
Petr Kovář

Red Hat Software Collections 2.x
Packaging Guide

A guide to packaging Software Collect ions for Red Hat Enterprise Linux





Red Hat Software Collect ions 2.x Packaging Guide

A guide to packaging Software Collect ions for Red Hat Enterprise Linux

Petr Kovář
Red Hat Customer Content Services
pkovar@redhat.com



Legal Notice

Copyright ©  2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to  Red Hat, Inc. and provide a link to  the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to  enforce, and agrees not to  assert,
Section 4d o f CC-BY-SA to  the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ®  is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ®  is a registered trademark o f Oracle and/or its affiliates.

XFS ®  is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ®  is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ®  is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to  or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ®  Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
The Packaging Guide provides an explanation o f Software Collections and details how to  build
and package them. Developers and system administrators who have a basic understanding o f
software packaging with RPM packages, but who are new to  the concept o f Software
Collections, can use this Guide to  get started with Software Collections.

http://creativecommons.org/licenses/by-sa/3.0/


1



Chapter 1. Introducing Software Collections

This chapter introduces you to the concept and usage of Software Collections or SCLs for short.

1.1. Why Package Software with RPM?

The RPM Package Manager (RPM) is a package management system that runs on Red Hat
Enterprise Linux. RPM makes it easier for you to distribute, manage, and update software that you
create for Red Hat Enterprise Linux. Many software vendors distribute their software via a
conventional archive file (such as a tarball). However, there are several advantages in packaging
software into RPM packages. These advantages are outlined below.

With RPM, you can:

Install,  reinstall,  remove, upgrade and verify packages.

Users can use standard package management tools (for example Yum or PackageKit ) to
install, reinstall, remove, upgrade and verify your RPM packages.

Use a database of  installed  packages to  query and verify packages.

Because RPM maintains a database of installed packages and their files, users can easily
query and verify packages on their system.

Use metadata to  describe packages, their installat ion inst ruct ions, and so on.

Each RPM package includes metadata that describes the package's components, version,
release, size, project URL, installation instructions, and so on.

Package prist ine sof tware sources in to  source and b inary packages.

RPM allows you to take pristine software sources and package them into source and binary
packages for your users. In source packages, you have the pristine sources along with any
patches that were used, plus complete build instructions. This design eases the
maintenance of the packages as new versions of your software are released.

Add packages to  Yum repositories.

You can add your package to a Yum repository that enables clients to easily find and
deploy your software.

Digitally sign your packages.

Using a GPG signing key, you can digitally sign your package so that users are able to
verify the authenticity of the package.

For in-depth information on what is RPM and how to use it, see the Red Hat Enterprise Linux 7
System Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

1.2. What  Are Software Collect ions?

With Software Collections, you can build and concurrently install multiple versions of the same
software components on your system. Software Collections have no impact on the system versions of
the packages installed by any of the conventional RPM package management utilities.

Sof tware Collect ions:

Packaging Guide

2

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


Do not  overwrite system f iles

Software Collections are distributed as a set of several components, which provide their full
functionality without overwriting system files.

Are designed to  avoid  conf licts with  system f iles

Software Collections make use of a special file system hierarchy to avoid possible conflicts
between a single Software Collection and the base system installation.

Require no changes to  the RPM package manager

Software Collections require no changes to the RPM package manager present on the host
system.

Need only minor changes to  the spec f ile

To convert a conventional package to a single Software Collection, you only need to make
minor changes to the package spec file.

Allow you to  build  a convent ional package and a Sof tware Collect ion package with
a single spec f ile

With a single spec file, you can build both the conventional package and the Software
Collection package.

Uniquely name all included packages

With Software Collection's namespace, all packages included in the Software Collection are
uniquely named.

Do not  conf lict  with  updated packages

Software Collection's namespace ensures that updating packages on your system causes
no conflicts.

Can depend on other Sof tware Collect ions

Because one Software Collection can depend on another, you can define multiple levels of
dependencies.

1.3. Enabling Support  for Software Collect ions

To enable support for Software Collections on your system so that you can enable and build
Software Collections, you need to have installed the packages scl-utils and scl-utils-build.

If the packages scl-utils and scl-utils-build are not already installed on your system, you can install
them by typing the following at a shell prompt as root:

# yum install scl-utils scl-utils-build

The scl-utils package provides the scl  tool that lets you enable Software Collections on your system.
For more information on enabling Software Collections, see Section 1.6, “Enabling a Software
Collection” .

The scl-utils-build package provides macros that are essential for building Software Collections. For
more information on building Software Collections, see Section 2.11, “Building a Software
Collection” .

⁠Chapt er 1 . Int roducing Soft ware Collect ions

3



Important

Depending on the subscriptions available to your Red Hat Enterprise Linux system, you may
need to enable the Optional  channel to install the scl-utils-build package.

1.4 . Installing a Software Collect ion

To ensure that a Software Collection is on your system, install the so-called metapackage of the
Software Collection. Thanks to Software Collections being fully compatible with the RPM Package
Manager, you can use conventional tools like Yum or PackageKit  for this task.

For example, to install a Software Collection with the metapackage named 
software_collection_1, run the following command:

# yum install software_collection_1

This command will automatically install all the packages in the Software Collection that are essential
for the user to perform most common tasks with the Software Collection.

Software Collections allow you to only install a subset of packages you intend to use. For example,
to use the Ruby interpreter from the rh-ruby22 Software Collection, you only need to install a
package rh-ruby22-ruby from that Software Collection.

If you install an application that depends on a Software Collection, that Software Collection will be
installed along with the rest of the application's dependencies.

For detailed information on Software Collection metapackages, see Section 2.7.1, “Metapackage” .

For detailed information on Yum and PackageKit  usage, see the Red Hat Enterprise Linux 7 System
Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

1.5. List ing Installed Software Collect ions

To get a list of Software Collections that are installed on the system, run the following command:

 scl --list 

To get a list of installed packages contained within a specified Software Collection, run the following
command:

 scl --list software_collection_1 

1.6. Enabling a Software Collect ion

The scl  tool is used to enable a Software Collection and to run applications in the Software
Collection environment.

General usage of the scl  tool can be described using the following syntax:

 scl action software_collection_1 software_collection_2 command 

Packaging Guide

4

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


If you are running a command with multiple arguments, remember to enclose the command and its
arguments in quotes:

 scl action software_collection_1 software_collection_2 'command --
argument' 

Alternatively, use a -- command separator to run a command with multiple arguments:

 scl action software_collection_1 software_collection_2 -- command --
argument 

Remember that :

When you run the scl  tool, it creates a child process (subshell) of the current shell. Running the
command again then creates a subshell of the subshell.

You can list enabled Software Collections for the current subshell. See Section 1.7, “Listing
Enabled Software Collections”  for more information.

You have to disable an enabled Software Collection first to be able to enable it again. To disable
the Software Collection, exit the subshell created when enabling the Software Collections.

When using the scl  tool to enable a Software Collection, you can only perform one action with the
enabled Software Collection at a time. The enabled Software Collection must be disabled first
before performing another action.

1.6.1. Running an Applicat ion Direct ly

For example, to directly run Perl  with the --version option in the Software Collection named
sof tware_collect ion_1 , execute the following command:

 scl enable software_collection_1 'perl --version' 

Alternatively, you can create a wrapper script that shortens the commands for running applications
in the Software Collection environment. For more information on wrappers, see Section 3.3,
“Packaging Wrappers for Software Collections” .

1.6.2. Running a Shell with Mult iple Software Collect ions Enabled

To run the Bash  shell in the environment with multiple Software Collections enabled, execute the
following command:

 scl enable software_collection_1 software_collection_2 bash 

The command above enables two Software Collections, named sof tware_collect ion_1  and
sof tware_collect ion_2 .

1.6.3. Running Commands Stored in a File

To execute a number of commands, which are stored in a file, in the Software Collection environment,
run the following command:

 cat cmd | scl enable software_collection_1 - 

⁠Chapt er 1 . Int roducing Soft ware Collect ions

5



The command above executes commands, which are stored in the cmd  file, in the environment of the
Software Collection named sof tware_collect ion_1 .

1.7. List ing Enabled Software Collect ions

To get a list of Software Collections that are enabled in the current session, print the $X_SCLS
environment variable by running the following command:

echo $X_SCLS 

1.8. Uninstalling a Software Collect ion

You can use conventional tools like Yum or PackageKit  when uninstalling a Software Collection
because Software Collections are fully compatible with the RPM Package Manager. For example, to
uninstall all packages and subpackages that are part of a Software Collection named 
software_collection_1, run the following command:

 yum remove software_collection_1\* 

You can also use the yum remove command to remove the scl  utility.

For detailed information on Yum and PackageKit  usage, see the Red Hat Enterprise Linux 7 System
Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

Packaging Guide

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


Chapter 2. Packaging Software Collections

This chapter introduces you to packaging Software Collections.

2.1. Creat ing Your Own Software Collect ions

In general, you can use one of the following two approaches to deploy an application that depends
on an existing Software Collection:

install all required Software Collections and packages manually and then deploy your
application, or

create a new Software Collection for your application.

When creat ing a new Sof tware Collect ion for your applicat ion:

Create a Sof tware Collect ion metapackage

Each Software Collection includes a metapackage, which installs a subset of the Software
Collection's packages that are essential for the user to perform most common tasks with the
Software Collection. See Section 2.7.1, “Metapackage”  for more information on creating
metapackages.

Consider specifying the locat ion of  the Sof tware Collect ion root  d irectory

You are advised to specify the location of the Software Collection root directory by setting
the %_scl_prefix macro in the Software Collection spec file. For more information, see
Section 2.3, “The Software Collection Root Directory” .

Consider pref ixing the name of  your Sof tware Collect ion packages

You are advised to prefix the name of your Software Collection packages with the vendor
and Software Collection's name. For more information, see Section 2.4, “The Software
Collection Prefix” .

Specify all Sof tware Collect ions and other packages required by your applicat ion
as dependencies

Ensure that all Software Collections and other packages required by your application are
specified as dependencies of your Software Collection. For more information, see
Section 2.9.4, “Making a Software Collection Depend on Another Software Collection” .

Convert  exist ing convent ional packages or create new Sof tware Collect ion
packages

Ensure that all macros in your Software Collection package spec files use conditionals. See
Section 2.9, “Converting a Conventional Spec File”  for more information on how to convert
an existing package spec file.

Build  your Sof tware Collect ion

After you create the Software Collection metapackage and convert or create packages for
your Software Collection, you can build the Software Collection with the rpmbuild  utility.
For more information, see Section 2.11, “Building a Software Collection” .

2.2. The File System Hierarchy

⁠Chapt er 2 . Packaging Soft ware Collect ions

7



The root directory of Software Collections is normally located in the /opt/ directory to avoid
possible conflicts between Software Collections and the base system installation. The use of the 
/opt/ directory is recommended by the Filesystem Hierarchy Standard (FHS).

Below is an example of the file system hierarchy layout with two Software Collections,
software_collection_1 and software_collection_2:

Figure 2.1. The Sof tware Collect ion File System Hierarchy

As you can see above, each of the Software Collections directories contains the Software Collection
root directory, and one or more Software Collection scriptlets. For more information on the Software
Collection scriptlets, refer to Section 2.6, “Software Collection Scriptlets” .

2.3. The Software Collect ion Root  Directory

You can change the location of the root directory by setting the %_scl_prefix macro in the spec
file, as in the following example:

%global _scl_prefix /opt/provider

where provider is the provider (vendor) name registered, where applicable, with the Linux Foundation
and the subordinated Linux Assigned Names and Numbers Authority (LANANA), in conformance with
the Filesystem Hierarchy Standard.

Each organization or project that builds and distributes Software Collections should use its own
provider name, which conforms to the Filesystem Hierarchy Standard (FHS) and avoids possible
conflicts between Software Collections and the base system installation.

You are advised to make the file system hierarchy conform to the following layout:

/opt/provider/prefix-application-version/

Packaging Guide

8



For more information on the Filesystem Hierarchy Standard, see http://www.pathname.com/fhs/.

For more information on the Linux Assigned Names and Numbers Authority, see
http://www.lanana.org/.

2.4 . The Software Collect ion Prefix

When naming your Software Collection, you are advised to prefix the name of your Software
Collection as described below in order to avoid possible name conflicts with the system versions of
the packages that are part of your Software Collection.

The Software Collection prefix consists of two parts:

the provider part, which defines the provider's name, and

the name of the Software Collection itself.

These two parts of the Software Collection prefix are separated by a dash (-), as in the following
example:

myorganization-ruby193

In this example, myorganization is the provider's name, and ruby193 is the name of the Software
Collection.

While it is ultimately a vendor's or distributor's decision whether to specify the provider's name in the
prefix or not, specifying it is highly recommended.

A notable exception are Software Collections which were first shipped with Red Hat Software
Collections 1.x, they do not specify the provider's name in their prefixes. Newer Software Collections
added in Red Hat Software Collections 2.0 and later use rh as the provider's name. For example:

rh-ruby22

2.5. Software Collect ion Package Names

The Software Collection package name consists of two parts:

the prefix part, discussed in Section 2.4, “The Software Collection Prefix” , and

the name and version number of the application that is a part of the Software Collection.

These two parts of the Software Collection package name are separated by a dash (-), as in the
following example:

myorganization-ruby193-foreman-1.1

In this example, myorganization-ruby193 is the prefix, and foreman-1.1 is the name and version number
of the application.

2.6. Software Collect ion Script lets

⁠Chapt er 2 . Packaging Soft ware Collect ions

9

http://www.pathname.com/fhs/
http://www.lanana.org/


The Software Collection scriptlets are simple shell scripts that change the current system environment
so that the group of packages in the Software Collection is preferred over the corresponding group of
conventional packages installed on the system.

To utilize the Software Collection scriptlets, use the scl  tool that is part of the scl-utils package. For
more information on scl , refer to Section 1.6, “Enabling a Software Collection” .

A single Software Collection can include multiple Software Collection scriptlets. These scriptlets are
located in the /opt/provider/software_collection/ directory in your Software Collection
package. If you only need to distribute a single scriptlet in your Software Collection, it is highly
recommended that you use enable as the name for that scriptlet. When the user runs a command in
the Software Collection environment by executing scl enable software_collection 
command, the /opt/provider/software_collection/enable scriptlet is then used to update
search paths, and so on.

