
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

USER’S GUIDE
Table of contents

............. 1MAD-X Copyright Statement

................. 2Conventions

............. 41Command and Statement Format

................ 92Control Statements

............. 107Physical Elements and Markers

.................. 124Sequences

.............. 130Using aperture in MAD-X

............ 142Conversion to Sixtrack Input Format

.............. 144Conversion to Thin Lens

................. 146Dynap Module

................. 148Emit Module

.............. 149Error Assignment Module

................. 158IBS module

................ 161Matching Module

.............. 183Orbit Correction Module

................... 190PLOT

.................. 193SODD

................ 196Survey, geometric

.............. 198SXF file input and output

................ 199TFS File Format

................. 203TOUSCHEK

................. 205Twiss Module

............... 209PTC Set-up Parameters

........... 214Overview of MAD-X Tracking Modules

........... 216Thin-Lens Tracking Module (thintrack)

........... 221Thick-Lens Tracking Module (ptc_track)

........... 228Line Tracking Module (ptc_track_line)

............ 235Ripken Optics Parameters (ptc_twiss)

.......... 241Non-Linear Machine Parameters (ptc_normal)

.............. 245PTC Auxiliary Commands

........... 265Known Differences to Other Programs

.............. 267Keyword and Subject Index

.................. 317References

1

hansg, June 17, 2002

2

http://www.cern.ch/Hans.Grote/hansg_sign.html

Standard CERN Copyright Notice:

 CERN

 EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH

Program name: MAD --- Methodical Accelerator Design

CERN program library entry: T5001

Authors or contacts: Frank.Schmidt@cern.ch
 SL Division
 CERN
 CH-1211 GENEVA 23
 SWITZERLAND

Copyright CERN, Geneva 1990 - Copyright and any other appropriate legal
protection of this computer program and associated documentation
reserved in all countries of the world.

Organisations collaborating with CERN may receive this program and
documentation freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor
responsibility for its correctness, and accepts no liability whatsoever
resulting from its use.

Program and documentation are provided solely for the use of the
organisation to which they are distributed.

This program may not be copied or otherwise distributed without
permission. This message must be retained on this and any other
authorised copies.

The material cannot be sold. CERN should be given credit in all
references.

hansg, January 24, 1997

1

http://www.cern.ch/hansg/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Conventions
The accelerator and/or beam line to be studied is described as a sequence of beam elements placed
sequentially along a reference orbit. The reference orbit is the path of a charged particle having the central
design momentum of the accelerator through idealised magnets with no fringe fields (see Figure 1).

The reference orbit consists of a series of straight line segments and circular arcs. It is defined under the
assumption that all elements are perfectly aligned. The accompanying tripod of the reference orbit spans a
local curvilinear right handed coordinate system (x,y,s) The local s-axis is the tangent to the reference
orbit. The two other axes are perpendicular to the reference orbit and are labelled x (in the bend plane) and
y (perpendicular to the bend plane).

Closed Orbit
Global Reference System
Local Reference System
Sign Conventions for Magnetic Fields
Variable

Canonical Variables Describing Orbits
Normalised Variables and other Derived Quantities

Physical Units

Figure 1: Local Reference System

hansg, May 8, 2001

2

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Closed Orbit
Due to various errors like misalignment errors, field errors, fringe fields etc., the closed orbit does not
coincide with the reference orbit. It also changes with the momentum error. The closed orbit is described
with respect to the reference orbit, using the local reference system (x, y, s). It is evaluated including any
nonlinear effects.

MAD also computes the betatron and synchrotron oscillations with respect to the closed orbit. Results are
given in the local (x, y, s)-system defined by the reference orbit.

hansg, January 24, 1997

3

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Global Reference System
The global reference orbit of the accelerator is uniquely defined by the sequence of physical elements. The
local reference system (x, y, s) may thus be referred to a global Cartesian coordinate system (X, Y, Z) (see
Figure 1). The positions between beam elements are numbered 0,...,i,...n. The local reference system (xi ,

yi , si) at position i, i.e. the displacement and direction of the reference orbit with respect to the system (X,

Y, Z) are defined by three displacements (Xi , Yi , Z i) and three angles (Thetai , Phii , Psii) The above

quantities are defined more precisely as follows:

X: Displacement of the local origin in X-direction.
Y: Displacement of the local origin in Y-direction.
Z: Displacement of the local origin in Z-direction.
THETA: Angle of rotation (azimuth) about the global Y-axis, between the global Z-axis and the
projection of the reference orbit onto the (Z, X)-plane. A positive angle THETA forms a right-hand
screw with the Y-axis.
PHI: Elevation angle, i.e. the angle between the reference orbit and its projection onto the (Z,
X)-plane. A positive angle PHI correspond to increasing Y. If only horizontal bends are present, the
reference orbit remains in the (Z, X)-plane. In this case PHI is always zero.
PSI: Roll angle about the local s-axis, i.e. the angle between the intersection (x, y)- and (Z, X)-planes
and the local x-axis. A positive angle PSI forms a right-hand screw with the s-axis.

The angles (THETA, PHI, PSI) are not the Euler angles. The reference orbit starts at the origin and points
by default in the direction of the positive Z-axis. The initial local axes (x, y, s) coincide with the global
axes (X, Y, Z) in this order. The six quantities (X0 , Y0 , Z0 , THETA0 , PHI0 , PSI0) thus all have zero

initial values by default. The program user may however specify different initial conditions.

Internally the displacement is described by a vector V and the orientation by a unitary matrix W. The
column vectors of W are the unit vectors spanning the local coordinate axes in the order (x, y, s). V and W
have the values:

where

4

The reference orbit should be closed and it should not be twisted. This means that the displacement of the
local reference system must be periodic with the revolution frequency of the accelerator, while the
position angles must be periodic modulo(2 pi) with the revolution frequency. If PSI is not periodic
module(2 pi), coupling effects are introduced. When advancing through a beam element, MAD computes
Vi and Wi by the recurrence relations

Vi = Wi-1 Ri + V i-1 , Wi = w i-1 Si .

The vector Ri is the displacement and the matrix Si is the rotation of the local reference system at the exit

of the element i with respect to the entrance of the same element. The values of Ri and Si are listed in the:

straight reference system for each physical element type.

Figure 1: Global Reference System

hansg, January 24, 1997

5

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Local Reference Systems

Reference System for Straight Beam Elements
In straight elements the local reference system is simply translated by the length of the element along the
local s-axis. This is true for

Drift space,
Quadrupole,
Sextupole,
Octupole,
Solenoid,
CRABCAVITY,
RF cavity,
Electrostatic separator,
Closed orbit corrector,
Beam position monitor.

The corresponding R, S are

A rotation of the element about the S-axis has no effect on R and S, since the rotations of the reference
system before and after the element cancel.

Figure 1: Reference System for Straight Beam Elements

6

Reference System for Bending Magnets
Bending magnets have a curved reference orbit. For both rectangular and sector bending magnets

where alphais the bend angle. A positive bend angle represents a bend to the right, i.e. towards negative x
values. For sector bending magnets, the bend radius is given by rho, and for rectangular bending magnets
it has the value

rho = L / 2 sin(alpha/2).

