata areas.

The feature was originally added to sinplify testing and i s not
supported under | ow nenory situations - the machine could | ock up.

Never edit any files in these directories by hand unl ess you
you are absolutely sure you know what you are doing! Use
the supplied tool set to nake changes (e.g. vgcfgrestore).

dirs = ["/etc/lvm netadata”, "/mt/disk2/|vm metadata2"]

104

Sample lvm.conf File

Event daenon

#

dneventd {

devi

#}

#

H B H H

3+

mrror_library is the library used when nonitoring a mrror device.

"l i bdevmapper-event-lvn2nirror.so" attenpts to recover from
failures. It removes failed devices froma volune group and
reconfigures a mrror as necessary. If no mirror library is
provided, mirrors are not nonitored through dneventd.

mrror_library = "libdevmapper-event-|vn2mrror.so"

snapshot library is the library used when nonitoring a snapshot
"1 i bdevmapper - event - | vim2snapshot . so" nonitors the filling of
snapshots and emits a warning through syslog, when the use of
snapshot exceedes 80% The warning is repeated when 85% 90% and
95% of the snapshot are fill ed.

snapshot _|ibrary = "li bdevmapper-event -1 vhR2snapshot . so"

105

106

Appendix C. LVM Object Tags

An LVM tag is a word that can be used to group LVM2 objects of the same type together. Tags
can be attached to objects such as physical volumes, volume groups, and logical volumes. Tags
can be attached to hosts in a cluster configuration. Snapshots cannot be tagged.

Tags can be given on the command line in place of PV, VG or LV arguments. Tags should be
prefixed with @ to avoid ambiguity. Each tag is expanded by replacing it with all objects
possessing that tag which are of the type expected by its position on the command line.

LVM tags are strings using [A-Za-z0-9_+.-] of up to 128 characters. They cannot start with a
hyphen.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are
removed from a volume group; this is because tags are stored as part of the volume group
metadata and that is deleted when a physical volume is removed. Snapshots cannot be tagged.

The following command lists all the logical volumes with the dat abase tag.

| vs @lat abase

1. Adding and Removing Object Tags

To add or delete tags from physical volumes, use the - - addt ag or - - del t ag option of the
pvchange command.

To add or delete tags from volume groups, use the - - addt ag or - - del t ag option of the
vgchange or vgcr eat e commands.

To add or delete tags from logical volumes, use the - - addt ag or - - del t ag option of the
| vchange or | vcr eat e commands.

2. Host Tags

In a cluster configuration, you can define host tags in the configuration files. If you set host t ags
= 1inthe t ags section, a host tag is automatically defined using the machine's hostname. This
allow you to use a common configuration file which can be replicated on all your machines so
they hold identical copies of the file, but the behavior can differ between machines according to
the hostname.

For information on the configuration files, see Appendix B, The LVM Configuration Files.

For each host tag, an extra configuration file is read if it exists: lvm_host t ag. conf. If that file
defines new tags, then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines t ag1, and defines t ag2

107

Appendix C. LVM Object Tags

if the hostname is host 1.

tags { tagl { } tag2 { host_list = ["host1"] } }

3. Controlling Activation with Tags

You can specify in the configuration file that only certain logical volumes should be activated on
that host. For example, the following entry acts as a filter for activation requests (such as
vgchange -ay) and only activates vgl/ | vol 0 and any logical volumes or volume groups with
the dat abase tag in the metadata on that host.

activation { volume_list = ["vgl/lvol 0", " @latabase"] }

There is a special match "@*" that causes a match only if any metadata tag matches any host
tag on that machine.

As another example, consider a situation where every machine in the cluster has the following
entry in the configuration file:

tags { hosttags =1 }

If you want to activate vgl/ 1 vol 2 only on host db2, do the following:

1. Runlvchange --addtag @b2 vgl/1vol 2 from any host in the cluster.

2. Run|vchange -ay vgl/lvol 2.

This solution involves storing hostnames inside the volume group metadata.

