

Parton energy loss: From pp(pA) to AA

C.Loizides (ORNL) 02 Nov 2017

CL., arXiv:1602.09138

Observable or effect	PbPb	pPb (at high mult.)	pp (at high mult.)	Refs.
Low p_T spectra ("radial flow")	yes	yes	yes	[37-42]
Intermed. $p_{\rm T}$ ("recombination")	yes	yes	yes	[41-47]
Particle ratios	GC level	GC level except Ω	GC level except Ω	[48-51]
Statistical model	$\gamma_s^{GC} = 1, 10-30\%$	$\gamma_s^{\rm GC} \approx 1,20-40\%$	$\gamma_s^{\rm C}$ < 1, 20–40% ²	[52]
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side} \approx 1^{-3}$	$R_{\rm out}/R_{\rm side} \stackrel{<}{_{\sim}} 1$	$R_{\rm out}/R_{\rm side} \stackrel{<}{\sim} 1$	[53-59]
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	v_2, v_3	[25-27]
(from two part. correlations)				[60-67]
Characteristic mass dependence	v_2, v_3 4	v_2, v_3	v_2	[67+73]
Directed flow (from spectators)	yes	no	no	[74]
Higher order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	"4 ≈ 6" ⁵	[28, 29, 67]
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		[75-83]
Weak η dependence	yes	yes	not measured	[83-90]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[91]
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[92]
Event plane and v_n correlations	yes	not measured	not measured	[93+95]
Direct photons at low p_T	yes	not measured	not measured 6	[96]
Jet quenching	yes	not observed 7	not measured 8	[97+105]
Heavy flavor anisotropy	yes	hint ⁹	not measured	[106-109]
Quarkonia	J/ψ ↑, Υ ↓	suppressed	not measured ⁸	[110-116]

Observations qualitatively similar across systems for similar multiplicity, and can be reconciled by postulating a sQGP, even in high mult pp collisions. But no direct evidence for parton energy loss, which - even if tiny - should be there!

ALICE, JHEP 06 (2016) 50

- J/ψ → μμ: Multiplicity dependent suppression in p-going direction, and no suppression in Pb-going direction
 - Consistent with shadowing
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
 - Needs additional effect (Final state?)
 (see yesterday's discussion in the talk by Elena)

4 Light flavor: Puzzle for sQGP interpretation

- Large azimuthal anisotropy measured in all systems
- Sizable suppression charged particle spectra in peripheral AA
- Interpretation in AA: "Hydrodynamics and parton energy loss"
 - Naively would expect also parton energy loss in pA!

5 Predictions from models

Calculations expect sizable (10-20%) suppression for "central" pPb and pp

No modification (at low p_T , ie. x<0.1)

$$Q_{\text{pPb}}^{ZN} = \frac{1}{N_{\text{coll}}} \frac{dN_{\text{pPb}}/dp_{\text{T}}}{dN/dp_{\text{T}}}$$

(with selection on neutron ZDC on the Pb-side and Ncoll from multiplicity assuming the wounded nucleon model Ncoll = <Ncoll> * Mult / <Mult>)

No suppression observed

7 Hadron-jet coincidence measurement

$$\Delta_{\text{recoil}} = \frac{1}{\textit{N}_{\text{trig}}} \frac{\mathsf{d}^2 \textit{N}_{\text{jet}}}{\mathsf{d} \textit{p}_{\text{T,jet}}^{\text{ch}} \mathsf{d} \eta} \bigg|_{\textit{p}_{\text{T,trig}} \in \text{TT}\{12,50\}} - \textit{c}_{\text{Ref}} \cdot \frac{1}{\textit{N}_{\text{trig}}} \frac{\mathsf{d}^2 \textit{N}_{\text{jet}}}{\mathsf{d} \textit{p}_{\text{T,jet}}^{\text{ch}} \mathsf{d} \eta} \bigg|_{\textit{p}_{\text{T,trig}} \in \text{TT}\{6,7\}}$$

No suppression (precision will improve with large 2015 pPb data!)

8 Multiplicity based selection

$$Q_{\rm pPb} = \frac{1}{N_{\rm coll}^{\rm fit}} \frac{\mathrm{d}N_{\rm pPb}/\mathrm{d}p_{\rm T}}{\mathrm{d}N/\mathrm{d}p_{\rm T}}$$

(with selection on multiplicity and Ncoll from Glauber fit)

Huge effect

(but QpPb not necessarily one in absence of nuclear modification!)

9 Multiplicity based selection (2) PRC 91 (2015) 064905

- Several biases are relevant
 - Multiplicity bias
 - Bias on the sources contributing to particle production
 - Jet veto bias
 - Auto-correlation between high p_T particle and soft multiplicity
 - Geometrical bias
 - Average NN impact parameter increases for peripheral collisions (explicitly discussed in J.Jia, PLB 681 (2009) 320)

10 Multiple parton interactions (MPI)

Skands, arXiv:1207.2389

Naive factorization

$$\langle n_{2 \to 2} \rangle = \frac{\sigma_{2 \to 2}}{\sigma_{\mathrm{tot}}}$$
 >1 at pert. scale $P_n = \frac{\langle n_{2 \to 2} \rangle^n}{n!} \exp\left(-\langle n_{2 \to 2} \rangle\right)$

- Realistic models (eg. PYTHIA)
 - Color screening to regularize hard cross section at low p_T
 - Cut-off at high n because of energy conservation
 - Coherence between scatters
 - Impact parameter dependence $n_{
 m hard}(b) = \sigma_{
 m hard} T_{
 m p}(b)$
 - Leads to a correlation between hard and soft particles as in AA