If the magnet is rotated about the s-axis by an angle psi, R and S are transformed by

R* = T R, S* = T S T-1 .

where T is the orthogonal rotation matrix

The special value psi = pi/2 represents a bend down.

Figure 2: Reference System for Rectangular Bends; The signs of the pole-face rotations are positive as
shown.

7

Figure 3: Reference System for Sector Bends; The signs of the pole-face rotations are positive as shown.

Elements which do not Change the Local Reference
MARKER elements do not affect the reference orbit. They are ignored for geometry calculations.

hansg, January 24, 1997

8

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Drift Space
label: DRIFT,L=real;

A DRIFT space has one real attribute:

L: The drift length (default: 0 m)

Examples:

DR1: DRIFT,L=1.5;
DR2: DRIFT,L=DR1[L];

The length of DR2 will always be equal to the length of DR1. The straight reference system for a drift
space is a cartesian coordinate system.

hansg, January 24, 1997

9

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Quadrupole
label: QUADRUPOLE,L=real,K1=real,K1S=real,TILT=real;

A QUADRUPOLE has four real attributes:

L: The quadrupole length (default: 0 m).
K1: The normal quadrupole coefficient

K1 = 1/(B rho) (ðBy /ð x).

The default is 0 m**(-2). A positive normal quadrupole strength implies horizontal focussing of
positively charged particles.
K1S: The skew quadrupole coefficient

K1s = 1/(2 B rho) (ðBx /ð x - ðBy /ð y)

where (x,y) is now a coordinate system rotated by -45o around s with respect to the normal one. The
default is 0 m**(-2). A positive skew quadrupole strength implies defocussing (!) of positively
charged particles in the (x,s) plane rotated by 45o around s (particles in this plane have x = y > 0).

TILT: The roll angle about the longitudinal axis (default: 0 rad, i.e. a normal quadrupole). A positive
angle represents a clockwise rotation. A TILT=pi/4 turns a positive normal quadrupole into a
negative skew quadrupole.

Please note that contrary to MAD8 one has to specify the desired TILT angle, otherwise it is
taken as 0 rad. This was needed to avoid the confusion in MAD8 about the actual meaning of
the TILT attribute for various elements.

Note also that K1 /K 1s can be considered as the normal or skew quadrupole components of the magnet

on the bench, while the TILT attribute can be considered as an tilt alignment error in the machine. In fact,
a positive K1 with a tilt=0 is equivalent to a positive K1s with positive tilt=+pi/4.

Example:

QF: QUADRUPOLE,L=1.5,K1=0.001;

The straight reference system for a quadrupole is a cartesian coordinate system.

10

hansg, frs, August 28, 2003

11

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Sextupole
label: SEXTUPOLE,L=real,K2=real,K2S=real,TILT=real;

A SEXTUPOLE has four real attributes:

L: The sextupole length (default: 0 m).
K2: The normal sextupole coefficient

K2 = 1/(B rho) (ð2By /ð x2).

(default: 0 m**(-3)).
K2S: The skew sextupole coefficient

K2S = 1/(2 B rho) (ð2Bx /ð x2 - ð2By /ð y2).

where (x,y) is now a coordinate system rotated by -30o around s with respect to the normal one.
(default: 0 m**(-3)). A positive skew sextupole strength implies defocussing (!) of positively charged
particles in the (x,s) plane rotated by 30o around s (particles in this plane have x > 0, y > 0).

TILT: The roll angle about the longitudinal axis (default: 0 rad, i.e. a normal sextupole). A positive
angle represents a clockwise rotation. A TILT=pi/6 turns a positive normal sextupole into a negative
skew sextupole.

Please note that contrary to MAD8 one has to specify the desired TILT angle, otherwise it is
taken as 0 rad. This was needed to avoid the confusion in MAD8 about the actual meaning of
the TILT attribute for various elements.

Note also that K2 /K 2s can be considered as the normal or skew sextupole components of the magnet on

the bench, while the TILT attribute can be considered as an tilt alignment error in the machine. In fact, a
positive K2 with a tilt=0 is equivalent to a positive K2s with positive tilt=+pi/6.

Example:

S: SEXTUPOLE,L=0.4,K2=0.00134;

The straight reference system for a sextupole is a cartesian coordinate system.

hansg, frs, August 28, 2003

12

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Octupole
label: OCTUPOLE,L=real,K3=real,K3S=real,TILT=real;

An OCTUPOLE has four real attributes:

L: The octupole length (default: 0 m).
K3: The normal octupole coefficient

K3 = 1/(B rho) (ð3By /ðx3).

(default: 0 m**(-4)).
K3S: The skew octupole coefficient

K3S = 1/(2 B rho) (ð3Bx /ðx3 - ð3By /ðy3).

where (x,y) is now a coordinate system rotated by -22.5o around s with respect to the normal one.
(default: 0 m**(-4)). A positive skew octupole strength implies defocussing (!) of positively charged
particles in the (x,s) plane rotated by 22.5o around s (particles in this plane have x > 0, y > 0).

TILT: The roll angle about the longitudinal axis (default: 0 rad, i.e. a normal octupole). A positive
angle represents a clockwise rotation. A TILT=pi/8 turns a positive normal octupole into a negative
skew octupole.

Please note that contrary to MAD8 one has to specify the desired TILT angle, otherwise it is
taken as 0 rad. This was needed to avoid the confusion in MAD8 about the actual meaning of
the TILT attribute for various elements.

Note also that K3 /K 3s can be considered as the normal or skew quadrupole components of the magnet

on the bench, while the TILT attribute can be considered as an tilt alignment error in the machine. In fact,
a positive K3 with a tilt=0 is equivalent to a positive K3s with positive tilt=+pi/8.

Example:

O3: OCTUPOLE,L=0.3,K3=0.543;

The straight reference system for a octupole is a cartesian coordinate system. Octupoles are normally
treated as thin lenses, except when tracking by Lie-algebraic methods.

13

hansg, frs, August 28, 2003

14

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Solenoid
label: SOLENOID, L=real, KS=real; (thick version)
label: SOLENOID, L=0, KS=real, KSI=real; (thin version)

A SOLENOID has two (three) real attributes:

L: The length of the solenoid (default: 0 m)
KS: The solenoid strength Ks (default: 0 rad/m). For positive KS and positive particle charge, the

solenoid field points in the direction of increasing s.
KSI: The solenoid integrated strength Ks*L (default: 0 rad). This additional attribute is needed only

when using the thin solenoid, where L=0!
KNL & KSL: Take note that one can specify multipole coefficients but they have no effect in MAD-X
proper but are used for solenoids with multipoles in PTC.

