
Jaromír Hradí lek Matt Newsome Robert Krátký

Red Hat Developer Toolset 3.x
User Guide

Installing and Using Red Hat Developer Toolset

Red Hat Developer Toolset 3.x User Guide

Installing and Using Red Hat Developer Toolset

Jaromír Hradílek
Red Hat Customer Content Services
jhradilek@redhat.com

Matt Newsome
Red Hat Software Engineering
mnewsome@redhat.com

Robert Krátký
Red Hat Customer Content Services
rkratky@redhat.com

Legal Notice

Copyright © 2014-2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
Red Hat Developer Too lset is a Red Hat o ffering for developers on the Red Hat Enterprise Linux
platform. The Red Hat Developer Too lset User Guide provides an overview of this product,
explains how to invoke and use the Red Hat Developer Too lset versions o f the too ls, and links
to resources with more in-depth information.

http://creativecommons.org/licenses/by-sa/3.0/

1

⁠Part I. Introduction

User Guide

2

Chapter 1. Red Hat Developer Toolset

1.1. About Red Hat Developer Toolset

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides a complete set of development and performance analysis tools that can be
installed and used on multiple versions of Red Hat Enterprise Linux. Executables built with the
Red Hat Developer Toolset toolchain can then also be deployed and run on multiple versions of
Red Hat Enterprise Linux. For detailed compatibility information, see Section 1.3, “Compatibility” .

Red Hat Developer Toolset does not replace the default system tools provided with Red Hat
Enterprise Linux 6 or 7 when installed on those platforms. Instead, a parallel set of developer tools
provides an alternative, newer version of those tools for optional use by developers. The default
compiler and debugger, for example, remain those provided by the base Red Hat Enterprise Linux
system.

What Is New in Red Hat Developer T oolset 3.1

Starting with Red Hat Developer Toolset 3.1, Dockerfiles are available for selected Red Hat
Developer Toolset components. See Section 1.8, “Using Red Hat Developer Toolset Container
Images” for more detailed information about this new feature and instructions on how to use it. See
Table 1.1, “Red Hat Developer Toolset Components” for a complete list of components included in
Red Hat Developer Toolset 3.1.

Table 1.1. Red Hat Developer Toolset Components

Name Version Descript ion
Eclipse 4.4.2 An integrated development environment with a graphical user

interface. ⁠
GCC 4.9.2 A portable compiler suite with support for C, C++, and Fortran.
binutils 2.24 A collection of binary tools and other utilities to inspect and

manipulate object files and binaries.
elfutils 0.161 A collection of binary tools and other utilities to inspect and

manipulate ELF files.
dwz 0.11 A tool to optimize DWARF debugging information contained in ELF

shared libraries and ELF executables for size.
GDB 7.8.2 A command line debugger for programs written in C, C++, and

Fortran.
ltrace 0.7.91 A debugging tool to display calls to dynamic libraries that a

program makes. It can also monitor system calls executed by
programs.

strace 4.8 A debugging tool to monitor system calls that a program uses and
signals it receives.

memstomp 0.1.5 A debugging tool to identify calls to library functions with
overlapping memory regions that are not allowed by various
standards.

SystemTap 2.6 A tracing and probing tool to monitor the activities of the entire
system without the need to instrument, recompile, install, and reboot.

Valgrind 3.10.1 An instrumentation framework and a number of tools to profile
applications in order to detect memory errors, identify memory
management problems, and report any use of improper arguments in
system calls.

[a]

⁠Chapt er 1 . Red Hat Developer T oolset

3

OProfile 0.9.9 A system-wide profiler that uses the performance monitoring
hardware on the processor to retrieve information about the kernel
and executables on the system.

Dyninst 8.2.1 A library for instrumenting and working with user-space executables
during their execution.

Name Version Descript ion

Red Hat Developer Toolset differs from “Technology Preview” compiler releases previously supplied
in Red Hat Enterprise Linux in two important respects:

1. Red Hat Developer Toolset can be used on multiple major and minor releases of Red Hat
Enterprise Linux, as detailed in Section 1.3, “Compatibility” .

2. Unlike Technology Preview compilers and other tools shipped in earlier Red Hat
Enterprise Linux, Red Hat Developer Toolset is fully supported under Red Hat
Enterprise Linux Subscription Level Agreements, is functionally complete, and is intended for
production use.

Important bug fixes and security errata are issued to Red Hat Developer Toolset subscribers in a
similar manner to Red Hat Enterprise Linux for two years from the release of each major version
release. A new major version of Red Hat Developer Toolset is released annually, providing
significant updates for existing components and adding major new components. A single minor
release, issued six months after each new major version release, provides a smaller update of bug
fixes, security errata, and new minor components.

Additionally, the Red Hat Enterprise Linux Application Compatibility Specification also applies to
Red Hat Developer Toolset (subject to some constraints on the use of newer C++11 language
features, detailed in Section B.2.1.5, “ABI Compatibility”).

Important

Applications and libraries provided by Red Hat Developer Toolset do not replace the Red Hat
Enterprise Linux system versions, nor are they used in preference to the system versions.
Using a framework called Sof tware Collect ions , an additional set of developer tools is
installed into the /opt directory and is explicitly enabled by the user on demand using the
scl utility.

1.2. Main Features

The Red Hat Developer Toolset version of the GNU Compiler Collect ion (GCC) provides the
following features:

Link-time optimization (LTO) has been improved in a number of ways, so that it is faster,
consumes less memory, and generates smaller object files.

Inter-procedural analysis (IPA) has been improved, and speculative devirtualization optimization
has been added.

Support for profiling code has been made more reliable.

[a] If yo u intend to d evelo p ap p licatio ns fo r Red Hat JBo ss Mid d leware o r req uire sup p o rt fo r
Op enShift To o ls, it is reco mmend ed that yo u use Red Hat JBo ss Develo p er Stud io .

User Guide

4

https://www.jboss.org/products/jbds.html
https://access.redhat.com/support/offerings/techpreview/

The Intel AVX-512 target architecture is now supported, as well as a number of new Intel
microarchitectures.

Support for C11 has been improved, and ISO C11 atomics, generic selections, and thread-local
storage are now supported.

A subset of the functionality of C++11 auto is now provided in GNU C through a new extension,
__auto_type.

The C and C++ compilers now support the OpenMP 4.0 specification.

The g+ + compiler offers improved support for various features of the C++ standard, including
generic lambdas, variable-length arrays, and digit separators.

The C++ runtime library C++11 support has been improved and now includes experimental
support for the upcoming ISO C++ standard, C++14.

GCC now adds support for Cilk+, an extension to the C and C++ languages for parallel
programming.

The version of the GNU Debugger (GDB) included in Red Hat Developer Toolset provides the
following new features:

Python scripting support has been enhanced in a number of ways.

Several new commands and enhancements in GDB/MI have been added.

Support for the CTF (Common Trace Format) has been added.

The btrace record target has been enhanced in a number of ways.

The remote protocol and GDBserver, the GDB remote stub, have been enhanced in a number of
ways.

Additionally, the Red Hat Developer Toolset version of binut ils provides these features:

The objcopy utility now supports wildcards for section names in command line options.

The AVX-512 (512-bit Advanced Vector Extensions) are now supported.

For a full list of changes and features introduced in this release, see Appendix A, Changes in Version
3.1.

1.3. Compat ibilit y

Red Hat Developer Toolset 3.1 is available for Red Hat Enterprise Linux 6 and 7 for 64-bit Intel and
AMD architectures. Figure 1.1, “Red Hat Developer Toolset 3.1 Compatibility Matrix” illustrates the
support for binaries built with Red Hat Developer Toolset on a certain version of Red Hat
Enterprise Linux when those binaries are run on various other versions of this system.

For ABI compatibility information, see Section B.2.1.5, “ABI Compatibility” .

⁠Chapt er 1 . Red Hat Developer T oolset

5

Figure 1.1. Red Hat Developer Toolset 3.1 Compat ib ility Matrix

1.4 . Get t ing Access to Red Hat Developer Toolset

Red Hat Developer Toolset is an offering that is distributed as a part of the Red Hat
Software Collections content set, which is available to customers with Red Hat Enterprise Linux 6 and
7 subscriptions listed at https://access.redhat.com/solutions/472793. Depending on the subscription
management service with which you registered your Red Hat Enterprise Linux system, you can either
enable Red Hat Developer Toolset by using the Red Hat Subscription Management, or by using
RHN Classic.

For detailed instructions on how to enable Red Hat Software Collections (and thus gain access to
Red Hat Developer Toolset) using RHN Classic or Red Hat Subscription Management, see the
respective section below. For information on how to register your system with one of these
subscription management services, see the Red Hat Subscription Management collection of guides.

Important

Red Hat Developer Toolset 3.1 is only compatible with Red Hat Enterprise Linux Server 6.4 and
higher and Red Hat Enterprise Linux Workstation 6.5 and higher. See Figure 1.1, “Red Hat
Developer Toolset 3.1 Compatibility Matrix” .

1.4 .1. Using Red Hat Subscript ion Management

If your system is registered with Red Hat Subscription Management, complete the following steps to
attach a subscription that provides access to the repository for Red Hat Software Collections (which
includes Red Hat Developer Toolset), and then enable that repository:

User Guide

6

https://access.redhat.com/solutions/472793
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

1. Determine the pool ID of a subscription that provides Red Hat Software Collections (and thus
also Red Hat Developer Toolset). To do so, type the following at a shell prompt as root to
display a list of all subscriptions that are available for your system:

subscription-manager list --available

For each available subscription, this command displays its name, unique identifier,
expiration date, and other details related to your subscription. The pool ID is listed on a line
beginning with Pool ID .

For a complete list of subscriptions that provide access to Red Hat Developer Toolset, see
https://access.redhat.com/solutions/472793.

2. Attach the appropriate subscription to your system by running the following command as
root:

subscription-manager attach --pool=pool_id

Replace pool_id with the pool ID you determined in the previous step. To verify the list of
subscriptions your system has currently attached, at any time, run as root:

subscription-manager list --consumed

3. Determine the exact name of the Red Hat Software Collections repository. To do so, type the
following at a shell prompt as root to retrieve repository metadata and to display a list of
available Yum repositories:

subscription-manager repos --list

The repository names depend on the specific version of Red Hat Enterprise Linux you are
using and are in the following format:

rhel-variant-rhscl-version-rpms
rhel-variant-rhscl-version-debug-rpms
rhel-variant-rhscl-version-source-rpms

In addition, certain packages, such as devtoolset-3-gcc-plugin-devel, depend on packages that
are only available in the Opt ional channel. The repository names with these packages use
the following format:

rhel-version-variant-optional-rpms
rhel-version-variant-optional-debug-rpms
rhel-version-variant-optional-source-rpms

For both the regular repositories and optional repositories, replace variant with the Red Hat
Enterprise Linux system variant (server or workstation), and version with the Red Hat
Enterprise Linux system version (6-eus, 6 , or 7).

4. Enable the repositories from step no. 3 by running the following command as root:

subscription-manager repos --enable repository

Replace repository with the name of the repository to enable.

⁠Chapt er 1 . Red Hat Developer T oolset

7

https://access.redhat.com/solutions/472793

Once the subscription is attached to the system, you can install Red Hat Developer Toolset as
described in Section 1.5, “ Installing Red Hat Developer Toolset” . For more information on how to
register your system using Red Hat Subscription Management and associate it with subscriptions,
see the Red Hat Subscription Management collection of guides.

1.4 .2. Using RHN Classic

If you are running Red Hat Enterprise Linux 6, and your system is registered with RHN Classic,
complete the following steps to subscribe to Red Hat Software Collections (which includes Red Hat
Developer Toolset):

1. Determine the exact name of the Red Hat Software Collections channel. To do so, type the
following at a shell prompt as root to display a list of all channels that are available to you:

rhn-channel --available-channels

The name of the channel depends on the specific version of Red Hat Enterprise Linux you are
using and is in the following format:

rhel-x86_64-variant-version-rhscl-1

In addition, certain packages, such as devtoolset-3-gcc-plugin-devel, depend on packages that
are only available in the Opt ional channel. The name of this channel uses the following
format:

rhel-x86_64-variant-optional-6

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

2. Subscribe the system to the channels from step no. 1 by running the following command as
root:

rhn-channel --add --channel=channel_name

Replace channel_name with the name of the channel to enable.

3. To verify the list of channels you are subscribed to, at any time, run as root:

rhn-channel --list

Once the system is subscribed, you can install Red Hat Developer Toolset as described in
Section 1.5, “ Installing Red Hat Developer Toolset” . For more information on how to register your
system with RHN Classic, see the Red Hat Subscription Management collection of guides.

1.5. Installing Red Hat Developer Toolset

Red Hat Developer Toolset is distributed as a collection of RPM packages that can be installed,
updated, uninstalled, and inspected by using the standard package management tools that are
included in Red Hat Enterprise Linux. Note that a valid subscription that provides access to the
Red Hat Software Collections content set is required in order to install Red Hat Developer Toolset on
your system. For detailed instructions on how to associate your system with an appropriate
subscription and get access to Red Hat Developer Toolset, see Section 1.4, “Getting Access to
Red Hat Developer Toolset” .

User Guide

8

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

Important

Before installing Red Hat Developer Toolset, install all available Red Hat Enterprise Linux
updates.

1.5.1. Installing All Available Components

To install all components that are included in Red Hat Developer Toolset, install the devtoolset-3
package by typing the following at a shell prompt as root:

yum install devtoolset-3

This installs the Eclipse development environment, all development, debugging, and performance
monitoring tools, and other dependent packages to the system. Alternatively, you can choose to
install only a selected package group as described in Section 1.5.2, “ Installing Individual Package
Groups” .

Note

Note that since Red Hat Developer Toolset 3.0, the scl-utils package is not a part of Red Hat
Developer Toolset, which is a change from preceding versions where the scl utility was
installed along with the Red Hat Developer Toolset software collection.

1.5.2. Installing Individual Package Groups

To make it easier to install only certain components, such as the integrated development environment
or the software development toolchain, Red Hat Developer Toolset is distributed with a number of
meta packages that allow you to install selected package groups as described in Table 1.2, “Red Hat
Developer Toolset Meta Packages” .

Table 1.2. Red Hat Developer Toolset Meta Packages

Package Name Descript ion Installed Components
devtoolset-3-ide Integrated Development

Environment
Eclipse

devtoolset-3-perftools Performance monitoring tools SystemTap, Valgrind, OProfile,
Dyninst

devtoolset-3-toolchain Development and debugging
tools

GCC, GDB, binutils, elfutils, dwz,
memstomp, strace, ltrace

To install any of these meta packages, type the following at a shell prompt as root:

yum install package_name

Replace package_name with a space-separated list of meta packages you want to install. For
example, to install only the Eclipse development environment and packages that depend on it, type
as root:

~]# yum install devtoolset-3-ide

⁠Chapt er 1 . Red Hat Developer T oolset

9

Alternatively, you can choose to install all available components as described in Section 1.5.1,
“ Installing All Available Components” .

1.5.3. Installing Opt ional Packages

Red Hat Developer Toolset is distributed with a number of optional packages that are not installed by
default. To list all Red Hat Developer Toolset packages that are available to you but not installed on
your system, type the following command at a shell prompt:

yum list available devtoolset-3-*

To install any of these optional packages, run as root:

yum install package_name

Replace package_name with a space-separated list of packages that you want to install. For example,
to install the devtoolset-3-gdb-gdbserver and devtoolset-3-gdb-doc packages, type:

~]# yum install devtoolset-3-gdb-gdbserver devtoolset-3-gdb-doc

1.5.4 . Installing Debugging Informat ion

To install debugging information for any of the Red Hat Developer Toolset packages, make sure that
the yum-utils package is installed and run the following command as root:

debuginfo-install package_name

For example, to install debugging information for the devtoolset-3-dwz package, type:

~]# debuginfo-install devtoolset-3-dwz

Note that in order to use this command, you need to have access to the repository with these
packages. If your system is registered with Red Hat Subscription Management, enable the
rhel-variant-rhscl-version-debug-rpms repository as described in Section 1.4.1, “Using
Red Hat Subscription Management” . If your system is registered with RHN Classic, subscribe the
system to the rhel-x86_64-variant-version-debuginfo channel as described in
Section 1.4.2, “Using RHN Classic” . For more information on how to get access to debuginfo
packages, see https://access.redhat.com/site/solutions/9907.

1.6. Updat ing Red Hat Developer Toolset

1.6.1. Updat ing to a Minor Version

When a new minor version of Red Hat Developer Toolset is available, run the following command as
root to update your Red Hat Enterprise Linux installation:

yum update

This updates all packages on your Red Hat Enterprise Linux system, including the Red Hat
Developer Toolset versions of the Eclipse development environment, development, debugging, and
performance monitoring tools, and other dependent packages.

User Guide

10

https://access.redhat.com/site/solutions/9907

Important

Use of Red Hat Developer Toolset requires the removal of any earlier pre-release versions of it.
Additionally, it is not possible to update to Red Hat Developer Toolset 3.1 from a pre-release
version of Red Hat Developer Toolset, including beta releases. If you have previously installed
any pre-release version of Red Hat Developer Toolset, uninstall it from your system as
described in Section 1.7, “Uninstalling Red Hat Developer Toolset” and install the new version
as documented in Section 1.5, “ Installing Red Hat Developer Toolset” .

1.6.2. Updat ing to a Major Version

When a new major version of Red Hat Developer Toolset is available, you can install it in parallel
with the previous version. For detailed instructions on how to install Red Hat Developer Toolset on
your system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

1.7. Uninstalling Red Hat Developer Toolset

To uninstall Red Hat Developer Toolset packages from your system, type the following at a shell
prompt as root:

yum remove devtoolset-3* libasan libatomic libcilkrts libitm liblsan
libtsan libubsan

This removes the GNU Compiler Collect ion , GNU Debugger, binut ils , and other packages that
are a part of Red Hat Developer Toolset from the system.

Note

Red Hat Developer Toolset 3.1 for Red Hat Enterprise Linux 7 no longer includes the
libatomic and libitm libraries, which the above command attempts to remove, because
they are not required for a proper function of Red Hat Developer Toolset components on that
system. Nevertheless, the above command works as expected even on Red Hat
Enterprise Linux 7.

Note that the uninstallation of the tools provided by Red Hat Developer Toolset does not affect the
Red Hat Enterprise Linux system versions of these tools.

1.8. Using Red Hat Developer Toolset Container Images

Starting with Red Hat Developer Toolset 3.1, Dockerfiles are available for selected Red Hat
Developer Toolset components. Dockerfiles are text documents that contain instructions for
automated building of docker-formatted container images. The resulting container images can be
used to run Red Hat Developer Toolset components inside virtual software containers, thus isolating
them from the host system and allowing for their rapid deployment. This section describes how to
obtain Red Hat Developer Toolset Dockerfiles, how to use them to build docker-formatted container
images, and how to run Red Hat Developer Toolset components using the resulting container
images.

Red Hat Developer Toolset 3.1 is shipped with the following Dockerfiles:

⁠Chapt er 1 . Red Hat Developer T oolset

11

devtoolset-3-dyninst

devtoolset-3-elfutils

devtoolset-3-oprofile

devtoolset-3-systemtap (only for Red Hat Enterprise Linux 7)

devtoolset-3-toolchain

devtoolset-3-valgrind

devtoolset-3 (only for Red Hat Enterprise Linux 7)

Note

The docker package, which contains the Docker daemon, command line tool, and other
necessary components for building and using docker-formatted container images, is currently
only available for the Server variant of the Red Hat Enterprise Linux 7 product. Red Hat
Developer Toolset Dockerfiles are distributed for Red Hat Enterprise Linux 6 as well, but the
images built using them can only be deployed on Red Hat Enterprise Linux 7 Server.

1.8.1. Obtaining Dockerfiles

The Red Hat Developer Toolset Dockerfiles are provided by the devtoolset-3-dockerfiles package. The
package contains individual Dockerfiles for building docker-formatted container images with
individual components and a meta-package for building a docker-formatted container image with all
the components offered. To be able to use the Dockerfiles, install this package by executing:

~]# yum install devtoolset-3-dockerfiles

Note that because some Red Hat Developer Toolset components depend on packages from the
Optional channel, the provided Dockerfiles contain instructions that enable the channel
automatically.

1.8.2. Building Container Images

Follow the instruction outlined at Getting Docker in RHEL 7 to set up an environment for building and
using docker-formatted container images.

When you are ready to build your image, change to the directory where the Dockerfile is installed and
run the docker build command as shown in the following example.

Example 1.1. Build ing a Container Image with a Red Hat Developer Toolset
Component

To build a docker-formatted container image for deploying the elfut ils tools in a container, follow
the instructions below:

1. Make sure you have a Docker environment set up properly on your system by following
instructions at Getting Docker in RHEL 7.

2. Install the package containing the Red Hat Developer Toolset Dockerfiles:

User Guide

12

https://access.redhat.com/articles/881893#get
https://access.redhat.com/articles/881893#get

~]# yum install devtoolset-3-dockerfiles

3. Determine where the Dockerfile for the required component is located:

~]# rpm -qpl devtoolset-3-dockerfiles | grep
"elfutils/Dockerfile"

4. Change to the directory where the required Dockerfile is installed:

~]# cd /opt/rh/devtoolset-3/root/usr/share/devtoolset-3-
dockerfiles/rhel7/devtoolset-3-elfutils/

5. Build the container image using the docker build command:

~]# docker build -t devtoolset-3-elfutils-7 .

Replace devtoolset-3-elfutils-7 with the name you wish to assign to your resulting container
image.

1.8.3. Running Red Hat Developer T oolset T ools from Container Images

To launch the docker-formatted container image you built (see Section 1.8.2, “Building Container
Images”), execute the docker run command as follows:

docker run -t -i container-image /bin/bash -l

Substitute the container-image parameter with the name of the container image you chose when
building it.

For example, to launch the container image built in Example 1.1, “Building a Container Image with a
Red Hat Developer Toolset Component” , run the following command:

~]# docker run -t -i devtoolset-3-elfutils-7 /bin/bash -l

1.9. Addit ional Resources

For more information about Red Hat Developer Toolset and Red Hat Enterprise Linux, see the
resources listed below.

Online Documentat ion

Red Hat Subscription Management collection of guides — The Red Hat Subscription Management
collection of guides provides detailed information on how to manage subscriptions on Red Hat
Enterprise Linux.

Red Hat Developer Toolset 3.1 Release Notes — The Release Notes for Red Hat Developer Toolset
3.1 contain more information.

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the
Eclipse IDE, libraries and runtime support, compiling and building, debugging, and profiling on
these systems.

⁠Chapt er 1 . Red Hat Developer T oolset

13

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/3/html/3.1_Release_Notes/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide —
The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Get Started with Docker Formatted Container Images on Red Hat Systems — The Knowledgebase
article contains a comprehensive overview of information about building and using docker-
formatted container images on Red Hat Developer Toolset 7 and Red Hat Enterprise Linux Atomic.

See Also

Appendix A, Changes in Version 3.1 provides a list of changes and improvements over the version
of the GNU Compiler Collection and GNU Debugger in the previous version of Red Hat
Developer Toolset.

Appendix B, Changes in Version 3.0 provides a comprehensive list of changes and improvements
over the Red Hat Enterprise Linux system versions of the GNU Compiler Collection, GNU
Debugger, and binutils, as well as information about the language, ABI, and debugging
compatibility.

User Guide

14

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/articles/881893

⁠Part II. Integrated Development Environments

⁠Part II. Int egrat ed Development Environment s

15

Chapter 2. Eclipse

Eclipse is a powerful development environment that provides tools for each phase of the
development process. It integrates a variety of disparate tools into a unified environment to create a
rich development experience, provides a fully configurable user interface, and features a pluggable
architecture that allows for an extension in a variety of ways. For instance, the Valgrind plug-in
allows programmers to perform memory profiling, otherwise performed on the command line, through
the Eclipse user interface.

Figure 2.1. Sample Eclipse Session

Eclipse provides a graphical development environment alternative to traditional interaction with
command line tools and as such, it is a welcome alternative to developers who do not want to use the
command line interface. The traditional, mostly command line-based Linux tools suite (such as gcc
or gdb) and Eclipse offer two distinct approaches to programming.

Red Hat Developer Toolset is distributed with Eclipse 4 .4 .2 , which is based on the Eclipse
Foundation's Luna release train SR2 (Service Release 2). Note that if you intend to develop
applications for Red Hat JBoss Middleware or require support for OpenShift Tools, it is
recommended that you use Red Hat JBoss Developer Studio.

Table 2.1. Eclipse Components Included in Red Hat Developer Toolset

User Guide

16

https://www.jboss.org/products/jbds.html

Package Descript ion
devtoolset-3-eclipse-cdt The C/C++ Development Tooling (CDT), which provides

features and plug-ins for development in C and C++.
devtoolset-3-eclipse-emf The Eclipse Modeling Framework (EMF), which allows you to

build applications based on a structured data model.
devtoolset-3-eclipse-gef The Graphical Editing Framework (GEF), which allows you to

create a rich graphical editor from an existing application
model.

devtoolset-3-eclipse-rse The Remote System Explorer (RSE) framework, which allows
you to work with remote systems from Eclipse.

devtoolset-3-eclipse-jgit JGit, a Java implementation of the Git revision control system.
devtoolset-3-eclipse-egit EGit, a team provider for Eclipse that provides features and

plug-ins for interaction with Git repositories.
devtoolset-3-eclipse-mylyn Mylyn, a task management system for Eclipse .
devtoolset-3-eclipse-pde The Plugin Development Environment for developing Eclipse

plugins.
devtoolset-3-eclipse-remote The Remote Services plug-in, which provides an extensible

remote-services framework.
devtoolset-3-eclipse-tests Eclipse tests.
devtoolset-3-eclipse-linuxtools A meta package for Linux-specific Eclipse plug-ins.

devtoolset-3-eclipse-changelog ⁠ The ChangeLog plug-in, which allows you to create and
maintain changelog files.

devtoolset-3-eclipse-gcov[a] The GCov plug-in, which integrates the GCov test coverage
program with Eclipse .

devtoolset-3-eclipse-gprof[a] The Gprof plug-in, which integrates the Gprof performance
analysis utility with Eclipse .

devtoolset-3-eclipse-manpage[a] The Man Page plug-in, which allows you to view manual pages
in Eclipse .

devtoolset-3-eclipse-oprofile[a] The OProfile plug-in, which integrates OProf ile with Eclipse .

devtoolset-3-eclipse-perf[a] The Perf plug-in, which integrates the perf tool with Eclipse .

devtoolset-3-eclipse-rpm-editor[a] The Eclipse Spec File Editor, which allows you to maintain RPM
spec files.

devtoolset-3-eclipse-systemtap[a] The SystemTap plug-in, which integrates SystemTap with
Eclipse .

devtoolset-3-eclipse-valgrind[a] The Valgrind plug-in, which integrates Valgrind with Eclipse .

2.1. Installing Eclipse

In Red Hat Developer Toolset, the Eclipse development environment is provided as a collection of
RPM packages and is automatically installed with the devtoolset-3-ide package as described in
Section 1.5, “ Installing Red Hat Developer Toolset” . For a list of available components, see
Table 2.1, “Eclipse Components Included in Red Hat Developer Toolset” .

Note

The Red Hat Developer Toolset version of Eclipse fully supports C, C++, and Java
development, but does not provide support for the Fortran programming language.

[a]

[a] This p ackag e is installed as a d ep end ency o f devtoolset-3-eclipse-linuxtools.

⁠Chapt er 2 . Eclipse

17

2.2. Using Eclipse

To start the Red Hat Developer Toolset version of Eclipse , either select Applicat ions →
Programming → DTS Eclipse from the panel, or type the following at a shell prompt:

scl enable devtoolset-3 'eclipse'

During its startup, Eclipse prompts you to select a workspace, that is, a directory in which you want
to store your projects. You can either use ~/workspace/, which is the default option, or click the
Browse button to browse your file system and select a custom directory. Additionally, you can select
the Use this as the default and do not ask again check box to prevent Eclipse from
displaying this dialog box the next time you run this development environment. When you are done,
click the OK button to confirm the selection and proceed with the startup.

2.2.1. Using the Red Hat Developer T oolset T oolchain

To use the Red Hat Developer Toolset version of Eclipse with support for the GNU Compiler
Collect ion and binut ils from Red Hat Developer Toolset, make sure that the devtoolset-3-toolchain
package is installed and run the application as described in Section 2.2, “Using Eclipse” . Red Hat
Developer Toolset Eclipse uses the Red Hat Developer Toolset toolchain by default.

For detailed instructions on how to install the devtoolset-3-toolchain package in your system, see
Section 1.5, “ Installing Red Hat Developer Toolset” .

Important

If you are working on a project that you previously built with the Red Hat Enterprise Linux
version of the GNU Compiler Collect ion , make sure that you discard all previous build
results. To do so, open the project in Eclipse and select Project → Clean from the menu.

2.2.2. Using the Red Hat Enterprise Linux T oolchain

To use the Red Hat Developer Toolset version of Eclipse with support for the toolchain distributed
with Red Hat Enterprise Linux change the configuration of the project to use absolute paths to the
Red Hat Enterprise Linux system versions of gcc, g++ , and as.

To configure Eclipse to explicitly use the Red Hat Enterprise Linux system versions of the tools for
the current project, complete the following steps:

1. In the C/C++ perspective, choose Project → Propert ies from the main menu bar to open the
project properties.

2. In the menu on the left-hand side of the dialog box, click C/C+ + Build → Set t ings .

3. Select the Tool Settings tab.

4. If you are working on a C project:

a. select GCC C Compiler or Cross GCC Compiler and change the value of the
Command field to:

/usr/bin/gcc

User Guide

18

b. select GCC C Linker or Cross GCC Linker and change the value of the Command
field to:

/usr/bin/gcc

c. select GCC Assembler or Cross GCC Assembler and change the value of the
Command field to:

/usr/bin/as

If you are working on a C++ project:

a. select GCC C+ + Compiler or Cross G+ + Compiler and change the value of the
Command field to:

/usr/bin/g++

b. select GCC C Compiler or Cross GCC Compiler and change the value of the
Command field to:

/usr/bin/gcc

c. select GCC C+ + Linker or Cross G+ + Linker and change the value of the
Command field to:

/usr/bin/g++

d. select GCC Assembler or Cross GCC Assembler and change the value of the
Command field to:

/usr/bin/as

5. Click the OK button to save the configuration changes.

2.3. Addit ional Resources

A detailed description of Eclipse and all its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

Eclipse includes a built-in Help system, which provides extensive documentation for each
integrated feature and tool. This greatly decreases the initial time investment required for new
developers to become fluent in its use. The use of this Help section is detailed in the Red Hat
Enterprise Linux Developer Guide linked below.

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on Eclipse ,
including a description of the user interface, overview of available development toolkits, or
instructions on how to use it to build RPM packages.

⁠Chapt er 2 . Eclipse

19

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html

See Also

Section A.1, “Changes in Eclipse” provides a comprehensive list of features and improvements
over the Eclipse development environment included in Red Hat Enterprise Linux 6 and the
previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 3, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran on the command line.

User Guide

20

⁠Part III. Development Tools

⁠Part III. Development T ools

21

Chapter 3. GNU Compiler Collection (GCC)

The GNU Compiler Collect ion , commonly abbreviated GCC , is a portable compiler suite with
support for a wide selection of programming languages.