Note that Software Collection scriptlets can only set the system environment in a subshell that is
created by running the scl enable command. The subshell is only active for the time the command
is being performed.

2.7. Package Layout

Each Software Collection's layout consists of the metapackage, which installs a subset of other
packages, and a number of the Software Collection's packages, which are installed within the
Software Collection namespace.

2.7.1. Metapackage

Each Software Collection includes a metapackage, which installs a subset of the Software
Collection's packages that are essential for the user to perform most common tasks with the Software
Collection. For example, the essential packages can provide the Perl language interpreter, but no
Perl extension modules. The metapackage contains a basic file system hierarchy and delivers a
number of the Software Collection's scriptlets.

The purpose of the metapackage is to make sure that all essential packages in the Software
Collection are properly installed and that it is possible to enable the Software Collection.

The metapackage produces the following packages that are also part of the Software Collection:

The main  package: %name

The main package in the Software Collection contains dependencies of the base packages,
which are included in the Software Collection. The main package does not contain any
files.

When specifying dependencies for your Software Collection's packages, ensure that no
other package in your Software Collection depends on the main package. The purpose of
the main package is to install only those packages that are essential for the user to perform
most common tasks with the Software Collection.

Normally, the main package does not specify any build time dependencies (for instance,
packages that are only build time dependencies of another Software Collection's
packages).

For example, if the name of the Software Collection is myorganization-ruby193, then
the main package macro is expanded to:

myorganization-ruby193

Packaging Guide

10



The runt ime subpackage: %name- runt ime

The runtime subpackage in the Software Collection owns the Software Collection's file
system and delivers the Software Collection's scriptlets. This package needs to be installed
for the user to be able to use the Software Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then
the runtime subpackage macro is expanded to:

myorganization-ruby193-runtime

The build  subpackage: %name-build

The build subpackage in the Software Collection delivers the Software Collection's build
configuration. It contains RPM macros needed for building packages into the Software
Collection. The build subpackage is optional and can be excluded from the Software
Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then
the build subpackage macro is expanded to:

myorganization-ruby193-build

The contents of the myorganization-ruby193-build  subpackage are shown below:

$ cat /etc/rpm/macros.ruby193-config
%scl myorganization-ruby193

The scldevel subpackage: %name-scldevel

The scldevel subpackage in the %name Software Collection contains development files,
which are useful when developing packages of another Software Collection that depends
on the %name Software Collection. The scldevel subpackage is optional and can be
excluded from the %name Software Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then
the scldevel subpackage macro is expanded to:

myorganization-ruby193-scldevel

For more information about the scldevel subpackage, see Section 4.1, “Providing an
scldevel Subpackage” .

2.7.2. Creat ing a Metapackage

When creat ing a new metapackage:

It is recommended to define the following macros at the top of the metapackage spec file:

scl_name_prefix that specifies the provider's name to be used as a prefix in your Software
Collection's name, for example, myorganization-. This is different from _scl_prefix, which
specifies the root of your Software Collection but also uses the provider's name. See
Section 2.4, “The Software Collection Prefix”  for more information.

scl_name_base that specifies the base name of your Software Collection, for example, ruby.

⁠Chapt er 2 . Packaging Soft ware Collect ions

11



scl_name_version that specifies the version of your Software Collection, for example, 193.

You are advised to define a Software Collection macro nfsmountable that changes the location
of configuration and state files and makes your Software Collection usable over NFS. For more
information, see Section 3.1, “Using Software Collections over NFS” .

Consider specifying all packages in your Software Collection that are essential for the Software
Collection run time as dependencies of the metapackage. That way you can ensure that the
packages are installed with the Software Collection metapackage.

You are advised to add Requires: scl-utils-build  to the build subpackage.

You are not required to use conditionals for Software Collection-specific macros in the
metapackage.

Include any path redefinition that the packages in your Software Collection may require in the 
enable scriptlet.

For example, to run Software Collection binary files, add PATH=%
{_bindir}\${PATH:+:\${PATH}} to the enable scriptlet.

Always make sure that the metapackage contains the %setup macro in the %prep section,
otherwise building the Software Collection will fail. If you do not need to use a particular option
with the %setup macro, add the %setup -c -T  command to the %prep section.

This is because the %setup macro defines and creates the %buildsubdir directory, which is
normally used for storing temporary files at build time. If you do not define %setup in your
Software Collection packages, files in the %buildsubdir directory will be overwritten, causing
the build to fail.

Add any macros you need to use to the macros.%{scl}-config  file in the build subpackage.

Example o f t he Met apackage

To get an idea of what a typical metapackage for a Software Collection named myorganization-ruby193
looks like, see the following example:

%global scl_name_prefix myorganization-
%global scl_name_base ruby
%global scl_name_version 193

%global scl %{scl_name_prefix}%{scl_name_base}%{scl_name_version}

# Optional but recommended: define nfsmountable
%global nfsmountable 1

%scl_package %scl
%global _scl_prefix /opt/myorganization

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
Requires: %{scl_prefix}less
BuildRequires: scl-utils-build

%description

Packaging Guide

12



This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build

%description build
Package shipping essential configuration macros to build %scl Software 
Collection.

# This is only needed when you want to provide an optional scldevel 
subpackage
%package scldevel
Summary: Package shipping development files for %scl

%description scldevel
Package shipping development files, especially useful for development of
packages depending on %scl Software Collection.

%prep
%setup -c -T

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH=%{_bindir}\${PATH:+:\${PATH}}
export LD_LIBRARY_PATH=%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}
export MANPATH=%{_mandir}:\$MANPATH
export PKG_CONFIG_PATH=%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}
EOF

# This is only needed when you want to provide an optional scldevel 
subpackage
cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

# Install the generated man page
mkdir -p %{buildroot}%{_mandir}/man7/
install -p -m 644 %{scl_name}.7 %{buildroot}%{_mandir}/man7/

%files

%files runtime -f filelist

⁠Chapt er 2 . Packaging Soft ware Collect ions

13



%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%files scldevel
%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-scldevel

%changelog
* Fri Aug 30 2013 John Doe &lt;jdoe@example.com&gt; 1-1
- Initial package

2.8. Software Collect ion Macros

The Software Collection packaging macro scl  defines where to relocate the Software Collection's file
structure. The relocated file structure is a file system used exclusively by the Software Collection.

The %scl_package macro defines files ownership for the Software Collection's metapackage and
provides additional packaging macros to use in the Software Collection environment.

To be able to build a conventional package and a Software Collection package with a single spec
file, prefix the Software Collection macros with %{?scl:macro}, as in the following example:

%{?scl:Requires: %scl_runtime}

In the example above, the %scl_runtime macro is the value of the Requires tag. Both the macro
and the tag use the %{?scl:  prefix.

2.8.1. Macros Specific to a Software Collect ion

The table below shows a list of all macros specific to a particular Software Collection. All the macros
have default values that you will not need to change in most cases.

Table 2.1. Sof tware Collect ion Specif ic Macros

Macro Descript ion Example value
%scl_name name of the Software Collection software_collection_1

%scl_prefix name of the Software Collection
with a dash appended at the
end

software_collection_1-

%pkg_name name of the original package perl

%_scl_prefix root of the Software Collection
(not package's root)

/opt/provider/

%_scl_scripts location of Software
Collection's scriptlets

/opt/provider/software_
collection_1/

%_scl_root installation root (install-root) of
the package

/opt/provider/software_
collection_1/root/

%scl_require_package 
software_collection_1 
package_2

depend on a particular
package from a specific
Software Collection

software_collection_1-
package_2

2.8.2. Macros Not  Specific to a Software Collect ion

Packaging Guide

14



The table below shows a list of macros that are not specific to a particular Software Collection.
Because these macros are not relocated and do not point to the Software Collection file system, they
allow you to point to the system root file system. These macros use _root as a prefix.

All the macros have default values that you will not need to change in most cases.

Table 2.2. Sof tware Collect ion Non-Specif ic Macros

Macro Descript ion Relocated Example value
%_root_prefix Software Collection's 

%_prefix macro
no /usr/

%_root_exec_prefi
x

Software Collection's 
%_exec_prefix
macro

no /usr/

%_root_bindir Software Collection's 
%_bindir macro

no /usr/bin/

%_root_sbindir Software Collection's 
%_sbindir macro

no /usr/sbin/

%_root_datadir Software Collection's 
%_datadir macro

no /usr/share/

%_root_sysconfdir Software Collection's 
%_sysconfdir macro

no /etc/

%_root_libexecdi
r

Software Collection's 
%_libexecdir
macro

no /usr/libexec/

%_root_sharedstat
edir

Software Collection's 
%_sharedstatedir
macro

no /usr/com/

%_root_localstate
dir

Software Collection's 
%_localstatedir
macro

no /usr/var/

%_root_includedi
r

Software Collection's 
%_includedir
macro

no /usr/include/

%_root_infodir Software Collection's 
%_infodir macro

no /usr/share/info/

%_root_mandir Software Collection's 
%_mandir macro

no /usr/share/man/

%_root_initddir Software Collection's 
%_initddir macro

no /etc/rc.d/init.d/

%_root_libdir Software Collection's 
%_libdir macro, this
macro does not work if
Software Collection's
metapackage is
platform-independent

no /usr/lib/

2.8.3. T he nfsmountable Macro

Using a Software Collection macro nfsmountable allows you to change values for the 
_sysconfdir, _sharedstatedir, and _localstatedir macros so that your Software
Collection can have its state files and configuration files located outside the Software Collection's 
/opt file system hierarchy. This makes the files easier to manage and is also required when using
your Software Collection over NFS.

⁠Chapt er 2 . Packaging Soft ware Collect ions

15



If you do not need support for Software Collections over NFS, using nfsmountable is optional but
recommended. For more information, see Section 3.1, “Using Software Collections over NFS” .

2.9. Convert ing a Convent ional Spec File

This section discusses converting a conventional spec file into a Software Collection spec file so that
the converted spec file can be used in both the conventional package and the Software Collection.

2.9.1. Example of the Converted Spec File

To see what the diff file comparing a conventional spec file with a converted spec file looks like, refer
to the following example:

--- a/less.spec
+++ b/less.spec
@@ -1,10 +1,13 @@
+%{?scl:%scl_package less}
+%{!?scl:%global pkg_name %{name}}
+
 Summary: A text file browser similar to more, but better
-Name: less
+Name: %{?scl_prefix}less
 Version: 444
 Release: 7%{?dist}
 License: GPLv3+
 Group: Applications/Text
-Source: http://www.greenwoodsoftware.com/less/%{name}-%{version}.tar.gz
+Source: http://www.greenwoodsoftware.com/less/%{pkg_name}-%
{version}.tar.gz
 Source1: lesspipe.sh
 Source2: less.sh
 Source3: less.csh
@@ -19,6 +22,7 @@ URL: http://www.greenwoodsoftware.com/less/
 Requires: groff
 BuildRequires: ncurses-devel
 BuildRequires: autoconf automake libtool
-Obsoletes: lesspipe < 1.0
+Obsoletes: %{?scl_prefix}lesspipe < 1.0
+%{?scl:Requires: %scl_runtime}
 
 %description
 The less utility is a text file browser that resembles more, but has
@@ -31,7 +35,7 @@ You should install less because it is a basic utility 
for viewing text
 files, and you'll use it frequently.
 
 %prep
-%setup -q
+%setup -q -n %{pkg_name}-%{version}
 %patch1 -p1 -b .Foption
 %patch2 -p1 -b .search
 %patch4 -p1 -b .time
@@ -51,16 +55,16 @@ make CC="gcc $RPM_OPT_FLAGS -D_GNU_SOURCE -
D_LARGEFILE_SOURCE -D_LARGEFILE64_SOU
 %install

Packaging Guide

16



 rm -rf $RPM_BUILD_ROOT
 make DESTDIR=$RPM_BUILD_ROOT install
-mkdir -p $RPM_BUILD_ROOT/etc/profile.d
+mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 install -p -c -m 755 %{SOURCE1} $RPM_BUILD_ROOT/%{_bindir}
-install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT/etc/profile.d
-install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT/etc/profile.d
-ls -la $RPM_BUILD_ROOT/etc/profile.d
+install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+ls -la $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 
 %files
 %defattr(-,root,root,-)
 %doc LICENSE
-/etc/profile.d/*
+%{_sysconfdir}/profile.d/*
 %{_bindir}/*
 %{_mandir}/man1/*

2.9.2. Convert ing T ags and Macro Definit ions

The following steps show how to convert tags and macro definitions in a conventional spec file into a
Software Collection spec file.

Procedure 2.1. Convert ing tags and macro def in it ions

1. Add the %scl_package macro to the spec file. Place the macro in front of the spec file
preamble as follows:

%{?scl:%scl_package package_name}

2. You are advised to define the %pkg_name macro in the spec file preamble in case the
package is not built for the Software Collection:

%{!?scl:%global pkg_name %{name}}

Consequently, you can use the %pkg_name macro to define the original name of the package
wherever it is needed in the spec file that you can then use for building both the conventional
package and the Software Collection.

3. Change the Name tag in the spec file preamble as follows:

Name: %{?scl_prefix}package_name

4. If you are building or linking with other Software Collection packages, then prefix the names
of those Software Collection packages in the Requires and BuildRequires tags with %{?
scl_prefix} as follows:

Requires: %{?scl_prefix}ifconfig

⁠Chapt er 2 . Packaging Soft ware Collect ions

17



When depending on the system versions of packages, you should avoid using versioned 
Requires or BuildRequires. If you need to depend on a package that could be updated
by the system, consider including that package in your Software Collection, or remember to
rebuild your Software Collection when the system package updates.

5. To check that all essential Software Collection's packages are dependencies of the main
metapackage, add the following macro after the BuildRequires or Requires tags in the
spec file:

%{?scl:Requires: %scl_runtime}

6. Prefix the Obsoletes, Conflicts and BuildConflicts tags with %{?scl_prefix}.
This is to ensure that the Software Collection can be used to deploy new packages to older
systems without having the packages specified, for example, by Obsolete removed from the
base system installation. For example:

Obsoletes: %{?scl_prefix}lesspipe < 1.0

7. Prefix the Provides tag with %{?scl_prefix}, as in the following example:

Provides: %{?scl_prefix}more

2.9.3. Convert ing Subpackages

For any subpackages that define their name with the -n option, prefix their name with %{?
scl_prefix}, as in the following example:

%package -n %{?scl_prefix}more

Prefixing applies not only to the %package macro, but also for %description and %files. For
example:

%description -n %{?scl_prefix}rubygems
RubyGems is the Ruby standard for publishing and managing third party
libraries.