Example:

SOLO: SOLENOID, L=2., KS=0.001;
THINSOLO: SOLENOID, L=0, KS=0.001, KSI=0.002;

The straight reference system for a solenoid is a cartesian coordinate system.

hansg, January 27, 1977

15

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CRAB Cavity
label: CRABCAVITY, L=real,VOLT=real,LAG=real,FREQ=real,
rv1=integer, rv2=integer, rv3=integer, rv4=integer,
rph1=integer, rph2=integer,lagf=real;

An CRABCAVITY has ten real attributes and seven integer attributes:

L: The length of the cavity (default: 0 m)
VOLT: The peak RF voltage (default: 0 MV). The effect of the cavity is

delta(px) = VOLT * sin(φ - ω * t)
delta(E) = - VOLT * ω * x * cos(φ - ω * t)
(where, φ = sin(2 π * (LAG - HARMON * f0 t)))

LAG: The initial phase lag [2pi] (default: 0).
FREQ: The frequency [MHz] fenergy(no default). Note that if the RF frequency is not given, it is
computed from the harmonic number and the revolution frequency f0 as before. However, for

deflecting structures this makes no sense, and the frequency is mandatory.
RV1: Number of initial turns with zero voltage(default: 0).
RV2: Number of turns to ramp voltage from zero to nominal(default: 0).
RV3: Number of turns with nominal voltage (default: VOLT).
RV4: Number of turns to ramp voltage from nominal to zero(default: 0).
RPH1: Number of initial turns with nominal phase (default: 0).
EPHASE: Value of the final crab RF phase [2pi] with respect to nominal value (default: 0).
RPH2: Number of turns to ramp phase [2pi] from nominal to specified value(default: 0).
HARMON: The harmonic number h (no default). Only if the frequency is not given.
Please take note, that the following MAD8 attributes: BETRF, PG, SHUNT and TFILL are currently
not implemented in MAD-X!<
Note that crab cavities are only implemented for tracking purposes. TWISS will ignore any effect of
the crab cavity.

A cavity requires the particle energy (ENERGY) and the particle charge (CHARGE) to be set by a BEAM
command before any calculations are performed.

Example:

BEAM,PARTICLE=PROTONENERGY=7000.0;
CAVITY: CRABCAVITY,L=10.0,VOLT=5.0,LAG=0.0, FREQ=400,
rv1=0, rv2=50, rv3=1000, rv4=50, rph1=100, rph2=500,lagf=0.125;;

16

The straight reference system for a cavity is a cartesian coordinate system.

R. Calaga, September 2010

17

http://www.cern.ch/rcalaga

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

BEAM: Set Beam Parameters
Many commands in MAD-X require the setting of various quantities related to the beam in the machine.
Therefore, MAD-X will stop with a fatal error if an attempt is made to expand (USE) a sequence for
which no BEAM command has been issued before.

The quantities are entered by a BEAM command:

BEAM, PARTICLE=name,MASS=real,CHARGE=real,
 ENERGY=real,PC=real,GAMMA=real,
 EX=real,EXN=real,EY=real,EYN=real,
 ET=real,SIGT=real,SIGE=real,
 KBUNCH=integer,NPART=real,BCURRENT=real,
 BUNCHED=logical,RADIATE=logical,BV=integer,SEQUENCE=name;

Warning: BEAM updates, i. e. it replaces attributes explicitely mentioned, but does not return to default
values for others! To reset to beam value defaults, use RESBEAM. The particle restmass and charge are
defined by:

PARTICLE: The name of particles in the machine. MAD knows the restmass and the charge for the
following particles:

POSITRON: The particles are positrons (MASS=me, CHARGE=1),

ELECTRON: The particles are electrons (MASS=me, CHARGE=-1),

PROTON: The particles are protons (MASS=mp , CHARGE=1),

ANTIPROTON: The particles are anti-protons (MASS=mp , CHARGE=-1).

POSMUON: The particles are positive muons (MASS=mmu, CHARGE=1),

NEGMUON: The particles are negative muons (MASS=mmu, CHARGE=-1).

Therefore neither restmass nor charge can be modified for these predefined particles. On the other hand,
for ions and all other user defined particles the name, restmass, and charge can be entered independently.

By default the total particle energy is 1 GeV. A different value can be defined by one of the following:

ENERGY: The total energy per particle in GeV. If given, it must be greater then the particle
restmass.
PC: The momentum per particle in GeV/c. If given, it must be greater than zero.
GAMMA: The ratio between total energy and rest energy of the particles: GAMMA = E / m0 . If

given, it must be greater than one. If the restmass is changed a new value for the energy should be
entered. Otherwise the energy remains unchanged, and the momentum PC and the quantity GAMMA
are recalculated. The emittances are defined by:

18

EX: The horizontal emittance Ex (default: 1 m).

EY: The vertical emittance Ey (default: 1 m).

ET: The longitudinal emittance Et (default: 1 m). The emittances can be replaced by the normalised

emittances and the energy spread:
EXN: The normalised horizontal emittance [m]: Exn = 4 (GAMMA2 - 1)1/2 Ex (ignored if Ex is

given).
EYN: The normalised vertical emittance [m]: Eyn = 4 (GAMMA2 - 1)1/2 Ey (ignored if Ex is

given).
SIGT: The bunch length c sigma(t) in [m].
SIGE: The relative energy spread sigma(E)/E in [1].

Certain commands compute the synchrotron tune Qs from the RF cavities. If Qs is non-zero, the relative

energy spread and the bunch length are

sigma(E) / p0 c = (2 pi Qs Et / ETA C)1/2,

c sigma(t) =(ETA C Et / 2 pi Qs)1/2.

C is the machine circumference, and

ETA = GAMMA -2 - GAMMA(transition)-2 .

The order of precedence in the parameter evaluation is given below:

 particle->(mass+charge)
 energy->pc->gamma->beta
 ex->exn
 ey->eyn
 current->npart
 et->sigt->sige

where any item to the left takes precendence over the others.

Finally, the BEAM command accepts

KBUNCH: The number of particle bunches in the machine (default: 1).
NPART: The number of particles per bunch (default: 0).
BCURRENT: The bunch current (default: 0 A).
BUNCHED: A logical flag. If set, the beam is treated as bunched whenever this makes sense.
RADIATE: A logical flag. If set, synchrotron radiation is considered in all bipolar magnets.
BV: an integer specifying the direction of the particle movement in a beam line; either +1 (default),
or -1. For a detailed explanation see under bv flag.
SEQUENCE: this attaches the beam command to a specific sequence; if the name is omitted, the
BEAM command refers to the default beam always present. Sequences without attached beam use
this default beam. When updating a beam, the corresponding sequence name, if any, must always be
mentioned.

19

The BEAM command changes only the parameters entered. The command RESBEAM resets all beam
data to their beam value defaults.

Examples:

BEAM, PARTICLE=ELECTRON,ENERGY=50,EX=1.E-6,EY=1.E-8,SIGE=1.E-3;
 ...
BEAM, RADIATE;
 ...
RESBEAM;
BEAM, EX=2.E-5,EY=3.E-7,SIGE=4.E-3;

The first command selects electrons, and sets energy and emittances. The second one turns on synchrotron
radiation. The last two select positrons (by default), set the energy to 1 GeV (default), clear the
synchrotron radiation flag, and set the emittances to the values entered.

Some program modules of MAD-X may also store data into a beam data block. Expressions may refer to
data in this beam data block using the notation

BEAM->attribute-name

or

BEAM%sequence->attribute-name.

This notation refers to the value of attribute-name found in the default BEAM resp. the beam belonging to
the sequence given. This can be used for receiving or using values, e.g.

value,beam%lhcb2->bv;

or for storing values in the beam (this does NOT trigger an update of dependent variables !), e.g.

beam->charge=-1;

The current values in the BEAM bank can be obtained by the command

show,beam;

resp.

show,beam%sequence;

hansg 11.9.2000

20

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

RF Cavity
label: RFCAVITY, L=real,VOLT=real,LAG=real,HARMON=integer,FREQ=real;

An RFCAVITY has eight real attributes and one integer attribute:

L: The length of the cavity (DEFAULT: 0 m)
VOLT: The peak RF voltage (DEFAULT: 0 MV). The effect of the cavity is

delta(E) = VOLT * sin(2 pi * (LAG - HARMON * f0 t)).