Red Hat Developer Toolset is distributed with GCC 4 .9 .2 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

3.1. GNU C Compiler

3.1.1. Installing the C Compiler

In Red Hat Developer Toolset, the GNU C compiler is provided by the devtoolset-3-gcc package and is
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

3.1.2. Using the C Compiler

To compile a C program on the command line, run the gcc compiler as follows:

scl enable devtoolset-3 'gcc -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

scl enable devtoolset-3 'gcc -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-3 'gcc -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gcc as default:

scl enable devtoolset-3 'bash'

User Guide

22

Note

To verify the version of gcc you are using at any point, type the following at a shell prompt:

which gcc

Red Hat Developer Toolset's gcc executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset gcc:

gcc -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Note

The Red Hat Developer Toolset 3.1 version of GCC adds support for Cilk+, an extension to the
C and C++ languages for parallel programming, which can be enabled using the -
fcilkplus option. A new runtime library, libcilkrts, is included in this release to support
Cilk+. The libcilkrts library will be a part of the gcc-libraries package in the future Red Hat
Enterprise Linux releases, but the package is not included in all supported Red Hat
Enterprise Linux releases. To enable dynamic linkage of binaries and libraries built with
Red Hat Developer Toolset 3.1 GCC using Cilk+ features on supported Red Hat
Enterprise Linux releases that do not contain libcilkrts, install the libcilkrts.so
shared library from Red Hat Developer Toolset 3.1 with such binaries or libraries.

Example 3.1. Compiling a C Program on the Command Line

Consider a source file named hello.c with the following contents:

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

To compile this source code on the command line by using the gcc compiler from Red Hat
Developer Toolset, type:

⁠Chapt er 3. GNU Compiler Collect ion (GCC)

23

~]$ scl enable devtoolset-3 'gcc -o hello hello.c'

This creates a new binary file called hello in the current working directory.

3.1.3. Running a C Program

When gcc compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 3.2. Running a C Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 3.1,
“Compiling a C Program on the Command Line” , you can run it by typing the following at a shell
prompt:

~]$./hello
Hello, World!

3.2. GNU C++ Compiler

3.2.1. Installing the C++ Compiler

In Red Hat Developer Toolset, the GNU C++ compiler is provided by the devtoolset-3-gcc-c++ package
and is automatically installed with the devtoolset-3-toolchain package as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

3.2.2. Using the C++ Compiler

To compile a C++ program on the command line, run the g++ compiler as follows:

scl enable devtoolset-3 'g++ -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the g++ compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

scl enable devtoolset-3 'g++ -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the g++ compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-3 'g++ -o output_file object_file...'

User Guide

24

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset g++ as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of g++ you are using at any point, type the following at a shell prompt:

which g++

Red Hat Developer Toolset's g++ executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset g++ :

g++ -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Example 3.3. Compiling a C+ + Program on the Command Line

Consider a source file named hello.cpp with the following contents:

#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

To compile this source code on the command line by using the g++ compiler from Red Hat
Developer Toolset, type:

~]$ scl enable devtoolset-3 'g++ -o hello hello.cpp'

This creates a new binary file called hello in the current working directory.

⁠Chapt er 3. GNU Compiler Collect ion (GCC)

25

3.2.3. Running a C++ Program

When g++ compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 3.4 . Running a C+ + Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 3.3,
“Compiling a C++ Program on the Command Line” , you can run it by typing the following at a
shell prompt:

~]$./hello
Hello, World!

3.2.4 . C++ Compat ibilit y

Objects compiled with Red Hat Developer Toolset 2 and Red Hat Developer Toolset 3 in C++98 mode
(the default mode) are compatible with each other, and with objects compiled with the Red Hat
Enterprise Linux system compilers in C++98 mode. Objects compiled in C++11 mode (that is, with -
std=c++11) are compatible with all of the above C++98 objects, but are not guaranteed to be
compatible with C++11 objects compiled with a different major version of the compiler. That is, if some
C++11 objects previously compiled with Red Hat Developer Toolset 2 are rebuilt with Red Hat
Developer Toolset 3, all C++11 objects should be rebuilt. For the same reasons, C++11 objects built
with this release of Red Hat Developer Toolset may need to be rebuilt to be compatible with objects
built by future releases of Red Hat Developer Toolset or Red Hat Enterprise Linux.

User Guide

26

Figure 3.1. C+ + Compat ib ility Matrix

3.3. GNU Fort ran Compiler

3.3.1. Installing the Fort ran Compiler

In Red Hat Developer Toolset, the GNU Fortran compiler is provided by the devtoolset-3-gcc-gfortran
package and is automatically installed with devtoolset-3-toolchain as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

3.3.2. Using the Fort ran Compiler

To compile a Fortran program on the command line, run the gfortran compiler as follows:

scl enable devtoolset-3 'gfortran -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire
project. To compile an object file on the command line, run the following command:

⁠Chapt er 3. GNU Compiler Collect ion (GCC)

27

scl enable devtoolset-3 'gfortran -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file, run:

scl enable devtoolset-3 'gfortran -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gfortran as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of gfortran you are using at any point, type the following at a shell
prompt:

which gfortran

Red Hat Developer Toolset's gfortran executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset gfortran:

gfortran -v

Important

Some newer library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This
adds a small additional security risk as normal Red Hat Enterprise Linux errata would not
change this code. If the need for developers to rebuild their applications due to such an issue
arises, Red Hat will signal this via a security erratum. Developers are strongly advised not to
statically link their entire application for the same reasons.

Example 3.5. Compiling a Fort ran Program on the Command Line

Consider a source file named hello.f with the following contents:

program hello
 print *, "Hello, World!"
end program hello

To compile this source code on the command line by using the gfortran compiler from Red Hat
Developer Toolset, type:

User Guide

28

~]$ scl enable devtoolset-3 'gfortran -o hello hello.f'

This creates a new binary file called hello in the current working directory.

3.3.3. Running a Fort ran Program

When gfortran compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and type:

./file_name

Example 3.6 . Running a Fort ran Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 3.5,
“Compiling a Fortran Program on the Command Line” , you can run it by typing the following at a
shell prompt:

~]$./hello
 Hello, World!

3.4 . Addit ional Resources

A detailed description of the GNU Compiler Collections and its features is beyond the scope of this
book. For more information, see the resources listed below.

Installed Documentat ion

gcc(1) — The manual page for the gcc compiler provides detailed information on its usage; with
few exceptions, g++ accepts the same command line options as gcc. To display the manual
page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man gcc'

gfort ran (1) — The manual page for the gfortran compiler provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man gfortran'

C++ Standard Library Documentation — Documentation on the C++ standard library can be
optionally installed by typing the following at a shell prompt as root:

yum install devtoolset-3-libstdc++-docs

Once installed, HTML documentation is available at /opt/rh/devtoolset-
3/root/usr/share/doc/devtoolset-3-libstdc++-docs-4.9.1/html/index.html .

Online Documentat ion

⁠Chapt er 3. GNU Compiler Collect ion (GCC)

29

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide in-depth information about
GCC .

Using the GNU Compiler Collection — The official GCC manual provides an in-depth description
of the GNU compilers and their usage.

The GNU C++ Library — The GNU C++ library documentation provides detailed information about
the GNU implementation of the standard C++ library.

The GNU Fortran Compiler — The GNU Fortran compiler documentation provides detailed
information on gfortran's usage.

See Also

Section A.2, “Changes in GCC” provides a list of improvements over the Red Hat
Enterprise Linux 7.1 version of the GNU Compiler Collect ion and the version distributed in the
previous release of Red Hat Developer Toolset.

Section B.2, “Changes in GCC” provides a comprehensive list of features and improvements over
the Red Hat Enterprise Linux 7.0 and 6.6 versions of the GNU Compiler Collect ion and the
version distributed in the 2.1 release of Red Hat Developer Toolset, as well as information about
the language, ABI, and debugging compatibility.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, Eclipse provides a general introduction to the Eclipse development environment, and
describes how to use it with the tools from Red Hat Developer Toolset.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz explains how to use dwz to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

User Guide

30

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://gcc.gnu.org/onlinedocs/gcc-4.9.1/gcc/
http://gcc.gnu.org/onlinedocs/gcc-4.9.1/libstdc++/manual/
http://gcc.gnu.org/onlinedocs/gcc-4.9.1/gfortran/

Chapter 4. binutils

binut ils is a collection of various binary tools, such as the GNU linker, GNU assembler, and
other utilities that allow you to inspect and manipulate object files and binaries. See Table 4.1, “Tools
Included in binutils for Red Hat Developer Toolset” for a complete list of binary tools that are
distributed with the Red Hat Developer Toolset version of binut ils .

Red Hat Developer Toolset is distributed with binut ils 2.24 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides bug fixes and enhancements, including
support for the AVX-512 (512-bit Advanced Vector Extensions).

Table 4 .1. Tools Included in b inut ils for Red Hat Developer Toolset

Name Descript ion
addr2line Translates addresses into file names and line numbers.
ar Creates, modifies, and extracts files from archives.
as The GNU assembler.
c++filt Decodes mangled C++ symbols.
dwp Combines DWARF object files into a single DWARF package file.
elfedit Examines and edits ELF files.
gprof Display profiling information.
ld The GNU linker.
ld.bfd An alternative to the GNU linker.
ld.gold Another alternative to the GNU linker.
nm Lists symbols from object files.
objcopy Copies and translates object files.
objdump Displays information from object files.
ranlib Generates an index to the contents of an archive to make access to this

archive faster.
readelf Displays information about ELF files.
size Lists section sizes of object or archive files.
strings Displays printable character sequences in files.
strip Discards all symbols from object files.

4.1. Installing binut ils

In Red Hat Developer Toolset, binut ils are provided by the devtoolset-3-binutils package and are
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

4.2. Using the GNU Assembler

To produce an object file from an assembly language program, run the as tool as follows:

scl enable devtoolset-3 'as [option...] -o object_file source_file'

This creates an object file named object_file in the current working directory.

⁠Chapt er 4 . binut ils

31

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset as as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of as you are using at any point, type the following at a shell prompt:

which as

Red Hat Developer Toolset's as executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset as:

as -v

4.3. Using the GNU Linker

To create an executable binary file or a library from object files, run the ld tool as follows:

scl enable devtoolset-3 'ld [option...] -o output_file object_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset ld as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of ld you are using at any point, type the following at a shell prompt:

which ld

Red Hat Developer Toolset's ld executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset ld :

ld -v

User Guide

32

4.4 . Using Other Binary Tools

The binut ils provide many binary tools other than a linker and an assembler. For a complete list of
these tools, see Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” .

To execute any of the tools that are a part of binutils, run the command as follows:

scl enable devtoolset-3 'tool [option...] file_name'

See Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” for a list of tools that are
distributed with binut ils . For example, to use the objdump tool to inspect an object file, type:

scl enable devtoolset-3 'objdump [option...] object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of binut ils you are using at any point, type the following at a shell
prompt:

which objdump

Red Hat Developer Toolset's objdump executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset objdump:

objdump -v

4.5. Addit ional Resources

A detailed description of binut ils is beyond the scope of this book. For more information, see the
resources listed below.

Installed Documentat ion

as(1), ld(1), addr2line(1), ar(1), c++filt(1), dwp(1), elfedit(1), gprof(1), nm(1), objcopy(1),
objdump(1), ranlib(1), readelf(1), size(1), strings(1), strip(1), — Manual pages for various
binut ils tools provide more information about their respective usage. To display a manual page
for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man tool'

⁠Chapt er 4 . binut ils

33

Online Documentat ion

Documentation for binutils — The binut ils documentation provides an in-depth description of
the binary tools and their usage.

See Also

Section B.3, “Changes in binutils” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux 6.6 and 7.0 versions of binut ils and the version distributed in
the 2.1 release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

Chapter 3, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

User Guide

34

http://sourceware.org/binutils/docs-2.24/

Chapter 5. elfutils

elfut ils is a collection of various binary tools, such as eu-objdump, eu-readelf, and other
utilities that allow you to inspect and manipulate ELF files. See Table 5.1, “Tools Included in elfutils
for Red Hat Developer Toolset” for a complete list of binary tools that are distributed with the Red Hat
Developer Toolset version of elfut ils .

Red Hat Developer Toolset is distributed with elfut ils 0.16 1 . This version is more recent than the
version included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset,
and provides numerous bug fixes and enhancements.

Table 5.1. Tools Included in elfu t ils for Red Hat Developer Toolset

Name Descript ion
eu-addr2line Translates addresses into file names and line numbers.
eu-ar Creates, modifies, and extracts files from archives.
eu-elfcmp Compares relevant parts of two ELF files for equality.
eu-elflint Verifies that ELF files are compliant with the generic ABI (gABI) and

processor-specific supplement ABI (psABI) specification.
eu-findtextrel Locates the source of text relocations in files.
eu-make-debug-
archive

Creates an offline archive for debugging.

eu-nm Lists symbols from object files.
eu-objdump Displays information from object files.
eu-ranlib Generates an index to the contents of an archive to make access to this

archive faster.
eu-readelf Displays information about ELF files.
eu-size Lists section sizes of object or archive files.
eu-stack A new utility for unwinding processes and cores.
eu-strings Displays printable character sequences in files.
eu-strip Discards all symbols from object files.
eu-unstrip Combines stripped files with separate symbols and debug information.

5.1. Installing elfut ils

In Red Hat Developer Toolset, elfut ils is provided by the devtoolset-3-elfutils package and is
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

5.2. Using elfut ils

To execute any of the tools that are part of elfut ils , run the command as follows:

scl enable devtoolset-3 'tool [option...] file_name'

See Table 5.1, “Tools Included in elfutils for Red Hat Developer Toolset” for a list of tools that are
distributed with elfut ils . For example, to use the eu-objdump tool to inspect an object file, type:

scl enable devtoolset-3 'eu-objdump [option...] object_file'

⁠Chapt er 5. elfut ils

35

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of elfut ils you are using at any point, type the following at a shell
prompt:

which eu-objdump

Red Hat Developer Toolset's eu-objdump executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset eu-objdump:

eu-objdump -V

5.3. Addit ional Resources

A detailed description of elfut ils is beyond the scope of this book. For more information, see the
resources listed below.

See Also

Section A.3, “Changes in elfutils” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux system version of elfut ils and the version distributed in the
previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 3, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 6, dwz explains how to use dwz to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size.

User Guide

36

Chapter 6. dwz

dwz is a command line tool that attempts to optimize DWARF debugging information contained in
ELF shared libraries and ELF executables for size. To do so, dwz replaces DWARF information
representation with equivalent smaller representation where possible and reduces the amount of
duplication by using techniques from Appendix E of the DWARF Standard.

Red Hat Developer Toolset is distributed with dwz 0.11 .

6.1. Installing dwz

In Red Hat Developer Toolset, the dwz utility is provided by the devtoolset-3-dwz package and is
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

6.2. Using dwz

To optimize DWARF debugging information in a binary file, run the dwz tool as follows:

scl enable devtoolset-3 'dwz [option...] file_name'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset dwz as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of dwz you are using at any point, type the following at a shell prompt:

which dwz

Red Hat Developer Toolset's dwz executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset dwz:

dwz -v

6.3. Addit ional Resources

A detailed description of dwz and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentat ion

⁠Chapt er 6 . dwz

37

http://www.dwarfstd.org/doc/DWARF4.pdf

dwz(1) — The manual page for the dwz utility provides detailed information on its usage. To
display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man dwz'

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 3, GNU Compiler Collection (GCC) provides information on how to compile programs
written in C, C++, and Fortran.

Chapter 4, binutils explains how to use the binut ils , a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils explains how to use elfut ils , a collection of binary tools to inspect and
manipulate ELF files.

User Guide

38

⁠Part IV. Debugging Tools

⁠Part IV. Debugging T ools

39

Chapter 7. GNU Debugger (GDB)

The GNU Debugger, commonly abbreviated as GDB , is a command line tool that can be used to
debug programs written in various programming languages. It allows you to inspect memory within
the code being debugged, control the execution state of the code, detect the execution of particular
sections of code, and much more.

Red Hat Developer Toolset is distributed with GDB 7.8.2 . This version is more recent than the
version included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset,
and provides some enhancements and numerous bug fixes.

7.1. Installing the GNU Debugger

In Red Hat Developer Toolset, the GNU Debugger is provided by the devtoolset-3-gdb package and
is automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

7.2. Preparing a Program for Debugging

Compiling Programs with Debugging Informat ion

To compile a C program with debugging information that can be read by the GNU Debugger, make
sure the gcc compiler is run with the -g option. To do so on the command line, use a command in
the following form:

scl enable devtoolset-3 'gcc -g -o output_file input_file...'

Similarly, to compile a C++ program with debugging information, run:

scl enable devtoolset-3 'g++ -g -o output_file input_file...'

Example 7.1. Compiling a C Program With Debugging In format ion

Consider a source file named fibonacci.c that has the following contents:

#include <stdio.h>
#include <limits.h>

int main (int argc, char *argv[]) {
 unsigned long int a = 0;
 unsigned long int b = 1;
 unsigned long int sum;

 while (b < LONG_MAX) {
 printf("%ld ", b);
 sum = a + b;
 a = b;
 b = sum;

User Guide

4 0

 }

 return 0;
}

To compile this program on the command line using GCC from Red Hat Developer Toolset with
debugging information for the GNU Debugger, type:

~]$ scl enable devtoolset-3 'gcc -g -o fibonacci fibonacci.c'

This creates a new binary file called fibonacci in the current working directory.

Installing Debugging Informat ion for Exist ing Packages

To install debugging information for a package that is already installed on the system, type the
following at a shell prompt as root:

debuginfo-install package_name

Note that the yum-utils package must be installed for the debuginfo-install utility to be available
on your system.

Example 7.2. Installing Debugging In format ion for the g libc Package

To install debugging information for the glibc package, type:

~]# debuginfo-install glibc
Loaded plugins: product-id, refresh-packagekit, subscription-manager
--> Running transaction check
---> Package glibc-debuginfo.x86_64 0:2.12-1.47.el6_2.5 will be
installed
...

7.3. Running the GNU Debugger

To run the GNU Debugger on a program you want to debug, type the following at a shell prompt:

scl enable devtoolset-3 'gdb file_name'

This starts the gdb debugger in interactive mode and displays the default prompt, (gdb). To quit the
debugging session and return to the shell prompt, run the following command at any time:

quit

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset gdb as default:

scl enable devtoolset-3 'bash'

⁠Chapt er 7 . GNU Debugger (GDB)

4 1

Note

To verify the version of gdb you are using at any point, type the following at a shell prompt:

which gdb

Red Hat Developer Toolset's gdb executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset gdb:

gdb -v

Example 7.3. Running the gdb Ut ility on the f ibonacci Binary File

Assuming that you have successfully compiled the fibonacci binary file as shown in
Example 7.1, “Compiling a C Program With Debugging Information” , you can start debugging it
with gdb by typing the following at a shell prompt:

~]$ scl enable devtoolset-3 'gdb fibonacci'
GNU gdb (GDB) Red Hat Enterprise Linux (7.4.50.20120120-43.el6)
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
(gdb)

7.4 . List ing Source Code

To view the source code of the program you are debugging, run the following command:

list

Before you start the execution of the program you are debugging, gdb displays the first ten lines of
the source code, and any subsequent use of this command lists another ten lines. Once you start the
execution, gdb displays the lines that are surrounding the line on which the execution stops,
typically when you set a breakpoint.

You can also display the code that is surrounding a particular line. To do so, run the command in
the following form:

list [file_name:]line_number

User Guide

4 2

Similarly, to display the code that is surrounding the beginning of a particular function, run:

list [file_name:]function_name

Note that you can change the number of lines the list command displays by running the following
command:

set listsize number

Example 7.4 . List ing the Source Code of the f ibonacci Binary File

The fibonacci.c file listed in Example 7.1, “Compiling a C Program With Debugging
Information” has exactly 17 lines. Assuming that you have compiled it with debugging information
and you want the gdb utility to be capable of listing the entire source code, you can run the
following command to change the number of listed lines to 20:

(gdb) set listsize 20

You can now display the entire source code of the file you are debugging by running the list
command with no additional arguments:

(gdb) list
1 #include <stdio.h>
2 #include <limits.h>
3
4 int main (int argc, char *argv[]) {
5 unsigned long int a = 0;
6 unsigned long int b = 1;
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
10 printf("%ld ", b);
11 sum = a + b;
12 a = b;
13 b = sum;
14 }
15
16 return 0;
17 }

7.5. Set t ing Breakpoints

Set t ing a New Breakpoint

To set a new breakpoint at a certain line, run the following command:

break [file_name:]line_number

You can also set a breakpoint on a certain function:

⁠Chapt er 7 . GNU Debugger (GDB)

4 3

break [file_name:]function_name

Example 7.5. Set t ing a New Breakpoint

Assuming that you have compiled the fibonacci.c file listed in Example 7.1, “Compiling a C
Program With Debugging Information” with debugging information, you can set a new breakpoint
at line 10 by running the following command:

(gdb) break 10
Breakpoint 1 at 0x4004e5: file fibonacci.c, line 10.

List ing Breakpoints

To display a list of currently set breakpoints, run the following command:

info breakpoints

Example 7.6 . List ing Breakpoints

Assuming that you have followed the instructions in Example 7.5, “Setting a New Breakpoint” , you
can display the list of currently set breakpoints by running the following command:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004004e5 in main at
fibonacci.c:10

Delet ing Exist ing Breakpoints

To delete a breakpoint that is set at a certain line, run the following command:

clear line_number

Similarly, to delete a breakpoint that is set on a certain function, run:

clear function_name

Example 7.7. Delet ing an Exist ing Breakpoint

Assuming that you have compiled the fibonacci.c file listed in Example 7.1, “Compiling a C
Program With Debugging Information” with debugging information, you can set a new breakpoint
at line 7 by running the following command:

(gdb) break 7
Breakpoint 2 at 0x4004e3: file fibonacci.c, line 7.

To remove this breakpoint, type:

User Guide

4 4

(gdb) clear 7
Deleted breakpoint 2

7.6. Start ing Execut ion

To start an execution of the program you are debugging, run the following command:

run

If the program accepts any command line arguments, you can provide them as arguments to the run
command:

run argument…

The execution stops when the first breakpoint (if any) is reached, when an error occurs, or when the
program terminates.

Example 7.8. Execut ing the f ibonacci Binary File

Assuming that you have followed the instructions in Example 7.5, “Setting a New Breakpoint” , you
can execute the fibonacci binary file by running the following command:

(gdb) run
Starting program: /home/john/fibonacci

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

7.7. Displaying Current Values

The gdb utility allows you to display the value of almost anything that is relevant to the program,
from a variable of any complexity to a valid expression or even a library function. However, the most
common task is to display the value of a variable.

To display the current value of a certain variable, run the following command:

print variable_name

Example 7.9 . Displaying the Current Values of Variables

Assuming that you have followed the instructions in Example 7.8, “Executing the fibonacci Binary
File” and the execution of the fibonacci binary stopped after reaching the breakpoint at line 10,
you can display the current values of variables a and b as follows:

(gdb) print a
$1 = 0
(gdb) print b
$2 = 1

⁠Chapt er 7 . GNU Debugger (GDB)

4 5

7.8. Cont inuing Execut ion

To resume the execution of the program you are debugging after it reached a breakpoint, run the
following command:

continue

The execution stops again when another breakpoint is reached. To skip a certain number of
breakpoints (typically when you are debugging a loop), you can run the continue command in the
following form:

continue number

The gdb utility also allows you to stop the execution after executing a single line of code. To do so,
run:

step

Finally, you can execute a certain number of lines by using the step command in the following form:

step number

Example 7.10. Cont inuing the Execut ion of the f ibonacci Binary File

Assuming that you have followed the instructions in Example 7.8, “Executing the fibonacci Binary
File” , and the execution of the fibonacci binary stopped after reaching the breakpoint at line 10,
you can resume the execution by running the following command:

(gdb) continue
Continuing.

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

The execution stops the next time the breakpoint is reached. To execute the next three lines of
code, type:

(gdb) step 3
13 b = sum;

This allows you to verify the current value of the sum variable before it is assigned to b:

(gdb) print sum
$3 = 2

7.9. Addit ional Resources

User Guide

4 6

A detailed description of the GNU Debugger and all its features is beyond the scope of this book.
For more information, see the resources listed below.

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the GNU
Debugger and debugging.

GDB Documentation — The official GDB documentation includes the GDB User Manual and other
reference material.

See Also

Section A.4, “Changes in GDB” provides a comprehensive list of features and improvements over
the Red Hat Enterprise Linux system version of the GNU Debugger and the version distributed in
the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, Eclipse provides a general introduction to the Eclipse development environment, and
describes how to use it with the tools from Red Hat Developer Toolset.

Chapter 3, GNU Compiler Collection (GCC) provides further information on how to compile
programs written in C, C++, and Fortran.

Chapter 8, strace documents how to use the st race utility to monitor system calls that a program
uses and signals it receives.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

⁠Chapt er 7 . GNU Debugger (GDB)

4 7

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://www.gnu.org/software/gdb/documentation/

Chapter 8. strace

st race is a diagnostic and debugging tool for the command line that can be used to trace system
calls that are made and received by a running process. It records the name of each system call, its
arguments, and its return value, as well as signals received by the process and other interactions
with the kernel, and prints this record to standard error output or a selected file.

Red Hat Developer Toolset is distributed with st race 4 .8 .

8.1. Installing st race

In Red Hat Enterprise Linux, the strace utility is provided by the devtoolset-3-strace package and is
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

8.2. Using st race

To run the strace utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-3 'strace program [argument...]'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility
on an already running process by using the -p command line option followed by the process ID:

scl enable devtoolset-3 'strace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset strace as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of strace you are using at any point, type the following at a shell prompt:

which strace

Red Hat Developer Toolset's strace executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset strace:

strace -V

8.2.1. Redirect ing Output to a File

By default, strace prints the name of each system call, its arguments and the return value to

User Guide

4 8

standard error output. To redirect this output to a file, use the -o command line option followed by
the file name:

scl enable devtoolset-3 'strace -o file_name program [argument...]'

Replace file_name with the name of the file.

Example 8.1. Redirect ing Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information” . This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. To run the strace
utility on this file and redirect the trace output to fibonacci.log , type:

~]$ scl enable devtoolset-3 'strace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

8.2.2. T racing Selected System Calls

To trace only a selected set of system calls, run the strace utility with the -e command line option:

scl enable devtoolset-3 'strace -e expression program [argument...]'

Replace expression with a comma-separated list of system calls to trace or any of the keywords listed
in Table 8.1, “Commonly Used Values of the -e Option” . For a detailed description of all available
values, see the strace(1) manual page.

Table 8.1. Commonly Used Values of the -e Opt ion

Value Descript ion
file System calls that accept a file name as an argument.
process System calls that are related to process management.
network System calls that are related to networking.
signal System calls that are related to signal management.
ipc System calls that are related to inter-process communication (IPC).
desc System calls that are related to file descriptors.

Example 8.2. Tracing Selected System Calls

Consider the employee file from Example 10.1, “Using memstomp” . To run the strace utility on
this executable file and trace only the mmap and munmap system calls, type:

~]$ scl enable devtoolset-3 'strace -e mmap,munmap ./employee'
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c744000
mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f896c735000
mmap(0x3146a00000, 3745960, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x3146a00000
mmap(0x3146d89000, 20480, PROT_READ|PROT_WRITE,

⁠Chapt er 8 . st race

4 9

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x189000) = 0x3146d89000
mmap(0x3146d8e000, 18600, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x3146d8e000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c734000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c733000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c732000
munmap(0x7f896c735000, 61239) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x7f896c743000
John,john@example.comDoe,
+++ exited with 0 +++

8.2.3. Displaying T ime Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
strace utility with the -t command line option:

scl enable devtoolset-3 'strace -t program [argument...]'

To also display milliseconds, supply the -t option twice:

scl enable devtoolset-3 'strace -tt program [argument...]'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

scl enable devtoolset-3 'strace -r program [argument...]'

Example 8.3. Displaying T ime Stamps

Consider an executable file named pwd . To run the strace utility on this file and include time
stamps in the output, type:

~]$ scl enable devtoolset-3 'strace -tt pwd'
19:43:28.011815 execve("./pwd", ["./pwd"], [/* 36 vars */]) = 0
19:43:28.012128 brk(0) = 0xcd3000
19:43:28.012174 mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fc869cb0000
19:43:28.012427 open("/etc/ld.so.cache", O_RDONLY) = 3
19:43:28.012446 fstat(3, {st_mode=S_IFREG|0644, st_size=61239, ...}) =
0
19:43:28.012464 mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) =
0x7fc869ca1000
19:43:28.012483 close(3) = 0
...
19:43:28.013410 +++ exited with 0 +++

User Guide

50

8.2.4 . Displaying a Summary

To display a summary of how much time was required to execute each system call, how many times
were these system calls executed, and how many errors were encountered during their execution, run
the strace utility with the -c command line option:

scl enable devtoolset-3 'strace -c program [argument...]'

Example 8.4 . Displaying a Summary

Consider an executable file named lsblk. To run the strace utility on this file and display a
trace summary, type:

~]$ scl enable devtoolset-3 'strace -c lsblk > /dev/null'
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 80.88 0.000055 1 106 16 open
 19.12 0.000013 0 140 munmap
 0.00 0.000000 0 148 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 258 close
 0.00 0.000000 0 37 2 stat
...
------ ----------- ----------- --------- --------- ----------------
100.00 0.000068 1790 35 total

8.3. Addit ional Resources

A detailed description of st race and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

strace(1) — The manual page for the strace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man strace'

See Also

Section B.6, “Changes in strace” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux 6.6 version of st race and the version distributed in the 2.1
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 9, ltrace provides information on how to trace program library calls using the lt race tool.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

⁠Chapt er 8 . st race

51

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

User Guide

52

Chapter 9. ltrace

lt race is a diagnostic and debugging tool for the command line that can be used to display calls
that are made to shared libraries. It uses the dynamic library hooking mechanism, which prevents it
from tracing calls to statically linked libraries. lt race also displays return values of the library calls.
The output is printed to standard error output or to a selected file.

Red Hat Developer Toolset is distributed with lt race 0.7.9 1 .

9.1. Installing lt race

In Red Hat Enterprise Linux, the ltrace utility is provided by the devtoolset-3-ltrace package and is
automatically installed with devtoolset-3-toolchain as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

9.2. Using lt race

To run the ltrace utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-3 'ltrace program [argument...]'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility
on an already running process by using the -p command line option followed by the process ID:

scl enable devtoolset-3 'ltrace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset ltrace as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of ltrace you are using at any point, type the following at a shell
prompt:

which ltrace

Red Hat Developer Toolset's ltrace executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red Hat
Developer Toolset ltrace:

ltrace -V

9.2.1. Redirect ing Output to a File

⁠Chapt er 9 . lt race

53

By default, ltrace prints the name of each system call, its arguments and the return value to
standard error output. To redirect this output to a file, use the -o command line option followed by
the file name:

scl enable devtoolset-3 'ltrace -o file_name program [argument...]'

Replace file_name with the name of the file.

Example 9 .1. Redirect ing Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information” . This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. To run the ltrace
utility on this file and redirect the trace output to fibonacci.log , type:

~]$ scl enable devtoolset-3 'ltrace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

9.2.2. T racing Selected Library Calls

To trace only a selected set of library calls, run the ltrace utility with the -e command line option:

scl enable devtoolset-3 'ltrace -e expression program [argument...]'