108

Appendix D. LVM Volume Group
Metadata

The configuration details of a volume group are referred to as the metadata. By default, an
identical copy of the metadata is maintained in every metadata area in every physical volume
within the volume group. LVM volume group metadata is small and stored as ASCII.

If a volume group contains many physical volumes, having many redundant copies of the
metadata is inefficient. It is possible to create a physical volume without any metadata copies by
using the - - met adat acopi es 0 option of the pvcr eat e command. Once you have selected the
number of metadata copies the physical volume will contain, you cannot change that at a later
point. Selecting 0 copies can result in faster updates on configuration changes. Note, however,
that at all times every volume group must contain at least one physical volume with a metadata
area (unless you are using the advanced configuration settings that allow you to store volume
group metadata in a file system). If you intend to split the volume group in the future, every
volume group needs at least one metadata copy.

The core metadata is stored in ASCII. A metadata area is a circular buffer. New metadata is
appended to the old metadata and then the pointer to the start of it is updated.

You can specify the size of metadata area with the - - net adat asi ze. option of the pvcreate
command. The default size is too small for volume groups with many logical volumes or physical
volumes.

1. The Physical Volume Label

By default, the pvcr eat e command places the physical volume label in the 2nd 512-byte sector.
This label can optionally be placed in any of the first four sectors, since the LVM tools that scan
for a physical volume label check the first 4 sectors. The physical volume label begins with the
string LABELONE.

The physical volume label Contains:

Physical volume UUID

Size of block device in bytes

NULL-terminated list of data area locations

NULL-terminated lists of metadata area locations

Metadata locations are stored as offset and size (in bytes). There is room in the label for about
15 locations, but the LVM tools currently use 3: a single data area plus up to two metadata
areas.

109

Appendix D. LVM Volume Group Metadata

2. Metadata Contents

The volume group metadata contains:

+ [Information about how and when it was created

« Information about the volume group:
The volume group information contains:

* Name and unique id

« A version number which is incremented whenever the metadata gets updated

* Any properties: Read/Write? Resizeable?

* Any administrative limit on the number of physical volumes and logical volumes it may contain
» The extent size (in units of sectors which are defined as 512 bytes)

« An unordered list of physical volumes making up the volume group, each with:

Its UUID, used to determine the block device containing it
» Any properties, such as whether the physical volume is allocatable
» The offset to the start of the first extent within the physical volume (in sectors)
* The number of extents

« An unordered list of logical volumes. each consisting of

» An ordered list of logical volume segments. For each segment the metadata includes a
mapping applied to an ordered list of physical volume segments or logical volume
segments

3. Sample Metadata

The following shows an example of LVM volume group metadata for a volume group called
nyvg.

CGenerated by LVM2: Tue Jan 30 16:28:15 2007

contents = "Text Format Vol ume G oup"
version = 1

description = "Created *before* executing 'lvextend -L+5G /dev/nyvg/ nylv
/ dev/ sdc" "

110

Sample Metadata

creation_host = "tng3-1" # Linux tng3-1 2.6.18-8.el5 #1 SWMP Fri Jan
26 14:15:21 EST 2007 i 686

creation_tinme = 1170196095 # Tue Jan 30 16:28: 15 2007

nmyvg {

id = "0zd3UT-wbYT-I| DHg- | MPs- Ej oE- 0018- wiL.28X4"
seqno = 3
status = ["RESI ZEABLE', "READ', "WRI TE"]

extent _size = 8192 # 4 Megabyt es
max_lv = 0
max_pv = 0

physi cal _vol unes {

pvO {
id = "ZBWgW dXF2- 0bGw ZCad- 2Rl V- phwu- 1c1RFt "
devi ce = "/dev/sda" # Hnt only
status = ["ALLOCATABLE"]
dev_si ze = 35964301 # 17.1491 G gabytes
pe_start = 384
pe_count = 4390 # 17.1484 G gabytes