In case the subpackage requires the main package, make sure to also adjust the Requires tag in
that subpackage so that the tag uses %{?scl_prefix}%{pkg_name}. For example:

Requires: %{?scl_prefix}%{pkg_name} = %{version}-%{release}

2.9.4 . Making a Software Collect ion Depend on Another Software Collect ion

To make one Software Collection depend on a package from another Software Collection, you need
to adjust the BuildRequires and Requires tags in the dependent Software Collection's spec file
so that these tags properly define the dependency.

For example, to define dependencies on two Software Collections named sof tware_collect ion_1
and sof tware_collect ion_2 , add the following three lines to your application's spec file:

BuildRequires: scl-utils-build
Requires: %scl_require software_collection_1
Requires: %scl_require software_collection_2

Packaging Guide

18



Ensure that the spec file also contains the %scl_package macro in front of the spec file preamble,
for example:

%{?scl:%scl_package less}

Note that the %scl_package macro must be included in every spec file of your Software Collection.

You can also use the %scl_require_package macro to define dependencies on a particular
package from a specific Software Collection, as in the following example:

BuildRequires: scl-utils-build
Requires: %scl_require_package software_collection_1 package_name

2.9.5. Convert ing RPM Scripts

This section describes general rules for converting RPM scripts that can often be found in the %prep,
%build , %install , %check, %pre, and %post sections of a conventional spec file.

Replace all occurrences of %name with %pkg_name. Most importantly, this will include adjusting
the %setup macro.

Adjust the %setup macro in the %prep section of the spec file so that the macro can deal with a
different package name in the Software Collection environment:

%setup -q -n %{pkg_name}-%{version}

Note that the %setup macro is required and that you must always use the macro with the -n
option to successfully build your Software Collection.

If you are using any of the %_root_ macros to point to the system file system hierarchy, you must
use conditionals for these macros so that you can then use the spec file for building both the
conventional package and the Software Collection. Edit the macros as in the following example:

mkdir -p %{?scl:%_root_sysconfdir}%{?!scl:%_sysconfdir}

When building Software Collection packages that depend on other Software Collection packages,
it is often important to ensure that the scl enable functionality links properly or run proper
binaries, and so on. One of the examples where this will be needed is compiling against a
Software Collection library or running an interpreted script with the interpreter in the Software
Collection.

Wrap the script using the %{?scl:  prefix, as in the following example:

%{?scl:scl enable %scl - << \EOF}
 set -e
 ruby example.rb
 RUBYOPT="-Ilib" ruby bar.rb
 # The rest of the script contents goes here.
%{?scl:EOF}

It is important to specify set -e in the script so that the script behavior is consistent regardless of
whether the script is executed in the rpm shell or the scl  environment.

⁠Chapt er 2 . Packaging Soft ware Collect ions

19



All hardcoded paths found in the script must be replaced with proper macros. For example,
replace all occurrences of /usr/share with %{_datadir}.

2.9.6. Software Collect ion Automat ic Provides and Requires and Filtering
Support

Important

The functionality described in this section is not available in Red Hat Enterprise Linux 6.

RPM in Red Hat Enterprise Linux 7 features support for automatic Provides and Requires and
filtering. For example, for all Python libraries, RPM automatically adds the following Requires:

Requires: python(abi) = (version)

As explained in Section 2.9, “Converting a Conventional Spec File” , you should prefix this 
Requires with %{?scl_prefix} when converting your conventional RPM package:

Requires: %{?scl_prefix}python(abi) = (version))

Keep in mind that the scripts searching for these dependencies must sometimes be rewritten for your
Software Collection, as the original RPM scripts are not extensible enough, and, in some cases,
filtering is not usable. For example, to rewrite automatic Python Provides and Requires, add the
following lines in the macros.%{scl}-config  macro file:

%__python_provides /usr/lib/rpm/pythondeps-scl.sh --provides %{_scl_root} 
%{scl_prefix}
%__python_requires /usr/lib/rpm/pythondeps-scl.sh --requires %{_scl_root} 
%{scl_prefix}

The /usr/lib/rpm/pythondeps-scl.sh file is based on a pythondeps.sh file from the
conventional package and adjusts search paths.

If there are Provides or Requires that you need to adjust, for example, a pkg_config  
Provides, there are two ways to do it:

Add the following lines in the macros.%{scl}-config  macro file so that it applies to all
packages in the Software Collection:

%_use_internal_dependency_generator 0
%__deploop() while read FILE; do /usr/lib/rpm/rpmdeps -%{1} ${FILE}; 
done | /bin/sort -u
%__find_provides /bin/sh -c "%{?__filter_prov_cmd} %{__deploop P} %{?
__filter_from_prov}"
%__find_requires /bin/sh -c "%{?__filter_req_cmd}  %{__deploop R} %{?
__filter_from_req}"

# Handle pkgconfig's virtual Provides and Requires
%__filter_from_req | %{__sed} -e 's|pkgconfig|%{?
scl_prefix}pkgconfig|g'
%__filter_from_prov | %{__sed} -e 's|pkgconfig|%{?
scl_prefix}pkgconfig|g'

Packaging Guide

20



Or, alternatively, add the following lines after tag definitions in every spec file for which you want
to filter Provides or Requires:

%{?scl:%filter_from_provides s|pkgconfig|%{?scl_prefix}pkgconfig|g}
%{?scl:%filter_from_requires s|pkgconfig|%{?scl_prefix}pkgconfig|g}
%{?scl:%filter_setup}

Important

When using filters, you need to pay attention to the automatic dependencies you change. For
example, if the conventional package contains Requires: pkgconfig(package_1) and 
Requires: pkgconfig(package_2), and only package_2 is included in the Software
Collection, ensure that you do not filter the Requires tag for package_1.

2.9.7. Software Collect ion Macro Files Support

In some cases, you may need to ship macro files with your Software Collection packages. They are
located in the %{?scl:%{_root_sysconfdir}}%{!?scl:%{_sysconfdir}}/rpm/ directory,
which corresponds to the /etc/rpm/ directory for conventional packages. When shipping macro
files, ensure that:

You rename the macro files by appending .%{scl} to their names so that they do not conflict
with the files from the base system installation.

The macros in the macro files are either not expanded, or they are using conditionals, as in the
following example:

%__python2 %{_bindir}/python
%python2_sitelib %(%{?scl:scl enable %scl '}%{__python2} -c "from 
distutils.sysconfig import get_python_lib; print(get_python_lib())"%{?
scl:'})

As another example, there may be a situation where you need to create a Software Collection
mypython that depends on a Software Collection python26. The python26 Software Collection defines
the %{__python2} macro as in the above sample. This macro will evaluate to 
/opt/provider/mypython/root/usr/bin/python2, but the python2 binary is only available
in the python26 Software Collection (/opt/provider/python26/root/usr/bin/python2).

To be able to build software in the mypython Software Collection environment, ensure that:

The macros.python.python26  macro file, which is a part of the python26-python-devel
package, contains the following line:

%__python26_python2 /opt/provider/python26/root/usr/bin/python2

And the macro file in the python26-build subpackage, and also the build subpackage in any
depending Software Collection, contains the following line:

%scl_package_override() {%global __python2 %__python26_python2}

⁠Chapt er 2 . Packaging Soft ware Collect ions

21



This will redefine the %{__python2} macro only if the build subpackage from a corresponding
Software Collection is present, which usually means that you want to build software for that Software
Collection.

2.9.8. Software Collect ion Shebang Support

A shebang is a sequence of characters at the beginning of a script that is used as an interpreter
directive. The shebang is processed by the automatic dependency generator and it points to a
certain location, possibly in the system root file system.

When the automatic dependency generator processes the shebang, it adds dependencies according
to the interpreters they point to. From the Software Collection point of view, there are two types of
shebangs:

#!/usr/bin/env example

This shebang instructs the /usr/bin/env program to run the interpreter.

The automatic dependency generator will create a dependency on the /usr/bin/env
program, as expected.

If the $PATH environment variable is redefined properly in the enable scriptlet, the example
interpreter is found in the Software Collection file system hierarchy, as expected.

You are advised to rewrite the shebang in your Software Collection package so that the
shebang specifies the full path to the interpreter located in the Software Collection file
system hierarchy.

#!/usr/bin/example

This shebang specifies the direct path to the interpreter.

The automatic dependency generator will create a dependency on the 
/usr/bin/example interpreter located outside the Software Collection file system
hierarchy. However, when building a package for your Software Collection, you often want
to create a dependency on the %{?_scl_root}/usr/bin/example interpreter located in
the Software Collection file system hierarchy.

Keep in mind that even when you properly redefine the $PATH environment variable, this
has no effect on what interpreter is used. The system version of the interpreter located
outside the Software Collection file system hierarchy is always used. In most cases, this is
not desired.

If you are using this type of shebang and you want the shebang to point to the Software
Collection file system hierarchy when building your Software Collection package, use a
command like the following:

find %{buildroot} -type f | \
  xargs sed -i -e '1 s"^#!/usr/bin/example"#!%{?
_scl_root}/usr/bin/example"'

where /usr/bin/example is the interpreter you want to use.

2.10. Uninstalling All Software Collect ion Directories

Packaging Guide

22



Keep in mind that the yum remove command does not uninstall directories provided by those
Software Collection packages and subpackages that are removed after the Software Collection
runtime subpackage is removed.

To ensure that all directories are uninstalled, make those packages and subpackages depend on the
runtime subpackage. To do so, add the following line with the %scl_runtime macro to the spec file
of each of those packages and subpackages:

%{?scl:Requires: %scl_runtime}

Adding the above line ensures that all directories provided by those packages and subpackages are
removed correctly as long as the runtime subpackage does not depend on any of those packages
and subpackages.

2.11. Building a Software Collect ion

If you have correctly converted a conventional spec file for your Software Collection as documented
in Section 2.9, “Converting a Conventional Spec File” , you will be able to build the resulting package
in both the Software Collection and conventional build roots. Building the converted package in a
conventional build root will produce a conventional base system RPM package, while building in a
Software Collection build root that contains %{scl}-build will produce a Software Collection package.

To build a Software Collection on your system, run the following command:

 rpmbuild -ba package.spec --define 'scl name' 

The difference between the command shown above and the standard command to build
conventional packages (rpmbuild -ba package.spec) is that you have to append the --
define option to the rpmbuild  command when building a Software Collection.

The --define option defines the scl  macro, which uses the Software Collection configured in the
Software Collection spec file (package.spec).

Alternatively, to be able to use the standard command rpmbuild -ba package.spec to build the
Software Collection, specify the following in the package.spec file:

BuildRequires: software_collection-build

where software_collection is the name of the Software Collection.

2.11.1. Rebuilding a Software Collect ion without  build Subpackages

When you want to rebuild a Software Collection that comes with no build subpackage
(software_collection-build), you can create the build subpackage by rebuilding the Software Collection
metapackage, and thus avoid using the rpmbuild -ba package.spec --define 'scl 
name'  command.

Note that you need to have the scl-utils-build package installed on your system, otherwise rebuilding
the Software Collection metapackage with the rpmbuild  command will fail.

For more information about the scl-utils-build package, see Section 1.3, “Enabling Support for
Software Collections” .

2.11.2. Avoiding debuginfo File Conflicts

⁠Chapt er 2 . Packaging Soft ware Collect ions

23



When you build two Software Collection packages (or a conventional RPM package and a Software
Collection package) that specify the same Source tag, and thus unpack source files into the same
directory underneath the %_builddir directory, their debuginfo  packages will have file conflicts.
Due to these conflicts, the user will be unable to install both packages on the same system at the
same time.

To avoid these file conflicts, the spec file of one of the packages has to be altered to unpack its
upstream source into a uniquely named top directory. This adds one more directory level to the build
tree underneath the %_builddir directory. By doing so, the debuginfo  package generation script
produces debuginfo  files that do not conflict with files from the other debuginfo  package.

To see what the diff file comparing an original spec file with an altered spec file looks like, refer to the
following example:

--- a/tbb.spec
+++ b/tbb.spec
@@ -66,11 +66,13 @@ PDF documentation for the user of the Threading 
Building Block (TBB)
 C++ library.
 
 %prep
-%setup -q -n %{sourcebasename}
+%setup -q -c -n %{name}
+cd %{sourcebasename}
 %patch1 -p1
 %patch2 -p1
 
 %build
+cd %{sourcebasename}
 %{?scl:scl enable %{scl} - << \EOF}
 make %{?_smp_mflags} CXXFLAGS="$RPM_OPT_FLAGS" tbb_build_prefix=obj
 %{?scl:EOF}
@@ -81,6 +83,7 @@ done
 
 %install
 rm -rf $RPM_BUILD_ROOT
+cd %{sourcebasename}
 mkdir -p $RPM_BUILD_ROOT/%{_libdir}
 mkdir -p $RPM_BUILD_ROOT/%{_includedir}
 
@@ -108,20 +111,20 @@ done
 
 %files
 %defattr(-,root,root,-)
-%doc COPYING doc/Release_Notes.txt
+%doc %{sourcebasename}/COPYING %{sourcebasename}/doc/Release_Notes.txt
 %{_libdir}/*.so.2
 
 %files devel
 %defattr(-,root,root,-)
-%doc CHANGES
+%doc %{sourcebasename}/CHANGES
 %{_includedir}/tbb
 %{_libdir}/*.so
 %{_libdir}/pkgconfig/*.pc
 

Packaging Guide

24



 %files doc
 %defattr(-,root,root,-)
-%doc doc/Release_Notes.txt
-%doc doc/html
+%doc %{sourcebasename}/doc/Release_Notes.txt
+%doc %{sourcebasename}/doc/html
 
 %changelog
 * Wed Nov 13 2013 John Doe <jdoe@example.com> - 4.1-5.20130314

⁠Chapt er 2 . Packaging Soft ware Collect ions

25



Chapter 3. Advanced Topics

This chapter discusses advanced topics on packaging Software Collections.

3.1. Using Software Collect ions over NFS

In some environments, the requirement is often to have a centralized model for how applications and
tools are distributed rather than allowing users to install the application or tool version they prefer. In
this way, NFS is the common method of mounting centrally managed software.