Replace expression with a chain of rules to specify the library calls to trace. The rules can consist of
patterns that identify symbol names (such as malloc or free) and patterns that identify library
SONAMEs (such as libc.so). For example, to trace call to the malloc and free function but to
omit those that are done by the libc library, use:

scl enable devtoolset-3 'ltrace -e malloc+free-@libc.so* program'

Example 9 .2. Tracing Selected Library Calls

Consider the ls command. To run the ltrace utility on this program and trace only the opendir,
readdir, and closedir function calls, type:

~]$ scl enable devtoolset-3 'ltrace -e opendir+readdir+closedir ls'
ls->opendir(".") = { 3 }
ls->readdir({ 3 }) = { 61533, "." }
ls->readdir({ 3 }) = { 131, ".." }
ls->readdir({ 3 }) = { 67185100, "BUILDROOT" }
ls->readdir({ 3 }) = { 202390772, "SOURCES" }
ls->readdir({ 3 }) = { 60249, "SPECS" }
ls->readdir({ 3 }) = { 67130110, "BUILD" }
ls->readdir({ 3 }) = { 136599168, "RPMS" }
ls->readdir({ 3 }) = { 202383274, "SRPMS" }

User Guide

54

ls->readdir({ 3 }) = nil
ls->closedir({ 3 }) = 0
BUILD BUILDROOT RPMS SOURCES SPECS SRPMS
+++ exited (status 0) +++

For a detailed description of available filter expressions, see the ltrace(1) manual page.

9.2.3. Displaying T ime Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
ltrace utility with the -t command line option:

scl enable devtoolset-3 'ltrace -t program [argument...]'

To also display milliseconds, supply the -t option twice:

scl enable devtoolset-3 'ltrace -tt program [argument...]'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

scl enable devtoolset-3 'ltrace -r program [argument...]'

Example 9 .3. Displaying T ime Stamps

Consider the pwd command. To run the ltrace utility on this program and include time stamps in
the output, type:

~]$ scl enable devtoolset-3 'ltrace -tt pwd'
13:27:19.631371 __libc_start_main(["pwd"] <unfinished ...>
13:27:19.632240 getenv("POSIXLY_CORRECT") = nil
13:27:19.632520 strrchr("pwd", '/') = nil
13:27:19.632786 setlocale(LC_ALL, "") =
"en_US.UTF-8"
13:27:19.633220 bindtextdomain("coreutils", "/usr/share/locale") =
"/usr/share/locale"
13:27:19.633471 textdomain("coreutils") =
"coreutils"
...
13:27:19.637110 +++ exited (status 0) +++

9.2.4 . Displaying a Summary

To display a summary of how much time was required to execute each system call and how many
times were these system calls executed, run the ltrace utility with the -c command line option:

scl enable devtoolset-3 'ltrace -c program [argument...]'

Example 9 .4 . Displaying a Summary

⁠Chapt er 9 . lt race

55

Consider the lsblk command. To run the ltrace utility on this program and display a trace
summary, type:

~]$ scl enable devtoolset-3 'ltrace -c lsblk > /dev/null'
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 53.60 0.261644 261644 1 __libc_start_main
 4.48 0.021848 58 374 mbrtowc
 4.41 0.021524 57 374 wcwidth
 4.39 0.021409 57 374 __ctype_get_mb_cur_max
 4.38 0.021359 57 374 iswprint
 4.06 0.019838 74 266 readdir64
 3.21 0.015652 69 224 strlen
...
------ ----------- ----------- --------- --------------------
100.00 0.488135 3482 total

9.3. Addit ional Resources

A detailed description of lt race and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

ltrace(1) — The manual page for the ltrace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man ltrace'

Online Documentat ion

ltrace for RHEL 6 and 7 — This article on the Red Hat Developer Blog offers additional in-depth
information (including practical examples) on how to use lt race for application debugging.

See Also

Section B.7, “Changes in ltrace” provides a comprehensive list of features and improvements over
the Red Hat Enterprise Linux 6.6 version of lt race .

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 8, strace provides information on how to trace program system calls using the st race
tool.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

User Guide

56

http://developerblog.redhat.com/2014/07/10/ltrace-for-rhel-6-and-7/

Chapter 10. memstomp

memstomp is a command line tool that can be used to identify function calls with overlapping
memory regions in situations when such an overlap is not permitted by various standards. It
intercepts calls to the library functions listed in Table 10.1, “Function Calls Inspected by memstomp”
and for each memory overlap, it displays a detailed backtrace to help you debug the problem.

Similarly to Valgrind , the memstomp utility inspects applications without the need to recompile them.
However, it is much faster than this tool and therefore serves as a convenient alternative to it.

Red Hat Developer Toolset is distributed with memstomp 0.1.5 .

Table 10.1. Funct ion Calls Inspected by memstomp

Funct ion Descript ion
memcpy Copies n bytes from one memory area to another and returns a pointer to

the second memory area.
memccpy Copies a maximum of n bytes from one memory area to another and stops

when a certain character is found. It either returns a pointer to the byte
following the last written byte, or NULL if the given character is not found.

mempcpy Copies n bytes from one memory area to another and returns a pointer to
the byte following the last written byte.

strcpy Copies a string from one memory area to another and returns a pointer to
the second string.

stpcpy Copies a string from one memory area to another and returns a pointer to
the terminating null byte of the second string.

strncpy Copies a maximum of n characters from one string to another and returns
a pointer to the second string.

stpncpy Copies a maximum of n characters from one string to another. It either
returns a pointer to the terminating null byte of the second string, or if the
string is not null-terminated, a pointer to the byte following the last written
byte.

strcat Appends one string to another while overwriting the terminating null byte
of the second string and adding a new one at its end. It returns a pointer
to the new string.

strncat Appends a maximum of n characters from one string to another while
overwriting the terminating null byte of the second string and adding a
new one at its end. It returns a pointer to the new string.

wmemcpy The wide-character equivalent of the memcpy() function that copies n wide
characters from one array to another and returns a pointer to the second
array.

wmempcpy The wide-character equivalent of the mempcpy() function that copies n
wide characters from one array to another and returns a pointer to the
byte following the last written wide character.

wcscpy The wide-character equivalent of the strcpy() function that copies a
wide-character string from one array to another and returns a pointer to
the second array.

wcsncpy The wide-character equivalent of the strncpy() function that copies a
maximum of n wide characters from one array to another and returns a
pointer to the second string.

⁠Chapt er 1 0 . memst omp

57

wcscat The wide-character equivalent of the strcat() function that appends one
wide-character string to another while overwriting the terminating null
byte of the second string and adding a new one at its end. It returns a
pointer to the new string.

wcsncat The wide-character equivalent of the strncat() function that appends a
maximum of n wide characters from one array to another while overwriting
the terminating null byte of the second wide-character string and adding
a new one at its end. It returns a pointer to the new string.

Funct ion Descript ion

10.1. Installing memstomp

In Red Hat Developer Toolset, the memstomp utility is provided by the devtoolset-3-memstomp
package and is automatically installed with devtoolset-3-toolchain as described in Section 1.5,
“ Installing Red Hat Developer Toolset” .

10.2. Using memstomp

To run the memstomp utility on a program you want to analyze, type the following at a shell prompt:

scl enable devtoolset-3 'memstomp program [argument...]'

To immediately terminate the analyzed program when a problem is detected, run the utility with the --
kill (or -k for short) command line option:

scl enable devtoolset-3 'memstomp --kill program [argument...]'

The use of the --kill option is especially recommended if you are analyzing a multi-threaded
program; the internal implementation of backtraces is not thread-safe and running the memstomp
utility on a multi-threaded program without this command line option can therefore produce
unreliable results.

Additionally, if you have compiled the analyzed program with the debugging information or this
debugging information is available to you, you can use the --debug-info (or -d) command line
option to produce a more detailed backtrace:

scl enable devtoolset-3 'memstomp --debug-info program [argument...]'

For detailed instructions on how to compile your program with the debugging information built in the
binary file, see Section 7.2, “Preparing a Program for Debugging” . For information on how to install
debugging information for any of the Red Hat Developer Toolset packages, see Section 1.5.4,
“ Installing Debugging Information” .

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset memstomp as default:

scl enable devtoolset-3 'bash'

Example 10.1. Using memstomp

User Guide

58

In the current working directory, create a source file named employee.c with the following
contents:

#include <stdio.h>
#include <string.h>

#define BUFSIZE 80

int main(int argc, char *argv[]) {
 char employee[BUFSIZE] = "John,Doe,john@example.com";
 char name[BUFSIZE] = {0};
 char surname[BUFSIZE] = {0};
 char *email;
 size_t length;

 /* Extract the information: */
 memccpy(name, employee, ',', BUFSIZE);
 length = strlen(name);
 memccpy(surname, employee + length, ',', BUFSIZE);
 length += strlen(surname);
 email = employee + length;

 /* Compose the new entry: */
 strcat(employee, surname);
 strcpy(employee, name);
 strcat(employee, email);

 /* Print the result: */
 puts(employee);

 return 0;
}

Compile this program into a binary file named employee by using the following command:

~]$ scl enable devtoolset-3 'gcc -rdynamic -g -o employee
employee.c'

To identify erroneous function calls with overlapping memory regions, type:

~]$ scl enable devtoolset-3 'memstomp --debug-info ./employee'
memstomp: 0.1.4 successfully initialized for process employee (pid
14887).

strcat(dest=0x7fff13afc265, src=0x7fff13afc269, bytes=21) overlap for
employee(14887)
 ??:0 strcpy()
 ??:0 strcpy()
 ??:0 _Exit()
 ??:0 strcat()
 employee.c:26 main()
 ??:0 __libc_start_main()
 ??:0 _start()
John,john@example.comDoe,

⁠Chapt er 1 0 . memst omp

59

10.3. Addit ional Resources

A detailed description of memstomp and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

memstomp(1) — The manual page for the memstomp utility provides detailed information about its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man memstomp'

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 7, GNU Debugger (GDB) provides information on how to debug programs written in C,
C++, and Fortran.

Chapter 8, strace documents how to use the strace utility to monitor system calls that a program
uses and signals it receives.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

User Guide

60

⁠Part V. Performance Monitoring Tools

⁠Part V. Performance Monit oring T ools

61

Chapter 11. SystemTap

SystemTap is a tracing and probing tool that allows users to monitor the activities of the entire
system without needing to instrument, recompile, install, and reboot. It is programmable with a
custom scripting language, which gives it expressiveness (to trace, filter, and analyze) and reach (to
look into the running kernel and applications).

SystemTap can monitor various types of events, such as function calls within the kernel or
applications, timers, tracepoints, performance counters, and so on. Some included example scripts
produce output similar to netstat, ps, top, and iostat, others include pretty-printed function
callgraph traces or tools for working around security bugs.

Red Hat Developer Toolset is distributed with SystemTap 2.6 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides numerous bug fixes and enhancements.

Table 11.1. Tools Dist ributed with SystemTap for Red Hat Developer Toolset

Name Descript ion
stap Translates probing instructions into C code, builds a kernel module, and

loads it into a running Linux kernel.
stapdyn The Dyninst backend for SystemTap .
staprun Loads, unloads, attaches to, and detaches from kernel modules built with

the stap utility.
stapsh Serves as a remote shell for SystemTap .
stap-prep Determines and—if possible—downloads the kernel information

packages that are required to run SystemTap .
stap-merge Merges per-CPU files. This script is automatically executed when the stap

utility is executed with the -b command line option.
stap-report Gathers important information about the system for the purpose of

reporting a bug in SystemTap .
stap-server A compile server, which listens for requests from stap clients.

11.1. Installing SystemTap

In Red Hat Developer Toolset, SystemTap is provided by the devtoolset-3-systemtap package and is
automatically installed with devtoolset-3-perftools as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

Note

The Red Hat Developer Toolset version of SystemTap is available for both Red Hat
Enterprise Linux 6 and Red Hat Enterprise Linux 7, but some new features are only offered by
the Red Hat Developer Toolset version of SystemTap for Red Hat Enterprise Linux 7. See
Section A.5, “Changes in SystemTap” for details.

In order to place instrumentation into the Linux kernel, SystemTap may also require installation of
additional packages with debugging information. To determine which packages to install, run the
stap-prep utility as follows:

scl enable devtoolset-3 'stap-prep'

User Guide

62

Note that if you execute this command as the root user, the utility automatically offers the packages
for installation. For more information on how to install these packages on your system, see the
Red Hat Enterprise Linux 6 SystemTap Beginners Guide or the Red Hat Enterprise Linux 7 SystemTap
Beginners Guide.

11.2. Using SystemTap

To execute any of the tools that are part of SystemTap , type the following at a shell prompt:

scl enable devtoolset-3 'tool [option...]'

See Table 11.1, “Tools Distributed with SystemTap for Red Hat Developer Toolset” for a list of tools
that are distributed with SystemTap . For example, to run the stap tool to build an instrumentation
module, type:

scl enable devtoolset-3 'stap [option...] argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset SystemTap as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of SystemTap you are using at any point, type the following at a shell
prompt:

which stap

Red Hat Developer Toolset's stap executable path will begin with /opt. Alternatively, you can
use the following command to confirm that the version number matches that for Red Hat
Developer Toolset SystemTap :

stap -V

11.3. Addit ional Resources

A detailed description of SystemTap and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

stap(1) — The manual page for the stap command provides detailed information on its usage, as
well as references to other related manual pages. To display the manual page for the version
included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man stap'

⁠Chapt er 1 1 . Syst emT ap

63

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

staprun(8) — The manual page for the staprun command provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man staprun'

SystemTap Tapset Reference Manual — HTML documentation on the most common tapset
definitions is located at /opt/rh/devtoolset-3/root/usr/share/doc/devtoolset-3-
systemtap-client-2.5/index.html .

Online Documentat ion

Red Hat Enterprise Linux 6 SystemTap Beginners Guide and Red Hat Enterprise Linux 7
SystemTap Beginners Guide — The SystemTap Beginners Guides for Red Hat Enterprise Linux 6
and 7 provide an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference and Red Hat Enterprise Linux 7
SystemTap Tapset Reference — The SystemTap Tapset Reference for Red Hat Enterprise Linux 6
and 7 provides further details about SystemTap .

The SystemTap Documentation — The official SystemTap documentation provides further
documentation on SystemTap , as well as numerous examples of SystemTap scripts.

See Also

Section A.5, “Changes in SystemTap” provides a comprehensive list of features and
improvements over the Red Hat Enterprise Linux system version of SystemTap and the version
distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

User Guide

64

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html
http://sourceware.org/systemtap/documentation.html

Chapter 12. Valgrind

Valgrind is an instrumentation framework that ships with a number of tools for profiling
applications. It can be used to detect various memory errors and memory-management problems,
such as the use of uninitialized memory or an improper allocation and freeing of memory, or to
identify the use of improper arguments in system calls. For a complete list of profiling tools that are
distributed with the Red Hat Developer Toolset version of Valgrind , see Table 12.1, “Tools
Distributed with Valgrind for Red Hat Developer Toolset” .

Valgrind profiles an application by rewriting it and instrumenting the rewritten binary. This allows
you to profile your application without the need to recompile it, but it also makes Valgrind
significantly slower than other profilers, especially when performing extremely detailed runs. It is
therefore not suited to debugging time-specific issues, or kernel-space debugging.

Red Hat Developer Toolset is distributed with Valgrind 3.10.1 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides numerous bug fixes and enhancements.

Table 12.1. Tools Dist ributed with Valgrind for Red Hat Developer Toolset

Name Descript ion
Memcheck Detects memory management problems by intercepting system calls and

checking all read and write operations.
Cachegrind Identifies the sources of cache misses by simulating the level 1 instruction

cache (I1), level 1 data cache (D1), and unified level 2 cache (L2).
Callgrind Generates a call graph representing the function call history.
Helgrind Detects synchronization errors in multithreaded C, C++, and Fortran

programs that use POSIX threading primitives.
DRD Detects errors in multithreaded C and C++ programs that use POSIX

threading primitives or any other threading concepts that are built on top
of these POSIX threading primitives.

Massif Monitors heap and stack usage.

12.1. Installing Valgrind

In Red Hat Developer Toolset, Valgrind is provided by the devtoolset-3-valgrind package and is
automatically installed with devtoolset-3-perftools. If you intend to use Valgrind to profile parallel
programs that use the Message Passing Interface (MPI) protocol, also install the devtoolset-3-valgrind-
openmpi package by typing the following at a shell prompt as root:

yum install devtoolset-3-valgrind-openmpi

For detailed instructions on how to install Red Hat Developer Toolset and related packages to your
system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

Note

Note that if you use Valgrind in combination with the GNU Debugger, it is recommended
that you use the version of GDB that is included in Red Hat Developer Toolset to ensure that
all features are fully supported.

12.2. Using Valgrind

⁠Chapt er 1 2 . Valgrind

65

12.2. Using Valgrind

To run any of the Valgrind tools on a program you want to profile, type the following at a shell
prompt:

scl enable devtoolset-3 'valgrind [--tool=tool] program [argument...]'

See Table 12.1, “Tools Distributed with Valgrind for Red Hat Developer Toolset” for a list of tools that
are distributed with Valgrind . The argument of the --tool command line option must be specified
in lower case, and if this option is omitted, Valgrind uses Memcheck by default. For example, to run
Cachegrind on a program to identify the sources of cache misses, type:

scl enable devtoolset-3 'valgrind --tool=cachegrind program
[argument...]'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset Valgrind as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of Valgrind you are using at any point, type the following at a shell
prompt:

which valgrind

Red Hat Developer Toolset's valgrind executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset Valgrind :

valgrind --version

12.3. Addit ional Resources

A detailed description of Valgrind and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

valgrind(1) — The manual page for the valgrind utility provides detailed information on how to
use Valgrind. To display the manual page for the version included in Red Hat Developer Toolset,
type:

scl enable devtoolset-3 'man valgrind'

User Guide

66

Valgrind Documentation — HTML documentation for Valgrind is located at
/opt/rh/devtoolset-3/root/usr/share/doc/devtoolset-3-valgrind-
3.9.0/html/index.html .

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
Valgrind and its Eclipse plug-in.

Red Hat Enterprise Linux 6 Performance Tuning Guide Red Hat Enterprise Linux 7 Performance
Tuning Guide — The Performance Tuning Guides for Red Hat Enterprise Linux 6 and 7 provide
more detailed information about using Valgrind to profile applications.

See Also

Section A.6, “Changes in Valgrind” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux system version of Valgrind and the version distributed in the
previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 10, memstomp documents how to use the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

⁠Chapt er 1 2 . Valgrind

67

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html

Chapter 13. OProfile

OProf ile is a low overhead, system-wide profiler that uses the performance-monitoring hardware on
the processor to retrieve information about the kernel and executables on the system, such as when
memory is referenced, the number of level 2 cache (L2) requests, and the number of hardware
interrupts received. It consists of a configuration utility, a daemon for collecting data, and a number
of tools that can be used to transform the data into a human-readable form. For a complete list of
tools that are distributed with the Red Hat Developer Toolset version of OProf ile , see Table 13.1,
“Tools Distributed with OProfile for Red Hat Developer Toolset” .

OProf ile profiles an application without adding any instrumentation by recording the details of
every nth event. This allows it to consume fewer resources than Valgrind , but it also causes its
samples to be less precise. Unlike Valgrind , which only collects data for a single process and its
children in user-space, OProf ile is well suited to collect system-wide data on both user-space and
kernel-space processes, and requires root privileges to run.

Red Hat Developer Toolset is distributed with OProf ile 0.9 .9 . This version is more recent than the
version included in Red Hat Enterprise Linux and provides numerous bug fixes and enhancements.

Table 13.1. Tools Dist ributed with OProf ile for Red Hat Developer Toolset

Name Descript ion
oprofiled The OProf ile daemon that collects profiling data.
opcontrol Starts, stops, and configures the OProf ile daemon.
opannotate Generates an annotated source file or assembly listing from the profiling

data.
oparchive Generates a directory containing executable, debug, and sample files.
opgprof Generates a summary of a profiling session in a format compatible with

gprof.
ophelp Displays a list of available events.
opimport Converts a sample database file from a foreign binary format to the native

format.
opjitconv Converts a just-in-time (JIT) dump file to the Executable and Linkable

Format (ELF).
opreport Generates image and symbol summaries of a profiling session.
ocount A new tool for counting the number of times particular events occur

during the duration of a monitored command.

13.1. Installing OProfile

In Red Hat Developer Toolset, OProf ile is provided by the devtoolset-3-oprofile package and is
automatically installed with devtoolset-3-perftools as described in Section 1.5, “ Installing Red Hat
Developer Toolset” .

13.2. Using OProfile

To run any of the tools that are distributed with OProf ile , type the following at a shell prompt as
root:

scl enable devtoolset-3 'tool [option...]'

See Table 13.1, “Tools Distributed with OProfile for Red Hat Developer Toolset” for a list of tools that

User Guide

68

are distributed with OProf ile . For example, to use the ophelp command to list available events in
the XML format, type:

scl enable devtoolset-3 'ophelp -X'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent.
This allows you to run a shell session with Red Hat Developer Toolset OProf ile as default:

scl enable devtoolset-3 'bash'

Note

To verify the version of OProf ile you are using at any point, type the following at a shell
prompt:

which opcontrol

Red Hat Developer Toolset's opcontrol executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset OProf ile :

opcontrol --version

13.3. Addit ional Resources

A detailed description of OProf ile and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

oprofile(1) — The manual page named oprof ile provides an overview of OProf ile and available
tools. To display the manual page for the version included in Red Hat Developer Toolset, type:

scl enable devtoolset-3 'man oprofile'

opannotate(1), oparchive(1), opcontrol(1), opgprof(1), ophelp(1), opimport(1), opreport(1) —
Manual pages for various tools distributed with OProf ile provide more information on their
respective usage. To display the manual page for the version included in Red Hat
Developer Toolset, type:

scl enable devtoolset-3 'man tool'

Online Documentat ion

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on OProf ile .

⁠Chapt er 1 3. OProfile

69

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 describes in detail how to install, configure, and start using OProfile on this
system.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

See Also

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 14, Dyninst documents how to use the Dyninst library to instrument a user-space
executable.

User Guide

70

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Chapter 14. Dyninst

The Dyninst library provides an application programming interface (API) for instrumenting and working
with user-space executables during their execution. It can be used to insert code into a running
program, change certain subroutine calls, or even remove them from the program. It serves as a
valuable debugging and performance-monitoring tool. The Dyninst API is also commonly used
along with SystemTap to allow non-root users to instrument user-space executables.

Red Hat Developer Toolset is distributed with Dyninst 8.2.1 .

14.1. Installing Dyninst

In Red Hat Developer Toolset, the Dyninst library is provided by the devtoolset-3-dyninst package and
is automatically installed with devtoolset-3-perftools as described in Section 1.5, “ Installing Red Hat
Developer Toolset” . In addition, it is recommended that you also install the GNU Compiler
Collect ion provided by the devtoolset-3-toolchain package.

If you intend to write a custom instrumentation for binaries, install the relevant header files by running
the following command as root:

yum install devtoolset-3-dyninst-devel

You can also install API documentation for this library by typing the following at a shell prompt as
root:

yum install devtoolset-3-dyninst-doc

For a complete list of documents that are included in the devtoolset-3-dyninst-doc package, see
Section 14.3, “Additional Resources” . For detailed instructions on how to install optional packages
to your system, see Section 1.5, “ Installing Red Hat Developer Toolset” .

14.2. Using Dyninst

14 .2.1. Using Dyninst with SystemT ap

To use Dyninst along with SystemTap to allow non-root users to instrument user-space
executables, run the stap command with the --dyninst (or --runtime=dyninst) command line
option. This tells stap to translate a SystemTap script into C code that uses the Dyninst library,
compile this C code into a shared library, and then load the shared library and run the script. Note
that when executed like this, the stap command also requires the -c or -x command line option to
be specified.

To use the Dyninst runtime to instrument an executable file, type the following at a shell prompt:

scl enable devtoolset-3 "stap --dyninst -c 'command' [option...]
[argument...]"

Similarly, to use the Dyninst runtime to instrument a user's process, type:

scl enable devtoolset-3 "stap --dyninst -x process_id [option...]
[argument...]"

⁠Chapt er 1 4 . Dyninst

71

See Chapter 11, SystemTap for more information about the Red Hat Developer Toolset version of
SystemTap . For a general introduction to SystemTap and its usage, see the SystemTap Beginners
Guide for Red Hat Enterprise Linux 6 or the SystemTap Beginners Guide for Red Hat Enterprise Linux 7.

Example 14 .1. Using Dyninst with SystemTap

Consider a source file named exercise.C that has the following contents:

#include <stdio.h>

void print_iteration(int value) {
 printf("Iteration number %d\n", value);
}

int main(int argc, char **argv) {
 int i;
 printf("Enter the starting number: ");
 scanf("%d", &i);
 for(; i>0; --i)
 print_iteration(i);
 return 0;
}

This program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to the standard
output. To compile this program on the command line using the g++ compiler from Red Hat
Developer Toolset, type the following at a shell prompt:

~]$ scl enable devtoolset-3 'g++ -g -o exercise exercise.C'

Now consider another source file named count.stp with the following contents:

#!/usr/bin/stap

global count = 0

probe process.function("print_iteration") {
 count++
}

probe end {
 printf("Function executed %d times.\n", count)
}

This SystemTap script prints the total number of times the print_iteration() function was
called during the execution of a process. To run this script on the exercise binary file, type:

~]$ scl enable devtoolset-3 "stap --dyninst -c './exercise' count.stp"
Enter the starting number: 5
Iteration number 5
Iteration number 4

User Guide

72

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

Iteration number 3
Iteration number 2
Iteration number 1
Function executed 5 times.

14 .2.2. Using Dyninst as a Stand-alone Applicat ion

Before using the Dyninst library as a stand-alone application, set the value of the
DYNINSTAPI_RT_LIB environment variable to the path to the runtime library file. You can do so by
typing the following at a shell prompt:

export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
3/root/usr/lib64/dyninst/libdyninstAPI_RT.so

This sets the DYNINSTAPI_RT_LIB environment variable in the current shell session.

Example 14.2, “Using Dyninst as a Stand-alone Application” illustrates how to write and build a
program to monitor the execution of a user-space process. For a detailed explanation of how to use
Dyninst, see the resources listed in Section 14.3, “Additional Resources” .

Example 14 .2. Using Dyninst as a Stand-alone Applicat ion

Consider the exercise.C source file from Example 14.1, “Using Dyninst with SystemTap” : this
program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to standard output.

Now consider another source file named count.C with the following contents:

#include <stdio.h>
#include <fcntl.h>
#include "BPatch.h"
#include "BPatch_process.h"
#include "BPatch_function.h"
#include "BPatch_Vector.h"
#include "BPatch_thread.h"
#include "BPatch_point.h"

void usage() {
 fprintf(stderr, "Usage: count <process_id> <function>\n");
}

// Global information for counter
BPatch_variableExpr *counter = NULL;

void createCounter(BPatch_process *app, BPatch_image *appImage) {
 int zero = 0;
 counter = app->malloc(*appImage->findType("int"));
 counter->writeValue(&zero);
}

bool interceptfunc(BPatch_process *app,
 BPatch_image *appImage,
 char *funcName) {
 BPatch_Vector<BPatch_function *> func;

⁠Chapt er 1 4 . Dyninst

73

 appImage->findFunction(funcName, func);
 if(func.size() == 0) {
 fprintf(stderr, "Unable to find function to instrument()\n");
 exit (-1);
 }
 BPatch_Vector<BPatch_snippet *> incCount;
 BPatch_Vector<BPatch_point *> *points;
 points = func[0]->findPoint(BPatch_entry);
 if ((*points).size() == 0) {
 exit (-1);
 }

 BPatch_arithExpr counterPlusOne(BPatch_plus, *counter,
BPatch_constExpr(1));
 BPatch_arithExpr addCounter(BPatch_assign, *counter,
counterPlusOne);

 return app->insertSnippet(addCounter, *points);
}

void printCount(BPatch_thread *thread, BPatch_exitType) {
 int val = 0;
 counter->readValue(&val, sizeof(int));
 fprintf(stderr, "Function executed %d times.\n", val);
}

int main(int argc, char *argv[]) {
 int pid;
 BPatch bpatch;
 if (argc != 3) {
 usage();
 exit(1);
 }
 pid = atoi(argv[1]);
 BPatch_process *app = bpatch.processAttach(NULL, pid);
 if (!app) exit (-1);
 BPatch_image *appImage = app->getImage();
 createCounter(app, appImage);
 fprintf(stderr, "Finding function %s(): ", argv[2]);
 BPatch_Vector<BPatch_function*> countFuncs;
 fprintf(stderr, "OK\nInstrumenting function %s(): ", argv[2]);
 interceptfunc(app, appImage, argv[2]);
 bpatch.registerExitCallback(printCount);
 fprintf(stderr, "OK\nWaiting for process %d to exit...\n", pid);
 app->continueExecution();
 while (!app->isTerminated())
 bpatch.waitForStatusChange();
 return 0;
}

Note that a client application is expected to destroy all Bpatch objects before any of the Dyninst
library destructors are called. Otherwise the mutator might terminate unexpectedly with a
segmentation fault. To work around this problem, set the BPatch object of the mutator as a local
variable in the main() function. Or, if you need to use BPatch as a global variable, manually
detach all the mutatee processes before the mutator exits.

User Guide

74

This program accepts a process ID and a function name as command line arguments and then
prints the total number of times the function was called during the execution of the process. You
can use the following Makefile to build these two files:

DTS = /opt/rh/devtoolset-3/root
CXXFLAGS = -g -I$(DTS)/usr/include/dyninst
LBITS := $(shell getconf LONG_BIT)

ifeq ($(LBITS),64)
 DYNINSTLIBS = $(DTS)/usr/lib64/dyninst
else
 DYNINSTLIBS = $(DTS)/usr/lib/dyninst
endif

.PHONY: all
all: count exercise

count: count.C
 g++ $(CXXFLAGS) count.C -I /usr/include/dyninst -c
 g++ $(CXXFLAGS) count.o -L $(DYNINSTLIBS) -ldyninstAPI -o count

exercise: exercise.C
 g++ $(CXXFLAGS) exercise.C -o exercise

.PHONY: clean
clean:
 rm -rf *~ *.o count exercise

To compile the two programs on the command line using the g++ compiler from Red Hat
Developer Toolset, run the make utility as follows:

~]$ scl enable devtoolset-3 make
g++ -g -I/opt/rh/devtoolset-3/root/usr/include/dyninst count.C -c
g++ -g -I/opt/rh/devtoolset-3/root/usr/include/dyninst count.o -L
/opt/rh/devtoolset-3/root/usr/lib64/dyninst -ldyninstAPI -o count
g++ -g -I/opt/rh/devtoolset-3/root/usr/include/dyninst exercise.C -o
exercise

This creates new binary files called exercise and count in the current working directory.

In one shell session, execute the exercise binary file as follows and wait for it to prompt you to
enter the starting number:

~]$./exercise
Enter the starting number:

Do not enter this number. Instead, start another shell session and type the following at its prompt
to set the DYNINSTAPI_RT_LIB environment variable and execute the count binary file:

~]$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
3/root/usr/lib64/dyninst/libdyninstAPI_RT.so
~]$./count `pidof exercise` print_iteration
Finding function print_iteration(): OK
Instrumenting function print_iteration(): OK
Waiting for process 8607 to exit...