LAG: The phase lag [2pi] (DEFAULT: 0).
FREQ: The frequency [MHz] (no DEFAULT). Note that if the RF frequency is not given, it is
computed from the harmonic number and the revolution frequency f0 as before. However, for

accelerating structures this makes no sense, and the frequency is mandatory.
HARMON: The harmonic number h (no DEFAULT). Only if the frequency is not given.
Please take note, that the following MAD8 attributes: BETRF, PG, SHUNT and TFILL are currently
not implemented in MAD-X!<
Note as well that twiss is 4D only. As a consequence the TWISS parameters in the plane of non-zero
dispersion may not close as expected. Therefore, it is best to perform TWISS in 4D only, i.e. with
cavities switched off. If 6D is needed one has to use the ptc_twiss command.

The RFCAVITY has attributes that will only become active in PTC:

n_bessel (DEFAULT: 0):

Transverse focussing effects are typically ignored in the cavity in MAD-X or even PTC. This effect
is being calculated to order n_bessel, with n_bessel=0 disregarding this effect and with a correct
treatment when n_bessel goes to infinty.
no_cavity_totalpath (DEFAULT: no_cavity_totalpath=false):

flag to choose if in a cavity the transit time factor is considered (no_cavity_totalpath=false) or if the
particle is kept on the crest of RF voltage (no_cavity_totalpath=true).

A cavity requires the particle energy (ENERGY) and the particle charge (CHARGE) to be set by a BEAM
command before any calculations are performed.

Example:

21

BEAM,PARTICLE=ELECTRON,ENERGY=50.0;
CAVITY: RFCAVITY,L=10.0,VOLT=150.0,LAG=0.0,HARMON=31320;

The straight reference system for a cavity is a cartesian coordinate system.

hansg, January 24, 1997

22

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ELSEPARATOR: Electrostatic Separator
label: ELSEPARATOR,L=real,EX=real,EY=real,TILT=real;

An ELSEPARATOR (electrostatic separator) has four real attributes:

L: The length of the separator (default: 0 m).
EX: The horizontal electric field strength (default: 0 MV/m). A positive field increases px for

positive particles.
EY: The vertical electric field strength (default: 0 MV/m). A positive field increases py for positive

particles.
TILT: The roll angle about the longitudinal axis (default: 0 rad). A positive angle represents a
clockwise of the electrostatic separator.

A separator requires the particle energy (ENERGY) and the particle charge (CHARGE) to be set by a
BEAM command before any calculations are performed.

Example:

BEAM,PARTICLE=POSITRON,ENERGY=50.0;
SEP: ELSEPARATOR,L=5.0,EY=0.5;

The straight reference system for a separator is a cartesian coordinate system.

hansg, frs, August 28, 2003

23

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Closed Orbit Correctors
Three types of closed orbit correctors are available:

HKICKER, a corrector for the horizontal plane,
VKICKER, a corrector for the vertical plane,
KICKER, a corrector for both planes.

label: HKICKER, L=real,KICK=real,TILT=real;
label: VKICKER, L=real,KICK=real,TILT=real;
label: KICKER, L=real,HKICK=real,VKICK=real,TILT=real;

The type KICKER should not be used when an orbit corrector kicks only in one plane.
The attributes have the following meaning:

L: The length of the closed orbit corrector (default: 0 m).
KICK: The kick angle for either horizontal or vertical correctors. (default: 0 rad).
HKICK: The horizontal kick angle for a corrector in both planes (default: 0 rad).
VKICK: The vertical kick angle for a corrector in both planes (default: 0 rad).
TILT: The roll angle about the longitudinal axis (default: 0 rad). A positive angle represents a
clockwise rotation of the kicker.

A positive kick increases px or py respectively. This means that a positive horizontal kick bends to the

left, i.e. to positive x which is opposite of what is true for bends.
It should be noted that the kick values assigned to an orbit corrector like above are not overwritten by an
orbit correction using the CORRECT command. Instead the kicks computed by an orbit correction and the
assigned values are added when the correctors are used.

Examples:

HK1: HKICKER, KICK=0.001;
VK3: VKICKER, KICK=0.0005;
VK4: VKICKER, KICK:=AVK4;
KHV1: KICKER, HKICK=0.001,VKICK=0.0005;
KHV2: KICKER, HKICK:=AKHV2H,VKICK:=AKHV2V;

The assignment in the form of a deferred expression has the advantage that the values can be assigned
and/or modified at any time (and matched !).
The straight reference system for an orbit corrector is a Cartesian coordinate system.

24

Please note that there is a new feature introduced by Stefan Sorge from GSI. Here his decription:

The elements KICKER, HKICKER, and VKICKER can also be used as an exciter providing a sinusoidal
momentum kick. The usage in this case is

xykick: KICKER, SINKICK=integer, SINPEAK=real, SINTUNE=real, SINPHASE=real;

xkick : HKICKER, SINKICK=integer, SINPEAK=real, SINTUNE=real, SINPHASE=real;

ykick : VKICKER, SINKICK=integer, SINPEAK=real, SINTUNE=real, SINPHASE=real;

where a sinusoidal momentum kick dpz as a function of the revolution number n given by

dpz(n)=SINPEAK * sin(2*PI*SINTUNE*n + SINPHASE), pz=px,py

is provided. So, the variables are

SINKICK - integer, must be set to 1 to switch on the sinusoidal signal, default: 0.

SINPEAK - amplitude of the bending angle (rad), default: 0 rad.

SINTUNE - frequency of the signal times the revolution frequency. Hence, the phase per revolution is
2*PI*SINTUNE, default: 0.

SINPHASE - initial phase, default: 0 rad.

KICKER generates a kick in horizontal and a kick vertical direction, where both are synchron, HKICKER
generates a horizontal kick, and VKICKER generates a vertical kick.

The momentum kick of a kicker has only a single frequency. An element having a finite bandwidth can
approximately created by defining thin kickers with all amplitudes SINPEAK, frequencies SINTUNE, and
initial phases SINPHASE desired and putting them at the same position s in the accelerator.

From S.Sorge@gsi.de

hansg, frs, August 28, 2003

25

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Beam Position Monitors
A beam monitor acts on the beam like a drift space. In addition it serves to record the beam position for
closed orbit corrections. Four different types of beam position monitors are recognised:

HMONITOR. Monitor for the horizontal beam position,
VMONITOR. Monitor for the vertical beam position,
MONITOR. Monitor for both horizontal and vertical beam position.
INSTRUMENT. A place holder for any type of beam instrumentation. Optically it behaves like a
drift space; it returns no beam observation. It represent a class of elements which is completely
independent from drifts and monitors.

label: HMONITOR, L=real;
label: VMONITOR, L=real;
label: MONITOR, L=real;
label: INSTRUMENT, L=real;

A beam position monitor has one real attribute:

L: The length of the monitor (default: 0 m). If the length is different from zero, the beam position is
recorded in the centre of the monitor.