}

pvl {
id = "ZHEZJW MR64- D3QW Rv7V- Hxsa- zU24- wzt Y19"
devi ce = "/dev/sdb" # Hont only
status = ["ALLOCATABLE"]
dev_si ze = 35964301 # 17.1491 G gabytes
pe_start = 384
pe_count = 4390 # 17.1484 G gabytes

}

pv2 {
id = "wCo&Ap- 55U - 9t bp- VTEA- j 06s- RAVX- UREWG'
device = "/dev/sdc" # Hint only
status = ["ALLOCATABLE"]
dev_si ze = 35964301 # 17.1491 G gabytes
pe_start = 384
pe_count = 4390 # 17.1484 G gabytes

}

pv3 {
id = "hd Un - zsBg- 39FF- do88- pHx Y- 8XA2- 9VKI i A"
devi ce = "/dev/sdd" # Hint only
status = ["ALLOCATABLE"]
dev_si ze = 35964301 # 17.1491 G gabytes
pe_start = 384
pe_count = 4390 # 17. 1484 G gabytes

}

}

| ogi cal _vol unmes {

nmylv {

111

Appendix D. LVM Volume Group Metadata

id = "CGhUYSF- qVMB-r zQo- a6D2- o0aV- LQet - Ur 90OF9"
status = ["READ', "WRI TE",
segnment _count = 2

segnment 1 {

0
1280

start_extent
ext ent _count

type = "striped"
stripe_count =1

stripes = [

"pv0", O
]
}
segnment 2 {
start_extent = 1280
extent _count = 1280
type = "striped"
stripe_count =1
stripes = |
"pvl", O
]
}

"Vl Sl BLE"]

5 G gabytes

|inear

5 G gabytes

|inear

112

exclusive on one node, 30
I n d eX local node only, 30
device numbers
major, 38
A minor, 38
persistent, 38
device path names, 21
device scan filters, 44
device size, maximum, 27
device special file directory, 27

activating logical volumes
individual nodes, 46
activating volume groups, 30
individual nodes, 30
local node only, 30

administrative procedures, 17 display
allocation sorting output, 56

policy, 26 displaying

preventing, 25 logical volumes, 39, 53
archive file, 18, 31 physical volumes, 24, 50

volume groups, 27, 52

> E
backup

file, 18 extent

metadata, 18, 31 allocation, 26

backup file, 31 definition, 9, 26

block device

scanning, 23 F

failed devices

C displaying, 69
cache file feedback, x, x

building, 28 file system
cluster environment, 3, 17 growing on a logical volume, 18
CLVM filters, 44

definition, 3
clvmd daemon, 3 G
command line units, 21 growing file system
configuration examples, 59 logical volume, 18
creating

logical volume, 33 H

logical volume, example, 59 help display, 22

LVM volumes in a cluster, 17

physical volumes, 23 |

striped logical volume, example, 60 initializing

volume groups, 26 partitions, 23
creating LVM volumes physical volumes, 23

overview, 17 Insufficient Free Extents message, 76
D L
data relocation, online, 45 linear logical volume
deactivating volume groups, 30 converting to mirrored, 37

113

Index

creation, 33
definition, 9
logging, 19
logical volume
administration, general, 33
changing parameters, 38
creation, 33
creation example, 59
definition, 1, 9
displaying, 39, 47, 53
exclusive access, 46
extending, 40
growing, 40
linear, 33
local access, 46
Ivs display arguments, 53
mirrored, 36
reducing, 43
removing, 39
renaming, 39
resizing, 38
shrinking, 43
shapshot, 43
striped, 35
Ivchange command, 38
Ivconvert command, 37
Ivcreate command, 33
Ivdisplay command, 39
Ivextend command, 40
LVM
architecture overview, 2
clustered, 3
components, 2, 7
custom report format, 47
directory structure, 27
help, 22
history, 2
label, 7
logging, 19
logical volume administration, 33

physical volume administration, 23

physical volume, definition, 7
volume group, definition, 9
LVML, 2
LVM2, 2
Ivmdiskscan command, 23
Ivreduce command, 38, 43