⁠Chapt er 1 4 . Dyninst

75

Now switch back to the first shell session and enter the starting number as requested by the
exercise program. For example:

Enter the starting number: 5
Iteration number 5
Iteration number 4
Iteration number 3
Iteration number 2
Iteration number 1

When the exercise program terminates, the count program displays the number of times the
print_iteration() function was executed:

Function executed 5 times.

14.3. Addit ional Resources

A detailed description of Dyninst and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentat ion

The devtoolset-3-dyninst-doc package installs the following documents in the
/opt/rh/devtoolset-3/root/usr/share/doc/devtoolset-3-dyninst-doc-8.2.0/
directory:

Dyninst Programmer's Guide — A detailed description of the Dyninst API is stored in the
DyninstAPI.pdf file.

DynC API Programmer's Guide — An introduction to DynC API is stored in the dynC_API.pdf file.

ParseAPI Programmer's Guide — An introduction to the ParseAPI is stored in the ParseAPI.pdf
file.

PatchAPI Programmer's Guide — An introduction to PatchAPI is stored in the PatchAPI.pdf file.

ProcControlAPI Programmer's Guide — A detailed description of ProcControlAPI is stored in the
ProcControlAPI.pdf file.

StackwalkerAPI Programmer's Guide — A detailed description of StackwalkerAPI is stored in the
stackwalker.pdf file.

SymtabAPI Programmer's Guide — An introduction to SymtabAPI is stored in the SymtabAPI.pdf
file.

InstructionAPI Reference Manual — A detailed description of the InstructionAPI is stored in the
InstructionAPI.pdf file.

For information on how to install this package on your system, see Section 14.1, “ Installing Dyninst” .

Online Documentat ion

Dyninst Home Page — The project home page provides links to additional documentation and
related publications.

User Guide

76

http://www.dyninst.org/

Red Hat Enterprise Linux 6 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 6 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 7 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 7 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference — The SystemTap Tapset Reference for
Red Hat Enterprise Linux 6 provides further details about SystemTap.

Red Hat Enterprise Linux 7 SystemTap Tapset Reference — The SystemTap Tapset Reference for
Red Hat Enterprise Linux 5 provides further details about SystemTap.

See Also

Section A.7, “Changes in Dyninst” provides a comprehensive list of features and improvements
over the Red Hat Enterprise Linux system version of Dyninst and the version distributed in the
previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset provides an overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap provides an introduction to SystemTap and explains how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind explains how to use Valgrind to profile applications and detect memory
errors and memory management problems, such as the use of uninitialized memory, improper
allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile explains how to use OProf ile to determine which sections of code consume
the greatest amount of CPU time and why.

⁠Chapt er 1 4 . Dyninst

77

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html

⁠Part VI. Getting Help

User Guide

78

Chapter 15. Accessing Red Hat Product Documentation

Red Hat Product Documentat ion located at https://access.redhat.com/site/documentation/
serves as a central source of information. It is currently translated in 23 languages, and for each
product, it provides different kinds of books from release and technical notes to installation, user,
and reference guides in HTML, PDF, and EPUB formats.

Below is a brief list of documents that are directly or indirectly relevant to this book.

Red Hat Developer Toolset

Red Hat Developer Toolset 3.1 Release Notes — The Release Notes for Red Hat Developer Toolset
3.1 provide more information about this product.

Red Hat Software Collections Packaging Guide — The Software Collections Packaging Guide
explains the concept of Software Collections and documents how to create, build, and extend
them.

Red Hat Enterprise Linux

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide —
The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
libraries and runtime support, compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 6 Installation Guide — The Installation Guide for Red Hat
Enterprise Linux 6 explains how to obtain, install, and update the system.

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide —
The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat
Enterprise Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

⁠Chapt er 1 5. Accessing Red Hat Product Document at ion

79

https://access.redhat.com/site/documentation/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/3/html/3.1_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/2/html/Packaging_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

Chapter 16. Contacting Global Support Services

Unless you have a Self-Support subscription, when both the Red Hat Documentation website and
Customer Portal fail to provide the answers to your questions, you can contact Global Support
Services (GSS).

16.1. Gathering Required Informat ion

Several items of information should be gathered before contacting GSS.

Background Informat ion

Ensure you have the following background information at hand before calling GSS:

Hardware type, make, and model on which the product runs

Software version

Latest upgrades

Any recent changes to the system

An explanation of the problem and the symptoms

Any messages or significant information about the issue

Note

If you ever forget your Red Hat login information, it can be recovered at
https://access.redhat.com/site/help/LoginAssistance.html.

Diagnost ics

The diagnostics report for Red Hat Enterprise Linux is required as well. This report is also known as
a sosreport and the program to create the report is provided by the sos package. To install the sos
package and all its dependencies on your system, type the following at a shell prompt as root:

yum install sos

To generate the report, run as root:

sosreport

For more information, access the Knowledgebase article at https://access.redhat.com/kb/docs/DOC-
3593.

 Account and Contact Informat ion

In order to help you, GSS requires your account information to customize their support, as well
contact information to get back to you. When you contact GSS ensure you have your:

Red Hat customer number or Red Hat Network (RHN) login name

User Guide

80

https://access.redhat.com/site/help/LoginAssistance.html
https://access.redhat.com/kb/docs/DOC-3593

Company name

Contact name

Preferred method of contact (phone or email) and contact information (phone number or email
address)

Issue Severity

Determining an issue's severity is important to allow the GSS team to prioritize their work. There are
four levels of severity.

Severity 1 (urgent)

A problem that severely impacts your use of the software for production purposes. It halts
your business operations and has no procedural workaround.

Severity 2 (h igh)

A problem where the software is functioning, but production is severely reduced. It causes a
high impact to business operations, and no workaround exists.

Severity 3 (medium)

A problem that involves partial, non-critical loss of the use of the software. There is a
medium to low impact on your business, and business continues to function by utilizing a
workaround.

Severity 4 (low)

A general usage question, report of a documentation error, or a recommendation for a
future product improvement.

For more information on determining the severity level of an issue, see
https://access.redhat.com/support/policy/severity.

Once the issue severity has been determined, submit a service request through the Customer Portal
under the Connect option, or at https://access.redhat.com/support/contact/technicalSupport.html.
Note that you need your Red Hat login details in order to submit service requests.

If the severity is level 1 or 2, then follow up your service request with a phone call. Contact
information and business hours are found at
https://access.redhat.com/support/contact/technicalSupport.html.

If you have a premium subscription, then after hours support is available for Severity 1 and 2 cases.

Turn-around rates for both premium subscriptions and standard subscription can be found at
https://access.redhat.com/support/offerings/production/sla.html.

16.2. Escalat ing an Issue

If you feel an issue is not being handled correctly or adequately, you can escalate it. There are two
types of escalations:

Technical escalat ion

If an issue is not being resolved appropriately or if you need a more senior resource to
attend to it.

⁠Chapt er 1 6 . Cont act ing Global Support Services

81

https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/offerings/production/sla.html

Management escalat ion

If the issue has become more severe or you believe it requires a higher priority.

More information on escalation, including contacts, is available at
https://access.redhat.com/support/policy/mgt_escalation.html.

16.3. Re-opening a Service Request

If there is more relevant information regarding a closed service request (such as the problem
reoccurring), you can re-open the request via the Red Hat Customer Portal at
https://access.redhat.com/support/policy/mgt_escalation.html or by calling your local support center,
the details of which can be found at
https://access.redhat.com/support/contact/technicalSupport.html.

Important

In order to re-open a service request, you need the original service-request number.

16.4 . Addit ional Resources

For more information, see the resources listed below.

Online Documentat ion

Getting Started — The Getting Started page serves as a starting point for people who purchased a
Red Hat subscription and offers the Red Hat Welcome Kit and the Quick Guide to Red Hat Support for
download.

How can a RHEL Self-Support subscription be used? — A Knowledgebase article for customers
with a Self-Support subscription.

Red Hat Global Support Services and public mailing lists — A Knowledgebase article that
answers frequent questions about public Red Hat mailing lists.

User Guide

82

https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/start/
https://access.redhat.com/knowledge/articles/54702
https://access.redhat.com/knowledge/articles/92323

Appendix A. Changes in Version 3.1

The sections below document features and compatibility changes introduced in Red Hat
Developer Toolset 3.1.

A.1. Changes in Eclipse

Red Hat Developer Toolset 3.1 is distributed with Eclipse 4 .4 .2 and other plugins from the Luna
release train SR2 (Service Release 2), which provides a number of bug fixes and feature
enhancements over the version included in Red Hat Enterprise Linux and the previous version of
Red Hat Developer Toolset.

This section contains a comprehensive list of new features and compatibility changes in this release.
For details on how to use these new features, refer to the built-in Eclipse documentation.

A.1.1. Changes Since Red Hat Developer T oolset 3.0

The Eclipse Platform has been updated from version 4.4.0 to 4.4.2. As this is a service release, it
contains over 100 bug fixes and optimizations, including:

The stability of SWT on GTK3 (on Red Hat Enterprise Linux 7) has been improved.

Support for Java 8 has been improved both in the compiler and editing capabilities.

Eclipse CDT (C/C++ Development Tooling) has been updated from version 8.5 to 8.6. This
release includes a number of enhancements, including the following:

New filtering options have been added to the Search view.

A new preference option has been added for defining the style of the Include Guard code.

The autocomplete and content assist functions have been improved.

Refactoring has been improved to properly update include statements.

Support has been added for Save actions similarly to JDT .

The GDB information provided during debugging has been enhanced.

The remote launch function has been enhanced to allow in-place editing of connections.

The Mylyn task-management subsystem has been updated from version 3.12 to version 3.14.
This new release includes the following change:

Wikitext now supports the Markdown language and can output the XHTML format.

The Eclipse Linux Tools plug-in collection has been updated from version 3.1 to 3.2. This new
minor release includes:

The GCov and GProf plugins have been improved to automate the setting of compiler
options and provide a better vizualization of data.

The LibHover plugin has been improved to parse Devhelp data significantly faster.

EGit , a Git integration plug-in for Eclipse , and JGit , a Java library implementing Git , have
been updated from version 3.4.1 to 3.6.1. This update includes:

Additional options have been added to many JGit commands.

⁠Appendix A. Changes in Version 3.1

83

Support for Git submodules has been added to JGit .

The interactive rebase view has been improved.

Stash actions are now exposed in the user interface.

A.2. Changes in GCC

Red Hat Developer Toolset 3.1 is distributed with GCC 4 .9 .2 , which provides a number of bug fixes
and a new feature over the version included in the previous version of Red Hat Developer Toolset.

A.2.1. Changes Since Red Hat Developer T oolset 3.0

The following features have been added since the release of GCC in Red Hat Developer Toolset 3.0:

A new option, -fsanitize=kernel-address, has been added, which enables
AddressSanit iz er for the Linux kernel.

The -fsanitize-recover option has been improved and now allows more fine-grained
selection of when it is desirable to recover and when not.

A.3. Changes in elfut ils

Red Hat Developer Toolset 3.1 is distributed with elfut ils 0.16 1 , which provides a number of bug
fixes and feature enhancements over the Red Hat Enterprise Linux system version and the version
included in the previous release of Red Hat Developer Toolset. Below is a comprehensive list of new
features in this release.

A.3.1. Changes Since Red Hat Developer T oolset 3.0

The following features have been added since the release of elfut ils 0.159 in Red Hat
Developer Toolset 3.0:

The following changes have been introduced in the l ibdw library:

The dwarf_cu_getdwarf and dwarf_cu_die functions have been added.

The non-existing DW_TAG_mutable_type attribute has been removed from the dwarf.h
header file.

The handling of LZMA-compressed kernel modules (.ko.xz) is now supported.

The eu-unstrip utility has a new option, -F or --force, for combining files with non-matching
ELF headers.

Support for the ELF v2 application binary interface on Red Hat Enterprise Linux for POWER (little
endian) has been added.

A.3.2. Changes Since Red Hat Enterprise Linux 7.1

The following features have been added since the release of elfut ils 0.16 0 in Red Hat
Enterprise Linux 7.1:

The following new l ibdw features have been introduced:

The dwarf_peel_type function has been added for handling qualified types. It is also used

User Guide

84

by dwarf_aggregate_size to provide the sizes of qualified types.

The dwarf_getmacros function now serves both the .debug_macro and
.debug_macinfo section data transparently.

The following new interfaces are available for a more generalized inspection of macros and
their parameters: dwarf_getmacros_off, dwarf_macro_getsrcfiles,
dwarf_macro_getparamcnt, and dwarf_macro_param.

The following new attributes have been added to dwarf.h: DW_AT_GNU_deleted ,
DW_AT_noreturn, DW_LANG_C11, DW_LANG_C_plus_plus_11, and
DW_LANG_C_plus_plus_14 .

A.4. Changes in GDB

Red Hat Developer Toolset 3.1 is distributed with GDB 7.8.2 , which provides a number of bug fixes
and improvements over the Red Hat Enterprise Linux system versions and the version included in the
previous release of Red Hat Developer Toolset. Below is a comprehensive list of new features in this
release.

A.4 .1. Changes Since Red Hat Developer T oolset 3.0

The following features have been added since the release of GDB in Red Hat Developer Toolset 3.0:

A new command, add-auto-load-scripts-directory directory, has been added. It
adds entries to the list of directories from which automatically loaded scripts are loaded.

The gdb/jit-reader.h header file is now installed in the include directory, so that it can be
used for writing readers for parsing custom debugging information formats. See the Custom Debug
Info section in the GDB manual for more information (the devtoolset-3-gdb-doc package needs to
be installed on your system for this documentation to be locally available).

A.5. Changes in SystemTap

Red Hat Developer Toolset 3.1 is distributed with SystemTap 2.6 , which provides a number of bug
fixes and feature enhancements over the Red Hat Enterprise Linux 6.6 version and the version
included in the previous release of Red Hat Developer Toolset. Below is a list of new features in this
release.

A.5.1. Changes Since Red Hat Developer T oolset 3.0 and Red Red Hat
Enterprise Linux 6.6

The following features have been added since the release of SystemTap included in Red Hat
Developer Toolset 3.0 and Red Red Hat Enterprise Linux 6.6:

The SystemTap front end (stap) has been improved in a number of ways.

A new option, -E script, has been added, which allows for specifying additional scripts.
Note that a main script still needs to be specified using the -e option or in a file.

DWARF process probes can now be bound to a specific process using the following syntax:

process(PID).function("*")

SystemTap now supports probes with the following syntax:

⁠Appendix A. Changes in Version 3.1

85

process("PATH").library("PATH").plt("NAME").return

A PID provided for a process probe is now expected by SystemTap to correspond to a
running process.

Probes are now printed in a more consistent and precise manner when the listing mode is
invoked using the -l or -L options.

Enumerated line numbers are now supported by statement probes, which allows for probing
discontiguous lines. Use the following syntax:

process.statement("example@file.c:3,5-7,9")

SystemTap now supports moving a probe from the specified line to the nearest line that can
be probed using the following syntax:

statement("*@file:NUM").nearest

The SystemTap runtime back end (staprun) has been improved in a number of ways.

Certain probe types, kprobes, uprobes, and timer.*s(NUM), can now be armed and
disarmed on the fly. Thus, probe overhead can be avoided when probes are not needed.

Non-recursive and loop-free probes now have statement counting suppressed in the
generated C code. Counting can be turned back on in the unoptimized mode by using the -u
option with stap.

Statically Defined Tracing (SDT) probes with operands that refer to symbols are now supported.

Many new functions have been added to the tapset library and many tapsets were simplified by
using the new autocast feature.

Note

Incompatibility problems with old scripts can be resolved using the backward-compatibility
option, --compatible version, where version is the version of SystemTap for which the
script was written.

A.6. Changes in Valgrind

Red Hat Developer Toolset 3.1 is distributed with Valgrind 3.10.1 , which provides a number of bug
fixes over the version included in Red Hat Enterprise Linux and the previous version of Red Hat
Developer Toolset. Below is a comprehensive list of new features in this release.

A.6.1. Changes Since Red Hat Developer T oolset 3.0

The following features have been added since the release of Valgrind included in Red Hat
Developer Toolset 3.0:

The --db-attach option is now deprecated and will be removed in the next feature release. The
built-in Valgrind gdbserver capabilities, see the --vgdb options, are superior and should be
used instead.

User Guide

86

Error messages that include stack traces can now show inline function calls if the DWARF
debugging information format is available. These can also be used in suppressions.

Error messages concerning dubious arguments (for example, to malloc or calloc) now
include a stack trace and can be used in suppressions.

The C++ demangler has been updated for better C++11 support.

The Valgrind gdbserver functionality now supports the display of thread local variables and
storage (__thread).

Three new monitor commands have been added to Valgrind :

v.info location address to show more information about an address.

v.info stats to show various Valgrind core and tool statistics.

v.set hostvisibility, which allows Valgrind gdbserver to provide access to
Valgrind internal host status and memory.

A new command line option, --vgdb-stop-at=event1,event2,... , which allows the user to
ask the Valgrind gdbserver to stop at the start of program execution, at the end of the program
execution, and when Valgrind aborts on internal errors.

In the Valgrind memcheck tool, the client code can now selectively disable and re-enable
reporting of invalid address errors in specific ranges using new client requests.

The Valgrind memcheck tool now supports more accurate checking of system-call parameters
that use uninitialized fields in structures.

In the Valgrind memcheck tool, it is now possible to disable the mismatched checking of
memory deallocation using the free or delete functions by specifying the new --show-
mismatched-frees=no|yes flag, with the default value being yes.

In the Valgrind helgrind tool, more information about race conditions and locks is now shown
in error messages as the new Valgrind gdbserver monitor command returns the list of locks,
their location, and their status.

A.7. Changes in Dyninst

Red Hat Developer Toolset 3.1 is distributed with Dyninst 8.2.1 , which provides a number of bug
fixes and feature enhancements over the version included in Red Hat Enterprise Linux and the
previous version of Red Hat Developer Toolset. Below is a comprehensive list of new features in this
release.

A.7.1. Changes Since Red Hat Developer T oolset 3.0 and Red Hat
Enterprise Linux 7.1

A number of bugs have been fixed. In addition to that, the following features have been added since
the release of Dyninst in Red Hat Developer Toolset 3.0 and Red Hat Enterprise Linux 7.1:

Dyninst now fails gracefully when invalid line information is discovered.

The parsing of DWARF location lists has been improved.

Dyninst now hides the linux-gate.so.1 and linux-vdso.so.1 Virtual Dynamic Shared
Objects (VSDO) from link maps.

⁠Appendix A. Changes in Version 3.1

87

Appendix B. Changes in Version 3.0

The sections below document features and compatibility changes introduced in Red Hat
Developer Toolset 3.0.

B.1. Changes in Eclipse

Red Hat Developer Toolset 3.0 is distributed with Eclipse 4 .4 and other plugins from the Luna
release train, which provides a number of bug fixes and feature enhancements over the version
included in Red Hat Enterprise Linux and the previous version of Red Hat Developer Toolset.

This section contains a comprehensive list of new features and compatibility changes in this release.
For details on how to use these new features, refer to the built-in Eclipse documentation.

B.1.1. Changes Since Red Hat Enterprise Linux 6.6

The following features have been added since the release of Eclipse in Red Hat
Enterprise Linux 6.6:

The Eclipse C/C+ + Development Toolkit (CDT) has been updated. This update includes:

a greatly enhanced indexer, both in terms of capabilities and speed;

improved GNU Debugger integration;

support for GNU Debugger's pretty-printing;

multi-process debugging;

project-less debugging;

enhanced refactoring;

code-checking capabilities;

an improved and more polished user interface;

fixes related to the organization of include statements.

Mylyn , a set of task and application life cycle management plug-ins, has been updated. This
update includes:

an enhanced task-focused interface and task editing;

a new Jenkins/Hudson connector;

enhanced Bugzilla and Trac connectors;

EPUB authoring tools;

various improvements to the Bugzilla connector.

A new EGit plug-in has been added. This plug-in includes an Eclipse Team provider based on
JGit, a Git implementation written entirely in Java, and adds support for the Git revision control
system to the Eclipse user interface by introducing the History and Synchronize views,
Compare and Quick Diff menu items, and various wizards to make it easier for developers to
use this plug-in.

User Guide

88

Further updates of the EGit plug-in have introduced the following improvements:

support for Mylin links in the History view, Git Staging view, and Commit dialog window;

improved Gerrit integration;

a significantly enhanced Git Staging view;

an enhanced command line tool (jgit);

several performance improvements.

New GCov integration has been added to allow the user to visualize GCov output in both
summarized form and in file editors. As well, graphing capabilities for the data have been added.

New GProf integration has been added to allow the user to view profiling information such as
execution time and call graphs. As well, graphing capabilities for the data have been added.

A new SystemTap integration plug-in has been added. This plug-in includes:

an editor for the .stp files with the autocomplete feature;

the Probe view with a list of probes that are available on the system;

the Function view with a list of functions that are available on the system and can be used in
.stp scripts.

As well, this plug-in includes integration for running SystemTap scripts and viewing the results in
a textual, tabular, and graphical manner. Note that the result sets are updated in a near-runtime
way, which allows the user to use this plug-in for longer-running monitoring tasks.

New kernel perf tool integration has been added. This plug-in uses the performance counters
subsystem of the Linux kernel to profile applications, makes it easier to analyze the results by
hyperlinking to the sources in the workspace projects, simplifies the perf tool configuration by
selecting the counters to be used, and allows the user to run this tool remotely.

A unified profiling launcher has been added to provide a single method to launch profiling. It
allows the user to select a profiling category (Memory, Timing , or Coverage) and back ends for
this category (such as OProf ile , perf , or GProf for Timing).

The C/C++ documentation plug-in has been enhanced to recognize and use gtk-doc generated
documentation and to display it in the Eclipse Help Center.

The OProf ile plug-in has been enhanced to support root privilege authentication through
polkit . This feature is configured automatically.

The Valgrind plug-in now supports the Helgrind tool, which can be used to detect
synchronization problems such as race conditions, deadlocks caused by incorrect locking order,
or misuse of the POSIX pthreads API. When a problem is detected, the plug-in displays error
markers on the corresponding lines in the source code.

The Eclipse Linux Tools plug-in collection has been updated. This update includes:

support for the operf command line tool in the OProf ile plug-in; the operf command is now
used by default to make generic setup easier;

an enhanced RPM Stubby plug-in, which is now able to generate RPM spec files from Perl
makefiles, Ruby gamespec files, and Python setup.py files;

⁠Appendix B. Changes in Version 3.0

89

an enhanced Spec File Editor plug-in, which is now able to download source files, prepare
a buildroot, and also provides a Build menu, a corresponding toolbar, and improved
support for hyperlinks in the editor;

an enhanced SystemTap .stp files editor, which now has improved formatting capabilities;

improved SystemTap graphing, which has been streamlined to be easier to launch and
configure.

B.1.2. Changes Since Red Hat Developer T oolset 2.1

The Eclipse Platform has been updated from version 4.3.1 to 4.4.0. As this is a feature release, it
contains a number of new features, bug fixes, and optimizations, including the following:

SWT (Standard Widget Toolkit) gained a GTK+ 3 backend, which provides for a cohesive look
and feel with the default desktop user environment on Red Hat Enterprise Linux 7, thus
streamlining the user experience. There is also a preliminary support for WebKit 2.x for an
enhanced stability of the Browser component.

Split-editor mode is now supported. Pressing the Ctrl+_ keyboard shortcut splits the editor
horizontally, and Ctrl+{ splits the editor vertically.

A dark user-interface theme is now available as a technology preview. Access it by selecting
the Appearance preference page in the General settings.

Java 8 is now supported both for compiling and in generic IDE features, such as for quick
fixes to make use of Java 8 features (for example, converting anonymous class creations to
lambda expressions).

Eclipse CDT (C/C++ Development Tooling) has been updated from version 8.2 to 8.5. The three
feature releases include a number of enhancements, including the following:

Toolchain and Language definitions have been improved to allow for a better support for
switching between language-standard versions (for example, C++11).

Multi-process debugging has been enhanced.

Dynamic printf is now supported as provided by GDB 7.7 .

The Standalone Debugger application has been added that provides a graphical user
interface for the C/C++ debugging subset of Eclipse plug-ins.

C++ attributes as defined by C++11 are now supported.

The auto completion and content assist features have been improved.

The Mylyn task-management subsystem has been updated from version 3.9.1 to 3.12. This new
release includes the following changes:

Task integration has been enhanced and now features better search and filtering options.

The saving and restoring of breakpoints in the task context is now supported.

The Eclipse Linux Tools plug-in collection has been updated from version 2.2 to 3.1. This new
major release includes:

The GCov plugin has been considerably improved by making it use and annotate standard
CDT editors instead of GCov-specific ones.

User Guide

90

The GCov and GProf plugins now support an automatic changing of compiler and linker
options for projects which simplifies the initial setup.

The Systemtap plugin went through a major overhaul of its user interface, making it easier,
faster, and more reliable for generating, editing, and displaying graphics, filtering gathered
datasets, and manipulating the probe and function inventories.

The speed of indexing the Devhelp (GTK+ and GNOME) documentation has been improved
significantly.

EGit , a Git integration plug-in for Eclipse , and JGit , a Java library implementing Git , have
been updated from version 3.1 to 3.4.1. This update includes:

The command line interface has been greatly enhanced. Commands now support more
parameters and new commands have been added.

Speed has been improved by making use of the Java 7 API.

Support has been added for performing interactive rebasing in the user interface.

Blame annotations now expose more information and provide a cross-reference capability.

B.2. Changes in GCC

Red Hat Developer Toolset 3.0 is distributed with GCC 4 .9 .1 , which provides a number of bug fixes
and new features over the version included in Red Hat Enterprise Linux and the previous version of
Red Hat Developer Toolset.

B.2.1. Changes Since Red Hat Enterprise Linux 6.6

The following features have been added since the release of GCC in Red Hat Enterprise Linux 6.6:

B.2.1 .1 . St at us and Feat ures

B.2.1.1.1. C+ + 11

GCC 4.7 and later provides experimental support for building applications compliant with C++11
using the -std=c++11 or -std=gnu++11 command line options. However, there is no guarantee
for compatibility between C++11 code compiled by different versions of the compiler. Refer to
Section B.2.1.5.1, “C++ ABI” for details.

The C++ runtime library, libstdc++ , supports a majority of the C++11 features. However, there is no
or only partial support for some features such as certain properties on type traits or regular
expressions. For details, refer to the libstdc++ documentation, which also lists implementation-
defined behavior.

Support for C++11 exception_ptr and future requires changes to the exception handling runtime
in the system libstdc++ package. These changes will be distributed through the normal Z -stream
channel. Application of all Red Hat Enterprise Linux errata may be required to see correct runtime
functionality when using these features.

B.2.1.1.2. C11

GCC 4.7 and later provides experimental support for some of the features from the C11 revision of the
ISO C standard, and in addition to the previous (now deprecated) -std=c1x and -std=gnu1x
command line options, gcc now accepts -std=c11 and -std=gnu11. Note that since this support
is experimental, it may change incompatibly in future releases.

⁠Appendix B. Changes in Version 3.0

91

http://gcc.gnu.org/onlinedocs/gcc-4.7.0/libstdc++/manual/manual/status.html#status.iso.2011

Examples for features that are supported are Unicode strings (including the predefined macros
__STDC_UTF_16__ and __STDC_UTF_32__), nonreturning functions (_Noreturn and
<stdnoreturn.h>), and alignment support (_Alignas, _Alignof, max_align_t, and
<stdalign.h>).

B.2.1.1.3. Parallelism and Concurrency

GCC 4 .7 and later provides improved support for programming parallel applications:

1. The GCC compilers support the OpenMP API specification for parallel programming, version
3.1. Refer to the OpenMP website for more information about this specification.

2. The C++11 and C11 standards provide programming abstractions for multi-threaded
programs. The respective standard libraries include programming abstractions for threads
and thread-related features such as locks, condition variables, or futures. These new
versions of the standard also define a memory model that precisely specifies the runtime
behavior of a multi-threaded program, such as the guarantees provided by compilers and the
constraints programmers have to pay attention to when writing multi-threaded programs.

Note that support for the memory model is still experimental (see below for details). For more
information about the status of support for C++11 and C11, refer to Section B.2.1.1.1, “C++11”
and Section B.2.1.1.2, “C11” respectively.

The rest of this section describes two new GCC features in more detail. Both these features make it
easier for programmers to handle concurrency (such as when multiple threads do not run truly in
parallel but instead have to synchronize concurrent access to shared state), and both provide
atomicity for access to memory but differ in their scope, applicability, and complexity of runtime
support.

C+ + 11 Types and GCC Built - ins for Atomic Memory Access

C++11 has support for atomic types. Access to memory locations of this type is atomic, and appears
as one indivisible access even when other threads access the same memory location concurrently.
The atomicity is limited to a single read or write access or one of the other atomic operations
supported by such types (for example, two subsequent operations executed on a variable of atomic
type are each atomic separately, but do not form one joint atomic operation).

An atomic type is declared as atomic<T>, where T is the non-atomic base type and must be trivially
copyable (for example, atomic<int> is an atomic integer). GCC does not yet support any base type
T, but only those that can be accessed atomically with the atomic instructions offered by the target
architecture. This is not a significant limitation in practice, given that atomics are primarily designed
to expose hardware primitives in an architecture-independent fashion; pointers and integrals that are
not larger than a machine word on the target are supported as base types. Using base types that are
not yet supported results in link-time errors.

The code generated for operations on atomic types, including the memory orders, implements the
semantics specified in the C++11 standard. However, support for the C++11 memory model is still
experimental, and for example GCC might not always preserve data-race freedom when optimizing
code.

GCC also supports new built-ins for atomic memory accesses, which follow the design of the memory
model and new atomic operations. The former set of synchronization built-ins (that is, those prefixed
with __sync) are still supported.

Transact ional Memory

Transactional Memory (TM) allows programs to declare that a piece of code is supposed to execute as
a transaction, that is, virtually atomically and in isolation from other transactions. GCC's

User Guide

92

http://openmp.org/wp/openmp-specifications/

transactional memory runtime library, libitm, then ensures this atomicity guarantee when executing
the compiled program. Compared to atomic memory accesses, it is a higher-level programming
abstraction, because it is not limited to single memory locations, does not require special data types
for the data it modifies, and because transactions can contain arbitrary code and be nested within
other transactions (with some restrictions explained subsequently).

GCC implements transactions as specified in the Draft Specification for Transactional Language
Constructs for C++, version 1.1. This draft does not yet specify the language constructs for C, but
GCC already supports a C-compatible subset of the constructs when compiling C source code.

The main language constructs are transaction statements and expressions, and are declared by the
__transaction_atomic or __transaction_relaxed keywords followed by a compound
statement or expression, respectively. The following example illustrates how to increment a global
variable y if another variable x has a value less than 10:

__transaction_atomic { if (x < 10) y++; }

This happens atomically even in a multi-threaded execution of the program. In particular, even
though the transaction can load x and y and store to y, all these memory accesses are virtually
executed as one indivisible step.