Examples:

MH: HMONITOR,L=1;
MV: VMONITOR;

The straight reference system for a monitor is a cartesian coordinate system.

hansg, June 17, 2002

26

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Bending Magnets
Two different type keywords are recognised for bending magnets, they are distinguished only by the
reference system used:

RBEND is a rectangular bending magnet. It has parallel pole faces and is based on a curved rbend
reference system; its length is the straight length as in the Figure but internally the arc length is
being used. - to define an RBEND with the arc length as length (straight line shorter than input
- for compatibility with MAD8 version up to version 8.23.06 including), the option
RBARC=FALSE has to be set.

SBEND is a sector bending magnet. Its pole faces meet at the centre of curvature of the curved sbend
reference system.

They are defined by the commands:

SBEND, L=real,ANGLE=real,TILT=real,K0=real,K0S=real,K1=real,E1=real,E2=real,
 FINT=real,FINTX=real,HGAP=real,K2=real,H1=real,H2=real;

RBEND, L=real,ANGLE=real,TILT=real,K0=real,K0S=real,K1=real,E1=real,E2=real,
 FINT=real,FINTX=real,HGAP=real,K2=real,H1=real,H2=real;

For both types, the following first-order attributes are permitted:

L: The length of the magnet (default: 0 m). For a rectangular magnet the length is measured along a
straight line as in the Figure (internally the arc length is used), while for a sector magnet it is the arc
length of the reference orbit. To define an RBEND with the arc length (shorter straight length),
the option RBARC=FALSE has to be set.

ANGLE: The bend angle (default: 0 rad). A positive bend angle represents a bend to the right, i.e.
towards negative x values.

TILT: The roll angle about the longitudinal axis (default: 0 rad, i.e. a horizontal bend). A positive
angle represents a clockwise rotation. A TILT=pi/2 turns a horizontal into a vertical bend, i.e. a
positive bend ANGLE denotes a deflection down. Please note that contrary to MAD8 one has to
specify the desired TILT angle, otherwise it is taken as 0 rad. This was needed to avoid the
confusion in MAD8 about the actual meaning of the TILT attribute for various elements.

Please take note that K0 and K0s are left in the data base but are no longer used for the MAP
of the bends (but see below for what K0 is being used), instead ANGLE and TILT are used
exclusively. We believe that this will allow for a clearer and unambiguous definition, in
particular in view of the upcoming integration of MAD-X with PTC which will allow a more

27

general definition of bends. However, it is required to specify k0 to assign RELATIVE field
errors to a bending magnet since k0 is used for the normalization and NOT the ANGLE. (see
EFCOMP).

K1: The quadrupole coefficient

K1 = (1 / B rho) (del By / del x).

The default is 0 m-2 . A positive quadrupole strength implies horizontal focussing of positively
charged particles.
E1: The rotation angle for the entrance pole face (default: 0 rad).
E2: The rotation angle for the exit pole face (default: 0 rad).
FINT: The field integral whose default value is 0.
FINTX: Allows (FINTX > 0)to set FINT at the element exit different from its entry value. In
particular useful to switch it off (FINTX=0).
HGAP: The half gap of the magnet (default: 0 m).

The pole face rotation angles are referred to the magnet model for rectangular bend and sector bend
respectively. The quantities FINT and HGAP specify the finite extent of the fringe fields as defined in
[SLAC-75] There they are defined as follows:

The default values of zero corresponds to the hard-edge approximation, i.e. a rectangular field distribution.
For other approximations, enter the correct value of the half gap, and one of the following values for
FINT:

Linear Field drop-off 1/6
Clamped "Rogowski" fringing field 0.4
Unclamped "Rogowski" fringing field 0.7
"Square-edged" non-saturating magnet 0.45

Entering the keyword FINT alone sets the integral to 0.5. This is a reasonable average of the above values.
The following second-order attributes are permitted:

K2: The sextupole coefficient K2 = (1 / B rho) (del2 By / del x2).

H1: The curvature of the entrance pole face (default: 0 m-1).
H2: The curvature of the exit pole face (default: 0 m-1). A positive pole face curvature induces a
negative sextupole component; i.e. for positive H1 and H2 the centres of curvature of the pole faces
are placed inside the magnet.

Examples:

BR: RBEND,L=5.5,ANGLE=+0.001; // Deflection to the right
BD: SBEND,L=5.5,K0S=+0.001/5.5; // Deflection up
BL: SBEND,L=5.5,K0=-0.001/5.5; // Deflection to the left
BU: SBEND,L=5.5,K0S=-0.001; // Deflection down

28

hansg, frs, August 28, 2003

29

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Marker.
label: MARKER;

The simplest element which can occur in a beam line is the MARKER. It has no effect on the beam, but it
allows one to identify a position in the beam line, for example to apply a matching constraint.

Example:

m27: marker;

hansg, June 6, 2002

30

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Sign Conventions for Magnetic Fields
The MAD program uses the following Taylor expansion for the field on the mid-plane y=0, described in
SLAC-75:

Note the factorial in the denominator. The field coefficients have the following meaning:

B0 : Dipole field, with a positive value in the positive y direction; a positive field bends a positively

charged particle to the right.
B1 : Quadrupole coefficient

B1 = (del By / del x);

a positive value corresponds to horizontal focussing of a positively charged particle.
B2 : Sextupole coefficient

B2 = (del2 By / del x2).

B2 : Octupole coefficient

B3 = (del3 By / del x3).

Using this expansion and the curvature h of the reference orbit, the longitudinal component of the vector
potential to order 4 is:

Taking curl A in curvilinear coordinates, the field components can be computed as

31

It can be easily verified that both curl B and div B are zero to the order of the B3 term. Introducing the

magnetic rigidity Brho, the multipole coefficients are computed as

Kn = e Bn / ps = Bn / B rho.

hansg, June 17, 2002

32

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Variables

For each variable the physical units are listed in square brackets.

Canonical Variables Describing Orbits
MAD uses the following canonical variables to describe the motion of particles:

X: Horizontal position x of the (closed) orbit, referred to the ideal orbit [m].
PX: Horizontal canonical momentum px of the (closed) orbit referred to the ideal orbit, divided by

the reference momentum: PX = px / p0 , [1].

Y: Vertical position y of the (closed) orbit, referred to the ideal orbit [m].
PY: Vertical canonical momentum py of the (closed) orbit referred to the ideal orbit, divided by the

reference momentum: PY = px / p0 , [1].

T: Velocity of light times the negative time difference with respect to the reference particle: T = - c t,
[m]. A positive T means that the particle arrives ahead of the reference particle.
PT: Energy error, divided by the reference momentum times the velocity of light: PT = delta(E) / ps

c, [1]. This value is only non-zero when synchrotron motion is present. It describes the deviation of
the particle from the orbit of a particle with the momentum error DELTAP.
DELTAP: Difference of the reference momentum and the design momentum, divided by the
reference momentum: DELTAP = delta(p) / p0 , [1]. This quantity is used to normalize all element

strengths.

The independent variable is:

S: Arc length s along the reference orbit, [m].

In the limit of fully relativistic particles (gamma >> 1, v = c, p c = E), the variables T, PT used here agree
with the longitudinal variables used in [TRANSPORT]. This means that T becomes the negative path
length difference, while PT becomes the fractional momentum error. The reference momentum ps must

be constant in order to keep the system canonical.