You need to define a Software Collection macro nfsmountable to use a Software Collection over
NFS. If the macro is defined when building a Software Collection, the resulting Software Collection
has its state files and configuration files located outside the Software Collection's /opt file system
hierarchy. This enables you to mount the /opt file system hierarchy over NFS as read-only. It also
makes state files and configuration files easier to manage.

If you do not need support for Software Collections over NFS, using nfsmountable is optional but
recommended.

To define the nfsmountable macro, ensure that the Software Collection metapackage spec file
contains the following lines:

%global nfsmountable 1

%scl_package %scl

As shown above, the nfsmountable macro must be defined before defining the %scl_package
macro. This is because the %scl_package macro redefines the _sysconfdir, _sharedstatedir,
and _localstatedir macros depending on whether the nfsmountable macro has been defined
or not. The values that nfsmountable changes for the redefined macros are detailed in the
following table.

Table 3.1. Changed Values for Sof tware Collect ion Macros

Macro Orig inal
def in it ion

Expanded value
for the orig inal
def in it ion

Changed
def in it ion

Expanded value
for the
changed
def in it ion

_sysconfdir %{_scl_root}/etc /opt/provider/%
{scl}/root/etc

%
{_root_sysconfdir}
%{_scl_prefix}/%
{scl}

/etc/opt/provider/
%{scl}

_sharedstated
ir

%
{_scl_root}/var/lib

/opt/provider/%
{scl}/root/var/lib

%
{_root_localstated
ir}%
{_scl_prefix}/%
{scl}/lib

/var/opt/provider/
%{scl}/lib

_localstatedi
r

%{_scl_root}/var /opt/provider/%
{scl}/root/var

%
{_root_localstated
ir}%
{_scl_prefix}/%
{scl}

/var/opt/provider/
%{scl}

Packaging Guide

26



3.1.1. Changed Directory St ructure and File Ownership

The nfsmountable macro also has an impact on how the scl_install  and scl_files macros
create a directory structure and set the file ownership when you run the rpmbuild  command.

For example, a directory structure of a Software Collection named sof tware_collect ion  with the 
nfsmountable macro defined looks as follows:

$ rpmbuild -ba software_collection.spec --define 'scl 
software_collection'
...
$ rpm -qlp software_collection-runtime-1-1.el6.x86_64
/etc/opt/provider/software_collection
/etc/opt/provider/software_collection/X11
/etc/opt/provider/software_collection/X11/applnk
/etc/opt/provider/software_collection/X11/fontpath.d
...
/opt/provider/software_collection/root/usr/src
/opt/provider/software_collection/root/usr/src/debug
/opt/provider/software_collection/root/usr/src/kernels
/opt/provider/software_collection/root/usr/tmp
/var/opt/provider/software_collection
/var/opt/provider/software_collection/cache
/var/opt/provider/software_collection/db
/var/opt/provider/software_collection/empty
...

3.1.2. Registering and Deregistering Software Collect ions

In case a Software Collection is shared over NFS but not locally installed on your system, you need
to make the scl  tool aware of it by registering that Software Collection.

Registering a Software Collection is done by running the scl register command:

$ scl register /opt/provider/software_collection

where /opt/provider/software_collection is the absolute path to the file system hierarchy of the Software
Collection you want to register. The path's directory must contain the enable scriptlet and the root/
directory to be considered a valid Software Collection file system hierarchy.

Deregistering a Software Collection is a reverse operation that you perform when you no longer want
the scl  tool to be aware of a registered Software Collection.

Deregistering a Software Collection is done by calling a deregister scriptet when running the scl
command:

$ scl deregister software_collection

where software_collection is the name of the Software Collection you want to deregister.

3.1 .2 .1 . Using (de)regist er Script let s in a So ft ware Co llect io n Met apackage

You can specify (de)register scriptlets in a Software Collection metapackage similarly to how enable
scriptlets are specified. When specifying the scriptets, remember to explicitly include them in the 
%file section of the metapackage spec file.

⁠Chapt er 3. Advanced T opics

27



See the following sample code for an example of specifying (de)register scriptets:

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
# Contents of the enable scriptlet goes here
...
EOF

cat >> %{buildroot}%{_scl_scripts}/register << EOF
# Contents of the register scriptlet goes here
...
EOF

cat >> %{buildroot}%{_scl_scripts}/deregister << EOF
# Contents of the deregister scriptlet goes here
...
EOF
...
%files runtime -f filelist
%scl_files
%{_scl_scripts}/register
%{_scl_scripts}/deregister

In the register scriptlet, you can optionally specify the commands you want to run when registering
the Software Collection, for example, commands to create files in /etc/opt/ or /var/opt/.

3.2. Convert ing Software Collect ion Script lets into Environment
Modules

Environment modules allow you to manage, for example, different versions of applications by
dynamically modifying your shell environment. To use your Software Collection with the environment
module system, convert the Software Collection's enable scriptlet into an environment module with a
script /usr/share/Modules/bin/createmodule.sh.

Procedure 3.1. Convert ing an enable script let  in to  an environment  module

1. Ensure that an environment-modules package is installed on your system:

# yum install environment-modules

2. Run the /usr/share/Modules/bin/createmodule.sh script to convert your Software
Collection's enable scriptlet into an environment module:

/usr/share/Modules/bin/createmodule.sh /path/to/enable/scriptlet

Replace /path/to/enable/scriptlet with the file path of the enable scriptlet you want to convert.

3. Add the same command /usr/share/Modules/bin/createmodule.sh 
/path/to/enable/scriptlet in the  %pre section of your Software Collection
metapackage, below the code generating your enable scriptlet.

Packaging Guide

28



In case you have the enable scriptlet packaged as a file in one of your Software Collection
packages, add the command /usr/share/Modules/bin/createmodule.sh 
/path/to/enable/scriptlet in the %post section.

See the module(1) manual page for more information about environment modules.

3.3. Packaging Wrappers for Software Collect ions

Using wrappers is an easy way to shorten commands that the user runs in the Software Collection
environment.

The following is an example of a wrapper from a Ruby-based Software Collection named rubyscl that
is installed as /usr/bin/rubyscl-ruby and allows the user to run rubyscl-ruby command
instead of scl enable rubyscl 'ruby command' :

#!/bin/bash

COMMAND="ruby $@"
scl enable rubyscl "$COMMAND"

It is important to package these wrappers as subpackages of the Software Collection package that
will use them. That way, you can make installation of these wrappers optional, allowing the user not
to install them, for example, on systems with read-only access to the /usr/bin/ directory where the
wrappers would otherwise be installed.

3.4 . Managing Services in Software Collect ions

When packaging your Software Collection, ensure that users can directly manage any services
(daemons) provided by the Software Collection or one of the associated applications with the system
default tools, like service or chkconfig  on Red Hat Enterprise Linux 6, or systemctl  on Red Hat
Enterprise Linux 7.

For Software Collections on Red Hat Enterprise Linux 6, make sure to adjust the %install  section
of the spec file as follows to avoid possible name conflicts with the system versions of the services
that are part of the Software Collection:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%
{!?scl:%_sysconfdir}/rc.d/init.d/%{?scl_prefix}service_name

Replace service_name with the actual name of the service.

For Software Collections on Red Hat Enterprise Linux 7, adjust the %install  section of the spec file
as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_unitdir}/%{?
scl_prefix}service_name.service

With this configuration in place, you can then refer to the version of the service included in the
Software Collection as follows:

%{?scl_prefix}service_name

⁠Chapt er 3. Advanced T opics

29



Keep in mind that no environment variables are propagated from the user's environment to a SysV
init script (or a systemd service file on Red Hat Enterprise Linux 7). This is expected and ensures that
services are always started in a clean environment. However, this requires you to properly set up a
Software Collection environment for processes that are to be run by the SysV init scripts (or systemd
service files).

3.4 .1. Configuring an Environment  for Services

It is recommended to make the Software Collection you want to enable for services configurable. The
directions in this section show how to make a Software Collection named software_collection
configurable.

Procedure 3.2. Conf iguring an environment  for services on Red Hat  Enterprise Linux 6

1. Create a configuration file in /opt/provider/software_collection/service-
environment with the following content:

[SCLNAME]_SCLS_ENABLED="software_collection"

Replace SCLNAME with a unique identifier for your Software Collection, for instance, your
Software Collection's name written in capital letters.

Replace software_collection with the name of your Software Collection as defined by the  
%scl_name macro.

2. Add the following line at the beginning of the SysV init script:

source /opt/provider/software_collection/service-environment

3. In the SysV init script, determine commands that run binaries located in the 
/opt/provider/ file system hierarchy. Prefix these commands with scl enable 
$[SCLNAME]_SCLS_ENABLED , similarly to when you run a command in the Software
Collection environment.

For example, replace the following line:

/usr/bin/daemon_binary --argument-1 --argument-2

with:

scl enable $[SCLNAME]_SCLS_ENABLED -- /usr/bin/daemon_binary --
argument-1 --argument-2

4. Some commands, like su or runuser, also clear environment variables. Thus, if these
commands are used in the SysV init script, enable your Software Collection again after
running these commands.

For instance, replace the following line:

su - user_name -c '/usr/bin/daemon_binary --argument-1 --argument-
2'

with:

Packaging Guide

30



su - user_name -c '\
  source /opt/provider/software_collection/service-environment \
  scl enable $SCLNAME_SCLS_ENABLED -- /usr/bin/daemon_binary --
argument-1 --argument-2'

Procedure 3.3. Conf iguring an environment  for services on Red Hat  Enterprise Linux 7

1. Create a configuration file in /opt/provider/software_collection/service-
environment with the following content:

[SCLNAME]_SCLS_ENABLED="software_collection"

Replace SCLNAME with a unique identifier for your Software Collection, for instance, your
Software Collection's name written in capital letters.

Replace software_collection with the name of your Software Collection as defined by the  
%scl_name macro.

2. Add the following line in the systemd service file to load the configuration file:

EnvironmentFile=/opt/provider/software_collection/service-
environment

3. In the systemd service file, prefix all commands specified in ExecStartPre, ExecStart, and
similar directives with scl enable $[SCLNAME]_SCLS_ENABLED , similarly to when you
run a command in the Software Collection environment:

ExecStartPre=/usr/bin/scl enable $[SCLNAME]_SCLS_ENABLED -- 
/opt/provider/software_collection/root/usr/bin/daemon_helper_binary 
--argument-1 --argument-2
ExecStart=/usr/bin/scl enable $[SCLNAME]_SCLS_ENABLED -- 
/opt/provider/software_collection/root/usr/bin/daemon_binary --
argument-1 --argument-2

3.5. Software Collect ion Library Support

In case you distribute libraries that you intend to use only in the Software Collection environment or
in addition to the libraries available on the system, update the LD_LIBRARY_PATH environment
variable in the enable scriptlet as follows:

export LD_LIBRARY_PATH=%{_libdir}${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

The configuration ensures that the version of the library in the Software Collection is preferred over
the version of the library available on the system if the Software Collection is enabled.

Note

In case you distribute a private shared library in the Software Collection, consider using the 
DT_RUNPATH attribute instead of the LD_LIBRARY_PATH environment variable to make the
private shared library accessible in the Software Collection environment.

⁠Chapt er 3. Advanced T opics

31



3.5.1. Using a Library Outside of the Software Collect ion

If you distribute libraries that you intend to use outside of the Software Collection environment, you
can use the directory /etc/ld.so.conf.d/ for this purpose.

Warning

Do not use /etc/ld.so.conf.d/ for libraries already available on the system. Using 
/etc/ld.so.conf.d/ is only recommended for a library that is not available on the
system, as otherwise the version of the library in the Software Collection might get preference
over the system version of the library. That could lead to undesired behavior of the system
versions of the applications, including unexpected termination and data loss.

Procedure 3.4 . Using /etc/ld .so.conf .d / for libraries in  the Sof tware Collect ion

1. Create a file named %{?scl_prefix}libs.conf and adjust the spec file configuration
accordingly:

SOURCE2: %{?scl_prefix}libs.conf

2. In the %{?scl_prefix}libs.conf file, include a list of directories where the versions of the
libraries associated with the Software Collection are located. For example:

/opt/provider/software_collection_1/root/usr/lib64/

In the example above, the /usr/lib64/ directory that is part of the Software Collection
sof tware_collect ion_1  is included in the list.

3. Edit the %install  section of the spec file, so the %{?scl_prefix}libs.conf file is
installed as follows:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/ld.so.conf.d/

3.5.2. Prefixing the Library Major soname with the Software Collect ion Name

When using libraries included in the Software Collection, always remember that a library with the
same major soname can already be available on the system as a part of the base system installation.
It is thus important not to forget to use the scl enable command when building an application
against a library included in the Software Collection. Failing to do so may result in the application
being executed in an incorrect environment, linked against the incorrect system version of the library.

Warning

Keep in mind that executing your application in an incorrect environment (for example in the
system environment instead of the Software Collection environment) as well as linking your
application against an incorrect library can lead to undesired behavior of your application,
including unexpected termination and data loss.

Packaging Guide

32



To ensure that your application is not linked against an incorrect library even if the 
LD_LIBRARY_PATH environment variable has not been set properly, change the major soname of
the library included in the Software Collection. The recommended way to change the major soname is
to prefix the major soname version number with the Software Collection name.

Below is an example of the MySQL client library with the mysql55- prefix:

$ rpm -ql mysql55-mysql-libs | grep 'lib.*so'
/opt/provider/mysql55/root/usr/lib64/mysql/libmysqlclient.so.mysql55-18
/opt/provider/mysql55/root/usr/lib64/mysql/libmysqlclient.so.mysql55-
18.0.0

On the same system, the system version of the MySQL client library is listed below:

$ rpm -ql mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.18
/usr/lib64/mysql/libmysqlclient.so.18.0.0

The rpmbuild  utility generates an automatic Provides tag for packages that include a versioned
shared library. If you do not prefix the soname as described above, then an example of the 
Provides in case of the mysql package is libmysqlclient.so.18()(64bit). With this 
Provides, RPM can choose the incorrect RPM package, resulting in the application missing the
requirement.

If you prefix the soname as described above, then an example of the generated Provides in case of
mysql is libmysqlclient.so.mysql55-18()(64bit). With this Provides, RPM chooses the
correct RPM dependencies and the application's requirements are satisfied.