Note that in line with the C++11 memory model, programs that use transactions must be free of data
races. Transactions are guaranteed to be virtually executed serially in a global total order that is
determined by the transactional memory implementation and that is consistent with and contributes
to the happens-before order enforced by the rest of the program (that is, transaction semantics are
specified based on the C++11 memory model, see the draft specification linked above). Nonetheless,
if a program is not data-race-free, then it has undefined behavior. For example, a thread can first
initialize some data and then make it publicly accessible by code like this:

init(data);
__transaction_atomic { data_public = true;} // data_public is initially
false

Another thread can then safely use the data, for instance:

__transaction_atomic { if (data_public) use(data); }

However, the following code has a data race and thus results in undefined behavior:

__transaction_atomic { temp = copy(data); if (data_public) use(temp); }

Here, copy(data) races with init(data) in the initializing thread, because this can be executed
even if data_public is not true. Another example for data races is one thread accessing a variable
x transactionally and another thread accessing it nontransactionally at potentially the same time.
Note that the data can be safely reclaimed using code like this (assuming only one thread ever does
this):

__transaction_atomic { data_public = false; }
destruct(data);

Here, destruct() does not race with potential concurrent uses of the data because after the
transaction finishes, it is guaranteed that data_public is false and thus data is private. See the
specification and the C++11 memory model for more background information about this.

⁠Appendix B. Changes in Version 3.0

93

https://sites.google.com/site/tmforcplusplus/

Note that even if transactions are required to virtually execute in a total order, this does not mean that
they execute mutually exclusive in time. Transactional memory implementations attempt to run
transactions as much in parallel as possible to provide scalable performance.

There are two variants of transactions: atomic transactions (__transaction_atomic) and relaxed
transactions (__transaction_relaxed). The former guarantee atomicity with regard to all other
code, but allow only code that is known to not include nontransactional kinds of synchronization,
such as atomic or volatile memory access. In contrast, relaxed transactions allow all code (for
example calls to I/O functions), but only provide atomicity with regard to other transactions.
Therefore, atomic transactions can be nested within other atomic and relaxed transactions, but
relaxed transactions can only be nested within other relaxed transactions. Furthermore, relaxed
transactions are likely to be executed with less performance, but this depends on the implementation
and available hardware.

GCC verifies these restrictions statically at compile time (for example, the requirements on code
allowed to be called from within atomic transactions). This has implications for when transactions
call functions that are defined within other compilation unit (source file) or within libraries. To enable
such cross-compilation-unit calls for transactional code, the respective functions must be marked to
contain code that is safe to use from within atomic transactions. Programmers can do so by adding
the transaction_safe function attribute to the declarations of these functions and by including
this declaration when defining the function. In turn, GCC then verifies that the code in these functions
is safe for atomic transactions and generates code accordingly. If the programmer does not follow
these constraints and/or steps, compile-time or link-time errors occur. Note that within a compilation
unit, GCC detects automatically whether a function is safe for use within transactions, and the
attributes therefore typically do not need to be added. See the draft specification linked above for
further details.

GCC's transactional memory support is designed in such a way that it does not decrease the
performance of programs that do not use transactions, nor the performance of nontransactional
code, except due to the normal kinds of interference by concurrent threads that use the same
resources such as the CPU.

Transactional memory support in GCC and libitm is still experimental, and both the ABI and API
could change in the future if this is required due to the evolution of the specification of the language
constructs, or due to implementation requirements. Note that when executing applications built with
the -fgnu-tm command line option, it is currently a prerequisite to also have the appropriate version
of the libitm.so.1 shared library installed.

B.2.1.1.4 . Architecture-specif ic Opt ions

Red Hat Developer Toolset 3.0 is only available for Red Hat Enterprise Linux 6 and 7 for the 64-bit
Intel and AMD architectures. Consequently, the options described below are only relevant to these
architectures.

Optimization for several processors is now available through the command line options described in
Table B.1, “Processor Optimization Options” .

Table B.1. Processor Opt imiz at ion Opt ions

Opt ion Descript ion
-march=core2 and -mtune=core2 Optimization for Intel Core 2 processors.
-march=corei7 and -mtune=corei7 Optimization for Intel Core i3, i5, and i7

processors.
-march=corei7-avx and -mtune=corei7-
avx

Optimization for Intel Core i3, i5, and i7
processors with AVX.

User Guide

94

-march=core-avx-i Optimization for the Intel processor code-named
Ivy Bridge with RDRND, FSGSBASE, and F16C.

-march=core-avx2 Optimization for a next-generation processor
from Intel with AVX2, FMA, BMI, BMI2, and
LZCNT.

-march=bdver2 and -mtune=bdver2 Optimization for AMD Opteron processors code-
named Piledriver.

-march=btver1 and -mtune=btver1 Optimization for AMD family 14 processors
code-named Bobcat.

-march=bdver1 and -mtune=bdver1 Optimization for AMD family 15h processors
code-named Bulldozer.

Opt ion Descript ion

Support for various processor-specific intrinsics and instructions is now available through the
command line options described in Table B.2, “Support for Processor-specific Intrinsics and
Instructions” .

Table B.2. Support for Processor-specif ic In t rinsics and Inst ruct ions

Opt ion Descript ion
-mavx2 Support for Intel AVX2 intrinsics, built-in functions, and code generation.
-mbmi2 Support for Intel BMI2 intrinsics, built-in functions, and code generation.
-mlzcnt Implementation and automatic generation of __builtin_clz* using

the lzcnt instruction.
-mfma Support for Intel FMA3 intrinsics and code generation.
-mfsgsbase Enables the generation of new segment register read/write instructions

through dedicated built-ins.
-mrdrnd Support for the Intel rdrnd instruction.
-mf16c Support for two additional AVX vector conversion instructions.
-mtbm Support for TBM (Trailing Bit Manipulation) built-in functions and code

generation.
-mbmi Support for AMD's BMI (Bit Manipulation) built-in functions and code

generation.
-mcrc32 Support for crc32 intrinsics.
-mmovbe Enables the use of the movbe instruction to implement

__builtin_bswap32 and __builtin_bswap64 .
-mxop, -mfma4 , and -
mlwp

Support for the XOP, FMA4, and LWP instruction sets for the AMD Orochi
processors.

-mabm Enables the use of the popcnt and lzcnt instructions on AMD
processors.

-mpopcnt Enables the use of the popcnt instruction on both AMD and Intel
processors.

When using the x87 floating-point unit, GCC now generates code that conforms to ISO C99 in terms
of handling of floating-point excess precision. This can be enabled by -fexcess-
precision=standard and disabled by -fexcess-precision=fast. This feature is enabled by
default when using standards conformance options such as -std=c99 .

Vectors of type vector long long or vector long are passed and returned using the same
method as other vectors with the VSX instruction set. Previously GCC did not adhere to the ABI for
128-bit vectors with 64-bit integer base types (see GCC PR 48857).

⁠Appendix B. Changes in Version 3.0

95

The -mrecip command line option has been added, which indicates whether the reciprocal and
reciprocal square root instructions should be used.

The -mveclibabi=mass command line option has been added. This can be used to enable the
compiler to auto-vectorize mathematical functions using the Mathematical Acceleration Subsystem
library.

The -msingle-pic-base command line option has been added, which instructs the compiler to
avoid loading the PIC base register in function prologues. The PIC base register must be initialized
by the runtime system.

The -mblock-move-inline-limit command line option has been added, which enables the
user to control the maximum size of inlined memcpy calls and similar.

B.2.1.1.5. Link- t ime Opt imiz at ion

Link-time optimization (LTO) is a compilation technique in which GCC generates an internal
representation of each compiled input file in addition to the native code, and writes both to the output
object file. Subsequently, when several object files are linked together, GCC uses the internal
representations of the compiled code to optimize inter-procedurally across all the compilation units.
This can potentially improve the performance of the generated code (for example, functions defined
in one file can potentially be inlined when called in another file).

To enable LTO, the -flto option needs to be specified at both compile time and link time. For further
details, including interoperability with linkers and parallel execution of LTO, refer to the
documentation for -flto in the GCC 4.7.0 Manual. Also note that the internal representation is not a
stable interface, so LTO will only apply to code generated by the same version of GCC.

Note

Use of Link-time Optimization with debug generation is not yet supported in gcc 4.7 and 4.8
and so use of the -flto and the -g options together is unsupported in Red Hat Developer
Toolset.

B.2.1.1.6 . Miscellaneous

-Ofast is now supported as a general optimization level. It operates similar to -O3, adds options
that can yield better-optimized code, but in turn might invalidate standards compliance (for example,
-ffast-math is enabled by -Ofast).

GCC can now inform users about cases in which code generation might be improved by adding
attributes such as const, pure, and noreturn to functions declared in header files. Use the -
Wsuggest-attribute=[const|pure|noreturn] command line option to enable this.

Assembler code can now make use of a goto feature that allows for jumps to labels in C code.

B.2.1 .2 . Language Co mpat ibilit y

In this section, we describe the compatibility between the Red Hat Developer Toolset compilers and
the Red Hat Enterprise Linux system compilers at the programming-language level (for example,
differences in the implementation of language standards such as C99, or changes to the warnings
generated by -Wall).

Some of the changes are a result of bug fixing, and some old behaviors have been intentionally
changed in order to support new standards, or relaxed in standards-conforming ways to facilitate

User Guide

96

http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Optimize-Options.html

compilation or runtime performance. Some of these changes are not visible to the naked eye and will
not cause problems when updating from older versions. However, some of these changes are visible,
and can cause grief to users porting to Red Hat Developer Toolset's version of GCC. The following
text attempts to identify major issues and suggests solutions.

B.2.1.2.1. C

Constant expressions are now handled by GCC in a way that conforms to C90 and C99. For code
expressions that can be transformed into constants by the compiler but are in fact not constant
expressions as defined by ISO C, this may cause warnings or errors.

Ill-formed redeclarations of library functions are no longer accepted by the compiler. In particular, a
function with a signature similar to the built-in declaration of a library function (for example, abort()
or memcpy()) must be declared with extern "C" to be considered as a redeclaration, otherwise it is
ill-formed.

Duplicate Member

Consider the following struct declaration:

struct A { int *a; union { struct { int *a; }; }; };

Previously, this declaration used to be diagnosed just by the C++ compiler, now it is also diagnosed
by the C compiler. Because of the anonymous unions and structs, there is ambiguity about what .a
actually refers to and one of the fields therefore needs to be renamed.

B.2.1.2.2. C+ +

Header Dependency Changes

<iostream>, <string>, and other STL headers that previously included <unistd.h> as an
implementation detail (to get some feature macros for gthr*.h purposes) no longer do so, because
it was a C++ standard violation. This can result in diagnostic output similar to the following:

error: ‘truncate’ was not declared in this scope
error: ‘sleep’ was not declared in this scope
error: ‘pipe’ was not declared in this scope
error: there are no arguments to 'offsetof' that depend on a template
parameter, so a declaration of 'offsetof' must be available

To fix this, add the following line early in the source or header files that need it:

#include <unistd.h>

Many of the standard C++ library include files have been edited to no longer include <cstddef> to
get namespace-std -scoped versions of size_t and ptrdiff_t. As such, C++ programs that used
the macros NULL or offsetof without including <cstddef> will no longer compile. The diagnostic
produced is similar to the following:

error: 'ptrdiff_t' does not name a type
error: 'size_t' has not been declared
error: 'NULL' was not declared in this scope
error: there are no arguments to 'offsetof' that depend on a template
parameter, so a declaration of 'offsetof' must be available

⁠Appendix B. Changes in Version 3.0

97

To fix this issue, add the following line:

#include <cstddef>

Name Lookup Changes

G++ no longer performs an extra unqualified lookup that it incorrectly performed in the past. Instead,
it implements the two-phase lookup rules correctly, and an unqualified name used in a template must
have an appropriate declaration that:

1. is either in scope at the point of the template's definition, or

2. can be found by argument-dependent lookup at the point of instantiation.

Code that incorrectly depends on a second unqualified lookup at the point of instantiation (such as
finding functions declared after the template or in dependent bases) will result in compile-time errors.

In some cases, the diagnostics provided by G++ include hints how to fix the bugs. Consider the
following code:

template<typename T>
int t(T i)
{
 return f(i);
}

int f(int i)
{
 return i;
}

int main()
{
 return t(1);
}

The following diagnostics output will be produced:

In instantiation of ‘int t(T) [with T = int]’
required from here
error: ‘f’ was not declared in this scope, and no declarations were found
by argument-dependent lookup at the point of instantiation [-fpermissive]
note: ‘int f(int)’ declared here, later in the translation unit

To correct the error in this example, move the declaration of function f() before the definition of
template function t(). The -fpermissive compiler flag turns compile-time errors into warnings and
can be used as a temporary workaround.

Uninit ializ ed const

Consider the following declaration:

struct A { int a; A (); };
struct B : public A { };
const B b;

User Guide

98

An attempt to compile this code now fails with the following error:

error: uninitialized const ‘b’ [-fpermissive]
note: ‘const struct B’ has no user-provided default constructor

This happens, because B does not have a user-provided default constructor. Either an initializer
needs to be provided, or the default constructor needs to be added.

Visib ility of Template Instant iat ions

The ELF symbol visibility of a template instantiation is now properly constrained by the visibility of its
template arguments. For instance, users that instantiate standard library components like
std::vector with hidden user defined types such as struct my_hidden_struct can now
expect hidden visibility for std::vector<my_hidden_struct> symbols. As a result, users that
compile with the -fvisibility=hidden command line option should be aware of the visibility of
types included from the library headers used. If the header does not explicitly control symbol
visibility, types from those headers will be hidden, along with instantiations that use those types. For
instance, consider the following code:

#include <vector> // template std::vector has default
visibility
#include <ctime> // struct tm has hidden visibility
template class std::vector<tm>; // instantiation has hidden visibility

One approach to adjusting the visibility of a library header <foo.h> is to create a forwarding
header on the -I include path consisting of the following:

#pragma GCC visibility push(default)
#include_next <foo.h>
#pragma GCC visibility push

User-def ined Literal Support

When compiling C++ with the -std={c++11,c++0x,gnu++11,gnu++0x} command line option,
GCC 4.7.0 and later, unlike older versions, supports user-defined literals, which are incompatible with
some valid ISO C++03 code. In particular, white space is now needed after a string literal before
something that could be a valid user defined literal. Consider the following code:

const char *p = "foobar"__TIME__;

In C++03, the __TIME__ macro expands to some string literal and is concatenated with the other
one. In C++11, __TIME__ is not expanded and instead, operator "" __TIME__ is being looked up,
which results in a warning like:

error: unable to find string literal operator ‘operator"" __TIME__’

This applies to any string literal followed without white space by some macro. To fix this, add some
white space between the string literal and the macro name.

Taking the Address of Temporary

Consider the following code:

⁠Appendix B. Changes in Version 3.0

99

struct S { S (); int i; };
void bar (S *);
void foo () { bar (&S ()); }

Previously, an attempt to compile this code produced a warning message, now it fails with an error.
This can be fixed by adding a variable and passing the address of this variable instead of the
temporary. The -fpermissive compiler flag turns compile-time errors into warnings and can be
used as a temporary workaround.

Miscellaneous

G++ now sets the predefined macro __cplusplus to the correct value: 199711L for C++98/03, and
201103L for C++11.

G++ now properly re-uses stack space allocated for temporary objects when their lifetime ends, which
can significantly lower stack consumption for some C++ functions. As a result of this, some code with
undefined behavior will now break.

When an extern declaration within a function does not match a declaration in the enclosing context,
G++ now properly declares the name within the namespace of the function rather than the
namespace which was open just before the function definition.

G++ now implements the proposed resolution of the C++ standard's core issue 253. Default
initialization is allowed if it initializes all subobjects, and code that fails to compile can be fixed by
providing an initializer such as:

struct A { A(); };
struct B : A { int i; };
const B b = B();

Access control is now applied to typedef names used in a template, which may cause G++ to reject
some ill-formed code that was accepted by earlier releases. The -fno-access-control option can
be used as a temporary workaround until the code is corrected.

G++ now implements the C++ standard's core issue 176. Previously, G++ did not support using the
injected-class-name of a template base class as a type name, and lookup of the name found the
declaration of the template in the enclosing scope. Now lookup of the name finds the injected-class-
name, which can be used either as a type or as a template, depending on whether or not the name is
followed by a template argument list. As a result of this change, some code that was previously
accepted may be ill-formed, because:

1. the injected-class-name is not accessible because it is from a private base, or

2. the injected-class-name cannot be used as an argument for a template parameter.

In either of these cases, the code can be fixed by adding a nested-name-specifier to explicitly name
the template. The first can be worked around with -fno-access-control , the second is only
rejected with -pedantic.

Experimental C+ + Features

g++ now supports a new command line option, -std=c++1y.

New thread_local Keyword

g++ now implements the C++11 thread_local keyword. In comparison with the GNU __thread
keyword, thread_local allows dynamic initialization and destruction semantics.

User Guide

100

The use of the thread_local keyword has currently one important limitation: when the
dlclose() function is used to unload a dynamically loaded DSO that contains the definition of a
thread_local object, the thread_local object is destroyed, its destructor is called and the DSO
is unmapped from the address space of the process. If a thread in the process tries to access the
thread_local object after this, the program may terminate unexpectedly. As a result, the
programmer may have to take extra care to ensure that thread_local objects in a DSO are not
referred after it has been unloaded.

See also the next item for dynamic initialization issues.

Dynamic In it ializ at ion of Thread- local Variables

The C++11 and OpenMP standards allow thread-local and thread-private variables to have dynamic
(that is, runtime) initialization. To support this, any use of such a variable goes through a wrapper
function that performs necessary initialization.

When the use and definition of the variable are in the same translation unit, this overhead can be
optimized away, but when the use is in a different translation unit, there is significant overhead even
if the variable does not actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining translation unit needs to trigger dynamic initialization (either
because the variable is statically initialized, or a use of the variable in the defining translation unit
will be executed before any uses in another translation unit), they can avoid this overhead by using
the new -fno-extern-tls-init option.

By default, g++ uses the -fextern-tls-init option.

C+ + 11 At t ribute Syntax

g++ now implements the C++11 attribute syntax, for example:

[[noreturn]] void f();

C+ + 11 Alignment Specif ier

g++ now implements the C++11 alignment specifier, for example:

alignas(double) int i;

B.2.1.2.3. C/C+ + Warnings

GCC 4.7.0 and later adds a number of new warnings that are either enabled by default, or by using
the -Wall option. Although these warnings do not result in a compilation failure on their own, often
-Wall is used in conjunction with -Werror, causing these warnings to act like errors. This section
provides a list of these new or newly enabled warnings. Unless noted otherwise, these warnings
apply to both C and C++.

The behavior of the -Wall command line option has changed and now includes the new warning
flags -Wunused-but-set-variable and, with -Wall -Wextra, -Wunused-but-set-
parameter. This may result in new warnings in code that compiled cleanly with previous versions of
GCC. For example, consider the following code:

void fn (void)
{
 int foo;
 foo = bar (); /* foo is never used. */
}

⁠Appendix B. Changes in Version 3.0

101

The following diagnostic output will be produced:

warning: variable "foo" set but not used [-Wunused-but-set-variable]

To fix this issue, first see if the unused variable or parameter can be removed without changing the
result or logic of the surrounding code. If not, annotate it with __attribute__((__unused__)). As
a workaround, you can use the -Wno-error=unused-but-set-variable or -Wno-
error=unused-but-set-parameter command line option.

The -Wenum-compare option causes GCC to report a warning when values of different enum types
are being compared. Previously, this option only worked for C++ programs, but now it works for C as
well. This warning is enabled by -Wall and may be avoided by using a type cast.

Casting integers to larger pointer types now causes GCC to display a warning by default. To disable
these warnings, use the -Wno-int-to-pointer-cast option, which is available for both C and
C++.

Conversions between NULL and non-pointer types now cause GCC to report a warning by default.
Previously, these warnings were only displayed when explicitly using -Wconversion. To disable
these warnings, use the new -Wno-conversion-null command line option.

GCC can now warn when a class that has virtual functions and a non-virtual destructor is destroyed
by using delete. This is unsafe to do because the pointer might refer to a base class that does not
have a virtual destructor. The warning is enabled by -Wall and by a new command line option, -
Wdelete-non-virtual-dtor.

New -Wc++11-compat and -Wc++0x-compat options are now available. These options cause
GCC to display a warning about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011 (such as identifiers in ISO C++ 1998 that are keywords in ISO C++ 2011). This
warning is enabled by -Wall and enables the -Wnarrowing option.

B.2.1 .3. Fo rt ran

B.2.1.3.1. New Features

A new compile flag -fstack-arrays has been added. This flag causes all local arrays to be put
on stack memory, which can significantly improve the performance of some programs. Note that
programs that use very large local arrays may require you to extend your runtime limits for stack
memory.

Compile time has been significantly improved. For example, the improvement may be noticeable
when working with programs that use large array constructors.

To improve code generation and diagnostics, the -fwhole-file compile flag is now enabled
by default, and can be used with a newly supported -fwhole-program flag. To disable it, use
the deprecated -fno-whole-file flag.

A new command line option -M is now supported. Similarly to gcc, this option allows you to
generate Makefile dependencies. Note that the -cpp option may be required as well.

The -finit-real= command line option now supports snan as a valid value. This allows you
to initialize REAL and COMPLEX variables with a signaling NaN (not a number), and requires you
to enable trapping (for example, by using the -ffpe-trap= command line option). Note that
compile-time optimizations may turn a signaling NaN into a quiet NaN.

A new command line option -fcheck= has been added. This option accepts the following
arguments:

User Guide

102

The -fcheck=bounds option is equivalent to the -fbounds-check command line option.

The -fcheck=array-temps option is equivalent to the -fcheck-array-temporaries
command line option.

The -fcheck=do option checks for invalid modification of loop iteration variables.

The -fcheck=recursive option checks for recursive calls to subroutines or functions that
are not marked as recursive.

The -fcheck=pointer option performs pointer association checks in calls, but does not
handle undefined pointers nor pointers in expressions.

The -fcheck=all option enables all of the above options.

A new command line option -fno-protect-parens has been added. This option allows the
compiler to reorder REAL and COMPLEX expressions with no regard to parentheses.

When OpenMP's WORKSHARE is used, array assignments and WHERE will now be run in parallel.

More Fortran 2003 and Fortran 2008 mathematical functions can now be used as initialization
expressions.

The GCC$ compiler directive now enables support for some extended attributes such as
STDCALL.

B.2.1.3.2. Compat ib ility Changes

The -Ofast command line option now automatically enables the -fno-protect-parens and -
fstack-arrays flags.

Front-end optimizations can now be disabled by the -fno-frontend-optimize option, and
selected by the -ffrontend-optimize option. The former is essentially only desirable if invalid
Fortran source code needs to be compiled (for example, when functions—as compared to
subroutines—have side-effects) or to work around compiler bugs.

The GFORTRAN_USE_STDERR environment variable has been removed, and GNU Fortran now
always prints error messages to standard error.

The -fdump-core command line option and the GFORTRAN_ERROR_DUMPCORE environment
variable have been removed. When encountering a serious error, GNU Fortran now always aborts
the execution of the program.

The -fbacktrace command line option is now enabled by default. When a fatal error occurs,
GNU Fortran now attempts to print a backtrace to standard error before aborting the execution of
the program. To disable this behavior, use the -fno-backtrace option.

GNU Fortran no longer supports the use of the -M command line option to generate Makefile
dependencies for the module path. To perform this operation, use the -J option instead.

To significantly reduce the number of warnings, the -Wconversion command line option now
only displays warnings when a conversion leads to information loss, and a new command line
option -Wconversion-extra has been added to display warnings about other conversions.
The -Wconversion option is now enabled with -Wall .

A new command line option -Wunused-dummy-argument has been added. This option can be
used to display warnings about unused dummy arguments, and is now enabled with -Wall . Note
that the -Wunused-variable option previously also warned about unused dummy arguments.

⁠Appendix B. Changes in Version 3.0

103

The COMMON default padding has been changed. Previously, the padding was added before a
variable. Now it is added after a variable to increase the compatibility with other vendors, as well
as to help to obtain the correct output in some cases. Note that this behavior is in contrast with the
behavior of the -falign-commons option.

GNU Fortran no longer links against the libgfortranbegin library. The MAIN__ assembler
symbol is the actual Fortran main program and is invoked by the main function, which is now
generated and put in the same object file as MAIN__. Note that the libgfortranbegin library is
still present for backward compatibility.

Some internal names used in the assembler or object file have changed for symbols declared in the
specification part of a module. If an affected module — or a file using it via use association — is
recompiled, the module and all files which directly use such symbols have to be recompiled as well.
This change only affects the following kind of module symbols:

Procedure pointers. Note that C-interoperable function pointers (type(c_funptr)) are not
affected, nor are procedure-pointer components.

Deferred-length character strings.

B.2.1.3.3. Fort ran 2003 Features

Improved but still experimental support for polymorphism between libraries and programs and for
complicated inheritance patterns.

Generic interface names which have the same name as derived types are now supported, which
allows the creation of constructor functions. Note that Fortran does not support static constructor
functions; only default initialization or an explicit structure-constructor initialization are available.

Automatic (re)allocation: In intrinsic assignments to allocatable variables, the left-hand side will
be automatically allocated (if unallocated) or reallocated (if the shape or type parameter is
different). To avoid the small performance penalty, you can use a(:) = ... instead of a =
... for arrays and character strings — or disable the feature using -std=f95 or -fno-
realloc-lhs.

Experimental support of the ASSOCIATE construct has been added.

In pointer assignments it is now possible to specify the lower bounds of the pointer and, for a
rank-1 or a simply contiguous data-target, to remap the bounds.

Deferred type parameter: For scalar allocatable and pointer variables the character length can
now be deferred.

Namelist variables with allocatable attribute, pointer attribute, and with a non-constant length type
parameter are now supported.

Support has been added for procedure-pointer function results and procedure-pointer
components (including PASS).

Support has been added for allocatable scalars (experimental), DEFERRED type-bound
procedures, and the ERRMSG= argument of the ALLOCATE and DEALLOCATE statements.

The ALLOCATE statement now supports type-specs and the SOURCE= argument.

Rounding (ROUND= , RZ, ...) for output is now supported.

The INT_FAST{8,16,32,64,128}_T format for ISO_C_BINDING intrinsic module type
parameters is now supported.

User Guide

104

OPERATOR(*) and ASSIGNMENT(=) are now allowed as GENERIC type-bound procedures (i.e.
as type-bound operators).

Support for unlimited polymorphic variables (CLASS(*)) has been added. Non-constant
character lengths are not yet supported.

B.2.1.3.4 . Fort ran 2003 Compat ib ility

Extensible derived types with type-bound procedure or procedure pointer with PASS attribute now
have to use CLASS in line with the Fortran 2003 standard; the workaround to use TYPE is no longer
supported.

B.2.1.3.5. Fort ran 2008 Features

A new command line option -std=f2008ts has been added. This option enables support for
programs that conform to the Fortran 2008 standard and the draft Technical Specification (TS)
29113 on Further Interoperability of Fortran with C. For more information, refer to the Chart of
Fortran TS 29113 Features supported by GNU Fortran.

The DO CONCURRENT construct is now supported. This construct can be used to specify that
individual loop iterations do not have any interdependencies.

Full single-image support except for polymorphic coarrays has been added, and can be enabled
by using the -fcoarray=single command line option. Additionally, GNU Fortran now provides
preliminary support for multiple images via an MPI-based coarray communication library. Note
that the library version is not yet usable as remote coarray access is not yet possible.

The STOP and ERROR STOP statements have been updated to support all constant expressions.

The CONTIGUOUS attribute is now supported.

Use of ALLOCATE with the MOLD argument is now supported.

The STORAGE_SIZE intrinsic inquiry function is now supported.

The NORM2 and PARITY intrinsic functions are now supported.

The following bit intrinsics have been added:

the POPCNT and POPPAR bit intrinsics for counting the number of 1 bits and returning the
parity;

the BGE, BGT , BLE, and BLT bit intrinsics for bitwise comparisons;

the DSHIFTL and DSHIFTR bit intrinsics for combined left and right shifts;

the MASKL and MASKR bit intrinsics for simple left and right justified masks;

the MERGE_BITS bit intrinsic for a bitwise merge using a mask;

the SHIFTA, SHIFTL, and SHIFTR bit intrinsics for shift operations;

the transformational bit intrinsics IALL, IANY , and IPARITY .

The EXECUTE_COMMAND_LINE intrinsic subroutine is now supported.

The IMPURE attribute for procedures is now supported. This allows the use of ELEMENTAL
procedures without the restrictions of PURE.

Null pointers (including NULL()) and unallocated variables can now be used as an actual
argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent

⁠Appendix B. Changes in Version 3.0

105

http://gcc.gnu.org/wiki/TS29113Status

argument.

Non-pointer variables with the TARGET attribute can now be used as an actual argument to
POINTER dummies with INTENT(IN).

Pointers that include procedure pointers and those in a derived type (pointer components) can
now also be initialized by a target instead of only by NULL.

The EXIT statement (with construct-name) can now be used to leave the ASSOCIATE, BLOCK, IF,
SELECT CASE, and SELECT TYPE constructs in addition to DO .

Internal procedures can now be used as actual arguments.

The named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS, and
CHARACTER_KINDS of the intrinsic module ISO_FORTRAN_ENV have been added. These arrays
contain the supported 'kind' values for the respective types.

The C_SIZEOF module procedures of the ISO_C_BINDINGS intrinsic module and the
COMPILER_VERSION and COMPILER_OPTIONS module procedures of the
ISO_FORTRAN_ENV intrinsic module have been implemented.

The OPEN statement now supports the NEWUNIT= option. This option returns a unique file unit
and therefore prevents inadvertent use of the same unit in different parts of the program.

Unlimited format items are now supported.

The INT{8,16,32} and REAL{32,64,128} format for ISO_FORTRAN_ENV intrinsic module
type parameters are now supported.

It is now possible to use complex arguments with the TAN, SINH, COSH, TANH, ASIN, ACOS, and
ATAN functions. Additionally, the new functions ASINH, ACOSH, and ATANH have been added for
real and complex arguments, and ATAN(Y,X) now serves as an alias for ATAN2(Y,X).

The BLOCK construct has been implemented.

B.2.1.3.6 . Fort ran 2008 Compat ib ility

The implementation of the ASYNCHRONOUS attribute in GCC is now compatible with the candidate
draft of TS 29113: Technical Specification on Further Interoperability with C.

B.2.1.3.7. Fort ran 77 Compat ib ility

When the GNU Fortran compiler is issued with the -fno-sign-zero option, the SIGN intrinsic now
behaves as if zero were always positive.

B.2.1.3.8. O ther Changes

BACKTRACE Int rinsic

A new intrinsic subroutine, BACKTRACE, has been added. This subroutine shows a backtrace at an
arbitrary place in user code, program execution continues normally afterwards.

Float ing Point Numbers with “q” as Exponent ial

Reading floating point numbers that use q for the exponential (such as 4.0q0) is now supported as
a vendor extension for better compatibility with old data files. It is strongly recommended to use the
equivalent but standard conforming e (such as 4.0e0) for I/O.

User Guide

106

For Fortran source code, consider replacing the q in floating-point literals by a kind parameter (such
as 4.0e0_qp with a suitable qp). Note that — in Fortran source code — replacing q with a simple e
is not equivalent.