Normalised Variables and other Derived Quantities

XN: The normalised horizontal displacement

XN = xn = Re(E1
T S Z), [sqrt(m)].

33

PXN: The normalised horizontal transverse momentum

PXN = xn = Im(E1
T S Z), [sqrt(m)].

WX: The horizontal Courant-Snyder invariant

WX = sqrt(xn
2 + pxn

2), [m].

PHIX: The horizontal phase

PHIX = - atan(pxn / xn) / 2 pi [1].

YN: The normalised vertical displacement

YN = xn = Re(E2
T S Z), [sqrt(m)].

PYN: The normalised vertical transverse momentum

PYN = xn = Im(E2
T S Z), [sqrt(m)].

WY: The vertical Courant-Snyder invariant

WY = sqrt(yn
2 + pyn

2), [m].

PHIY: The vertical phase

PHIY = - atan(pyn / yn) / 2 pi [1].

TN: The normalised longitudinal displacement

TN = xn = Re(E3
T S Z), [sqrt(m)].

PTN: The normalised longitudinal transverse momentum

PTN = xn = Im(E3
T S Z), [sqrt(m)].

WT: The longitudinal invariant

WT = sqrt(tn
2 + p tn

2), [m].

PHIT: The longitudinal phase

PHIT = + atan(ptn / tn) / 2 pi [1].

in the above formulas Z is the phase space vector

Z = (x, px , y, py , t, pt)T .

34

the matrix S is the ‘‘symplectic unit matrix’’

and the vectors Ei are the three complex eigenvectors.

Linear Lattice Functions (Optical Functions)
Several MAD commands refer to linear lattice functions. Since MAD uses the canonical momenta (px ,

py) instead of the slopes (x’, y’), their definitions differ slightly from those in [Courant and Snyder].

Notice that in MAD-X PT substitutes DELTAP as longitudinal variable. Dispersive and chromatic
functions are hence derivatives with respects to PT. Being PT=BETA*DELTAP, where BETA is the
relativistic Lorentz factor, those functions must be multiplied by BETA a number of time equal to the
order of the derivative. The linear lattice functions are known to MAD under the following names:

BETX: Amplitude function betax , [m].

ALFX: Correlation function alphax , [1]:

ALFX = alphax = - 1/2 * (del betax / del s).

MUX: Phase function mux , [2pi]:

MUX = mux = integral (ds / betax).

DX: Dispersion Dx of x, [m]:

DX = Dx = (del x / del PT).

DPX: Dispersion Dpx of px , [1]:

DPX = Dpx = (del px / del PT) / ps.

BETY: Amplitude function betay , [m].

ALFY: Correlation function alphay , [1].

ALFY = alphay = - 1/2 * (del betay / del s).

35

MUY: Phase function muy , [2pi].

MUY = muy = integral (ds / betay).

DY: Dispersion Dy of y, [m]:

DY = Dy = (del y / del PT).

DPY: Dispersion Dpx of px , [1]:

DPY = Dpy = (del py / del PT) / ps.

R11, R12, R21, R22: Coupling Matrix

ENERGY: The total energy per particle in GeV. If given, it must be greater then the particle mass.

Chromatic Functions
Several MAD commands refer to the chromatic functions. (px , py) instead of the slopes (x’, y’), their

definitions differ slightly from those in [Montague]. Notice that in MAD-X PT substitutes DELTAP as
longitudinal variable. Dispersive and chromatic functions are hence derivatives with respects to PT. Being
PT=BETA*DELTAP, where BETA is the relativistic Lorentz factor, those functions must be multiplied
by BETA a number of time equal to the order of the derivative. The chromatic functions are known to
MAD under the following names:

Please note that this option is needed for a proper calculation of the chromaticities in the presence of
coupling!

WX: Chromatic amplitude function Wx , [1]:

WX = Wx = sqrt(ax
2 + bx

2),

ax = (del betax / del PT) / betax ,

bx = (del alphax / del PT) - (alphax / betax) * (del betax / del PT).

PHIX: Chromatic phase function Phix , [2pi]:

PHIX = Phix = atan(ax / bx).

DMUX: Chromatic derivative of phase function mux , [2pi]:

DMUX = (del mux / del PT).

DDX: Chromatic derivative of dispersion Dx , [m]:

36

DDX = 1/2 * (del2x / del PT2).

DDPX: Chromatic derivative of dispersion Dpx, [1]:

DDPX = 1/2 * (del2px / del PT2) / ps.

WY: Chromatic amplitude function Wy , [1]:

WY = Wy = sqrt(ay
2 + by

2),

ay = (del betay / del PT) / betay ,

by = (del alphay / del PT) - (alphay / betay) * (del betay / del PT).

PHIY: Chromatic phase function Phiy , [2pi]:

PHIY = Phiy = atan(ay / by).

DMUY: Chromatic derivative of phase function muy , [2pi]:

DMUY = (del muy / del PT).

DDY: Chromatic derivative of dispersion Dy , [m]:

DDY = 1/2 * (del2y / del PT2).

DDPY: Chromatic derivative of dispersion Dpy, [1]:

DDPY = 1/2 * (del2py / del PT2) / ps.

Variables in the SUMM Table
After a successful TWISS command a summary table is created which contains the following variables:

LENGTH: The length of the machine, [m].

ORBIT5: The T (= c t, [m]) component of the closed orbit.

ALFA: The momentum compaction alphap , [1].

GAMMATR: The transition energy gammatransition, [1].

Q1: The horizontal tune Q1 [1].

DQ1: The horizontal chromaticity dq1 , [1]:

37

DQ1 = dq1 = (del Q1 / del PT).

BETXMAX: The largest horizontal betax , [m].

DXMAX: The largest horizontal dispersion [m].

DXRMS: The r.m.s. of the horizontal dispersion [m].

XCOMAX: The maximum of the horizontal closed orbit deviation [m].

XRMS: The r.m.s. of the horizontal closed orbit deviation [m].

Q2: The vertical tune Q2 [1].

DQ2: The vertical chromaticity dq2 , [1]:

DQ2 = dq2 = (del Q2 / del PT).

BETYMAX: The largest vertical betay , [m].

DYMAX: The largest vertical dispersion [m].

DYRMS: The r.m.s. of the vertical dispersion [m].

YCOMAX: The maximum of the vertical closed orbit deviation [m].

YCORMS: The r.m.s. of the vertical closed orbit deviation [m].

DELTAP: Energy difference, divided by the reference momentum times the velocity of light, [1]:

DELTAP = delta(E) / ps c.

Notice that in MAD-X PT substitutes DELTAP as longitudinal variable. Dispersive and chromatic
functions are hence derivatives with respects to PT. Being PT=BETA*DELTAP, where BETA is the
relativistic Lorentz factor, those functions must be multiplied by BETA a number of time equal to the
order of the derivative.

Variables in the TRACK Table
The command RUN writes tables with the following variables:

X: Horizontal position x of the orbit, referred to the ideal orbit [m].
PX: Horizontal canonical momentum px of the orbit referred to the ideal orbit, divided by the

reference momentum.
Y: Vertical position y of the orbit, referred to the ideal orbit [m].
PY: Vertical canonical momentum px of the orbit referred to the ideal orbit, divided by the reference

momentum.
T: Velocity of light times the negative time difference with respect to the reference particle, [m]. A

38

positive T means that the particle arrives ahead of the reference particle.
PT: Energy difference, divided by the reference momentum times the velocity of light, [1].