In general, unless absolutely necessary, Software Collection packages should not provide any
symbols that are already provided by packages from the base system installation. One exception to
that rule is when you want to use the symbols in the packages from the base system installation.

3.5.3. Software Collect ion Library Support  in Red Hat  Enterprise Linux 7

When building your Software Collection for Red Hat Enterprise Linux 7, use the 
%__provides_exclude_from macro to prevent scanning certain files for automatically generated
RPM symbols.

For example, to prevent scanning .so  files in the %{_libdir} directory, add the following lines
before the BuildRequires or Requires tags in your Software Collection spec file:

%if %{?scl:1}%{!?scl:0}
  # Do not scan .so files in %{_libdir}
  %global __provides_exclude_from ^%{_libdir}/.*.so.*$
%endif

The functionality is part of RPM support for automatic Provides and Requires, see Section 2.9.6,
“Software Collection Automatic Provides and Requires and Filtering Support”  for more information.

3.6. Software Collect ion .pc Files Support

The .pc files are special metadata files used by the pkg-conf ig  program to store information about
libraries available on the system.

In case you distribute .pc files that you intend to use only in the Software Collection environment or in

⁠Chapt er 3. Advanced T opics

33



addition to the .pc files installed on the system, update the PKG_CONFIG_PATH environment
variable. Depending on what is defined in your .pc files, update the PKG_CONFIG_PATH
environment variable for the %{_libdir} macro (which expands to the library directory, typically 
/usr/lib/ or /usr/lib64/), or for the %{_datadir} macro (which expands to the share
directory, typically /usr/share/).

If the library directory is defined in your .pc files, update the PKG_CONFIG_PATH environment
variable by adjusting the %install  section of the Software Collection spec file as follows:

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PKG_CONFIG_PATH=%{_libdir}/pkgconfig:\$PKG_CONFIG_PATH
EOF

If the share directory is defined in your .pc files, update the PKG_CONFIG_PATH environment
variable by adjusting the %install  section of the Software Collection spec file as follows:

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PKG_CONFIG_PATH=%{_datadir}/pkgconfig:\$PKG_CONFIG_PATH
EOF

The two examples above both configure the enable scriptlet so that it ensures that the .pc files in the
Software Collection are preferred over the .pc files available on the system if the Software Collection
is enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the
Software Collection, for example in the /usr/bin/ directory. In this case, ensure that the .pc files are
visible to the system even if the Software Collection is disabled.

To allow your system to use .pc files from the disabled Software Collection, update the 
PKG_CONFIG_PATH environment variable with the paths to the .pc files associated with the Software
Collection. Depending on what is defined in your .pc files, update the PKG_CONFIG_PATH
environment variable for the %{_libdir} macro (which expands to the library directory), or for the %
{_datadir} macro (which expands to the share directory).

Procedure 3.5. Updat ing the PKG_CONFIG_PATH environment  variab le for %{_libdir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_libdir} macro, create
a custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started
on the system.

For example, create the following file:

%{?scl_prefix}pc-libdir.sh

2. Use the pc-libdir.sh short script that modifies the PKG_CONFIG_PATH variable to refer
to your .pc files:

export PKG_CONFIG_PATH=%
{_libdir}/pkgconfig:/opt/provider/software_collection/path/to/your/
pc_files

3. Add the file to your Software Collection package's spec file:

Packaging Guide

34



SOURCE2: %{?scl_prefix}pc-libdir.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install
section of the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

Procedure 3.6 . Updat ing the PKG_CONFIG_PATH environment  variab le for %{_datadir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_datadir} macro,
create a custom script /etc/profile.d/name.sh. The script is preloaded when a shell is
started on the system.

For example, create the following file:

%{?scl_prefix}pc-datadir.sh

2. Use the pc-datadir.sh short script that modifies the PKG_CONFIG_PATH variable to refer
to your .pc files:

export PKG_CONFIG_PATH=%
{_datadir}/pkgconfig:/opt/provider/software_collection/path/to/your
/pc_files

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-datadir.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install
section of the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

3.7. Software Collect ion MANPATH Support

To allow the man command on the system to display manual pages from the enabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages that are
associated with the Software Collection.

To update the MANPATH environment variable, add the following to the %install  section of the
Software Collection spec file:

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export MANPATH=%{_mandir}:\${MANPATH}
EOF

⁠Chapt er 3. Advanced T opics

35



This configures the enable scriptlet to update the MANPATH environment variable. The manual
pages associated with the Software Collection are then not visible as long as the Software Collection
is not enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the
Software Collection, for example in the /usr/bin/ directory. In this case, ensure that the manual
pages are visible to the system even if the Software Collection is disabled.

To allow the man command on the system to display manual pages from the disabled Software
Collection, update the MANPATH environment variable with the paths to the manual pages associated
with the Software Collection.

Procedure 3.7. Updat ing the MANPATH environment  variab le for the d isabled Sof tware
Collect ion

1. To update the MANPATH environment variable, create a custom script 
/etc/profile.d/name.sh. The script is preloaded when a shell is started on the system.

For example, create the following file:

%{?scl_prefix}manpage.sh

2. Use the manpage.sh short script that modifies the MANPATH variable to refer to your man
path directory:

export 
MANPATH=/opt/provider/software_collection/path/to/your/man_pages:$
{MANPATH}

3. Add the file to your Software Collection package's spec file:

SOURCE2: %{?scl_prefix}manpage.sh

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install
section of the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

3.8. Software Collect ion cronjob Support

With your Software Collection, you can run periodic tasks on the system either with a dedicated
service or with cronjobs. If you intend to use a dedicated service, refer to Section 3.4, “Managing
Services in Software Collections”  on how to work with initscripts in the Software Collection
environment.

Procedure 3.8. Running periodic tasks with  cronjobs

1. To use cronjobs for running periodic tasks, place a crontab file for your Software Collection
in the /etc/cron.d/ directory with the Software Collection's name.

For example, create the following file:

Packaging Guide

36



%{?scl_prefix}crontab

2. Ensure that the contents of the crontab file follow the standard crontab file format, as in the
following example:

0 1 * * Sun root scl enable software_collection 
'/opt/provider/software_collection/root/usr/bin/cron_job_name'

where software_collection is the name of your Software Collection, and 
/opt/provider/software_collection/root/usr/bin/cron_job_name is the
command you want to periodically run.

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}crontab

4. Install the file into the system directory /etc/cron.d/ by adjusting the %install  section of
the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/cron.d/

3.9. Software Collect ion Log File Support

By default, programs packaged in a Software Collection create log files in the /opt/provider/%
{scl}/root/var/log/ directory.

To make log files more accessible and easier to manage, you are advised to use the nfsmountable
macro that redefines the _localstatedir macro. This results in log files being created underneath
the /var/opt/provider/%{scl}/log/ directory, outside of the /opt/provider/%{scl} file
system hierarchy.

For example, a service mydaemon normally stores its log file in 
/var/log/mydaemon/mydaemond.log  in the base system installation. When mydaemon is
packaged as a software_collection Software Collection and the nfsmountable macro is defined, the
path to the log file in software_collection is as follows:

/var/opt/provider/software_collection/log/mydaemon/mydaemond.log

For more information on using the nfsmountable macro, see Section 3.1, “Using Software
Collections over NFS” .

3.10. Software Collect ion logrotate Support

With your Software Collection or an application associated with your Software Collection, you can
manage log files with the logrotate  program.

Procedure 3.9 . Managing log f iles with  logrotate

1. To manage your log files with logrotate , place a custom logrotate  file for your Software
Collection in the system directory for the logrotate  jobs /etc/logrotate.d/.

⁠Chapt er 3. Advanced T opics

37



For example, create the following file:

%{?scl_prefix}logrotate

2. Ensure that the contents of the logrotate file follow the standard logrotate file format as
follows:

/opt/provider/software_collection/var/log/your_application_name.lo
g {
      missingok
      notifempty
      size 30k
      yearly
      create 0600 root root
  }

3. Add the file to your spec file of the Software Collection package:

SOURCE2: %{?scl_prefix}logrotate

4. Install the file into the system directory /etc/logrotate.d/ by adjusting the %install
section of the Software Collection package's spec file:

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/logrotate.d/

3.11. Software Collect ion /var/run/ Files Support

PID files are one example of files usually located underneath the /var/run/package_name/
directory. When packaging PID files into your Software Collection, you are advised to use the 
nfsmountable macro and store the PID files in the following directory:

/var/run/software_collection-package_name/

where software_collection is the name of your Software Collection and package_name is the name of
the package included in your Software Collection.

Following this naming convention avoids file conflicts with the base system installation, while it
makes it possible for your Software Collection to use /var/run/ features, for example the tmpfs file
system for PID files.

For more information on using the nfsmountable macro, see Section 3.1, “Using Software
Collections over NFS” .

3.12. Software Collect ion Lock File Support

By default, programs packaged into a Software Collection create lock files in the /opt/provider/%
{scl}/root/var/lock/ directory.

To make lock files more accessible and easier to manage, you are advised to use the 
nfsmountable macro that redefines the _localstatedir macro. This results in lock files being
created underneath the /var/opt/provider/%{scl}/lock/ directory, outside of the 

Packaging Guide

38



/opt/provider/%{scl} file system hierarchy.

If applications or services packaged into your Software Collection write the lock underneath the 
/var/opt/provider/%{scl}/lock/ directory, then those applications and services can run
concurrently with the system versions (when the resources of your Software Collection's applications
and services will not conflict with the system versions' resources).

For example, a lock file mylockfile.lock is normally created in the /var/lock/ directory in the
base system installation. If the lock file is a part of a software_collection Software Collection and the 
nfsmountable macro is defined, the path to the lock file in software_collection is as follows:

/var/opt/provider/software_collection/lock/mylockfile.lock

For more information on using the nfsmountable macro, see Section 3.1, “Using Software
Collections over NFS” .

Prevent ing Programs from Running Concurrent ly

If you want to prevent your Software Collection's applications or services from running while the
system version of the respective application or service is running, make sure that your applications
or services, which require a lock, write the lock to the system directory /var/lock/. In this way, your
applications or services' lock file will not be overwritten. The lock file will not be renamed and the
name stays the same as the system version.

3.12.1. Software Collect ion SysV init  Lock File Support

When a service is started by an init script, a lock file is touched in the /var/lock/subsys/
directory with the same name as the init script. As discussed in Section 3.4, “Managing Services in
Software Collections” , service names include a Software Collection prefix. Use the same naming
convention for files underneath /var/lock/subsys/ to ensure that the lock file names do not
conflict with the base system installation.

3.13. Software Collect ion Configurat ion Files Support

By default, configuration files in a Software Collection are stored within the /opt/provider/%
{scl} file system hierarchy.

To make configuration files more accessible and easier to manage, you are advised to use the 
nfsmountable macro that redefines the _sysconfdir macro. This results in configuration files
being created underneath the /etc/opt/provider/%{scl}/ directory, outside of the 
/opt/provider/%{scl} file system hierarchy.

For example, a configuration file example.conf is normally stored in the /etc directory in the base
system installation. If the configuration file is a part of a software_collection Software Collection and
the nfsmountable macro is defined, the path to the configuration file in software_collection is as
follows:

/etc/opt/provider/software_collection/example.conf

For more information about using the nfsmountable macro, see Section 3.1, “Using Software
Collections over NFS” .

3.14. Software Collect ion Kernel Module Support

⁠Chapt er 3. Advanced T opics

39



Because Linux kernel modules are normally tied to a particular version of the Linux kernel, you must
be careful when you package kernel modules into a Software Collection. This is because the
package management system on Red Hat Enterprise Linux does not automatically update or install
an updated version of the kernel module if an updated version of the Linux kernel is installed. To
make packaging the kernel modules into the Software Collection easier, see the following
recommendations. Ensure that:

1. the name of your kernel module package includes the kernel version,

2. the tag Requires, which can be found in your kernel module spec file, includes the kernel
version and revision (in the format kernel-version-revision).

3.15. Software Collect ion SELinux Support

Because Software Collections are designed to install the Software Collection packages in an
alternate directory, set up the necessary SELinux labels so that SELinux is aware of the alternate
directory.

If the file system hierarchy of your Software Collection package imitates the file system hierarchy of
the corresponding conventional package, you can run the semanage fcontext and restorecon
commands to set up the SELinux labels.

For example, if the /opt/provider/software_collection_1/root/usr/ directory in your
Software Collection package imitates the /usr/ directory of your conventional package, set up the
SELinux labels as follows:

semanage fcontext -a -e /usr 
/opt/provider/software_collection_1/root/usr

restorecon -R -v /opt/provider/software_collection_1/root/usr

The commands above ensure that all directories and files in the 
/opt/provider/software_collection_1/root/usr/ directory are labeled by SELinux as if
they were located in the /usr/ directory.

3.15.1. SELinux Support  in Red Hat  Enterprise Linux 7

When packaging a Software Collection for Red Hat Enterprise Linux 7, add the following commands
to the %post section in the Software Collection metapackage to set up the SELinux labels:

semanage fcontext -a -e /usr 
/opt/provider/software_collection_1/root/usr

restorecon -R -v /opt/provider/software_collection_1/root/usr

selinuxenabled && load_policy || :

The last command ensures that the newly created SELinux policy is properly loaded, and that the
files installed by a package in the Software Collection are created with the correct SELinux context.
By using this command in the metapackage, you do not need to include the restorecon command
in all packages in the Software Collection.

Packaging Guide

4 0



Note that the semanage fcontext command is provided by the policycoreutils-python package,
therefore it is important that you include policycoreutils-python in Requires for the Software
Collection metapackage.

⁠Chapt er 3. Advanced T opics

4 1



Chapter 4. Extending Red Hat Software Collections

This chapter describes extending some of the Software Collections that are part of the Red Hat
Software Collections offering.

4.1. Providing an scldevel Subpackage

The purpose of an scldevel subpackage is to make the process of creating dependent Software
Collections easier by providing a number of generic macro files. Packagers then use these macro
files when they are extending existing Software Collections. scldevel is provided as a subpackage of
your Software Collection's metapackage.

The following section describes creating an scldevel subpackage for two examples of Ruby Software
Collections, ruby193 and ruby200.

Procedure 4 .1. Provid ing your own scldevel subpackage

1. In your Software Collection's metapackage, add the scldevel subpackage by defining its
name, summary, and description:

%package scldevel
Summary: Package shipping development files for %scl
Provides: scldevel(%{scl_name_base})

%description scldevel
Package shipping development files, especially useful for 
development of
packages depending on %scl Software Collection.