GFORTRAN_TMPDIR Environment Variable

The GFORTRAN_TMPDIR environment variable for specifying a non-default directory for files
opened with STATUS="SCRATCH" is not used anymore. Instead, gfortran checks the POSIX/GNU
standard TMPDIR environment variable and if TMPDIR is not defined, gfortran falls back to other
methods to determine the directory for temporary files as documented in the user manual.

TS 29 113

Assumed types (TYPE(*)) are now supported.

Experimental support for assumed-rank arrays (dimension(..)) has been added. Note that at the
moment, the gfortran array descriptor is used, which is different from the array descriptor defined in
TS 29113. For more information, see the header file of gfortran or use the Chasm language
interoperability tools.

B.2.1.3.9 . Caveats

The version of module files (the .mod files) has been incremented. Fortran modules compiled by
earlier GCC versions have to be recompiled when they are used by files compiled with GCC 4.8, as
this version of GCC is not able to read .mod files created by earlier versions; attempting to do so
fails with an error message.

Note

The ABI of the produced assembler data itself has not changed; object files and libraries are
fully compatible with older versions except as noted in Section B.2.1.3.10, “ABI Compatibility” .

B.2.1.3.10. ABI Compat ib ility

Some internal names used in the assembler or object file have changed for symbols declared in the
specification part of a module. If an affected module — or a file using it via use association — is
recompiled, the module and all files which directly use such symbols have to be recompiled as well.
This change only affects the following kind of module symbols:

Procedure pointers. Note that C-interoperable function pointers (type(c_funptr)) are not
affected, nor are procedure-pointer components.

Deferred-length character strings.

B.2.1 .4 . x86-specific Impro vement s

New Inst ruct ions

GCC 4.8 has added support for the Intel FXSR , XSAVE, and XSAVEOPT instructions. Corresponding
intrinsics and built-in functions can now be enabled by using the -mfxsr, -mxsave, and -
mxsaveopt command line options respectively.

In addition, support for the RDSEED , ADCX, ADOX, and PREFETCHW instructions has been added
and can be enabled by using the -mrdseed , -madx, and -mprfchw command line options.

⁠Appendix B. Changes in Version 3.0

107

New Built - in Funct ions to Detect Run- t ime CPU Type and ISA

A new built-in function, __builtin_cpu_is(), has been added to detect if the run-time CPU is of a
particular type. This function accepts one string literal argument with the CPU name, and returns a
positive integer on a match and zero otherwise. For example, __builtin_cpu_is("westmere")
returns a positive integer if the run-time CPU is an Intel Core i7 Westmere processor. For a complete
list of valid CPU names, see the user manual.

A new built-in function, __builtin_cpu_supports(), has been added to detect if the run-time
CPU supports a particular ISA feature. This function accepts one string literal argument with the ISA
feature, and returns a positive integer on a match and zero otherwise. For example,
__builtin_cpu_supports("ssse3") returns a positive integer if the run-time CPU supports
SSSE3 instructions. For a complete list of valid ISA names, see the user manual.

Important

If these built-in functions are called before any static constructors are invoked, such as IFUNC
initialization, then the CPU detection initialization must be explicitly run using this newly
provided built-in function, __builtin_cpu_init(). The initialization needs to be done only
once. For example, the following is sample invocation inside an IFUNC initializer:

static void (*some_ifunc_resolver(void))(void)
{
 __builtin_cpu_init();
 if (__builtin_cpu_is("amdfam10h") ...
 if (__builtin_cpu_supports("popcnt") ...
}

Funct ion Mult iversioning

Function multiversioning allows the programmer to specify multiple versions of the same function,
each of which is specialized for a particular variant of a given target. At runtime, the appropriate
version is automatically executed depending upon the target where the execution takes place. For
example, consider the following code fragment:

__attribute__ ((target ("default"))) int foo () { return 0; }
__attribute__ ((target ("sse4.2"))) int foo () { return 1; }
__attribute__ ((target ("arch=atom"))) int foo () { return 2; }

When the function foo() is executed, the result returned depends upon the architecture where the
program runs, not the architecture where the program was compiled. See the GCC Wiki for more
details.

New RTM and HLE Int rinsics

Support for the Intel RTM and HLE intrinsics, built-in functions, and code generation has been added
and can be enabled by using the -mrtm and -mhle command line options. This is done via
intrinsics for Restricted Transactional Memory (RTM) and extensions to the memory model for Hardware
Lock Elision (HLE).

For HLE, two new flags can be used to mark a lock as using hardware elision:

__ATOMIC_HLE_ACQUIRE

User Guide

108

http://gcc.gnu.org/wiki/FunctionMultiVersioning

Starts lock elision on a lock variable. The memory model in use must be
__ATOMIC_ACQUIRE or stronger.

__ATOMIC_HLE_RELEASE

Ends lock elision on a lock variable. The memory model must be __ATOMIC_RELEASE or
stronger.

For example, consider the following code fragment:

while (__atomic_exchange_n (& lockvar, 1, __ATOMIC_ACQUIRE
 | __ATOMIC_HLE_ACQUIRE))
 _mm_pause ();

// work with the acquired lock

__atomic_clear (& lockvar, __ATOMIC_RELEASE | __ATOMIC_HLE_RELEASE);

The new intrinsics that support Restricted Transactional Memory are:

unsigned _xbegin (void)

Attempts to start a transaction. If it succeeds, this function returns _XBEGIN_STARTED ,
otherwise it returns a status value indicating why the transaction could not be started.

void _xend (void)

Commits the current transaction. When no transaction is active, this function causes a fault.
All memory side effects of the transactions become visible to other threads in an atomic
manner.

int _xtest (void)

Returns a non-zero value if a transaction is currently active, or zero if it is not.

void _xabort (unsigned char status)

Aborts the current transaction. When no transaction is active, this is a no-op. The
parameter status is included in the return value of any _xbegin() call that is aborted by
this function.

The following example illustrates the use of these intrinsics:

if ((status = _xbegin ()) == _XBEGIN_STARTED)
{
 // some code
 _xend ();
}
else
{
 // examine the status to see why the transaction failed and possibly
retry
}

Transact ions Using Transact ional Synchroniz at ion Extensions

Transactions in the transactional memory feature (the -fgnu-tm option) of GCC can now be run
using Transactional Synchronization Extensions (TSX) if available on x86 hardware.

⁠Appendix B. Changes in Version 3.0

109

Support for AMD Family 15h Processors

The x86 backend of GCC now supports CPUs based on AMD Family 15h cores with the 64-bit x86
instruction set support. This can be enabled by using the -march=bdver3 option.

Support for AMD Family 16 h Processors

The x86 backend of GCC now supports CPUs based on AMD Family 16h cores with the 64-bit x86
instruction set support. This can be enabled by using the -march=btver2 option.

B.2.1 .5 . ABI Co mpat ibilit y

This section describes compatibility between the Red Hat Developer Toolset compilers and the
system compilers at the application binary interface (ABI) level.

B.2.1.5.1. C+ + ABI

Because the upstream GCC community development does not guarantee C++11 ABI compatibility
across major versions of GCC, the same applies to use of C++11 with Red Hat Developer Toolset.
Consequently, using the -std=c++11 option is supported in Red Hat Developer Toolset 3.0 only
when all C++ objects compiled with that flag have been built using the same major version of Red Hat
Developer Toolset. The mixing of objects, binaries and libraries, built by the Red Hat
Enterprise Linux 6 or 7 system toolchain GCC using the -std=c++0x or -std=gnu++0x flags, with
those built with the -std=c++11 or -std=gnu++11 flags using the GCC in Red Hat
Developer Toolset is explicitly not supported.

As later major versions of Red Hat Developer Toolset may use a later major release of GCC, forward-
compatibility of objects, binaries, and libraries built with the -std=c++11 or -std=gnu++11
options cannot be guaranteed, and so is not supported.

The default language standard setting for Red Hat Developer Toolset is C++98. Any C++98-
compliant binaries or libraries built in this default mode (or explicitly with -std=c++98) can be
freely mixed with binaries and shared libraries built by the Red Hat Enterprise Linux 6 or 7 system
toolchain GCC. Red Hat recommends use of this default -std=c++98 mode for production software
development.

Important

Use of C++11 features in your application requires careful consideration of the above ABI
compatibility information.

Aside from the C++11 ABI, discussed above, the Red Hat Enterprise Linux Application Compatibility
Specification is unchanged for Red Hat Developer Toolset. When mixing objects built with Red Hat
Developer Toolset with those built with the Red Hat Enterprise Linux 6 or 7 toolchain (particularly
.o /.a files), the Red Hat Developer Toolset toolchain should be used for any linkage. This ensures
any newer library features provided only by Red Hat Developer Toolset are resolved at link-time.

A new standard mangling for SIMD vector types has been added to avoid name clashes on systems
with vectors of varying length. By default the compiler still uses the old mangling, but emits aliases
with the new mangling on targets that support strong aliases. -Wabi will now display a warning
about code that uses the old mangling.

B.2.1.5.2. Miscellaneous

GCC now optimizes calls to various standard C string functions such as strlen(), strchr(),

User Guide

110

http://www.redhat.com/f/pdf/rhel/RHEL6_App_Compatibility_WP.pdf

strcpy(), strcat() and stpcpy() (as well as their respective _FORTIFY_SOURCE variants) by
transforming them into custom, faster code. This means that there might be fewer or other calls to
those functions than in the original source code. The optimization is enabled by default at -O2 or
higher optimization levels. It is disabled when using -fno-optimize-strlen or when optimizing
for size.

When compiling for 32-bit GNU/Linux and not optimizing for size, -fomit-frame-pointer is now
enabled by default. The prior default setting can be chosen by using the -fno-omit-frame-
pointer command line option.

Floating-point calculations on x86 targets and in strict C99 mode are now compiled by GCC with a
stricter standard conformance. This might result in those calculations executing significantly slower.
It can be disabled using -fexcess-precision=fast.

B.2.1 .6 . Debugging Co mpat ibilit y

GCC now generates DWARF debugging information that uses more or newer DWARF features than
previously. GDB contained in Red Hat Developer Toolset can handle these features, but versions of
GDB older than 7.0 cannot. GCC can be restricted to only generate debugging information with older
DWARF features by using the -gdwarf-2 -gstrict-dwarf or -gdwarf-3 -gstrict-dwarf
options (the latter are handled partially by versions of GDB older than 7.0).

Many tools such as Valgrind , SystemTap , or third-party debuggers utilize debugging information.
It is suggested to use the -gdwarf-2 -gstrict-dwarf options with those tools.

Note

Use of Link-time Optimization with debug generation is not yet supported in gcc 4.7 and 4.8
and so use of the -flto and the -g options together is unsupported in Red Hat Developer
Toolset.

B.2.1 .7 . Ot her Co mpat ibilit y

GCC is now more strict when parsing command line options, and both gcc and g++ report an error
when invalid command line options are used. In particular, when only linking and not compiling
code, earlier versions of GCC ignored all options starting with --. For example, options accepted by
the linker such as --as-needed and --export-dynamic are not accepted by gcc and g++
anymore, and should now be directed to the linker using -Wl,--as-needed or -Wl,--export-
dynamic if that is intended.

Because of the new link-time optimization feature (see Section B.2.1.1.5, “Link-time Optimization”),
support for the older intermodule optimization framework has been removed and the -combine
command line option is not accepted anymore.

B.2.1 .8 . General Impro vement s and Changes

New Local Register Allocator

GCC 4.8 features a new Local Register Allocator (LRA), which replaces the 26-year old reload pass and
improves the quality of generated code. The new local register allocator is meant to be simpler, easier
to debug, and does a better job of register allocation.

AddressSanit iz er

⁠Appendix B. Changes in Version 3.0

111

A fast memory error detector called AddressSanitizer has been added and can be enabled by using
the -fsanitize=address command line option. It augments memory access instructions in order
to detect use-after-free and out-of-bound accesses to objects on the heap.

ThreadSanit iz er

A fast data race detector called ThreadSanitizer has been added in GCC 4.8. The option to enable this
feature is -fsanitize=thread .

Compiling Ext remely Large Funct ions

Many scalability bottlenecks have been removed from GCC optimization passes. As a consequence,
it is now possible to compile extremely large functions with smaller memory consumption in less time.

New -Og Opt imiz at ion Level

A new general optimization level, -Og , has been introduced. This optimization level addresses the
need for fast compilation and a superior debugging experience while providing a reasonable level of
runtime performance. Overall, the development experience should be better than the default
optimization level -O0 .

Caret Diagnost ic Messages

The diagnostic messages of GCC, which display a line of source code, now also show a caret that
indicates the column where the problem was detected. For example:

fred.cc:4:15: fatal error: foo: No such file or directory
#include <foo>
^
compilation terminated.

New - f ira-hoist -pressure Opt ion

A new command line option, -fira-hoist-pressure, has been added. This option uses the
register allocator to help decide when it is worthwhile to move expressions out of loops. It can reduce
the size of the compiler code, but it slows down the compiler. This option is enabled by default at -
Os.

New - fopt - in fo Opt ion

A new command line option, -fopt-info , has been added. This option controls printing
information about the effects of particular optimization passes, and takes the following form:

-fopt-info[-info][=file_name]

The info part of the option controls what is printed. Replace it with optimized to print information
when optimization takes place, missed to print information when optimization does not take place,
note to print more verbose information, or optall to print everything.

Replace file_name with the name of the file in which you want the information to be written. If you omit
this part of the option, GCC writes the information to the standard error output stream.

For example, to display a list of optimizations that were enabled by the -O2 option but had no effect
when compiling a file named foo.c, type:

gcc -O2 -fopt-info-missed foo.c

User Guide

112

New - f loop-nest -opt imiz e Opt ion

A new command line option, -floop-nest-optimize, has been added. This option enables an
experimental ISL-based loop nest optimizer, a generic loop nest optimizer that is based on the Pluto
optimization algorithms and that calculates a loop structure optimized for data-locality and
paralelism. For more information about this optimizer, see http://pluto-compiler.sourceforge.net.

Hot and Cold At t ributes on Labels

The hot and cold function attributes can now also be applied to labels. Hot labels tell the compiler
that the execution path following the label is more likely than any other execution path, and cold
labels convey the opposite meaning. These attributes can be used in cases where
__builtin_expect cannot be used, for instance with a computed goto or asm goto .

B.2.1 .9 . Debugging Enhancement s

DWARF4

DWARF4 is now used as the default debugging data format when generating debugging
information. To get the maximum benefit from this new debugging representation, use the latest
version of Valgrind , elfut ils , and GDB included in this release.

New -gsplit -dwarf Opt ion

A new command line option, -gsplit-dwarf, has been added. This option tells the compiler driver
to separate as much DWARF debugging information as possible into a separate output file with the
.dwo file extension, and allows the build system to avoid linking files with debugging information.

In order to be useful, this option requires a debugger capable of reading .dwo files, such as the
version of GDB included in Red Hat Developer Toolset 3.0.

Note

elfut ils , SystemTap , and Valgrind do not support the .dwo files.

B.2.1 .10. Caveat s

Aggressive Loop Opt imiz at ions

The loop optimizer of GCC has been improved to use language constraints in order to derive bounds
for the number of iterations of a loop. The bounds are then used as a guide to loop unrolling,
peeling, and loop exit test optimizations.

The optimizations assume that the loop code does not invoke undefined behavior by, for example,
causing signed integer overflows or making out-of-bound array accesses. For example, consider the
following code fragment:

unsigned int foo()
{
 unsigned int data_data[128];

 for (int fd = 0; fd < 128; ++fd)

⁠Appendix B. Changes in Version 3.0

113

http://pluto-compiler.sourceforge.net

 data_data[fd] = fd * (0x02000001); // error

 return data_data[0];
}

When the value of the fd variable is 64 or above, the fd * 0x02000001 operation overflows,
which is invalid in both C and C++ for signed integers. In the example above, GCC may generate
incorrect code or enter an infinite loop.

To fix this error, use the appropriate casts when converting between signed and unsigned types to
avoid overflows, for instance:

data_data[fd] = (uint32_t) fd * (0x02000001U); // ok

If necessary, this optimization can be turned off by using the new command line option -fno-
aggressive-loop-optimizations.

B.2.2. Changes Since Red Hat Developer T oolset 2.1 and Red Hat
Enterprise Linux 7.0

The following features have been added since the release of GCC in Red Hat Developer Toolset 2.1
and Red Hat Enterprise Linux 7.0:

B.2.2 .1 . General Changes

Improved Link-T ime Opt imiz at ion

Link-time optimization (LTO) has been improved in a number of ways. Better type merging allows for
a faster operation, and less memory is required. Virtual functions are now being removed early in the
LTO process, which results in smaller object files and significant improvements to link time.

Improved Inter-Procedural Analysis

Inter-procedural analysis (IPA) has been improved, especially the devirtualization optimization. Also,
speculative devirtualization optimization has been added, which can be enabled using the -
fdevirtualize-speculatively option.

Improved Prof iling

Support for profiling code has been made more reliable.

Support for the In tel AVX-512 Architecture

GCC now supports the Intel AVX-512 target architecture, as well as a number of new Intel
microarchitectures.

New -Wdate- t ime Warning Opt ion

A new warning option, -Wdate-time, has been added. It triggers a warning when the __DATE__,
__TIME__ or __TIMESTAMP__ macros are used.

New GCC ivdep Pragma

User Guide

114

A new pragma, #pragma GCC ivdep, has been added. This pragma notifies the compiler that no
loop-carried dependencies exist that would prevent a concurrent execution with SIMD (Single
Instruction, Multiple Data) of consecutive iterations of the loop that follows the pragma.

Mudf lap Tool Removed

The Mudf lap runtime checking tool was removed from the GCC suite and is no longer supported.

B.2.2 .2 . C and C++ Changes

ISO C11 Support

Support for C11 has been improved:

ISO C11 atomics (the _Atomic type specifier and qualifier and the <stdatomic.h> header) are
now supported.

ISO C11 generic selections (the _Generic keyword) are now supported.

ISO C11 thread-local storage (the _Thread_local keyword) is now supported.

New __auto_type Extension for the C Language

A new C extension, __auto_type, has been added. It provides a subset of the functionality of C++11
auto in GNU C.

Support for OpenMP 4 .0

The C and C++ compilers now support the OpenMP 4.0 specification. A new option, -fopenmp-
simd , has been added that can be used to enable OpenMP SIMD (Single Instruction, Multiple Data)
directives. The vectorization cost model for loops annotated with OpenMP and Cilk+ SIMD directives
can be altered using the new -fsimd-cost-model option. The cost models available are
unlimited , dynamic, and cheap.

Improved C+ + 14 Support

The g++ compiler offers improved support for various features of the C++ standard:

The C++1y return-type deduction for normal functions has been updated to conform to N3638
(see the accepted proposal at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3638.html).

C++1y lambda-capture initializers no longer trigger a warning when the -std=c++1y argument
is used. Parenthesized and brace-enclosed initializers are now also accepted.

C++1y variable-length arrays (VLA) are now supported, as well as initializers and lambda capture
by reference. Note that in C++1y mode, g++ complains about VLA usage not permitted by the draft
standard.

The C++1y [[deprecated]] attribute is now supported for marking classes and functions as
deprecated. A message for diagnosis can be included in the attribute.

C++1y digit separators are now supported. In order to ensure better code legibility, long numeric
literals can be subdivided using the single quote character, ' . For example:

int i = 123'456'789;

C++1y generic (polymorphic) lambdas are now supported. They serve as functional objects that

⁠Appendix B. Changes in Version 3.0

115

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3638.html

increment any type. For example:

auto incr = [](auto x) { return x++; };

Improved C+ + 11 and C+ + 14 Support in the C+ + Runt ime Library

The C++ runtime library C++11 support has been improved.

The <regex> header is now supported.

Experimental support for the upcoming ISO C++ standard, C++14, has been added.

New Undef ined-Behavior Detector

UndefinedBehaviorSanitizer (ubsan), a fast undefined-behavior detector, has been added
and can be enabled using the -fsanitize=undefined command line option. Various
computations will be instrumented to detect undefined behavior at run time.
UndefinedBehaviorSanitizer is currently available for the C and C++ languages.

Support for Cilk+

GCC now adds support for Cilk+, an extension to the C and C++ languages for parallel
programming. It can be enabled using the -fcilkplus option. The current support implements all
features of the version 1.2 ABI, with the exception of _Cilk_for.

A new runtime library, libcilkrts, is included in this release to support Cilk+. The libcilkrts
library will be a part of the gcc-libraries package in the future Red Hat Enterprise Linux releases, but
the package is not included in all supported Red Hat Enterprise Linux releases. To enable dynamic
linkage of binaries and libraries built with Red Hat Developer Toolset 3.1 GCC using Cilk+ features
on supported Red Hat Enterprise Linux releases that do not contain libcilkrts, install the
libcilkrts.so shared library from Red Hat Developer Toolset 3.1 with such binaries or libraries.

B.3. Changes in binut ils

Red Hat Developer Toolset 3.0 is distributed with binut ils 2.24 , which provides a number of bug
fixes and feature enhancements over the version included in Red Hat Enterprise Linux and the
previous version of Red Hat Developer Toolset. Below is a comprehensive list of new features in this
release.

B.3.1. Changes Since Red Hat Enterprise Linux 6.6

The following features have been added since the release of binut ils in Red Hat
Enterprise Linux 6.6:

The GNU assembler (as), GNU linker (ld), and other binary tools that are part of binutils are now
released under the GNU General Public License, version 3.

B.3.1 .1 . GNU Linker

Another ELF linker, gold , is now available in addition to ld , the existing GNU linker. gold is
intended to be a drop-in replacement for ld , so ld 's documentation is intended to be the reference
documentation. gold supports most of ld 's features, except notable ones such as MRI-compatible
linker scripts, cross-reference reports (--cref), and various other minor options. It also provides
significantly improved link time with very large C++ applications.

User Guide

116

In Red Hat Developer Toolset 3.0, the gold linker is not enabled by default. Users can explicitly
switch between ld and gold by using the alternatives mechanism.

B.3.1.1.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.6:

A new INPUT_SECTION_FLAGS keyword has been added to the linker script language. This
keyword can be used to select input sections by section header flags.

A new SORT_BY_INIT_PRIORITY keyword has been added to the linker script language. This
keyword can be used to sort sections by numerical value of the GCC init_priority attribute
encoded in the section name.

A new SORT_NONE keyword has been added to the linker script language. This keyword can be
used to disable section sorting.

A new linker-provided symbol, __ehdr_start, has been added. When producing ELF output, this
symbol points to the ELF file header (and nearby program headers) in the program's memory
image.

B.3.1.1.2. Compat ib ility Changes

The following compatibility changes have been made since the release of binut ils included in
Red Hat Enterprise Linux 6.6:

The --copy-dt-needed-entries command line option is no longer enabled by default.
Instead, --no-copy-dt-needed-entries is now the default option.

Evaluation of linker script expressions has been significantly improved. Note that this can
negatively affect scripts that rely on undocumented behavior of the old expression evaluation.

B.3.1 .2 . GNU Assembler

B.3.1.2.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.6:

The GNU Assembler no longer requires double ampersands in macros.

A new --compress-debug-sections command line option has been added to enable
compression of DWARF debug information sections in the relocatable output file. Compressed
debug sections are currently supported by the readelf, objdump, and gold tools, but not by
ld .

Support for .bundle_align_mode, .bundle_lock, and .bundle_unlock directives for
x86 targets has been added..

On x86 architectures, the GNU Assembler now allows rep bsf, rep bsr, and rep ret syntax.

B.3.1 .3. Ot her Binary T o o ls

B.3.1.3.1. New Features

The following features have been added since the release of binut ils included in Red Hat
Enterprise Linux 6.6:

⁠Appendix B. Changes in Version 3.0

117

 The readelf and objdump tools can now display the contents of the .debug.macro sections.

 New --dwarf-start and --dwarf-end command line options have been added to the
readelf and objdump tools. These options are used by the new Emacs mode (see the dwarf-
mode.el file).

 A new --interleave-width command line option has been added to the objcopy tool to
allow the use of the --interleave to copy a range of bytes from the input to the output.

 A new --dyn-syms command line option has been added to the readelf tool. This option can
be used to dump dynamic symbol table.

 A new tool, elfedit, has been added to binut ils . This tool can be used to directly manipulate
ELF format binaries.

 A new command line option --addresses (or -a for short) has been added to the addr2line
tool. This option can be used to display addresses before function and source file names.

 A new command line option --pretty-print (or -p for short) has been added to the
addr2line tool. This option can be used to produce human-readable output.

Support for dwz -m optimized debug information has been added.

The devtoolset-2-binutils-devel package now provides the demangle.h header file.

B.3.2. Changes Since Red Hat Developer T oolset 2.1 and Red Hat
Enterprise Linux 7.0

The following bugs have been fixed and features added since the release of binut ils in Red Hat
Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0:

The detection of uncompressed .debug_str sections has been fixed.

The decoding of abbreviations using the DW_FORM_ref_addr attribute has been fixed.

The objcopy utility now supports wildcards for section names in command line options.

The BFD linker script language now supports the ALIGN_WITH_INPUT directive for output
sections. The directive directs the linker to compute the maximum alignment of the associated
input sections and use that alignment for the output section.

The AVX-512 (512-bit Advanced Vector Extensions) are now supported.

B.4. Changes in elfut ils

Red Hat Developer Toolset 3.0 is distributed with elfut ils 0.159 , which provides a number of bug
fixes and feature enhancements over the Red Hat Enterprise Linux system version and the version
included in the previous release of Red Hat Developer Toolset. Below is a comprehensive list of new
features in this release.

B.4 .1. Changes Since Red Hat Developer T oolset 2.1

The following features have been added since the release of elfut ils 0.157 in Red Hat
Developer Toolset 2.1:

The l ibdwf l library has been improved in a number of ways:

User Guide

118

The dwfl_core_file_report has a new parameter, executable.

The following new functions have been added: dwfl_module_getsymtab_first_global ,
dwfl_module_getsym_info , and dwfl_module_addrinfo .

An unwinder has been added with a Dwfl_Thread_Callbacks type, two opaque types
(Dwfl_Thread and Dwfl_Frame), and the following functions: dwfl_attach_state,
dwfl_pid , dwfl_thread_dwfl , dwfl_thread_tid , dwfl_frame_thread ,
dwfl_thread_state_registers, dwfl_thread_state_register_pc,
dwfl_getthread_frames, dwfl_getthreads, dwfl_thread_getframes, and
dwfl_frame_pc.

The eu-addr2line utility has a new option, -x or --symbol-sections, to show the section in
which an address was found.

A new utility, eu-stack, has been added that uses the new unwinder for processes and cores.

A new backend has been added. The unwinder now supports the ARM 64-bit architecture, which
allows for manipulation of ELF and DWARF files specific for ARM 64-bit.

The CVE-2014-0172 has been fixed. The bug was caused by an integer overflow that led to a
heap-based buffer overflow in the l ibdw library. To fix the problem, an overflow check has been
added before calling malloc to uncompress data.

B.4 .2. Changes Since Red Hat Enterprise Linux 7.0

The following features have been added since the release of elfut ils 0.158 in Red Hat
Enterprise Linux 7.0:

The eu-stack utility has two new options:

A new option, -d or --debugname, has been added for looking up DWARF debugging
information names for frame addresses.

A new option, -i or --inlines, has been added for showing inlined frames using DWARF
debugging information.

The l ibdwelf library has been improved in a number of ways:

A new header file, libdwelf.h, has been added for libdw.so low-level DWARF or ELF
helper functions.

New functions have been added: dwelf_elf_gnu_debuglink,
dwelf_dwarf_gnu_debugaltlink, and dwelf_elf_gnu_build_id .

The l ibdw library has been improved in a number of ways:

Support for DWZ multifile forms, DW_FORM_GNU_ref_alt and DW_FORM_GNU_strp_alt, is
now enabled by default and is no longer experimental.

New functions, dwarf_getalt and dwarf_setalt, have been added for getting or setting
the alternative debugging file used for the alt FORMs.

The dwfl_linux_proc_find_elf callback now finds ELF from process memory for
(deleted) files if the Dwfl has a process state attached.

In the l ibdwf l library, the dwfl_build_id_find_debuginfo and
dwfl_standard_find_debuginfo functions now try to resolve and set an alternative
debugging file.

⁠Appendix B. Changes in Version 3.0

119

https://access.redhat.com/security/cve/CVE-2014-0172

The elfut ils backends have been improved in a number of ways:

Call Frame Information (CFI) unwinding has been added for the ARM architecture. It relies on the
.debug_frame section of ELF files.

A mode compatible with the ARM process initial register state has been added to the ARM 64-
bit architecture.

Native and core-unwinding support for the ARM 64-bit architecture has been added.

All separate elfutils-robustify modifications have been included. The elfutils-robustify changes
provide functional and stability fixes that are not a part of the official elfut ils distribution.

The CVE-2014-0172 has been fixed. The bug was caused by an integer overflow that led to a
heap-based buffer overflow in the l ibdw library. To fix the problem, an overflow check has been
added before calling malloc to uncompress data.

B.5. Changes in GDB

Red Hat Developer Toolset 3.0 is distributed with GDB 7.8 , which provides a number of
improvements and bug fixes over the Red Hat Enterprise Linux system versions and the version
included in the previous release of Red Hat Developer Toolset. Below is a comprehensive list of new
features in this release.

B.5.1. Changes Since Red Hat Enterprise Linux 6.6

The following features have been added since the release of GDB in Red Hat Enterprise Linux 6.6:

New Feat ures

Support for linespecs has been improved (in particular, a more consistent handling of ambiguous
linespecs, some support for labels in the program's source, and FILE:LINE support now extends to
further linespecs types). Breakpoints are now set on all matching locations in all inferiors and will
be updated according to changes in the inferior.

New inferior control commands skip function and skip file have been added. These
commands can be uses to skip certain functions and files when stepping.

The info threads command now displays the thread name as set by prctl or
pthread_setname_np. In addition, new commands thread name and thread find have
been added. The thread name command accepts a name as an argument and can be used to
set the name of the current thread. The thread find command accepts a regular expression
and allows the user to find threads that match it.

GDB now provides support for reading and writing a new .gdb_index section. The command
gdb-add-index can be used to add .gdb_index to a file, which allows GDB to load symbols
from that file faster. Note that this feature is already present in Red Hat Enterprise Linux 6.1 and
later.

The watch command has been adapted to accept -location as an optional argument.

Two new special values can now be used when specifying the current search path for
libthread_db: $sdir represents the default system locations of shared libraries, and $pdir
stands for the directory with the libthread that is used by the application.

The info macro command now accepts -all and -- as valid options.

User Guide

120

https://access.redhat.com/security/cve/CVE-2014-0172

To display a function parameter's entry value (that is, the value at the time of function entry), the
suffix @entry can be added to the parameter. GDB now displays @entry values in backtraces, if
available.

The watch command now accepts mask mask_value as an argument. This can be used to
create masked watchpoints.

The info os command has been changed and can now display information on several objects
managed by the operating system, in particular:

The info os procgroups command lists process groups.

The info os files command lists file descriptors.

The info os sockets command lists internet-domain sockets.

The info os shm command lists shared-memory regions.

The info os semaphores command lists semaphores.

The info os msg command lists message queues.

The info os modules command lists loaded kernel modules.

GDB now has support for Static Defined Tracing (SDT) probes. Currently, the only implemented
back end is for SystemTap probes (the sys/sdt.h header file). You can set a breakpoint by
using the new -probe, -pstap, or -probe-stap options, and inspect the probe arguments by
using the new $_probe_arg family of convenience variables.