When tracking Lyapunov companions (not yet implemented), the TRACK table defines the following
dependent expressions:

DISTANCE: the relative Lyapunov distance between the two particles.
LYAPUNOV: the estimated Lyapunov Exponent.
LOGDIST: the natural logarithm of the relative distance.
LOGTURNS: the natural logarithm of the turn number.

hansg, January 24, 1997. Revised in February 2007.

39

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Physical Units
Throughout the computations MAD uses international (SI, Système International) units. These units are
summarised in the Units table.

Table 1: Physical Units

Length m (metres)

Angle rad (radians)

Quadrupole coefficient m**(-2)

Multipole coefficient, 2n poles m**(-n)

Electric voltage MV (Megavolts)

Electric field strength MV/m

Frequency MHz (Megahertz)

Phase angles 2 pi

Particle energy GeV

Particle mass GeV/c**2

Particle momentum GeV/c

Beam current A (Amperes)

Particle charge e (elementary charges)

Impedances MOhm (Megohms)

Emittances pi m mrad

RF power MW (Megawatts)

Higher mode loss factor V/pc Table 1: Physical Units

hansg, June 17, 2002

40

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Command Format
Statements
Comments
Identifiers or Label
Command Attribute

Name or String Attribute
Logical Attribute
Integer Attribute
Real Expression, built from operator and operand.
A Deferred Expression is evaluated every time it is used
Constraint
Variable Name

Wild Card Pattern

hansg, May 8, 2001

41

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Statements
and

Comments
Input for MAD-X follows in broad lines the new MAD-9 format, i.e. free format with commas "," as
separators; however, outside {...} enclosures blanks may be used as separators. Blank input lines do not
affect program execution. The input is not case sensitive except for strings enclosed in " ".

The input file consists of a sequence of commands, also known as statements. A statement may occupy
any number of input lines. It must be terminated by a semicolon, except if it contains a block of statements
itself, like in

if (a < 3) {a=b^2; b=2*b+4;}

Several statements may be placed on the same line. When a "!" or "//" is found on an input line, the
remaining characters of the line are skipped. A line "/*" starts a comment region, it ends with a "*/" line.
The general format for a command is (items enclosed in /rep/ ... /rep/ can be repeated any number of
times, including zero):

label: keyword /rep/,attribute/rep/ ;

It has three parts:

A label is required for a definition statement. It gives a name to the stored command.
A keyword identifies the action desired.
The attributes are normally entered in the form "attribute-name=attribute-value" and serve to define
data for the command, where:

attribute-name selects the attribute,
attribute-value gives it a value.

If a value has to be assigned to an attribute, the attribute name is mandatory. For logical attributes it is
sufficient to enter the name only. The attribute is then given a default value taken from the command
dictionary.

Example: TILT attribute for various magnets.

The command attributes can have one of the following types:

42

http://www.cern.ch/mad/mad9.html

String attribute,
Logical attribute,
Integer attribute,
Real attribute,
Expression,
Range selection,

Any integer or real attribute can be replaced by a real expression; expressions are normally deferred (see
deferred expression), except in the definition of constants where they are evaluated immediately. When a
command has a label, MAD-X keeps it in memory. This allows repeated execution of the same command
by just entering EXEC label. This construct may be nested. For an exhaustive list of valid declarations of
constants or variables see declarations.

hansg, May 8, 2001

43

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Identifiers or Labels
A keyword begins with a letter and consists of letters and digits. The MAD-X keywords are protected;
using one of them as a label results in a fatal error.

hansg, May 8, 2001

44

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

String Attributes
A string attribute makes alphanumeric information available, e.g. a title or a file name. It can contain any
characters, enclosed in single (’) or double (") quotes, except for quotes of the type used as its delimiter.

Examples:

TITLE,’This is a title for the program run "test"’;
system,"ln -fns some-lengthy-directory-name local-link";

hansg, June 17, 2002

45

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Real Attributes
Most attributes are of type REAL and are treated internally as double precision values. They may be set by
integer values, real values, or expressions. Example:

ddd:drift,l=1.2345;
dddd:drift,l=ddd->l-0.3;

hansg, May 8, 2001

46

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Selection Statements
The elements, or a range of elements, in a sequence can be selected for various purposes. Such selections
remain valid until cleared (in difference to MAD-8); it is therefore recommended to always start with a

select,flag=...,clear;

before setting a new selection.

SELECT,FLAG=name,RANGE=range,CLASS=class,PATTERN=pattern[,FULL][,CLEAR];

where the name for FLAG can be one of ERROR, MAKETHIN, SEQEDIT or the name of a twiss table
which is established for all sequence positions in general.

Selected elements have to fulfill the RANGE, CLASS, and PATTERN criteria.

Any number of SELECT commands can be issued for the same flag and are accumulated (logically
ORed). In this context note the following:

SELECT,FLAG=name,FULL;

selects all positions in the sequence for this flag. This is the default for all tables and makethin, whereas
for ERROR and SEQEDIT the default is "nothing selected".

SAVE: A SELECT,FLAG=SAVE statement causes the selected sequences, elements, and variables to be
written into the save file. A class (only used for element selection), and a pattern can be specified.
Example:

select,flag=save,class=variable,pattern="abc.*";
save,file=mysave;

will save all variables (and sequences) containing "abc" in their name, but not elements with names
containing "abc" since the class "variable" does not exist (astucieux, non ?).

SECTORMAP: A SELECT,FLAG=SECTORMAP statement causes sectormaps to be written into the file
"sectormap" like in MAD-8. For the file to be written, a flag SECTORMAP must be issued on the TWISS
command in addition.

TWISS: A SELECT,FLAG=TWISS statement causes the selected rows and columns to be written into the
Twiss TFS file (former OPTICS command in MAD-8). The column selection is done on the same select.
See as well example 2. Example 1:

47

TITLE,’Test input for MAD-X’;

option,rbarc=false; // use arc length of rbends
beam; ! sets the default beam for the following sequence
option,-echo;
call file=fv9.opt; ! contains optics parameters
call file="fv9.seq"; ! contains a small sequence "fivecell"
OPTION,ECHO;
SELECT,FLAG=SECTORMAP,clear;
SELECT,FLAG=SECTORMAP,PATTERN="^m.*";
SELECT,FLAG=TWISS,clear;
SELECT,FLAG=TWISS,PATTERN="^m.*",column=name,s,betx,bety;
USE,PERIOD=FIVECELL;
twiss,file=optics,sectormap;
stop;

This produces a file sectormap, and a twiss output file (name = optics):