You are advised to use the virtual Provides: scldevel(%{scl_name_base}) during
the build of packages of dependent Software Collections. This will ensure availability of a
version of the %{scl_name_base} Software Collection and its macros, as specified in the
following step.

2. In the %install  section of your Software Collection's metapackage, create the macros.%
{scl_name_base}-scldevel  file that is part of the scldevel subpackage and contains:

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

Note that between all Software Collections that share the same %{scl_name_base} name,
the provided macros.%{scl_name_base}-scldevel  files must conflict. This is to disallow
installing multiple versions of the %{scl_name_base} Software Collections. For example,
the ruby193-scldevel subpackage cannot be installed when there is the ruby200-scldevel
subpackage installed.

4 .1.1. Using an scldevel Subpackage in a Dependent  Software Collect ion

To use your scldevel subpackage in a Software Collection that depends on the ruby200 Software
Collection, update the metapackage of the dependent Software Collection as described below.

Packaging Guide

4 2



Procedure 4 .2. Using your own scldevel subpackage in  a dependent  Sof tware
Collect ion

1. Consider adding the following at the beginning of the metapackage's spec file:

%{!?scl_ruby:%global scl_ruby ruby200}
%{!?scl_prefix_ruby:%global scl_prefix_ruby %{scl_ruby}-}

These two lines are optional. They are only meant as a visual hint that the dependent
Software Collection has been designed to depend on the ruby200 Software Collection. If
there is no other scldevel subpackage available in the build root, then the ruby200-scldevel
subpackage is used as a build requirement.

You can substitute these lines with the following line:

%{?scl_prefix_ruby}

2. Add the following build requirement to the metapackage:

BuildRequires: %{scl_prefix_ruby}scldevel

By specifying this build requirement, you ensure that the scldevel subpackage is in the build
root and that the default values are not in use. Omitting this package could result in broken
requires at the subsequent packages' build time.

3. Ensure that the %package runtime part of the metapackage's spec file includes the
following lines:

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_ruby}runtime

4. Ensure that the %package build  part of the metapackage's spec file includes the following
lines:

%package build
Summary: Package shipping basic build configuration
Requires: %{scl_prefix_ruby}scldevel

Specifying Requires: %{scl_prefix_ruby}scldevel  ensures that macros are
available in all packages of the Software Collection.

4.2. Extending the python27 and rh-python34 Software Collect ions

This section describes extending the python27 and rh-python34 Software Collections by creating a
dependent Software Collection.

In Red Hat Software Collections 2.0, the scl  tool is extended to support a macro 
%scl_package_override(), which allows for easier packaging of your own dependent Software
Collection.

4 .2.1. T he vt191 Software Collect ion

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

4 3



Below is a commented example of building a dependent Software Collection. The Software Collection
is named vt191 and contains the versiontools Python package version 1.9.1.

Note the following in the vt191 Software Collection metapackage:

The vt191 Software Collection metapackage has the following build dependency set:

BuildRequires: %{scl_prefix_python}scldevel

This expands to, for example, python27-scldevel.

The python27-scldevel subpackage ships two important macros, %scl_python and 
%scl_prefix_python. Note that these macros are defined at the top of the metapackage spec
file. Although the definitions are not required, they provide a visual hint that the vt191 Software
Collection has been designed to be built on top of the python27 Software Collection. They also
serve as a fallback value.

To have a site-packages directory set up properly, use the value of the 
%python27python_sitelib macro and replace python27 with vt191. Note that if you are
building the Software Collection with a different provider (for example, /opt/myorganization/
instead of /opt/rh/), you will need to change these, too.

Important

Because the /opt/rh/ provider is used to install Software Collections provided by Red
Hat, it is strongly recommended to use a different provider to avoid possible conflicts. See
Section 2.3, “The Software Collection Root Directory”  for more information.

The vt191-build subpackage has the following dependency set:

Requires: %{scl_prefix_python}scldevel

This expands to, for example, python27-scldevel. The purpose of this dependency is to ensure that
the macros are always present when building packages for the vt191 Software Collection.

The enable scriptlet for the vt191 Software Collection uses the following line:

. scl_source enable %{scl_python}

Note the dot at the beginning of the line. This line makes the Python Software Collection start
implicitly when the vt191 Software Collection is started so that the user can only type scl 
enable vt191 command instead of scl enable python27 vt191 command to run
command in the Software Collection environment.

The macro file macros.vt191-config  calls the %scl_package_override function to
properly override %__os_install_post, Python dependency generators, and certain Python-
specific macros used in other packages' spec files.

# define name of the scl
%global scl vt191
%scl_package %scl

# Defaults for the values for the python27/rh-python34 Software 
Collection. These

Packaging Guide

4 4



# will be used when python27-scldevel (or rh-python34-scldevel) is not 
in the
# build root
%{!?scl_python:%global scl_python python27}
%{!?scl_prefix_python:%global scl_prefix_python %{scl_python}-}

# Only for this build, you need to override default __os_install_post,
# because the default one would find /opt/.../lib/python2.7/ and try
# to bytecompile with the system /usr/bin/python2.7
%global __os_install_post %{%{scl_no_vendor}_os_install_post}
# Similarly, override __python_requires for automatic dependency 
generator
%global __python_requires %{%{scl_no_vendor}_python_requires}

# The directory for site packages for this Software Collection
%global vt191_sitelib %(echo %{python27python_sitelib} | sed 's|%
{scl_python}|%{scl}|')

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
BuildRequires: scl-utils-build
# Always make sure that there is the python27-sclbuild (or rh-python34-
sclbuild)
# package in the build root
BuildRequires: %{scl_prefix_python}scldevel
# Require python27-python-devel, you will need macros from that package
BuildRequires: %{scl_prefix_python}python-devel
Requires: %{scl_prefix}python-versiontools

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_python}runtime

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
# Require python27-scldevel (or rh-python34-scldevel) so that there is 
always access
# to the %%scl_python and %%scl_prefix_python macros in builds for this 
Software
# Collection
Requires: %{scl_prefix_python}scldevel

%description build
Package shipping essential configuration macros to build %scl Software 
Collection.

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

4 5



%prep
%setup -c -T

%install
%scl_install

# Create the enable scriptlet that:
# - Adds an additional load path for the Python interpreter.
# - Runs scl_source so that you can run:
#     scl enable vt191 "bash"
#   instead of:
#     scl enable python27 vt191 "bash"

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
. scl_source enable %{scl_python}
export PYTHONPATH=%{vt191_sitelib}\${PYTHONPATH:+:\${PYTHONPATH}}
EOF

mkdir -p %{buildroot}%{vt191_sitelib}

# - Enable Software Collection-specific bytecompilation macros from
#   the python27-python-devel package.
# - Also override the %%python_sitelib macro to point to the vt191 
Software
#   Collection.
# - If you have architecture-dependent packages, you will also need to 
override
#   the %%python_sitearch macro.

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl}-config << EOF
%%scl_package_override() %%{expand:%{?python27_os_install_post:%%global 
__os_install_post %%python27_os_install_post}
%%global __python_requires %%python27_python_requires
%%global __python_provides %%python27_python_provides
%%global __python %python27__python
%%global python_sitelib %vt191_sitelib
%%global python2_sitelib %vt191_sitelib
}
EOF

%files

%files runtime -f filelist
%scl_files
%vt191_sitelib

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%changelog
* Wed Jan 22 2014 John Doe <jdoe@example.com> - 1-1
- Initial package.

4 .2.2. T he python-versiontools Package

Packaging Guide

4 6



Below is a commented example of the python-versiontools package spec file. Note the following in the
spec file:

The BuildRequires tags are prefixed with %{?scl_prefix_python} instead of %
{scl_prefix}.

The %install  section explictly specifies --install-purelib.

%{?scl:%scl_package python-versiontools}
%{!?scl:%global pkg_name %{name}}

%global pypi_name versiontools

Name:           %{?scl_prefix}python-versiontools
Version:        1.9.1
Release:        1%{?dist}
Summary:        Smart replacement for plain tuple used in __version__

License:        LGPLv3
URL:            https://launchpad.net/versiontools
Source0:        
http://pypi.python.org/packages/source/v/versiontools/versiontools-
1.9.1.tar.gz

BuildArch:      noarch
BuildRequires:  %{?scl_prefix_python}python-devel
BuildRequires:  %{?scl_prefix_python}python-setuptools
%{?scl:BuildRequires: %{scl}-build %{scl}-runtime}
%{?scl:Requires: %{scl}-runtime}

%description
Smart replacement for plain tuple used in __version__

%prep
%setup -q -n %{pypi_name}-%{version}

%build
%{?scl:scl enable %{scl} "}
%{__python} setup.py build
%{?scl:"}

%install
# Explicitly specify --install-purelib %{python_sitelib}, which is now 
overriden
# to point to vt191, otherwise Python will try to install into the 
python27
# Software Collection site-packages directory
%{?scl:scl enable %{scl} "}
%{__python} setup.py install -O1 --skip-build --root %{buildroot} --
install-purelib %{python_sitelib}
%{?scl:"}

%files
%{python_sitelib}/%{pypi_name}*

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

4 7



%changelog
* Wed Jan 22 2014 John Doe <jdoe@example.com> - 1.9.1-1
- Built for vt191 SCL.

4 .2.3. Building the vt191 Software Collect ion

To build the vt191 Software Collection:

1. Install the python27-scldevel and python27-python-devel subpackages that are part of the
python27 Software Collection.

2. Build vt191.spec and install the vt191-runtime and vt191-build packages.

3. Install the python27-python-setuptools package, which is a build requirement for versiontools.

4. Build python-versiontools.spec.

4 .2.4 . T est ing the vt191 Software Collect ion

To test the vt191 Software Collection:

1. Install the vt191-python-versiontools package.

2. Run the following command:

$ scl enable vt191 "python -c 'import versiontools; 
print(versiontools.__file__)'"

3. Verify that the output contains the following line:

/opt/rh/vt191/root/usr/lib/python2.7/site-
packages/versiontools/__init__.pyc

Note that the provider rh in the path may vary depending on your redefinition of the 
%_scl_prefix macro. See Section 2.3, “The Software Collection Root Directory”  for more
information.

4.3. Extending the rh-ruby22 Software Collect ion

In Red Hat Software Collections 2.0, it is possible to extend the rh-ruby22 Software Collection by
adding dependent packages. The Ruby on Rails 4.1 (rh-ror41) Software Collection, which is built on
top of Ruby 2.2 provided by the rh-ruby22 Software Collection, is one example of such an extension.

This section provides detailed information about the rh-ror41 metapackage and the rh-ror41-rubygem-
bcrypt package, which are both part of the rh-ror41 Software Collection.

4 .3.1. T he rh-ror4 1 Software Collect ion

This section contains a commented example of the Ruby on Rails 4.1 metapackage for the rh-ror41
Software Collection. The rh-ror41 Software Collection depends on the rh-ruby22 Software Collection.

Note the following in the rh-ror41 Software Collection metapackage example:

The rh-ror41 Software Collection spec file has the following build dependencies set:

Packaging Guide

4 8



BuildRequires: %{scl_prefix_ruby}scldevel
BuildRequires: %{scl_prefix_ruby}rubygems-devel

This expands to, for example, rh-ruby22-scldevel and rh-ruby22-rubygems-devel.

The rh-ruby22-scldevel subpackage contains two important macros, %scl_ruby and 
%scl_prefix_ruby. The rh-ruby22-scldevel subpackage should be available in the build root. In
case there are multiple Ruby Software Collections available, rh-ruby22-scldevel determines which
of the available Software Collections should be used.

Note that the %scl_ruby and %scl_prefix_ruby macros are also defined at the top of the spec
file. Although the definitions are not required, they provide a visual hint that the rh-ror41 Software
Collection has been designed to be built on top of the rh-ruby22 Software Collection. They also
serve as a fallback value.

The rh-ror41-runtime subpackage must depend on the runtime subpackage of the Software
Collection it depends on. This dependency is specified as follows:

%package runtime
Requires: %{scl_prefix_ruby}runtime

When the package is built against the rh-ruby22 Software Collection, this expands to rh-ruby22-
runtime.

The rh-ror41-build subpackage must depend on the scldevel subpackage of the Software Collection
it depends on. This is to ensure that all other packages of this Software Collection will have the
same macros defined, thus it is built against the same Ruby version.

%package build
Requires: %{scl_prefix_ruby}scldevel

In the case of the rh-ruby22 Software Collection, this expands to rh-ruby22-scldevel.

The enable scriptlet for the rh-ror41 Software Collection contains the following line:

. scl_source enable %{scl_ruby}

Note the dot at the beginning of the line. This line makes the Ruby Software Collection start
implicitly when the rh-ror41 Software Collection is started so that the user can only type scl 
enable rh-ror41 command instead of scl enable rh-ruby22 rh-ror41 command to run
command in the Software Collection environment.

The rh-ror41-scldevel subpackage is provided so that it is available in case you need it to build a
Software Collection which extends the rh-ror41 Software Collection. The package provides the %
{scl_ror} and %{scl_prefix_ror} macros, which can be used to extend the rh-ror41
Software Collection.

Because the rh-ror41 Software Collection's gems are installed in a separate root directory
structure, you need to ensure that the correct ownership for the rubygems directories is set. This is
done by using a snippet to generate a file list rubygems_filesystem.list.

You are advised to set the runtime package to own all directories which would, if located in the
root file system, be owned by another package. One example of such directories in the case of the
rh-ror41 Software Collection is the Rubygem directory structure.