Ivremove command, 39
Ivrename command, 39
Ivs command, 47, 53
display arguments, 53
Ivscan command, 40

M
man page display, 22
metadata
backup, 18, 31
recovery, 74
mirrored logical volume
converting to linear, 37
creation, 36
definition, 13
failure recovery, 71
reconfiguration, 37

O

online data relocation, 45

P

partition type, setting, 23
partitions
multiple, 8
path names, 21
persistent device numbers, 38
physical extent
preventing allocation, 25
physical volume
adding to a volume group, 27
administration, general, 23
creating, 23
definition, 7
display, 50
displaying, 24, 47
illustration, 7
initializing, 23
layout, 7
pvs display arguments, 50
recovery, 76
removing, 26
removing from volume group, 29
removing lost volume, 76
resizing, 25
pvdisplay command, 24

114

pvmove command, 45
pvremove command, 26
pvresize command, 25
pvs command, 47
display arguments, 50
pvscan command, 25

R

removing

disk from a logical volume, 64

logical volume, 39

physical volumes, 26
renaming

logical volume, 39

volume group, 31
report format, LVM devices, 47
resizing

logical volume, 38

physical volume, 25

S

scanning
block devices, 23
scanning devices, filters, 44
snapshot logical volume
creation, 43
snapshot volume
definition, 15
striped logical volume
creation, 35
creation example, 60
definition, 12
extending, 41
growing, 41

T

troubleshooting, 69

U

units, command line, 21

V

verbose output, 21
vgcfbackup command, 31
vgcfrestore command, 31
vgchange command, 29

vgcreate command, 26
vgdisplay command, 28
vgexport command, 32
vgextend command, 27
vgimport command, 32
vgmerge command, 31
vgmknodes command, 33
vgreduce command, 29
vgrename command, 31
vgs command, 47

display arguments, 52
vgscan command, 28
vgsplit command, 31
volume group

activating, 30

administration, general, 26

changing parameters, 29

combining, 31

creating, 26

deactivating, 30

definition, 9

displaying, 27, 47, 52

extending, 27

growing, 27

merging, 31

moving between systems, 32

reducing, 29

removing, 30

renaming, 31

shrinking, 29

splitting, 31

example procedure, 62
vgs display arguments, 52

115

116

	LVM Administrator's Guide
	Table of Contents
	Introduction
	1. About This Guide
	2. Audience
	3. Software Versions
	4. Related Documentation
	5. Feedback
	6. Document Conventions

	Chapter 1. The LVM Logical Volume Manager
	1. Logical Volumes
	2. LVM Architecture Overview
	3. Running LVM in a Cluster
	4. Document Overview

	Chapter 2. LVM Components
	1. Physical Volumes
	1.1. LVM Physical Volume Layout
	1.2. Multiple Partitions on a Disk

	2. Volume Groups
	3. LVM Logical Volumes
	3.1. Linear Volumes
	3.2. Striped Logical Volumes
	3.3. Mirrored Logical Volumes
	3.4. Snapshot Volumes

	Chapter 3. LVM Administration Overview
	1. Creating LVM Volumes in a Cluster
	2. Logical Volume Creation Overview
	3. Growing a File System on a Logical Volume
	4. Logical Volume Backup
	5. Logging

	Chapter 4. LVM Administration with CLI Commands
	1. Using CLI Commands
	2. Physical Volume Administration
	2.1. Creating Physical Volumes
	2.1.1. Setting the Partition Type
	2.1.2. Initializing Physical Volumes
	2.1.3. Scanning for Block Devices

	2.2. Displaying Physical Volumes
	2.3. Preventing Allocation on a Physical Volume
	2.4. Resizing a Physical Volume
	2.5. Removing Physical Volumes