11 MPI model in HIJING

PRD44 (1991) 3501

Inelasticic NN collision at b_{NN} given as

$$\sigma_{\rm inel} \propto 1 - e^{(\sigma_{\rm soft} + \sigma_{\rm hard})T_{\rm N}(b_{\rm NN})}$$

with nuclear overlap (Eikonal function)

$$T_{\rm N} \propto (\xi \mu)^3 K_3(\xi \mu)$$
 with $\xi = b_{\rm NN}/b_0$

Number of hard (mpi) collisions given by

$$P(n_{\text{hard}}) = \frac{\langle n_{\text{hard}} \rangle^{n_{\text{hard}}}}{n_{\text{hard}}!} e^{-\langle n_{\text{hard}} \rangle}$$

with

$$\langle n_{\rm hard} \rangle = \sigma_{\rm hard} T_{\rm N}$$

12 Demonstration using Glauber+Pythia

ALICE, PRC 91 (2015) 064905

G-PYTHIA:

- For a given Glauber event, simulate Ncoll many PYTHIA pp events
- Order events according to resulting total multiplicity (in given phase space)

Suggests, at high p_T

$$\langle Q_{\mathrm{pPb}} \rangle \propto \frac{N_{\mathrm{hard}}}{N_{\mathrm{coll}} \langle N_{\mathrm{hard}}^{\mathrm{pp}} \rangle}$$

13 What about (peripheral) AA?

Dennis Perepelitsa (QM 2017)

15 Model comparison

Idea: Use model without quenching but perform event ordering (slicing) for forward multiplicity just as in data

Hijing:

- No quenching, no shadowing, but ad-hoc momentum conservation and multiple scattering
- Does not give R_{AA} → 1 at high p_T for central collisions

HG-Pythia:

- Use HIJING nhard distribution as input and superimpose correspondingly PYTHIA (Perugia 2011) events
- Does not reproduce multiplicity

Multiplicity bias can cause the apparent suppression!

16 Multiplicity and geometry bias effect

Peripheral collisions strongly affected by multiplicity bias

17 Implications

- Toy model study suggests that apparent suppression in very (80++%) peripheral AA originates from multiplicity/geometry bias
 - Relevant for all hard probes
 - Beware use of R_{CP}
 - At lower energies (BES) be aware of jet veto bias

18 Parton quenching calculation (~2004)

19 Implications for "low density systems"

- Expect evolution of "parton energy loss to be continuous"
 - Natural explanation that it turns off both at low mult of very peripheral AA and pPb
 - Could be similar to that of pion gas or even cold nuclear matter
- Observation of "large" v₂ and no "obvious" parton energy loss consistent across
 - all systems
 - all energies (BES)
- However, does not mean the effect is absent in high mult pPb
 - focus on the high mult region (>200 Ntracks)

20 What next ...

- Measure v_N in pPb (and very peripheral PbPb) to higher p_T
 - Would be good to get predictions at ~10-20 GeV from parton energy loss
- Semi-inclusive measurements
 - T_{AB} cancels
- Study peripheral AA
 - Establish effect in data directly
 - Measure a "candle" cross section
 - Difficult
 - "soft vs hard" v₂ correlation

21 Extra

22 Energy scan

23 Impact parameter (geometrical) bias

J.Jia, PLB 681 (2009) 320

$$T_{AB}(\vec{b}_{AB}) = \int d\vec{b}_{A}d\vec{b}_{B} \ T_{A}(\vec{b}_{A})T_{B}(\vec{b}_{B})t(\vec{b}_{AB} - \vec{b}_{A} + \vec{b}_{B})$$
$$= \int d\vec{s}d\vec{b}_{nn} \ T_{A}(\vec{s})T_{B}(\vec{s} - \vec{b}_{AB} + \vec{b}_{nn})t(\vec{b}_{nn}).$$

$$N_{\rm coll} = T_{\rm AB} \, \sigma_{\rm NN}$$

Including a impact parameter dependent nucleon-nucleon overlap function can lead to 20% variation of Ncoll for peripheral collisions

24 HIJING

Un-understood features in central PbPb related to adhoc-momentum conservation, multiple scattering, and "error treatement" in HIJING. Does not give RAA \rightarrow 1 at high p $_{\scriptscriptstyle T}$

25 HG-Pythia multiplicity dependence

By construction, does not well scale with Npart, but rather with Nhard (or Ncoll)

26 Use of impact parameter Ncoll

In peripheral collisions, it matters whether one slices Ncoll vs b (called geometric) or using a particle production model (HIJING, Glauber fit)

27 Centrality from HYBRID method

- 1) Assume ZN is bias free + define centrality classes
- 2) Construct similar model as for the Glauber fits

Resulting values within at most 10%

ALICE, PRC 91 (2015) 064905

$$\langle N_{\rm coll} \rangle_{i}^{\rm mult} = \langle N_{\rm part} \rangle_{\rm MB} \left. \frac{\langle dN/d\eta \rangle_{i}}{\langle dN/d\eta \rangle_{\rm MB}} \right|_{-1 < \eta < 0} - 1$$

$$\langle N_{\rm coll} \rangle_{i}^{\rm high \, p_{\rm T}} = \langle N_{\rm coll} \rangle_{\rm MB} \frac{\langle Y_{10 < p_{\rm T} < 20} \rangle_{i}}{\langle Y_{10 < p_{\rm T} < 20} \rangle_{\rm MB}}$$

$$\langle N_{\rm coll} \rangle_{i}^{\rm Pb \, side} = \langle N_{\rm coll} \rangle_{\rm MB} \frac{\langle S_{\rm V0Ar1} \rangle_{i}}{\langle S_{\rm V0Ar1} \rangle_{\rm MB}}$$

28 Results using the hybrid method

ALICE, PRC 91 (2015) 064905

29 Multiplicity vs ZN selection

ALICE, PRC 91 (2015) 064905