The symbol-reloading option has been deleted.

gdbserver now supports STDIO connections, for example:

(gdb) target remote | ssh myhost gdbserver - hello

GDB is now able to print flag enums. In a flag enum, all enumerator values have no bits in
common when pairwise AND-ed. When GDB prints a value whose type is a flag enum, GDB
shows all the constants; for example, for enum E { ONE = 1, TWO = 2}:

(gdb) print (enum E) 3
 $1 = (ONE | TWO)

The file name part of a linespec now matches trailing components of a source file name. For
example, break gcc/expr.c:1000 now sets a breakpoint in the build/gcc/expr.c file, but
not in build/libcpp/expr.c.

The info proc and generate-core-file commands now work on remote targets connected
to gdbserver.

The command info catch has been removed.

The Ada-specific catch exception and catch assert commands now accept conditions at
the end of the command.

The info static-tracepoint-marker command now works on native targets with an in-
process agent.

GDB can now set breakpoints on inline functions.

⁠Appendix B. Changes in Version 3.0

121

The .gdb_index section has been updated to include symbols for inline functions. By default,
GDB now ignores older .gdb_index sections until their .gdb_index sections can be
recreated. The new command set use-deprecated-index-sections on causes GDB to
use any older .gdb_index sections it finds. If this option is set, the ability to set breakpoints on
inline functions is lost in symbol files with older .gdb_index sections.

The .gdb_index section has also been updated to record more information about each symbol.

GDB now provides Ada support for GDB/MI Variable Objects.

GDB now supports breakpoint always-inserted mode in the record target.

gdbserver now supports evaluation of breakpoint conditions. Note that you can instruct GDB to
send the breakpoint conditions in bytecode form, but gdbserver only reports the breakpoint
trigger to GDB when its condition evaluates to true.

New convenience functions $_memeq(buf1, buf2, length), $_streq(str1, str2),
$_strlen(str), and $_regex(str, regex) have been added.

Target record has been renamed to record-full . Consequently, you can now use the record
full command to record or replay an execution log. In addition, the following commands have
been renamed:

The set record insn-number-max and show record insn-number-max commands
have been renamed to set record full insn-number-max and show record full
insn-number-max.

The set record memory-query and show record memory-query commands have
been renamed to set record full memory-query and show record full memory-
query.

The set record stop-at-limit and show record stop-at-limit commands have
been renamed to set record full stop-at-limit and show record full stop-
at-limit.

A new record target, record-btrace, has been added. This target uses hardware support to
record the control flow of a process and can be enabled by using the record btrace command.
This record target does not support replaying the execution.

Important

The record-btrace target is only available on Intel Atom processors and requires the
Linux kernel in version 2.6.32 or later.

The -epoch command line option has been removed. This option was used by GDB mode in
Epoch, a deprecated clone of the Emacs text editor.

The ptype and whatis commands have been updated to accept an argument to control the type
formatting.

The info proc command has been updated to work on some core files.

The cd command has been enhanced and no longer requires a directory path as its first
argument. When executed with no arguments, the command now changes to the home directory.

GDB now uses GNU v3 ABI as the default C++ ABI. This has been the default option for GCC since
November 2000.

User Guide

122

The info tracepoints command has been enhanced to display installed on target or
not installed on target for each non-pending location of a tracepoint.

New Remo t e Packet s

A number of new remote packets have been added. See Table B.3, “New Remote Packets” for a
complete list.

Table B.3. New Remote Packets

Remote Packet Descript ion
QTBuffer:size Sets the size of the trace buffer. The remote stub reports support

for this packet to the qSupported query.
Qbtrace:bts Enables branch tracing based on Branch Trace Store (BTS) for

the current thread. The remote stub reports support for this
packet to the qSupported query.

Qbtrace:off Disables branch tracing for the current thread. The remote stub
reports support for this packet to the qSupported query.

qXfer:btrace:read Reads the traced branches for the current thread. The remote
stub reports support for this packet to the qSupported query.

qXfer:libraries-
svr4:read 's annex

The previously unused annex of the qXfer:libraries-
svr4:read packet is now used to support passing of an
argument list. The remote stub reports support for this argument
list to the qSupported query.

The defined arguments are start and prev. These arguments
are used to reduce work necessary for updating the library list
and significantly speed up the process.

The z0 /z1 breakpoint insertion packets have been extended to carry a list of conditional expressions
over to the remote stub depending on the condition evaluation mode. You can use the set remote
conditional-breakpoints-packet command to control the use of this extension.

New RSP Packet

A new RSP packet has been added:

A new RSP packet QProgramSignals can be used to specify the signals the remote stub can
pass to the debugged program without GDB involvement.

Changes in t he Machine Int erface Int erpret er (GDB/MI)

The following MI changes have been made:

A new command -info-os has been added as the MI equivalent of info os.

Output logs, such as set logging and related, now include MI output.

A new async record, =cmd-param-changed , has been added. This async record reports that a
command parameter has changed.

A new async record, =traceframe-changed , has been added. This async record reports that a
trace frame has been changed by using the tfind command.

⁠Appendix B. Changes in Version 3.0

123

New async records =tsv-created , =tsv-deleted , and =tsv-modified have been added.
These async records report that a trace state variable has been created, deleted, or modified.

New async records =record-started and =record-stopped have been added. These async
records report that a process record has been started or stopped.

A new async record, =memory-changed , has been added. This async record reports that the
memory has changed.

When the source is requested, the -data-disassemble command now includes a new
fullname field containing an absolute path to the source file name.

The fullname filed is now always present along with the file field. This field is included even if
GDB cannot find the file.

A new optional parameter, COUNT , has been added to the -data-write-memory-bytes
command. This parameter can be used to allow pattern filling of memory areas.

The response to breakpoint commands and breakpoint async records now includes a new
installed field. This field reports the current state of each non-pending tracepoint location:
when the tracepoint is installed, the value of this field is y, otherwise the value is n.

The output of the -trace-status command now includes a new trace-file field. This field is
only present when examining a trace file and contains the name of this file.

New Co mmands

The following new commands have been added:

New set use-deprecated-index-sections on|off and show use-deprecated-
index-sections on|off commands have been added. These commands allow you to
control the use of deprecated .gdb_index sections.

New catch load and catch unload commands have been added. These commands allow
you to stop execution of a debugged program when a shared library is loaded or unloaded.

A new enable count command has been added. This command allows you to auto-disable a
breakpoint after several hits.

A new info vtbl command has been added. This command allows you to show the virtual
method tables for C++ and Java objects.

A new explore command has been added. It supports two subcommands explore value and
explore type, and allows you to recursively explore values and types of expressions. Note that
this command is only available with Python-enabled GDB.

A new dprintf location,format,args... command has been added. This command
allows you to create a dynamic printf-type breakpoint, which performs a printf-like operation
and then resumes program execution.

New set print symbol and show print symbol commands have been added. These
commands allow you to control whether GDB attempts to display the symbol, if any, that
corresponds to addresses it prints. This functionality is enabled by default, but you can restore
the previous behavior by running the set print symbol off command.

New record instruction-history and record function-call-history commands
have been added. These commands allow you to view information about an execution log without
having to replay it. The record instruction-history command displays the execution
history at instruction granularity and the record function-call-history displays the

User Guide

124

execution history at function granularity. The commands are only supported by the record
btrace command.

A new command, fo , has been added. This commands serves as a shorter variant of the
forward-search command.

A new command, catch signal , has been added. This command can be used to catch signals
by their names and is similar to the handle command, but also allows you to attach additional
conditions or commands.

A new command, maint info bfds, has been added. This command can be used to list all
binary files (BFDs) opened by GDB.

Two new commands, python-interactive [command] and its shorter variant pi
[command], have been added. These commands allow you to start an interactive Python prompt
or evaluate a Python command and print the results to standard output.

A new command, py [command], has been added. This command serves as a shorter variant of
the python [command] command.

New enable type-printer [name...] and disable type-printer [name...]
commands have been added. These commands allow you to enable or disable type printers.

New set breakpoint condition-evaluation and show breakpoint condition-
evaluation commands have been added. These commands allow you to control whether
breakpoint conditions are evaluated by GDB (the host option), or by gdbserver (the target
option). The default option, auto , chooses the most efficient available mode.

New set dprintf-style gdb|call|agent and show dprintf-style commands have
been added. These commands allow you to control the way in which a dynamic printf is
performed: the gdb option requests a GDB printf command, call causes dprintf to call a
function in the inferior, and agent requests that the target agent such as gdbserver does the
printing.

New set dprintf-function expression, show dprintf-function, set dprintf-
channel expression, and show dprintf-channel commands have been added. These
commands allow you to set the function and optional first argument to the call when using the
call style of dynamic printf.

New set disconnected-dprintf on|off and show disconnected-dprintf commands
have been added. These commands allow you to control whether agent-style dynamic printfs
continue to be in effect after GDB disconnects.

New set print type methods on|off and show print type methods commands have
been added. These commands allow you to control whether method declarations are displayed
by the ptype command. This functionality is enabled by default.

New set print type typedefs on|off and show print type typedefs commands
have been added. These commands allow you to control whether typedef definitions are
displayed by the ptype command. This functionality is enabled by default.

New set filename-display basename|relative|absolute and show filename-
display commands have been added. These commands allow you to control the way in which
file names are displayed: the basename option displays only the base name of a file name,
relative displays a path relative to the compilation directory, and absolute displays an
absolute path to the file. The default option is relative to preserve the previous behavior.

New set trace-buffer-size and show trace-buffer-size commands have been added.
These commands allow you to control the size of the trace buffer for a target.

⁠Appendix B. Changes in Version 3.0

125

New set remote trace-buffer-size-packet auto|on|off and show remote trace-
buffer-size-packet commands have been added. These commands allow you to control the
use of the remote protocol QTBuffer:size packet.

New set debug notification and show debug notification commands have been
added. These commands allow you to control whether to display debugging information for
asynchronous remote notification. This functionality is disabled by default.

A new command info macros has been added. This command accepts linespec as an optional
argument and can be used to display the definitions of macros at that linespec location. Note that
in order to do this, the debugged program must be compiled with the -g3 command line option to
have macro information available in it.

A new command alias has been added. This command can be used to create an alias of an
existing command.

New set print entry-values and show print entry-values commands have been
added. The set print entry-values command accepts both, compact, default, if-
needed , no , only, and preferred as valid arguments and can be used to enable printing of
function arguments at function entry. The show print entry-values command can be used
to determine whether this feature is enabled.

New set debug entry-values and show debug entry-values commands have been
added. The set debug entry-values command can be used to enable printing of debugging
information for determining frame argument values at function entry and virtual tail call frames.

!command has been added as an alias of shell command.

New set extended-prompt and show extended-prompt commands have been added. The
set extended-prompt command enables support for a defined set of escape sequences that
can be used to display various information. The show extended-prompt command can be
used to determine whether the extended prompt is enabled.

New set basenames-may-differ and show basenames-may-differ commands have
been added. The set basenames-may-differ command enables support for source files with
multiple base names. The show basenames-may-differ command can be used to determine
whether this support is enabled. The default option is off to allow faster GDB operations.

New Co mmand Line Opt io ns

The following new options have been added:

A new command line option, -ix (or --init-command), has been added. This option acts like -
x (or --command), but is executed before loading the debugged program.

A new command line option, -iex (or --init-eval-command), has been added. This option
acts like -ex (or --eval-command), but is executed before loading the debugged program.

A new command line option, -nh, has been added. This option allows you to disable automatic
loading of the ~/.gdbinit file without disabling other initialization files.

C++ Language Suppo rt

The following changes have been made to the C++ language support:

When debugging a template instantiation, parameters of the template are now put in scope.

Pyt ho n Script ing Suppo rt

User Guide

126

The following changes have been made to the Python scripting support:

The register_pretty_printer function in module gdb.printing now takes an optional
replace argument.

The maint set python print-stack on|off command has been deprecated and will be
deleted in GDB 7.5. The new command set python print-stack none|full|message has
replaced it.

A prompt substitution hook (prompt_hook) is now available to the Python API.

A new Python module gdb.prompt has been added to the GDB Python modules library.

Python commands and convenience-functions located in
data_directory/python/gdb/command/ and
data_directory/python/gdb/function/ are now automatically loaded on GDB start-up.

Blocks now provide four new attributes: global_block, static_block, is_static, and
is_global .

The gdb.breakpoint function has been deprecated in favor of gdb.breakpoints.

A new class gdb.FinishBreakpoint is provided.

Type objects for struct and union types now allow access to the fields using standard Python
dictionary (mapping) methods.

A new event gdb.new_objfile has been added.

A new function deep_items has been added to the gdb.types module.

The function gdb.Write now accepts an optional keyword stream.

Parameters can now be sub-classed in Python, which allows for implementation of the
get_set_doc and get_show_doc functions.

Symbols, Symbol Table, Symbol Table and Line, Object Files, Inferior, Inferior Thread, Blocks,
and Block Iterator APIs now have an is_valid method.

Breakpoints can now be sub-classed in Python, which allows for implementation of the stop
function that is executed each time the inferior reaches that breakpoint.

A new function gdb.lookup_global_symbol has been added. This function can be used to
look up a global symbol.

GDB values in Python are now callable if the value represents a function.

A new module gdb.types has been added.

A new module gdb.printing has been added.

New commands info pretty-printers, enable pretty-printer, and disable pretty-
printer have been added.

A new gdb.parameter("directories") function call is now available.

A new function gdb.newest_frame has been added. This function can be used to return the
newest frame in the selected thread.

The gdb.InferiorThread class now supports a new name attribute.

⁠Appendix B. Changes in Version 3.0

127

Support for inferior events has been added. Python scripts can now add observers in order to be
notified of events occurring in the process being debugged.

GDB commands implemented in Python can now be put in the gdb.COMMAND_USER command
class.

The maint set python print-stack on|off command has been removed and replaced by
set python print-stack.

A new class gdb.printing.FlagEnumerationPrinter has been added. This class can be
used to apply flag enum-style pretty-printing to enums.

The gdb.lookup_symbol function now works correctly when there is no current frame.

The gdb.Symbol object now has an additional attribute line. This attribute holds the line
number in the source at which the symbol was defined.

The gdb.Symbol object now has an additional attribute needs_frame, and a new method
value. The needs_frame attribute indicates whether the symbol requires a frame to compute its
value, and the value method computes the symbol's value.

The gdb.Value object now has a new method referenced_value. This method can be used
to dereference a pointer as well as C++ reference values.

The gdb.Symtab object now has two new methods, global_block and static_block.
These methods return the global and static blocks (as gdb.Block objects) of the underlying
symbol table respectively.

A new method gdb.find_pc_line returns the gdb.Symtab_and_line object associated
with a PC value.

The gdb.Symtab_and_line object now has an additional attribute last. This attribute holds
the end of the address range occupied by the code for the current source line.

Users can now create vectors by using the gdb.Type.vector() method.

The atexit.register() method is now supported.

Users can now pretty-print types by using the Python API.

In addition to Python 2.4 and later, GDB now also supports Python 3 .

A new class, gdb.Architecture, has been added. This class exposes the internal
representation of the architecture in the Python API.

A new method, Frame.architecture, has been added. This method can be used to return the
gdb.Architecture object corresponding to the frame's architecture.

Frame filters and frame decorators have been added.

Co mpat ibilit y Changes

A new command info auto-load has been added and can be used to display the status of
various automatically loaded files. The info auto-load gdb-scripts command lists
automatically loaded canned sequences of commands, info auto-load python-scripts
displays the status of automatically loaded Python scripts, info auto-load local-
gdbinit displays whether a local .gdbinit file in the current working directory is loaded, and
info auto-load libthread-db displays whether the inferior-specific thread debugging
shared library is loaded.

User Guide

128

New commands set auto-load and show auto-load have been added and can be used to
control automatic loading of files:

The set auto-load gdb-scripts and show auto-load gdb-scripts commands
control automatic loading of GDB scripts.

The set auto-load python-scripts and show auto-load python-scripts
commands control automatic loading of Python scripts.

The set auto-load local-gdbinit and show auto-load local-gdbinit
commands control automatic loading of .gdbinit from the current working directory.

The set auto-load libthread-db and show auto-load libthread-db commands
control automatic loading of inferior-specific libthread_db.

The set auto-load scripts-directory and show auto-load scripts-directory
commands control the list of directories from which to automatically load GDB and Python
scripts.

The set auto-load safe-path and show auto-load safe-path commands control
the list of directories from which it is safe to automatically load all previously mentioned items.

The set debug auto-load and show debug auto-load commands control displaying
of debugging information for all previously mentioned items.

The set auto-load off command can be used to disable automatic loading globally. You
can also use show auto-load with no subcommand to display current settings of all
previously mentioned items.

The maint set python auto-load on|off command has been replaced with set auto-
load python-scripts on|off.

The maintenance print section-scripts command has been renamed to info auto-
load python-scripts [pattern] and is no longer classified as a maintenance-only
command.

Support for the Guile extension language has been removed.

The GNU Debugger has been adapted to follow GCC's rules on accessing volatile objects when
reading or writing target state during expression evaluation.

B.5.2. Changes Since Red Hat Developer T oolset 2.1 and Red Hat
Enterprise Linux 7.0

The following features have been added since the release of GDB in Red Hat Developer Toolset 2.1
and Red Hat Enterprise Linux 7.0:

Pyt ho n Script ing Suppo rt

Python scripting support has been improved:

Support for frame filters and frame decorators has been added. Frame filters are Python objects
that can be used to manipulate whether frames are visible when GDB prints a backtrace. Frame
decorators, which are sister objects to frame filters, are used to customize the printed content of
each gdb.Frame in commands that execute frame filters.

Temporary breakpoints, which are automatically deleted after they have been hit, are now
supported through the optional temporary argument to the Breakpoint initializer.

⁠Appendix B. Changes in Version 3.0

129

A representation of line tables has been added. Line tables map source lines to their executable
locations in memory. The linetable function can be used to acquire line-table information for a
particular symbol table.

A new attribute, parent_type, has been added for gdb.Field objects.

gdb.Field objects can now be used as subscripts on gdb.Value objects to access structure
elements.

A new attribute, name, has been added for gdb.Type objects.

Valid Python operations on gdb.Value objects representing structs or classes now invoke the
corresponding overloaded operators if available.

A new feature, Xmethods, has been added to the Python API. Xmethods are additional methods or
replacements for existing methods of a C++ class. This feature is useful for those cases where a
method defined in C++ source code could be inlined or optimized out by the compiler, making it
unavailable to GDB .

New Co mmands

A number of new commands have been added:

A new command, catch rethrow, has been added. This command works like the catch throw
command, but it only catches re-thrown exceptions.

A new command, maint check-psymtabs, has been added. This command has been renamed
from the old maint check-symtabs. It is used for checking the consistency of partial symbol
tables.

A new command, maint check-symtabs, has been added. It performs consistency checks on
full symbol tables.

A new command, maint expand-symtabs, has been added. It is used for expanding full symbol
tables that match an optional regular expression.

A new command, show configuration, has been added. The command displays the details of
the configuration options with which GDB was built. This command is the equivalent of the --
configuration command line option.

A new command, remove-symbol-file, has been added. It can be used to remove a symbol
file added using the add-symbol-file command. The file to remove can be identified by its file
name:

remove-symbol-file FILENAME

Or by an address that lies within the boundaries of this symbol file in memory. In that case, use
the -a option:

remove-symbol-file -a ADDRESS

A new command, info exceptions, has been added. It can be used to display the list of Ada
exceptions defined in the program being debugged. Optionally, a regular expression can be
supplied to limit the list of displayed exceptions:

info exceptions REGEXP

User Guide

130

If provided, only the exceptions whose names match REGEXP are listed.

The following new pairs of commands make it possible to change settings and show their values:

set debug symfile [off|on]

Controls the displaying of debugging information regarding the reading of symbol files and
symbol tables within those files. The show debug symfile command shows the value of
this setting.

set print raw frame-arguments [off|on]

Controls the displaying of frame arguments in raw mode, disregarding any defined pretty-
printers. The show print raw frame-arguments command shows the value of this
setting.

set remote trace-status-packet off|on|auto

Controls the use of the remote-protocol qTStatus packet. The packet is used to ask the
remote stub whether a trace experiment is currently running. The show remote trace-
status-packet command shows the value of this setting.

set range-stepping [off|on]

Controls whether GDB instructs the target to step through the corresponding range of
addresses. If disabled, single-steps are always issued. The show range-stepping
command shows the value of this setting. This is set to on by default.

set startup-with-shell [off|on]

Controls whether the shell is used to start subprocesses. If set to off, processes are started
directly. The show startup-with-shell command shows the value of this setting. This
is set to on by default.

set code-cache [off|on]

Controls whether the target memory cache is used for accesses to code segments,
disregarding any configured memory regions. This improves performance of remote
debugging (particularly disassembly). The show code-cache command shows the value
of this setting. This is set to on by default.

set print symbol-loading off|brief|full

Controls whether to print informational messages when loading symbol information for a
file. The default value for this option is full , but when debugging programs with large
numbers of shared libraries, the amount of output becomes less useful. The show print
symbol-loading command shows the value of this setting.

maint ada set ignore-descriptive-types [on|off]

Controls whether the debugger ignores descriptive types in Ada programs. The default
value is off, that is, not to ignore the descriptive types. See the user manual for more
details on descriptive types and the intended usage of this option. The maint ada show
ignore-descriptive-types command shows the value of this setting.

set auto-connect-native-target [on|off]

Controls whether GDB may automatically connect to the native target when not connected
to any target yet. If set to on, GDB attempts the run, attach, and other commands with the
native target. The show auto-connect-native-target command shows the value of
this setting.

⁠Appendix B. Changes in Version 3.0

131

this setting.

set record btrace replay-memory-access read-only|read-write

Controls what memory accesses are allowed during replays. The show record btrace
replay-memory-access command shows the value of this setting.

maint set target-async on|off

Controls whether GDB targets operate in synchronous or asynchronous mode. By default
and if available, asynchronous mode is used. Set to off to simplify the debugging of
problems that only occur in synchronous mode. The maint show target-async
command shows the value of this setting.

set mi-async [on|off]

Controls whether GDB/MI uses asynchronous mode. By default, synchronous mode is
used. Set to on to enable background execution of commands. The show mi-async
command shows the value of this setting. This command supersedes the set target-
async command from previous versions of GDB .

The following series of new commands enables displaying GDB resources used by each executed
command:

maint set per-command space [on|off]

Enable or disable the displaying of the amount of memory used by each command. The
maint show per-command space command shows the value of this setting.

maint set per-command time [on|off]

Enable or disable the displaying of the execution time of each command. The
maint show per-command time command shows the value of this setting.

maint set per-command symtab [on|off]

Enable or disable the displaying of basic symbol-table statistics for each command. The
maint show per-command symtab command shows the value of this setting.

New Co mmand Line Opt io ns

Two new command line options have been added:

A new command line option, --configuration, has been added. It displays the details of the
configuration options with which GDB was built. This option is the equivalent of the
show configuration interactive command.

A new command line option, -D , has been added. This option is an alias for the --data-
directory option. This option allows you to specify where GDB looks for its auxiliary files.

Changes in t he Machine Int erface Int erpret er (GDB/MI)

The machine interface interpreter (GDB/MI) has been improved in a number of ways:

All MI commands now accept an optional --language option. Support for this feature can be
verified by using the -list-features command, which should contain the "language-
option" item.

A new command, -info-gdb-mi-command , has been added. It allows the user to determine
whether a GDB/MI command is supported or not.

User Guide

132

The ^error result record returned when trying to execute an undefined GDB/MI command now
provides a variable named code whose content is the undefined-command error code. Support
for this feature can be verified by using the -list-features command, which should contain
the "undefined-command-error-code" item.

The -trace-save command can now optionally save trace buffer in the Common Trace Format.

A new command, -dprintf-insert, has been added. It sets a dynamic printf breakpoint.

The -data-list-register-values command now accepts an optional --skip-
unavailable option. When used, only available registers are displayed.

A new command, -trace-frame-collected , has been added. It returns objects, register
names, trace-state variables, memory ranges, and computed expressions that have been
collected in a trace frame. There is no corresponding GDB command.

The -stack-list-locals, -stack-list-arguments, and -stack-list-variables
commands now accept the --skip-unavailable option. When used, only available locals or
arguments are displayed.

The -exec-run command now accepts the optional --start option. When used, the command
follows the same semantics as the start command, stopping the program's execution at the start
of its main subprogram. Support for this feature can be verified by using the -list-features
command, which should contain the "exec-run-start-option" item.

New commands, -catch-assert and -catch-exceptions, have been added. The commands
insert catchpoints stopping the program when Ada exceptions are raised.

A new command, -info-ada-exceptions, has been added. It provides the equivalent of the
new info exceptions command in GDB .

A new command, -gdb-set mi-async [on|off], has been added. It replaces the -gdb-set
target-async command, which has been deprecated and only serves as an alias to the new
command for backward compatibility purposes. The -gdb-set mi-async command controls
whether MI operates in asynchronous mode. If set to on, and provided the target supports it, MI
commands are executed in the background, and GDB interprets them while the target is still
running.

New Feat ures in Remo t e Packet s

Two remote packets have had their feature set expanded:

The vCont packet now supports a new r start,end action. The action instructs the remote stub
to perform one step and then continue stepping through the address range specified by the start
(inclusive) and end (exclusive) parameters.

The qXfer:btrace:read packet now supports a new annex, delta, to read the branch trace
incrementally.

New Feat ures in t he GDB Remo t e St ub, GDBserver

GDBserver has had two new features added and one new option:

Support for target-assisted range stepping has been added.

A new element, tvar, has been added to the XML in the reply to the qXfer:traceframe-
info:read packet. It has the id of the collected trace state variables.

⁠Appendix B. Changes in Version 3.0

133

A new option, --debug-format=option1[,option2, ...], has been added. It allows for
adding additional text to each output. At present, only time stamps are supported: --debug-
format=timestamps. Time stamps can also be turned on with the monitor set debug-
format timestamps command in GDB .

General Changes

The Fission DWP file format in version 2 is now supported. To use Fission, supply the -gsplit-
dwarf option to gcc to generate split DWARF files at compile time. This option must be used in
conjunction with the -c option, which disables linking, because Fission cannot be used when
compiling and linking in the same step. See http://gcc.gnu.org/wiki/DebugFission for more
information about the Fission project.

Access to Intel® MPX registers is now supported.

Support for Intel® AVX-512 registers has been added, that is, support for displaying and
modifying the following Intel® AVX-512 registers: $zmm0—$zmm31, $k0—$k7, $xmm16—$xmm31,
and $ymm16—$ymm31.

A new convenience function, $_isvoid (expression), has been added. The function returns
1 if the type of the evaluated expression is void. In other cases, it returns 0 .

When displaying the values of registers for which the debugging information shows that they
have not been saved in the frame, and there is no place to retrieve them from (callee-saved or call-
clobbered registers), the <not saved> message is now consistently printed.

A new formatter, z, has been added. When printing and examining memory, this formatter causes
the value to be displayed as a hexadecimal zero padded on the left to the size of the type.

Target-assigned range stepping with remote targets is now supported. The achieved reduction in
the number of control packets sent to and from GDB results in an improved performance.

GDB now understands the new tvar element, which has been added to the XML in the traceframe
information. It has the id of the collected trace state variables.

The typeid C++ operator is now supported.

A new convenience variable, $_exception, has been added. It holds the exception that is being
thrown or caught at an exception-related catchpoint.

Exception-related catchpoints, such as catch throw, can now filter exceptions by type using a
supplied regular expression.

A new convenience variable, $_exitsignal , has been added. It can be used to determine the
signal number with which a program terminates if it dies due to an uncaught signal. The
$_exitcode is then automatically set to void .

Commands, such as c& , s& , can now be executed in the background if the target supports them.
In previous versions, asynchronous execution had to be explicitly enabled using the (now
deprecated) set target-async on command.

The btrace record target now supports the record goto command. For locations inside the
execution trace, the back trace is computed based on the information stored in the execution
trace.

The btrace record target now supports limited reverse execution and replay. The target does not
record data and therefore does not allow for reading the memory or registers.

User Guide

134

http://gcc.gnu.org/wiki/DebugFission

The naming of native targets has been unified, and they are now all called nat ive . To reflect this
change, the target child command has been replaced by target native. Target names
feature in the output of the following commands: help target, info target, info files,
and maint print target-stack.

The following commands have been modified:

The unlimited literal value can now be used for options that interpret the 0 or -1 values as
unlimited.

The set debug symtab-create debugging command has been changed to accept a verbosity
level. 0 provides no debugging information, 1 provides basic debugging output, and values of 2
or greater provide a more verbose output.

The compare-sections command now works with all targets. In previous versions, it was
limited to the remote target.

The target native command can now be used to explicitly connect to the native target, which
overrides the setting of the set auto-connect-native-target command.

The ranges given as arguments to the record function-call-history and
record instruction-history commands are now inclusive.

The record instruction-history command now starts counting instructions at one. This
also affects the instruction ranges reported by the record function-call-history
command when given the /i modifier.

The tsave command now supports a new option, -ctf, to save trace data in the Common Trace
Format (CTF).

The maintenance print objfiles command now accepts an optional argument in the form
of a regular expression.

The commands set remotebaud and show remotebaud are no longer supported. Use set
serial baud to set the baud rate for remote serial I/O and show serial baud to display the
set rate.

The record function-call-history command has been modified in a number of ways:

The command now supports a new modifier, /c, for indenting function names based on their
call-stack depth.

The fields for the /i and /l modifiers have been reordered.

The source-line range is now prefixed with at.

The instruction range is now prefixed with inst. Both ranges are now printed as <from>,
<to> to allow copy-and-paste to the record instruction-history and list commands.

B.6. Changes in st race

Red Hat Developer Toolset 3.0 is distributed with st race 4 .8 , which provides a number of bug fixes
and feature enhancements over the version included in Red Hat Enterprise Linux and the previous
version of Red Hat Developer Toolset. Below is a comprehensive list of new features in this release.

B.6.1. Changes Since Red Hat Enterprise Linux 6.6

The following features have been added since the release of st race in Red Hat Enterprise Linux 6.6:

⁠Appendix B. Changes in Version 3.0

135

A new command line option, -y, has been added. This option can be used to print file descriptor
paths.

A new command line option, -P , has been added. This option can be used to filter system calls
based on the file descriptor paths.

A new command line option, -I, has been added. This option can be used to control how
interactive strace is.

A new command line utility, strace-log-merge, has been added. This utility can be used to
merge timestamped strace output into a single file.

The strace utility now uses optimized interfaces to extract data from the traced process for better
performance.

The strace utility now provides improved support for decoding of arguments for various system
calls. In addition, a number of new system calls are supported.

B.6.2. Changes Since Red Hat Developer T oolset 2.1

The following features have been added since the release of strace in Red Hat Developer Toolset 2.1:

When writing its output to a pipe, strace now waits for the pipe process to terminate before
strace itself exits.

A new option, -e trace=memory, has been added. It instructs strace to trace system calls
related to memory mapping, allocation, deallocation, and management.

A new option, -qq , has been added. It instructs strace to suppress messages about process exit
status.

Many bugs have been fixed and improvements added, including improvements in the decoding of
system-call arguments and the addition of missing system calls.