	3. Volume Group Administration
	3.1. Creating Volume Groups
	3.2. Adding Physical Volumes to a Volume Group
	3.3. Displaying Volume Groups
	3.4. Scanning Disks for Volume Groups to Build the Cache File
	3.5. Removing Physical Volumes from a Volume Group
	3.6. Changing the Parameters of a Volume Group
	3.7. Activating and Deactivating Volume Groups
	3.8. Removing Volume Groups
	3.9. Splitting a Volume Group
	3.10. Combining Volume Groups
	3.11. Backing Up Volume Group Metadata
	3.12. Renaming a Volume Group
	3.13. Moving a Volume Group to Another System
	3.14. Recreating a Volume Group Directory

	4. Logical Volume Administration
	4.1. Creating Logical Volumes
	4.1.1. Creating Linear Volumes
	4.1.2. Creating Striped Volumes
	4.1.3. Creating Mirrored Volumes
	4.1.4. Changing Mirrored Volume Configuration

	4.2. Persistent Device Numbers
	4.3. Resizing Logical Volumes
	4.4. Changing the Parameters of a Logical Volume Group
	4.5. Renaming Logical Volumes
	4.6. Removing Logical Volumes
	4.7. Displaying Logical Volumes
	4.8. Growing Logical Volumes
	4.9. Extending a Striped Volume
	4.10. Shrinking Logical Volumes

	5. Creating Snapshot Volumes
	6. Controlling LVM Device Scans with Filters
	7. Online Data Relocation
	8. Activating Logical Volumes on Individual Nodes in a Cluster
	9. Customized Reporting for LVM
	9.1. Format Control
	9.2. Object Selection
	9.3. Sorting LVM Reports
	9.4. Specifying Units

	Chapter 5. LVM Configuration Examples
	1. Creating an LVM Logical Volume on Three Disks
	1.1. Creating the Physical Volumes
	1.2. Creating the Volume Group
	1.3. Creating the Logical Volume
	1.4. Creating the File System

	2. Creating a Striped Logical Volume
	2.1. Creating the Physical Volumes
	2.2. Creating the Volume Group
	2.3. Creating the Logical Volume
	2.4. Creating the File System

	3. Splitting a Volume Group
	3.1. Determining Free Space
	3.2. Moving the Data
	3.3. Splitting the Volume Group
	3.4. Creating the New Logical Volume
	3.5. Making a File System and Mounting the New Logical Volume
	3.6. Activating and Mounting the Original Logical Volume

	4. Removing a Disk from a Logical Volume
	4.1. Moving Extents to Existing Physical Volumes
	4.2. Moving Extents to a New Disk
	4.2.1. Creating the New Physical Volume
	4.2.2. Adding the New Physical Volume to the Volume Group
	4.2.3. Moving the Data
	4.2.4. Removing the Old Physical Volume from the Volume Group

	Chapter 6. LVM Troubleshooting
	1. Troubleshooting Diagnostics
	2. Displaying Information on Failed Devices
	3. Recovering from LVM Mirror Failure
	4. Recovering Physical Volume Metadata
	5. Replacing a Missing Physical Volume
	6. Removing Lost Physical Volumes from a Volume Group
	7. Insufficient Free Extents for a Logical Volume

	Chapter 7. LVM Administration with the LVM GUI
	Appendix A. The Device Mapper
	1. Device Table Mappings
	1.1. The linear Mapping Target
	1.2. The striped Mapping Target
	1.3. The mirror Mapping Target
	1.4. The snapshot and snapshot-origin Mapping Targets
	1.5. The error Mapping Target
	1.6. The zero Mapping Target
	1.7. The multipath Mapping Target
	1.8. The crypt Mapping Target

	2. The dmsetup Command
	2.1. The dmsetup info Command
	2.2. The dmsetup ls Command
	2.3. The dmsetup status Command
	2.4. The dmsetup deps Command

	Appendix B. The LVM Configuration Files
	1. The LVM Configuration Files
	2. Sample lvm.conf File

	Appendix C. LVM Object Tags
	1. Adding and Removing Object Tags
	2. Host Tags
	3. Controlling Activation with Tags

	Appendix D. LVM Volume Group Metadata
	1. The Physical Volume Label
	2. Metadata Contents
	3. Sample Metadata

	Index