%global scl_name_prefix rh-

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

4 9



%global scl_name_base ror
%global scl_name_version 41

%global scl %{scl_name_prefix}%{scl_name_base}%{scl_name_version}

# Fallback to rh-ruby22. rh-ruby22-scldevel is unlikely to be available 
in
# the build root.
%{!?scl_ruby:%global scl_ruby rh-ruby22}
%{!?scl_prefix_ruby:%global scl_prefix_ruby %{scl_ruby}-}

# Do not produce empty debuginfo package.
%global debug_package %{nil}

# Support SCL over NFS.
%global nfsmountable 1

%{!?install_scl: %global install_scl 1}

%scl_package %scl

Summary: Package that installs %scl
Name: %scl_name
Version: 2.0
Release: 5%{?dist}
License: GPLv2+

%if 0%{?install_scl}
Requires: %{scl_prefix}rubygem-therubyracer
Requires: %{scl_prefix}rubygem-sqlite3
Requires: %{scl_prefix}rubygem-rails
Requires: %{scl_prefix}rubygem-sass-rails
Requires: %{scl_prefix}rubygem-coffee-rails
Requires: %{scl_prefix}rubygem-jquery-rails
Requires: %{scl_prefix}rubygem-sdoc
Requires: %{scl_prefix}rubygem-turbolinks
Requires: %{scl_prefix}rubygem-bcrypt
Requires: %{scl_prefix}rubygem-uglifier
Requires: %{scl_prefix}rubygem-jbuilder
Requires: %{scl_prefix}rubygem-spring
%endif
BuildRequires: help2man
BuildRequires: scl-utils-build
BuildRequires: %{scl_prefix_ruby}scldevel
BuildRequires: %{scl_prefix_ruby}rubygems-devel

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
# The enable scriptlet depends on the ruby executable.
Requires: %{scl_prefix_ruby}ruby

%description runtime

Packaging Guide

50



Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
Requires: %{scl_runtime}
Requires: %{scl_prefix_ruby}scldevel

%description build
Package shipping essential configuration macros to build %scl Software 
Collection.

%package scldevel
Summary: Package shipping development files for %scl
Provides: scldevel(%{scl_name_base})

%description scldevel
Package shipping development files, especially usefull for development of
packages depending on %scl Software Collection.

%prep
%setup -c -T

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH=%{_bindir}\${PATH:+:\${PATH}}
export LD_LIBRARY_PATH=%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}
export MANPATH=%{_mandir}:\${MANPATH}
export PKG_CONFIG_PATH=%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}
export GEM_PATH=\${GEM_PATH:=%{gem_dir}:\`scl enable %{scl_ruby} -- ruby 
-e "print Gem.path.join(':')"\`}

. scl_source enable %{scl_ruby}
EOF

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

scl enable %{scl_ruby} - << \EOF
set -e

# Fake rh-ror41 Software Collection environment.
GEM_PATH=%{gem_dir}:`ruby -e "print Gem.path.join(':')"` \
X_SCLS=%{scl} \
ruby -rfileutils > rubygems_filesystem.list << \EOR
  # Create the RubyGems file system.
  Gem.ensure_gem_subdirectories '%{buildroot}%{gem_dir}'
  FileUtils.mkdir_p File.join '%{buildroot}', Gem.default_ext_dir_for('%

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

51



{gem_dir}')

  # Output the relevant directories.
  Gem.default_dirs['%{scl}_system'.to_sym].each { |k, p| puts p }
EOR
EOF

%files

%files runtime -f rubygems_filesystem.list
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%files scldevel
%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-scldevel

%changelog
* Thu Jan 16 2015 John Doe <jdoe@example.com> - 1-1
- Initial package.

4 .3.2. T he rh-ror4 1-rubygem-bcrypt  Package

Below is a commented example of the rh-ror41-rubygem-bcrypt package spec file. This package
provides the bcrypt Ruby gem. For more information on bcrypt, see the following website:

http://rubygems.org/gems/bcrypt-ruby

Note that the only significant difference between the rh-ror41-rubygem-bcrypt package spec file and a
normal Software Collection package spec file is the following:

The BuildRequires tags are prefixed with %{?scl_prefix_ruby} instead of %
{scl_prefix}.

%{?scl:%scl_package rubygem-%{gem_name}}
%{!?scl:%global pkg_name %{name}}

%global gem_name bcrypt

Summary: Wrapper around bcrypt() password hashing algorithm
Name: %{?scl_prefix}rubygem-%{gem_name}
Version: 3.1.9
Release: 2%{?dist}
Group: Development/Languages
# ext/* - Public Domain
# spec/TestBCrypt.java - ISC
License: MIT and Public Domain and ISC
URL: https://github.com/codahale/bcrypt-ruby
Source0: http://rubygems.org/downloads/%{gem_name}-%{version}.gem
Requires: %{?scl_prefix_ruby}ruby(release)
Requires: %{?scl_prefix_ruby}ruby(rubygems) 
BuildRequires: %{?scl_prefix_ruby}rubygems-devel
BuildRequires: %{?scl_prefix_ruby}ruby-devel
BuildRequires: %{?scl_prefix}rubygem(rspec)

Packaging Guide

52

http://rubygems.org/gems/bcrypt-ruby


Provides: %{?scl_prefix}rubygem(bcrypt) = %{version}

%description
bcrypt() is a sophisticated and secure hash algorithm designed by The
OpenBSD project for hashing passwords. bcrypt provides a simple,
humane wrapper for safely handling passwords.

%package doc
Summary: Documentation for %{pkg_name}
Group: Documentation
Requires: %{?scl_prefix}%{pkg_name} = %{version}-%{release}

%description doc
Documentation for %{pkg_name}.

%prep
%setup -n %{pkg_name}-%{version} -q -c -T
%{?scl:scl enable %{scl} - << \EOF}
%gem_install -n %{SOURCE0}
%{?scl:EOF}

%build

%install
mkdir -p %{buildroot}%{gem_dir}
cp -pa .%{gem_dir}/* \
        %{buildroot}%{gem_dir}/

mkdir -p %{buildroot}%{gem_extdir_mri}
cp -pa .%{gem_extdir_mri}/* %{buildroot}%{gem_extdir_mri}/

# Prevent a symlink with an invalid target in -debuginfo (BZ#878863).
rm -rf %{buildroot}%{gem_instdir}/ext/

%check
%{?scl:scl enable %{scl} - << \EOF}
pushd .%{gem_instdir}
# 2 failutes due to old RSpec
# https://github.com/rspec/rspec-expectations/pull/284
rspec -I$(dirs +1)%{gem_extdir_mri} spec |grep '34 examples, 2 failures' 
|| exit 1
popd
%{?scl:EOF}

%files
%dir %{gem_instdir}
%exclude %{gem_instdir}/.*
%{gem_libdir}
%{gem_extdir_mri}
%exclude %{gem_cache}
%{gem_spec}
%doc %{gem_instdir}/COPYING

%files doc
%doc %{gem_docdir}
%doc %{gem_instdir}/README.md

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

53



%doc %{gem_instdir}/CHANGELOG
%{gem_instdir}/Rakefile
%{gem_instdir}/Gemfile*
%{gem_instdir}/%{gem_name}.gemspec
%{gem_instdir}/spec

%changelog
* Fri Mar 21 2015 John Doe <jdoe@example.com> - 3.1.2-4
- Initial package.

4 .3.3. Building the rh-ror4 1 Software Collect ion

To build the rh-ror41 Software Collection:

1. Install the rh-ruby22-scldevel subpackage which is a part of the rh-ruby22 Software Collection.

2. Build rh-ror41.spec and install the ror41-runtime and ror41-build packages.

3. Build rubygem-bcrypt.spec.

4 .3.4 . T est ing the rh-ror4 1 Software Collect ion

To test the rh-ror41 Software Collection:

1. Install the rh-ror41-rubygem-bcrypt package.

2. Run the following command:

$ scl enable rh-ror41 -- ruby -r bcrypt -e "puts 
BCrypt::Password.create('my password')"

3. Verify that the output contains the following line:

$2a$10$s./ReniLY.wXPHVBQ9npoeyZf5KzywfpvI5lhjG6Ams3u0hKqwVbW

4.4 . Extending the rh-perl520 Software Collect ion

This section describes extending the rh-perl520 Software Collection by building your own dependent
Software Collection.

Important

Examples described in this section only work as expected when extending the rh-perl520
Software Collection with packages that:

do not provide any Perl modules, and
only depend on Perl modules provided by the rh-perl520 Software Collection.

4 .4 .1. T he h2m14 4  Software Collect ion

Packaging Guide

54



This section contains a commented example of a dependent Software Collection's metapackage. The
dependent Software Collection is named h2m144 and contains the help2man Perl package version
1.44.1. The h2m144 Software Collection depends on the rh-perl520 Software Collection.

Note the following in the h2m144 Software Collection metapackage:

The h2m144 Software Collection metapackage has the following build dependency set:

BuildRequires: %{scl_prefix_perl}scldevel

This expands to rh-perl520-scldevel.

The rh-perl520-scldevel subpackage contains two important macros, %scl_perl  and 
%scl_prefix_perl , and also provides Perl dependency generators. Note that the macros are
defined at the top of the metapackage spec file. Although the definitions are not required, they
provide a visual hint that the h2m144 Software Collection has been designed to be built on top of
the rh-perl520 Software Collection. They also serve as a fallback value.

The h2m144-build subpackage has the following dependency set:

Requires: %{scl_prefix_perl}scldevel

This expands to rh-perl520-scldevel. The purpose of this dependency is to ensure that the macros
and dependency generators are always present when building packages for the h2m144 Software
Collection.

The enable scriptlet for the h2m144 Software Collection contains the following line:

. scl_source enable %{scl_perl}

Note the dot at the beginning of the line. This line makes the Perl Software Collection start
implicitly when the h2m144 Software Collection is started so that the user can only type scl 
enable h2m144 command instead of scl enable rh-perl520 h2m144 command to run
command in the Software Collection environment.

The macro file macros.h2m144-config  calls the Perl dependency generators, and certain
Perl-specific macros used in other packages' spec files.

%global scl h2m144
%scl_package %scl

# Default values for the rh-perl520 Software Collection. These
# will be used when rh-perl520-scldevel is not in the build root.
%{!?scl_perl:%global scl_perl rh-perl520}
%{!?scl_prefix_perl:%global scl_prefix_perl %{scl_perl}-}

# Only for this build, override __perl_requires for the automatic 
dependency
# generator.
%global __perl_requires /usr/lib/rpm/perl.req.stack

Summary: Package that installs %scl
Name:    %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

55



BuildRequires: scl-utils-build
# Always make sure that there is the rh-perl520-scldevel
# package in the build root.
BuildRequires: %{scl_prefix_perl}scldevel
# Require rh-perl520-perl-macros; you will need macros from that package.
BuildRequires: %{scl_prefix_perl}perl-macros
Requires: %{scl_prefix}help2man

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_perl}runtime

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
# Require rh-perl520-scldevel so that there is always access to the 
%%scl_perl
# and %%scl_prefix_perl macros in builds for this Software Collection.
Requires: %{scl_prefix_perl}scldevel

%description build
Package shipping essential configuration macros to build %scl Software 
Collection.

%prep
%setup -c -T

%build

%install
%scl_install

# Create the enable scriptlet that:
# - Adds an additional load path for the Perl interpreter.
# - Runs scl_source so that you can run:
#     scl enable h2m144 'bash'
#   instead of:
#     scl enable rh-perl520 h2m144 'bash'

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
. scl_source enable %{scl_perl}
export PATH=%{_bindir}\${PATH:+:\${PATH}}
export MANPATH=%{_mandir}:\${MANPATH}
EOF

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl}-config << EOF
%%scl_package_override() %%{expand:%%global __perl_requires 
/usr/lib/rpm/perl.req.stack
%%global __perl_provides /usr/lib/rpm/perl.prov.stack

Packaging Guide

56



%%global __perl %{_scl_prefix}/%{scl_perl}/root/usr/bin/perl
}
EOF

%files

%files runtime -f filelist
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%changelog
* Tue Apr 22 2014 John Doe <jdoe@example.com> - 1-1
- Initial package.

4 .4 .2. T he help2man Package

Below is a commented example of the help2man package spec file. Note the following in the spec file:

The BuildRequires tags are prefixed with %{?scl_prefix_perl} instead of %
{scl_prefix}.

%{?scl:%scl_package help2man}
%{!?scl:%global pkg_name %{name}}

# Supported build option:
#
# --with nls ... build this package with --enable-nls 
%bcond_with nls

Name:           %{?scl_prefix}help2man
Summary:        Create simple man pages from --help output
Version:        1.44.1
Release:        1%{?dist}
Group:          Development/Tools
License:        GPLv3+
URL:            http://www.gnu.org/software/help2man
Source:         ftp://ftp.gnu.org/gnu/help2man/help2man-%
{version}.tar.xz
%{!?with_nls:BuildArch: noarch}

BuildRequires:  %{?scl_prefix_perl}perl(Getopt::Long)
BuildRequires:  %{?scl_prefix_perl}perl(POSIX)
BuildRequires:  %{?scl_prefix_perl}perl(Text::ParseWords)
BuildRequires:  %{?scl_prefix_perl}perl(Text::Tabs)
BuildRequires:  %{?scl_prefix_perl}perl(strict)
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(Locale::gettext) 
/usr/bin/msgfmt}
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(Encode)}
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(I18N::Langinfo)}
Requires:   %{?scl_prefix_perl}perl(:MODULE_COMPAT_%(%{?scl:scl enable %
{scl_perl} '}eval "`perl -V:version`"; echo $version%{?scl:'}))

Requires(post): /sbin/install-info

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

57



Requires(preun): /sbin/install-info

%description
help2man is a script to create simple man pages from the --help and
--version output of programs.

Since most GNU documentation is now in info format, this provides a
way to generate a placeholder man page pointing to that resource while
still providing some useful information.

%prep
%setup -q -n help2man-%{version}

%build
%configure --%{!?with_nls:disable}%{?with_nls:enable}-nls --libdir=%
{_libdir}/help2man
%{?scl:scl enable %{scl} "}
make %{?_smp_mflags}
%{?scl:"}

%install
%{?scl:scl enable %{scl} "}
make install_l10n DESTDIR=$RPM_BUILD_ROOT
%{?scl:"}
%{?scl:scl enable %{scl} "}
make install DESTDIR=$RPM_BUILD_ROOT
%{?scl:"}
%find_lang %pkg_name --with-man

%post
/sbin/install-info %{_infodir}/help2man.info %{_infodir}/dir 2>/dev/null 
|| :

%preun
if [ $1 -eq 0 ]; then
  /sbin/install-info --delete %{_infodir}/help2man.info \
    %{_infodir}/dir 2>/dev/null || :
fi

%files -f %pkg_name.lang
%doc README NEWS THANKS COPYING
%{_bindir}/help2man
%{_infodir}/*
%{_mandir}/man1/*

%if %{with nls}
%{_libdir}/help2man
%endif

%changelog
* Tue Apr 22 2014 John Doe <jdoe@example.com> - 1.44.1-1
- Built for h2m144 SCL.