B.7. Changes in lt race

Red Hat Developer Toolset 3.0 is distributed with lt race 0.7.9 1 , which provides a number of bug
fixes and feature enhancements over the Red Hat Enterprise Linux system version. Below is a
comprehensive list of new features in this release.

B.7.1. Changes Since Red Hat Enterprise Linux 6.6

A number of bugs have been fixed, and many features have been added since the release of lt race
in Red Hat Enterprise Linux 6.6:

A number of bugs relating to parameter passing were fixed. This includes support for structures
passed in registers and fixes for displaying arguments of nested calls. The argument-fetching
backends were reimplemented to address a number of issues.

The tools for selecting what is traced have been improved to be more consistent. It is now possible
to trace calls from as well as into the main binary, any shared libraries, or modules loaded using
the dlopen function. It also allows for using globs and regular expressions for selecting whole
sets of symbols at the same time. For example, to trace all calls to functions named function*
that libexample* makes, use:

ltrace -e function*@libexample*

User Guide

136

To trace all calls to functions that libexample* exports, use:

ltrace -l libexample*

A new approach to prototype discovery has been added. It allows prototype libraries to be
supplied with shared libraries. When a shared library is mapped in, lt race looks up the
corresponding prototype library and finds its call prototypes there.

The syntax of prototype libraries was generalized. A new concept of lens has been introduced,
which separates the way data types are to be formatted from the different kinds of data types. This
allows for declaring, for example, that a function expects a char parameter, but that parameter
should be formatted as an enum or in hexadecimal. It is now also possible to express zero-
terminated (NUL, NULL) arrays.

Unwinder support has been added, so that the user can request a stack trace to be shown for
each traced call.

Support for tracing IFUNC symbols has been added. These are special symbols that resolve to
one of possible implementations after the first call is made. lt race now re-seats related
breakpoints after an IFUNC call finishes. It also supports tracing the related IRELATIVE PLT
slots.

B.8. Changes in SystemTap

Red Hat Developer Toolset 3.0 is distributed with SystemTap 2.5 , which provides a number of bug
fixes and feature enhancements over the Red Hat Enterprise Linux system version and the version
included in the previous release of Red Hat Developer Toolset. Below is a list of new features in this
release.

B.8.1. Changes Since Red Hat Developer T oolset 2.1

The following features have been added since the release of SystemTap included in Red Hat
Developer Toolset 2.1:

The tapset library no longer signals certain types of errors by returning dummy values. Instead,
fully-fledged SystemTap errors are generated that can be caught using the
try { } catch { } construct. Alternatively, other tapset functions may be used to return user-
specified dummy values.

The dyninst backend, which can be enabled by passing the --runtime=dyninst or --
dyninst parameter to stap, has had a number of compatibility and performance improvements
added.

The quality and detail of error messages have been greatly improved. The improvements include
colorization, manual-page cross-referencing, and suggestions for correcting typing mistakes.

The prologue analysis for placing function-entry probes has been improved.

A function().callee(...) type of probe for probing outgoing calls from given functions
has been introduced.

Many new functions have been added to the tapset library.

The following new features are only available on Red Hat Enterprise Linux 7 systems:

SecureBoot support via a stap-server has been extended with key generation and module-
signing.

⁠Appendix B. Changes in Version 3.0

137

Support has been added for probing virtual machines from the host without a network. The
probing requires a minimal runtime installed within the virtual machine, which communicates
through the virtio-serial device.

Support has been added for using .gnu_debugdata symbol tables in base executables to
resolve certain probe symbols or addresses without the need for full debuginfo.

Note

Incompatibility problems with old scripts can be resolved using the backward-compatibility
option, --compatible version, where version is the version of SystemTap for which the
script was written.

B.9. Changes in Valgrind

Red Hat Developer Toolset 3.0 is distributed with Valgrind 3.9 , which provides a number of bug
fixes over the version included in Red Hat Enterprise Linux and the previous version of Red Hat
Developer Toolset. Below is a comprehensive list of new features in this release.

B.9.1. Changes Since Red Hat Developer T oolset 2.1 and Red Hat
Enterprise Linux 6.6

The following features have been added since the release of Valgrind 3.8.1 included in Red Hat
Developer Toolset 2.1 and Red Hat Enterprise Linux 6.6:

B.9.1 .1 . Changes in T o o ls

Memcheck

A new command line option, --partial-loads-ok[=argument], has been added. The option
accepts the yes or no arguments. The default is no . The option can be used to significantly
reduce the number of false error reports when handling vectorised code.

New command line options, --show-leak-kinds[=argument] and --errors-for-leak-
kinds[=argument], have been added. Both options accept a comma-separated list of the
following arguments: definite, indirect, possible, reachable, as well as all or none.
The default setting for both options is equivalent to passing the definite and possible
arguments.

The options allow you to exercise a finer control over the leak checker by specifying the kinds of
leaks that are to be shown or suppressed in a full leak search and that are to count as errors in a
full leak search. Optionally, you can also specify the kinds of leaks to suppress directly in the
suppressions file using the match-leak-kinds: line. Note that the generated suppressions
files now include this line by default, which makes them more specific. To get the old behavior,
remove the line prior to using the suppressions file.

A new command line option, --leak-check-heuristics[=argument], has been added. The
option accepts a comma-separated list of the following arguments: stdstring , length64 ,
newarray, multipleinheritance, as well as all or none. The default is none. The option
improves the way the leak checker reports on possible leaks by specifying which interior pointers
are considered valid.

A new command line option, --keep-stacktraces[=argument], has been added. The option

User Guide

138

accepts one of the following arguments: alloc, free, alloc-and-free, alloc-then-free,
as well as none. The default is alloc-then-free. The option controls which stack traces to
keep for blocks allocated using malloc() or freed using free(). This produces more usable
errors and causes Valgrind to consume less resources.

Using the -v (or --verbose) option now provides more detailed information about the use of
leak suppressions. For each suppression, the number of blocks and bytes it suppressed during
the last leak search is now shown, as well as the file name and line number where the
suppression is defined.

Helgrind

The use of statically initialized mutexes and condition variables (such as
PTHREAD_MUTEX_INITIALISER) no longer results in false errors.

The use of the pthread_cond_wait() function that times out no longer results in false errors.

B.9.1 .2 . Ot her Changes

The space required by Valgrind now better corresponds with the expected capabilities of the target:

A new command line option, --num-transtab-sectors=number, has been added. The option
can be used to specify the maximum number of sectors in the translation cache. The default
number of sectors has been increased to 16 in order to accommodate applications that need to
store large amounts of code. This improves performance because Valgrind does not need to re-
translate and re-instrument machine code so often. The number of memory-mapped segments that
can be tracked has been increased by a factor of 6.

The way Valgrind reads debugging information has been improved:

Valgrind no longer uses excessive amounts of virtual memory when reading debuginfo from
large shared objects. Instead of temporarily mapping entire objects for reading, Valgrind now
uses only a small, fixed buffer.

A new command line option, --debuginfo-server=ipaddress:port, has been added. This
option allows you to instruct Valgrind to read debuginfo from objects stored on a different
machine and served by a debuginfo server, which needs to be accessible on the specified IP
address and port.

A new command line option, --allow-mismatched-debuginfo=argument, has been added.
The option accepts the yes and no arguments. The default is no . Using this option, you can
instruct Valgrind to ignore inconsistencies between main and debuginfo objects. Use with
caution, as Valgrind may not be stable when main and debugging objects do not match.

A new command line option, --merge-recursive-frame=number, has been added. The option
allows you to instruct Valgrind to detect and merge recursive algorithms, thus saving memory used
to store the recorded stack traces. The value supplied to this option determines the complexity of the
recursive calls to be merged.

A new command line option, --sigill-diagnostics=argument, has been added. This option
accepts the yes and no arguments. The default is yes. Use this option to control whether Valgrind
displays a warning when encountering an instruction it is unable to decode or translate.

In order to be able to run applications that natively require up to 35 GB of memory, Valgrind can
now use 64 GB of memory on 64-bit targets.

GDB Server Monitor

⁠Appendix B. Changes in Version 3.0

139

A new client request, VALGRIND_MONITOR_COMMAND , has been added to valgrind.h. Use it
to run gdbserver monitor commands from client programs.

A new monitor command, v.info open_fds, has been added. It provides a list of open file
descriptors. Note that this is only available if the --track-fds=yes option was passed on
startup.

It is now possible to pass an optional message with the v.info n_errs_found [message]
monitor command, so that a comment can be inserted into process outputs. This helps to
separate errors reported with different tests.

A new monitor command, v.info exectxt, has been added. It displays information about stack
traces (executable contexts) recorded by Valgrind .

A new monitor command, v.do expensive_sanity_check_general , has been added. It
runs various consistency checks. The command can be used to verify the sanity of the Valgrind
heap.

B.10. Changes in OProfile

Red Hat Developer Toolset 3.0 is distributed with OProf ile 0.9 .9 , which provides a number of bug
fixes and feature enhancements over the version included in the previous version of Red Hat
Developer Toolset. Below is a comprehensive list of new features in this release.

B.10.1. Changes Since Red Hat Developer T oolset 2.1

The following features have been added since the release of OProf ile in Red Hat
Developer Toolset 2.1:

A new command, ocount, has been added. It counts the number of times particular events occur
during the time a monitored command is running. For example, it can be used to count the
number of cache misses and instructions for an application. A relatively high number of cache
misses when compared to instructions could indicate poor cache performance.

The way the operf command operates has been improved, so that more accurate data is
collected. The improvements are mainly related to the spawning of new processes.

Generic AMD performance events are now provided as a fallback for newer AMD processors for
which OProf ile does not have explicit event-sets encodings.

B.11. Changes in Dyninst

Red Hat Developer Toolset 3.0 is distributed with Dyninst 8.2 , which provides a number of bug fixes
and feature enhancements over the version included in Red Hat Enterprise Linux and the previous
version of Red Hat Developer Toolset. Below is a comprehensive list of new features in this release.

B.11.1. Changes Since Red Hat Developer T oolset 2.1 and Red Hat
Enterprise Linux 7.0

A number of bugs have been fixed. In addition to that, the following features have been added since
the release of Dyninst in Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0:

The ProcContro l library has been improved to provide callbacks whenever a syscall-monitored
thread enters or exits a system call.

User Guide

14 0

The SymtabAPI library has been improved to support access to inline functions.

Checks are now performed and errors returned in case the instrumentation requires traps, but the
user has disabled them.

The generation of XMM registers save and restore has been improved, and function-call snippets
have been optimized as a result.

Block-level instrumentation performance in shared code has been improved.

Whenever possible, checks are now performed on parameter and return-value snippets.

Symbol visibility is now properly controlled, so that only public Dyninst functions and variables
are exposed to users.

⁠Appendix B. Changes in Version 3.0

14 1

Appendix C. Revision History

Revision 0.0-25 Thu 04 June 2015 Robert Krátký
Update to reflect RHSCL 2.0 GA.

Revision 0.0-23 Thu 23 Apr 2015 Robert Krátký
Release of Red Hat Developer Toolset 3.1 User Guide.

Revision 0.0-17 Tue 10 Mar 2015 Robert Krátký
Release of Red Hat Developer Toolset 3.1 Beta User Guide.

Revision 0.0-16 Thu 13 Nov 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 User Guide with minor post-GA fixes.

Revision 0.0-14 Thu 30 Oct 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 User Guide.

Revision 0.0-10 Tue 07 Oct 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 Beta-2 User Guide.

Revision 0.0-8 Tue Sep 09 2014 Robert Krátký
Release of Red Hat Developer Toolset 3.0 Beta-1 User Guide.

Index

A
ABI

- compatibility, ABI Compatibility

addr2line
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

applicat ion b inary in terface (see ABI)

ar
- overview, binutils
- usage, Using Other Binary Tools

as (see GNU assembler)

assembling (see GNU assembler)

B
binut ils

- documentation, Additional Resources
- features, Main Features
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Assembler, Using the GNU Linker, Using Other Binary Tools

User Guide

14 2

- version, About Red Hat Developer Toolset, binutils

C
C programming language

- compiling, Using the C Compiler, Preparing a Program for Debugging
- running, Running a C Program
- support, GNU C Compiler

C+ + programming language
- compatibility, C++ Compatibility
- compiling, Using the C++ Compiler, Preparing a Program for Debugging
- running, Running a C++ Program
- support, GNU C++ Compiler

C+ + 11 (see GNU Compiler Collect ion)

c+ + f ilt
- overview, binutils
- usage, Using Other Binary Tools

C11 (see GNU Compiler Collect ion)

Cachegrind
- overview, Valgrind
- usage, Using Valgrind

Callgrind
- overview, Valgrind
- usage, Using Valgrind

compat ib ility
- GNU Compiler Collection, Language Compatibility, Compatibility Changes, Fortran
2003 Compatibility, Fortran 2008 Compatibility, Fortran 77 Compatibility, ABI
Compatibility, Debugging Compatibility, Other Compatibility
- Red Hat Developer Toolset, Compatibility

compiling (see GNU Compiler Collect ion)

D
debugging (see GNU Debugger)

Developer Toolset (see Red Hat Developer Toolset)

documentat ion
- Red Hat Product Documentation, Accessing Red Hat Product Documentation

DRD
- overview, Valgrind
- usage, Using Valgrind

dwp
- overview, binutils
- usage, Using Other Binary Tools

dwz
- documentation, Additional Resources
- installation, Installing dwz

⁠Appendix C. Revision Hist ory

14 3

- overview, dwz
- usage, Using dwz
- version, About Red Hat Developer Toolset, dwz

Dyninst
- documentation, Additional Resources
- installation, Installing Dyninst
- overview, Dyninst
- usage, Using Dyninst
- version, About Red Hat Developer Toolset, Dyninst

E
Eclipse

- configuration, Using the Red Hat Enterprise Linux Toolchain
- documentation, Additional Resources
- installation, Installing Eclipse
- overview, Eclipse
- usage, Using Eclipse
- version, About Red Hat Developer Toolset, Eclipse

elfedit
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

elfut ils
- documentation, Additional Resources
- installation, Installing elfutils
- overview, elfutils
- usage, Using elfutils
- version, About Red Hat Developer Toolset, elfutils

eu-addr2line
- overview, elfutils
- usage, Using elfutils

eu-ar
- overview, elfutils
- usage, Using elfutils

eu-elfcmp
- overview, elfutils
- usage, Using elfutils

eu-elf lin t
- overview, elfutils
- usage, Using elfutils

eu- f indtext rel
- overview, elfutils
- usage, Using elfutils

eu-make-debug-archive
- overview, elfutils
- usage, Using elfutils

User Guide

14 4

eu-nm
- overview, elfutils
- usage, Using elfutils

eu-objdump
- overview, elfutils
- usage, Using elfutils

eu-ranlib
- overview, elfutils
- usage, Using elfutils

eu-readelf
- overview, elfutils
- usage, Using elfutils

eu-siz e
- overview, elfutils
- usage, Using elfutils

eu-stack
- overview, elfutils

eu-st rings
- overview, elfutils
- usage, Using elfutils

eu-st rip
- overview, elfutils
- usage, Using elfutils

eu-unstrip
- overview, elfutils
- usage, Using elfutils

F
Fort ran programming language

- compiling, Using the Fortran Compiler
- running, Running a Fortran Program
- support, GNU Fortran Compiler

G
g+ + (see GNU Compiler Collect ion)

GAS (see GNU assembler)

GCC (see GNU Compiler Collect ion)

gcc (see GNU Compiler Collect ion)

GDB (see GNU Debugger)

gfort ran (see GNU Compiler Collect ion)

G lobal Support Services
- contacting, Contacting Global Support Services

GNU assembler

⁠Appendix C. Revision Hist ory

14 5

- documentation, Additional Resources
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Assembler

GNU Binut ils (see b inut ils)

GNU Compiler Collect ion
- C support, GNU C Compiler
- C++ support, GNU C++ Compiler
- compatibility, Language Compatibility, Compatibility Changes, Fortran 2003
Compatibility, Fortran 2008 Compatibility, Fortran 77 Compatibility, ABI Compatibility,
Debugging Compatibility, Other Compatibility
- documentation, Additional Resources
- features, Main Features, Status and Features, New Features, Fortran 2003 Features,
Fortran 2008 Features
- Fortran support, GNU Fortran Compiler
- installation, Installing the C Compiler, Installing the C++ Compiler, Installing the
Fortran Compiler
- overview, GNU Compiler Collection (GCC)
- usage, Using the C Compiler, Using the C++ Compiler, Using the Fortran Compiler,
Preparing a Program for Debugging
- version, About Red Hat Developer Toolset, GNU Compiler Collection (GCC)

GNU Debugger
- documentation, Additional Resources
- features, Main Features
- installation, Installing the GNU Debugger
- overview, GNU Debugger (GDB)
- preparation, Preparing a Program for Debugging
- usage, Running the GNU Debugger, Listing Source Code, Setting Breakpoints,
Starting Execution, Displaying Current Values, Continuing Execution
- version, About Red Hat Developer Toolset, GNU Debugger (GDB)

GNU linker
- documentation, Additional Resources
- installation, Installing binutils
- overview, binutils
- usage, Using the GNU Linker

gprof
- overview, binutils
- usage, Using Other Binary Tools

GSS (see G lobal Support Services)

H
Helgrind

- overview, Valgrind
- usage, Using Valgrind

help
- Global Support Services, Contacting Global Support Services
- Red Hat Product Documentation, Accessing Red Hat Product Documentation

L

User Guide

14 6

ld (see GNU linker)

linking (see GNU linker)

lt race
- documentation, Additional Resources
- installation, Installing ltrace
- overview, ltrace
- usage, Using ltrace
- version, About Red Hat Developer Toolset, ltrace

M
Massif

- overview, Valgrind
- usage, Using Valgrind

Memcheck
- overview, Valgrind
- usage, Using Valgrind

memstomp
- documentation, Additional Resources
- installation, Installing memstomp
- overview, memstomp
- usage, Using memstomp
- version, About Red Hat Developer Toolset

N
nm

- overview, binutils
- usage, Using Other Binary Tools

O
objcopy

- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

objdump
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

ocount
- overview, OProfile

opannotate
- overview, OProfile
- usage, Using OProfile

oparchive
- overview, OProfile
- usage, Using OProfile

opcontro l
- overview, OProfile

⁠Appendix C. Revision Hist ory

14 7

- usage, Using OProfile

opgprof
- overview, OProfile
- usage, Using OProfile

ophelp
- overview, OProfile
- usage, Using OProfile

opimport
- overview, OProfile
- usage, Using OProfile

opjitconv
- overview, OProfile
- usage, Using OProfile

opreport
- overview, OProfile
- usage, Using OProfile

OProf ile
- documentation, Additional Resources
- installation, Installing OProfile
- overview, OProfile
- usage, Using OProfile
- version, About Red Hat Developer Toolset, OProfile

oprof iled
- overview, OProfile
- usage, Using OProfile

R
ranlib

- overview, binutils
- usage, Using Other Binary Tools

readelf
- features, New Features
- overview, binutils
- usage, Using Other Binary Tools

Red Hat Developer Toolset
- compatibility, Compatibility
- Container Images, Using Red Hat Developer Toolset Container Images
- Dockerfiles, Using Red Hat Developer Toolset Container Images
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- features, Main Features
- installation, Installing Red Hat Developer Toolset
- overview, About Red Hat Developer Toolset
- subscription, Getting Access to Red Hat Developer Toolset
- support, About Red Hat Developer Toolset
- uninstallation, Uninstalling Red Hat Developer Toolset
- update, Updating Red Hat Developer Toolset

User Guide

14 8

Red Hat Enterprise Linux
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- supported versions, Compatibility

Red Hat Subscript ion Management
- subscription, Using Red Hat Subscription Management

RHN Classic
- subscription, Using RHN Classic

S
scl (see Sof tware Collect ions)

siz e
- overview, binutils
- usage, Using Other Binary Tools

Sof tware Collect ions
- documentation, Additional Resources, Accessing Red Hat Product Documentation
- overview, About Red Hat Developer Toolset

stap
- overview, SystemTap
- usage, Using SystemTap, Using Dyninst with SystemTap

stap-merge
- overview, SystemTap
- usage, Using SystemTap

stap-prep
- overview, SystemTap
- usage, Installing SystemTap

stap- report
- overview, SystemTap
- usage, Using SystemTap

stap-server
- overview, SystemTap

stapdyn
- overview, SystemTap

staprun
- overview, SystemTap
- usage, Using SystemTap

stapsh
- overview, SystemTap
- usage, Using SystemTap

st race
- documentation, Additional Resources
- installation, Installing strace
- overview, strace

⁠Appendix C. Revision Hist ory

14 9

- usage, Using strace
- version, About Red Hat Developer Toolset, strace

st rings
- overview, binutils
- usage, Using Other Binary Tools

st rip
- overview, binutils
- usage, Using Other Binary Tools

support
- Red Hat Developer Toolset, About Red Hat Developer Toolset

SystemTap
- documentation, Additional Resources
- installation, Installing SystemTap
- overview, SystemTap
- usage, Using SystemTap, Using Dyninst with SystemTap
- version, About Red Hat Developer Toolset, SystemTap

V
Valgrind

- documentation, Additional Resources
- installation, Installing Valgrind
- overview, Valgrind
- usage, Using Valgrind
- version, About Red Hat Developer Toolset, Valgrind

version
- version, memstomp

User Guide

150

	⁠Part I. Introduction
	⁠Chapter 1. Red Hat Developer Toolset
	⁠1.1. About Red Hat Developer Toolset
	⁠What Is New in Red Hat Developer Toolset 3.1

	⁠1.2. Main Features
	⁠1.3. Compatibility
	⁠1.4. Getting Access to Red Hat Developer Toolset
	⁠1.4.1. Using Red Hat Subscription Management
	⁠1.4.2. Using RHN Classic

	⁠1.5. Installing Red Hat Developer Toolset
	⁠1.5.1. Installing All Available Components
	⁠1.5.2. Installing Individual Package Groups
	⁠1.5.3. Installing Optional Packages
	⁠1.5.4. Installing Debugging Information

	⁠1.6. Updating Red Hat Developer Toolset
	⁠1.6.1. Updating to a Minor Version
	⁠1.6.2. Updating to a Major Version

	⁠1.7. Uninstalling Red Hat Developer Toolset
	⁠1.8. Using Red Hat Developer Toolset Container Images
	⁠1.8.1. Obtaining Dockerfiles
	⁠1.8.2. Building Container Images
	⁠1.8.3. Running Red Hat Developer Toolset Tools from Container Images

	⁠1.9. Additional Resources
	⁠Online Documentation
	⁠See Also

	⁠Part II. Integrated Development Environments
	⁠Chapter 2. Eclipse
	⁠2.1. Installing Eclipse
	⁠2.2. Using Eclipse
	⁠2.2.1. Using the Red Hat Developer Toolset Toolchain
	⁠2.2.2. Using the Red Hat Enterprise Linux Toolchain

	⁠2.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Part III. Development Tools
	⁠Chapter 3. GNU Compiler Collection (GCC)
	⁠3.1. GNU C Compiler
	⁠3.1.1. Installing the C Compiler
	⁠3.1.2. Using the C Compiler
	⁠3.1.3. Running a C Program

	⁠3.2. GNU C++ Compiler
	⁠3.2.1. Installing the C++ Compiler
	⁠3.2.2. Using the C++ Compiler
	⁠3.2.3. Running a C++ Program
	⁠3.2.4. C++ Compatibility

	⁠3.3. GNU Fortran Compiler
	⁠3.3.1. Installing the Fortran Compiler
	⁠3.3.2. Using the Fortran Compiler
	⁠3.3.3. Running a Fortran Program

	⁠3.4. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 4. binutils
	⁠4.1. Installing binutils
	⁠4.2. Using the GNU Assembler
	⁠4.3. Using the GNU Linker
	⁠4.4. Using Other Binary Tools
	⁠4.5. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 5. elfutils
	⁠5.1. Installing elfutils
	⁠5.2. Using elfutils
	⁠5.3. Additional Resources
	⁠See Also

	⁠Chapter 6. dwz
	⁠6.1. Installing dwz
	⁠6.2. Using dwz
	⁠6.3. Additional Resources
	⁠Installed Documentation
	⁠See Also

	⁠Part IV. Debugging Tools
	⁠Chapter 7. GNU Debugger (GDB)
	⁠7.1. Installing the GNU Debugger
	⁠7.2. Preparing a Program for Debugging
	⁠Compiling Programs with Debugging Information
	⁠Installing Debugging Information for Existing Packages

	⁠7.3. Running the GNU Debugger
	⁠7.4. Listing Source Code
	⁠7.5. Setting Breakpoints
	⁠Setting a New Breakpoint
	⁠Listing Breakpoints
	⁠Deleting Existing Breakpoints

	⁠7.6. Starting Execution
	⁠7.7. Displaying Current Values
	⁠7.8. Continuing Execution
	⁠7.9. Additional Resources
	⁠Online Documentation
	⁠See Also

	⁠Chapter 8. strace
	⁠8.1. Installing strace
	⁠8.2. Using strace
	⁠8.2.1. Redirecting Output to a File
	⁠8.2.2. Tracing Selected System Calls
	⁠8.2.3. Displaying Time Stamps
	⁠8.2.4. Displaying a Summary

	⁠8.3. Additional Resources
	⁠Installed Documentation
	⁠See Also

	⁠Chapter 9. ltrace
	⁠9.1. Installing ltrace
	⁠9.2. Using ltrace
	⁠9.2.1. Redirecting Output to a File
	⁠9.2.2. Tracing Selected Library Calls
	⁠9.2.3. Displaying Time Stamps
	⁠9.2.4. Displaying a Summary

	⁠9.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 10. memstomp
	⁠10.1. Installing memstomp
	⁠10.2. Using memstomp
	⁠10.3. Additional Resources
	⁠Installed Documentation
	⁠See Also

	⁠Part V. Performance Monitoring Tools
	⁠Chapter 11. SystemTap
	⁠11.1. Installing SystemTap
	⁠11.2. Using SystemTap
	⁠11.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 12. Valgrind
	⁠12.1. Installing Valgrind
	⁠12.2. Using Valgrind
	⁠12.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 13. OProfile
	⁠13.1. Installing OProfile
	⁠13.2. Using OProfile
	⁠13.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Chapter 14. Dyninst
	⁠14.1. Installing Dyninst
	⁠14.2. Using Dyninst
	⁠14.2.1. Using Dyninst with SystemTap
	⁠14.2.2. Using Dyninst as a Stand-alone Application

	⁠14.3. Additional Resources
	⁠Installed Documentation
	⁠Online Documentation
	⁠See Also

	⁠Part VI. Getting Help
	⁠Chapter 15. Accessing Red Hat Product Documentation
	⁠Red Hat Developer Toolset
	⁠Red Hat Enterprise Linux

	⁠Chapter 16. Contacting Global Support Services
	⁠16.1. Gathering Required Information
	⁠Background Information
	⁠Diagnostics
	⁠ Account and Contact Information
	⁠Issue Severity

	⁠16.2. Escalating an Issue
	⁠16.3. Re-opening a Service Request
	⁠16.4. Additional Resources
	⁠Online Documentation

	⁠Appendix A. Changes in Version 3.1
	⁠A.1. Changes in Eclipse
	⁠A.1.1. Changes Since Red Hat Developer Toolset 3.0

	⁠A.2. Changes in GCC
	⁠A.2.1. Changes Since Red Hat Developer Toolset 3.0

	⁠A.3. Changes in elfutils
	⁠A.3.1. Changes Since Red Hat Developer Toolset 3.0
	⁠A.3.2. Changes Since Red Hat Enterprise Linux 7.1

	⁠A.4. Changes in GDB
	⁠A.4.1. Changes Since Red Hat Developer Toolset 3.0

	⁠A.5. Changes in SystemTap
	⁠A.5.1. Changes Since Red Hat Developer Toolset 3.0 and Red Red Hat Enterprise Linux 6.6

	⁠A.6. Changes in Valgrind
	⁠A.6.1. Changes Since Red Hat Developer Toolset 3.0

	⁠A.7. Changes in Dyninst
	⁠A.7.1. Changes Since Red Hat Developer Toolset 3.0 and Red Hat Enterprise Linux 7.1

	⁠Appendix B. Changes in Version 3.0
	⁠B.1. Changes in Eclipse
	⁠B.1.1. Changes Since Red Hat Enterprise Linux 6.6
	⁠B.1.2. Changes Since Red Hat Developer Toolset 2.1

	⁠B.2. Changes in GCC
	⁠B.2.1. Changes Since Red Hat Enterprise Linux 6.6
	⁠B.2.1.1. Status and Features
	⁠B.2.1.2. Language Compatibility
	⁠B.2.1.3. Fortran
	⁠B.2.1.4. x86-specific Improvements
	⁠B.2.1.5. ABI Compatibility
	⁠B.2.1.6. Debugging Compatibility
	⁠B.2.1.7. Other Compatibility
	⁠B.2.1.8. General Improvements and Changes
	⁠B.2.1.9. Debugging Enhancements
	⁠B.2.1.10. Caveats

	⁠B.2.2. Changes Since Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0
	⁠B.2.2.1. General Changes
	⁠B.2.2.2. C and C++ Changes

	⁠B.3. Changes in binutils
	⁠B.3.1. Changes Since Red Hat Enterprise Linux 6.6
	⁠B.3.1.1. GNU Linker
	⁠B.3.1.2. GNU Assembler
	⁠B.3.1.3. Other Binary Tools

	⁠B.3.2. Changes Since Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0

	⁠B.4. Changes in elfutils
	⁠B.4.1. Changes Since Red Hat Developer Toolset 2.1
	⁠B.4.2. Changes Since Red Hat Enterprise Linux 7.0

	⁠B.5. Changes in GDB
	⁠B.5.1. Changes Since Red Hat Enterprise Linux 6.6
	⁠New Features
	⁠New Remote Packets
	⁠New RSP Packet
	⁠Changes in the Machine Interface Interpreter (GDB/MI)
	⁠New Commands
	⁠New Command Line Options
	⁠C++ Language Support
	⁠Python Scripting Support
	⁠Compatibility Changes

	⁠B.5.2. Changes Since Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0
	⁠Python Scripting Support
	⁠New Commands
	⁠New Command Line Options
	⁠Changes in the Machine Interface Interpreter (GDB/MI)
	⁠New Features in Remote Packets
	⁠New Features in the GDB Remote Stub, GDBserver
	⁠General Changes

	⁠B.6. Changes in strace
	⁠B.6.1. Changes Since Red Hat Enterprise Linux 6.6
	⁠B.6.2. Changes Since Red Hat Developer Toolset 2.1

	⁠B.7. Changes in ltrace
	⁠B.7.1. Changes Since Red Hat Enterprise Linux 6.6

	⁠B.8. Changes in SystemTap
	⁠B.8.1. Changes Since Red Hat Developer Toolset 2.1

	⁠B.9. Changes in Valgrind
	⁠B.9.1. Changes Since Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 6.6
	⁠B.9.1.1. Changes in Tools
	⁠B.9.1.2. Other Changes

	⁠B.10. Changes in OProfile
	⁠B.10.1. Changes Since Red Hat Developer Toolset 2.1

	⁠B.11. Changes in Dyninst
	⁠B.11.1. Changes Since Red Hat Developer Toolset 2.1 and Red Hat Enterprise Linux 7.0

	⁠Appendix C. Revision History
	⁠Index