4 .4 .3. Building the h2m14 4  Software Collect ion

Packaging Guide

58



To build the h2m144 Software Collection:

1. Install the rh-perl520-scldevel and rh-perl520-perl-macros packages that are part of the perl520
Software Collection.

2. Build h2m144.spec and install the h2m144-runtime and h2m144-build packages.

3. Install the rh-perl520-perl, rh-perl520-perl-Text-ParseWords and rh-perl520-perl-Getopt-Long
packages, which are all build requirements for help2man.

4. Build help2man.spec.

4 .4 .4 . T est ing the h2m14 4  Software Collect ion

To test the h2m144 Software Collection:

1. Install the h2m144-help2man package.

2. Run the following command:

$ scl enable h2m144 'help2man bash'

3. Verify that the output is similar to the following lines:

.\" DO NOT MODIFY THIS FILE!  It was generated by help2man 1.44.1.

.TH BASH, "1" "April 2014" "bash, version 4.1.2(1)-release (x86_64-
redhat-linux-gnu)" "User Commands"
.SH NAME
bash, \- manual page for bash, version 4.1.2(1)-release (x86_64-
redhat-linux-gnu)
.SH SYNOPSIS
.B bash
[\fIGNU long option\fR] [\fIoption\fR] ...
.SH DESCRIPTION
GNU bash, version 4.1.2(1)\-release\-(x86_64\-redhat\-linux\-gnu)
.IP
bash [GNU long option] [option] script\-file ...
.SS "GNU long options:"
.HP
\fB\-\-debug\fR

⁠Chapt er 4 . Ext ending Red Hat  Soft ware Collect ions

59



Chapter 5. Troubleshooting Software Collections

This chapter helps you troubleshoot some of the common issues you can encounter when building
your Software Collections.

5.1. Error: line XX: Unknown tag: %scl_package
software_collection_name

You can encounter this error message when building a Software Collection package. It is usually
caused by a missing package scl-utils-build. To install the scl-utils-build package, run the following
command:

# yum install scl-utils-build

For more information, see Section 1.3, “Enabling Support for Software Collections” .

5.2. scl command does not  exist

This error message is usually caused by a missing package scl-utils. To install the scl-utils package,
run the following command:

# yum install scl-utils

For more information, see Section 1.3, “Enabling Support for Software Collections” .

5.3. Unable to open /etc/scl/prefixes/software_collection_name

This error message can be caused by using incorrect arguments with the scl  command you are
calling. Check the scl  command is correct and that you have not mistyped any of the arguments.

The same error message can also be caused by a missing Software Collection. Ensure that the
software_collection_name Software Collection is properly installed on the system. For more
information, see Section 1.5, “Listing Installed Software Collections” .

5.4 . scl_source: command not  found

This error message is usually caused by having an old version of the scl-utils package installed. To
update the scl-utils package, run the following command:

# yum update scl-utils

Packaging Guide

60



Appendix A. Getting More Information

For more information on Software Collection packaging, Red Hat Enterprise Linux Developer
Program, the Red Hat Software Collections and Red Hat Developer Toolset offerings, and Red Hat
Enterprise Linux, see the resources listed below.

A.1. Red Hat  Enterprise Linux Developer Program

Red Hat Enterprise Linux Developer Program – The Red Hat Enterprise Linux Developer Program
delivers industry-leading developer tools, instructional resources, and an ecosystem of experts to
help programmers maximize productivity in building Linux applications.

Red Hat Developer Blog – The Red Hat Developer Blog contains up-to-date information, best
practices, opinion, product and program announcements as well as pointers to sample code and
other resources for those who are designing and developing applications based on Red Hat
technologies.

A.2. Installed Documentat ion

scl(1) – The manual page for the scl  tool for enabling Software Collections and running
programs in Software Collection's environment.

scl - -help  – General usage information for the scl  tool for enabling Software Collections and
running programs in Software Collection's environment.

rpmbuild (8) – The manual page for the rpmbuild  utility for building both binary and source
packages.

A.3. Accessing Red Hat  Documentat ion

Red Hat  Product  Documentat ion  located at https://access.redhat.com/documentation/ serves as
a central source of information. It is currently translated in 22 languages and for each product, it
provides different kinds of books from release and technical notes to installation, user, and reference
guides in HTML, PDF, and EPUB formats.

The following is a brief list of documents that are directly or indirectly relevant to this book:

Red Hat Software Collections 2.0 Release Notes – The Release Notes for Red Hat Software
Collections 2.0 document the major features and contains other information about Red Hat
Software Collections, a Red Hat offering that provides a set of dynamic programming languages,
database servers, and various related packages.

Red Hat Developer Toolset 3.1 User Guide – The User Guide for Red Hat Developer Toolset 3.1
contains information about Red Hat Developer Toolset, a Red Hat offering for developers on the
Red Hat Enterprise Linux platform. Using Software Collections, Red Hat Developer Toolset
provides current versions of the GCC  compiler, GDB  debugger and other binary utilities.

Red Hat Enterprise Linux 7 Developer Guide – The Developer Guide for Red Hat Enterprise Linux 7
provides detailed description of Red Hat Developer Toolset features, as well as an introduction to
Red Hat Software Collections, and information on libraries and runtime support, compiling and
building, debugging, and profiling.

⁠Appendix A. Get t ing More Informat ion

61

https://access.redhat.com/products/Red_Hat_Enterprise_Linux/Developer/
http://developerblog.redhat.com/
https://access.redhat.com/documentation/
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/2/html/2.0_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/3/html/User_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html


Red Hat Enterprise Linux 6 Developer Guide – The Developer Guide for Red Hat Enterprise Linux 6
provides detailed description of Red Hat Developer Toolset features, as well as an introduction to
Red Hat Software Collections, and information on libraries and runtime support, compiling and
building, debugging, and profiling.

Red Hat Enterprise Linux 7 System Administrator's Guide – The System Administrator's Guide for
Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Red Hat Enterprise Linux 6 Deployment Guide – The Deployment Guide for Red Hat Enterprise
Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Packaging Guide

62

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html


Appendix B. Revision History

Revision 3.0-3 Tue May 19  2015 Petr Kovář
Red Hat Software Collections 2.0 release of the Packaging Guide.

Revision 3.0-1 Wed Apr 22 2015 Petr Kovář
Red Hat Software Collections 2.0 Beta release of the Packaging Guide.

Revision 2.2-4 Fri Nov 21 2014 Petr Kovář
Republished to fix BZ#1150573, BZ#1022023, and BZ#1149650.

Revision 2.2-2 Thu Oct  30 2014 Petr Kovář
Red Hat Software Collections 1.2 release of the Packaging Guide.

Revision 2.2-1 Tue Oct  07 2014 Petr Kovář
Red Hat Software Collections 1.2 Beta refresh release of the Packaging Guide.

Revision 2.2-0 Tue Sep 09  2014 Petr Kovář
The Software Collections Guide renamed to Packaging Guide.
Red Hat Software Collections 1.2 Beta release of the Packaging Guide.

Revision 2.1-29 Wed Jun 04  2014 Petr Kovář
Red Hat Software Collections 1.1 release of the Software Collections Guide.

Revision 2.1-21 Thu Mar 20 2014 Petr Kovář
Red Hat Software Collections 1.1 Beta release of the Software Collections Guide.

Revision 2.1-18 Tue Mar 11 2014 Petr Kovář
Red Hat Developer Toolset 2.1 release of the Software Collections Guide.

Revision 2.1-8 Tue Feb 11 2014 Petr Kovář
Red Hat Developer Toolset 2.1 Beta release of the Software Collections Guide.

Revision 2.0-12 Tue Sep 10 2013 Petr Kovář
Red Hat Developer Toolset 2.0 release of the Software Collections Guide.

Revision 2.0-8 Tue Aug 06  2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-2 release of the Software Collections Guide.

Revision 2.0-3 Tue May 28 2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-1 release of the Software Collections Guide.

Revision 1.0-2 Tue Apr 23 2013 Petr Kovář
Republished to fix BZ#949000.

Revision 1.0-1 Tue Jan 22 2013 Petr Kovář
Red Hat Developer Toolset 1.1 release of the Software Collections Guide.

Revision 1.0-2 Thu Nov 08 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-2 release of the Software Collections Guide.

⁠Appendix B. Revision Hist ory

63



Revision 1.0-1 Wed Oct  10 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-1 release of the Software Collections Guide.

Revision 1.0-0 Tue Jun 26  2012 Petr Kovář
Red Hat Developer Toolset 1.0 release of the Software Collections Guide.

Revision 0.0-2 Tue Apr 10 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-2 release of the Software Collections Guide.

Revision 0.0-1 Tue Mar 06  2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-1 release of the Software Collections Guide.

B.1. Acknowledgments

The author of this book would like to thank the following people for their valuable contributions:
Jindřich Nový, Marcela Mašláňová, Bohuslav Kabrda, Honza Horák, Jan Zelený, Martin Čermák,
Jitka Plesníková, Langdon White, Florian Nadge, Stephen Wadeley, Douglas Silas, Tomáš Čapek,
and Vít Ondruch, among many others.

Packaging Guide

64


	⁠Chapter 1. Introducing Software Collections
	⁠1.1. Why Package Software with RPM?
	⁠1.2. What Are Software Collections?
	⁠1.3. Enabling Support for Software Collections
	⁠1.4. Installing a Software Collection
	⁠1.5. Listing Installed Software Collections
	⁠1.6. Enabling a Software Collection
	⁠1.6.1. Running an Application Directly
	⁠1.6.2. Running a Shell with Multiple Software Collections Enabled
	⁠1.6.3. Running Commands Stored in a File

	⁠1.7. Listing Enabled Software Collections
	⁠1.8. Uninstalling a Software Collection

	⁠Chapter 2. Packaging Software Collections
	⁠2.1. Creating Your Own Software Collections
	⁠2.2. The File System Hierarchy
	⁠2.3. The Software Collection Root Directory
	⁠2.4. The Software Collection Prefix
	⁠2.5. Software Collection Package Names
	⁠2.6. Software Collection Scriptlets
	⁠2.7. Package Layout
	⁠2.7.1. Metapackage
	⁠2.7.2. Creating a Metapackage
	⁠Example of the Metapackage


	⁠2.8. Software Collection Macros
	⁠2.8.1. Macros Specific to a Software Collection
	⁠2.8.2. Macros Not Specific to a Software Collection
	⁠2.8.3. The nfsmountable Macro

	⁠2.9. Converting a Conventional Spec File
	⁠2.9.1. Example of the Converted Spec File
	⁠2.9.2. Converting Tags and Macro Definitions
	⁠2.9.3. Converting Subpackages
	⁠2.9.4. Making a Software Collection Depend on Another Software Collection
	⁠2.9.5. Converting RPM Scripts
	⁠2.9.6. Software Collection Automatic Provides and Requires and Filtering Support
	⁠2.9.7. Software Collection Macro Files Support
	⁠2.9.8. Software Collection Shebang Support

	⁠2.10. Uninstalling All Software Collection Directories
	⁠2.11. Building a Software Collection
	⁠2.11.1. Rebuilding a Software Collection without build Subpackages
	⁠2.11.2. Avoiding debuginfo File Conflicts


	⁠Chapter 3. Advanced Topics
	⁠3.1. Using Software Collections over NFS
	⁠3.1.1. Changed Directory Structure and File Ownership
	⁠3.1.2. Registering and Deregistering Software Collections
	⁠3.1.2.1. Using (de)register Scriptlets in a Software Collection Metapackage


	⁠3.2. Converting Software Collection Scriptlets into Environment Modules
	⁠3.3. Packaging Wrappers for Software Collections
	⁠3.4. Managing Services in Software Collections
	⁠3.4.1. Configuring an Environment for Services

	⁠3.5. Software Collection Library Support
	⁠3.5.1. Using a Library Outside of the Software Collection
	⁠3.5.2. Prefixing the Library Major soname with the Software Collection Name
	⁠3.5.3. Software Collection Library Support in Red Hat Enterprise Linux 7

	⁠3.6. Software Collection .pc Files Support
	⁠3.7. Software Collection MANPATH Support
	⁠3.8. Software Collection cronjob Support
	⁠3.9. Software Collection Log File Support
	⁠3.10. Software Collection logrotate Support
	⁠3.11. Software Collection /var/run/ Files Support
	⁠3.12. Software Collection Lock File Support
	⁠Preventing Programs from Running Concurrently
	⁠3.12.1. Software Collection SysV init Lock File Support

	⁠3.13. Software Collection Configuration Files Support
	⁠3.14. Software Collection Kernel Module Support
	⁠3.15. Software Collection SELinux Support
	⁠3.15.1. SELinux Support in Red Hat Enterprise Linux 7


	⁠Chapter 4. Extending Red Hat Software Collections
	⁠4.1. Providing an scldevel Subpackage
	⁠4.1.1. Using an scldevel Subpackage in a Dependent Software Collection

	⁠4.2. Extending the python27 and rh-python34 Software Collections
	⁠4.2.1. The vt191 Software Collection
	⁠4.2.2. The python-versiontools Package
	⁠4.2.3. Building the vt191 Software Collection
	⁠4.2.4. Testing the vt191 Software Collection

	⁠4.3. Extending the rh-ruby22 Software Collection
	⁠4.3.1. The rh-ror41 Software Collection
	⁠4.3.2. The rh-ror41-rubygem-bcrypt Package
	⁠4.3.3. Building the rh-ror41 Software Collection
	⁠4.3.4. Testing the rh-ror41 Software Collection

	⁠4.4. Extending the rh-perl520 Software Collection
	⁠4.4.1. The h2m144 Software Collection
	⁠4.4.2. The help2man Package
	⁠4.4.3. Building the h2m144 Software Collection
	⁠4.4.4. Testing the h2m144 Software Collection


	⁠Chapter 5. Troubleshooting Software Collections
	⁠5.1. Error: line XX: Unknown tag: %scl_package software_collection_name
	⁠5.2. scl command does not exist
	⁠5.3. Unable to open /etc/scl/prefixes/software_collection_name
	⁠5.4. scl_source: command not found

	⁠Appendix A. Getting More Information
	⁠A.1. Red Hat Enterprise Linux Developer Program
	⁠A.2. Installed Documentation
	⁠A.3. Accessing Red Hat Documentation

	⁠Appendix B. Revision History
	⁠B.1. Acknowledgments