@ TYPE %05s "TWISS"
@ PARTICLE %08s "POSITRON"
@ MASS %le 0.000510998902
@ CHARGE %le 1
@ E0 %le 1
@ PC %le 0.99999986944
@ GAMMA %le 1956.95136738
@ KBUNCH %le 1
@ NPART %le 0
@ EX %le 1
@ EY %le 1
@ ET %le 0
@ LENGTH %le 534.6
@ ALFA %le 0.00044339992938
@ ORBIT5 %le -0
@ GAMMATR %le 47.4900022541
@ Q1 %le 1.25413071556
@ Q2 %le 1.25485338377
@ DQ1 %le 1.05329608302
@ DQ2 %le 1.04837000224
@ DXMAX %le 2.17763211131
@ DYMAX %le 0
@ XCOMAX %le 0
@ YCOMAX %le 0
@ BETXMAX %le 177.70993499
@ BETYMAX %le 177.671582415
@ XCORMS %le 0
@ YCORMS %le 0
@ DXRMS %le 1.66004270906
@ DYRMS %le 0
@ DELTAP %le 0
@ TITLE %20s "Test input for MAD-X"
@ ORIGIN %16s "MAD-X 0.20 Linux"
@ DATE %08s "07/06/02"
@ TIME %08s "14.25.51"
* NAME S BETX BETY
$ %s %le %le %le
 "MSCBH" 4.365 171.6688159 33.31817319
 "MB" 19.72 108.1309095 58.58680717

48

 "MB" 35.38 61.96499987 102.9962313
 "MB" 51.04 34.61640793 166.2227523
 "MSCBV.1" 57.825 33.34442808 171.6309057
 "MB" 73.18 58.61984637 108.0956006
 "MB" 88.84 103.0313887 61.93159422
 "MB" 104.5 166.2602486 34.58939635
 "MSCBH" 111.285 171.6688159 33.31817319
 "MB" 126.64 108.1309095 58.58680717
 "MB" 142.3 61.96499987 102.9962313
 "MB" 157.96 34.61640793 166.2227523
 "MSCBV" 164.745 33.34442808 171.6309057
 "MB" 180.1 58.61984637 108.0956006
 "MB" 195.76 103.0313887 61.93159422
 "MB" 211.42 166.2602486 34.58939635
 "MSCBH" 218.205 171.6688159 33.31817319
 "MB" 233.56 108.1309095 58.58680717
 "MB" 249.22 61.96499987 102.9962313
 "MB" 264.88 34.61640793 166.2227523
 "MSCBV" 271.665 33.34442808 171.6309057
 "MB" 287.02 58.61984637 108.0956006
 "MB" 302.68 103.0313887 61.93159422
 "MB" 318.34 166.2602486 34.58939635
 "MSCBH" 325.125 171.6688159 33.31817319
 "MB" 340.48 108.1309095 58.58680717
 "MB" 356.14 61.96499987 102.9962313
 "MB" 371.8 34.61640793 166.2227523
 "MSCBV" 378.585 33.34442808 171.6309057
 "MB" 393.94 58.61984637 108.0956006
 "MB" 409.6 103.0313887 61.93159422
 "MB" 425.26 166.2602486 34.58939635
 "MSCBH" 432.045 171.6688159 33.31817319
 "MB" 447.4 108.1309095 58.58680717
 "MB" 463.06 61.96499987 102.9962313
 "MB" 478.72 34.61640793 166.2227523
 "MSCBV" 485.505 33.34442808 171.6309057
 "MB" 500.86 58.61984637 108.0956006
 "MB" 516.52 103.0313887 61.93159422
 "MB" 532.18 166.2602486 34.58939635

Example 2:

Addition of variables to (any internal) table:

 select,flag=table,column=name,s,betx,...,var1,var2,...; or
 select,flag=table,full,column=var1,var2,...; ! default col.s + new

will write the current value of var1 etc. into the table each time a new line is added; values from the same
(current) line can be accessed by these variables, e.g.

 var1:= sqrt(beam->ex*table(twiss,betx));

in the case of table above being "twiss". The plot command accepts the new variables.

49

Remark: this replaces the "string" variables of MAD-8.

This example demonstrates as well the usage of a user defined table.

beam,ex=1.e-6,ey=1.e-3;
// element definitions
mb:rbend, l=14.2, angle:=0,k0:=bang/14.2;
mq:quadrupole, l:=3.1,apertype=ellipse,aperture={1,2};
qft:mq, l:=0.31, k1:=kqf,tilt=-pi/4;
qf.1:mq, l:=3.1, k1:=kqf;
qf.2:mq, l:=3.1, k1:=kqf;
qf.3:mq, l:=3.1, k1:=kqf;
qf.4:mq, l:=3.1, k1:=kqf;
qf.5:mq, l:=3.1, k1:=kqf;
qd.1:mq, l:=3.1, k1:=kqd;
qd.2:mq, l:=3.1, k1:=kqd;
qd.3:mq, l:=3.1, k1:=kqd;
qd.4:mq, l:=3.1, k1:=kqd;
qd.5:mq, l:=3.1, k1:=kqd;
bph:hmonitor, l:=l.bpm;
bpv:vmonitor, l:=l.bpm;
cbh:hkicker;
cbv:vkicker;
cbh.1:cbh, kick:=acbh1;
cbh.2:cbh, kick:=acbh2;
cbh.3:cbh, kick:=acbh3;
cbh.4:cbh, kick:=acbh4;
cbh.5:cbh, kick:=acbh5;
cbv.1:cbv, kick:=acbv1;
cbv.2:cbv, kick:=acbv2;
cbv.3:cbv, kick:=acbv3;
cbv.4:cbv, kick:=acbv4;
cbv.5:cbv, kick:=acbv5;
!mscbh:sextupole, l:=1.1, k2:=ksf;
mscbh:multipole, knl:={0,0,0,ksf},tilt=-pi/8;
mscbv:sextupole, l:=1.1, k2:=ksd;
!mscbv:octupole, l:=1.1, k3:=ksd,tilt=-pi/8;

// sequence declaration

fivecell:sequence, refer=centre, l=534.6;
 qf.1:qf.1, at=1.550000e+00;
 qft:qft, at=3.815000e+00;
! mscbh:mscbh, at=3.815000e+00;
 cbh.1:cbh.1, at=4.365000e+00;
 mb:mb, at=1.262000e+01;
 mb:mb, at=2.828000e+01;
 mb:mb, at=4.394000e+01;
 bpv:bpv, at=5.246000e+01;
 qd.1:qd.1, at=5.501000e+01;
 mscbv:mscbv, at=5.727500e+01;
 cbv.1:cbv.1, at=5.782500e+01;
 mb:mb, at=6.608000e+01;
 mb:mb, at=8.174000e+01;
 mb:mb, at=9.740000e+01;
 bph:bph, at=1.059200e+02;
 qf.2:qf.2, at=1.084700e+02;

50

 mscbh:mscbh, at=1.107350e+02;
 cbh.2:cbh.2, at=1.112850e+02;
 mb:mb, at=1.195400e+02;
 mb:mb, at=1.352000e+02;
 mb:mb, at=1.508600e+02;
 bpv:bpv, at=1.593800e+02;
 qd.2:qd.2, at=1.619300e+02;
 mscbv:mscbv, at=1.641950e+02;
 cbv.2:cbv.2, at=1.647450e+02;
 mb:mb, at=1.730000e+02;
 mb:mb, at=1.886600e+02;
 mb:mb, at=2.043200e+02;
 bph:bph, at=2.128400e+02;
 qf.3:qf.3, at=2.153900e+02;
 mscbh:mscbh, at=2.176550e+02;
 cbh.3:cbh.3, at=2.182050e+02;
 mb:mb, at=2.264600e+02;
 mb:mb, at=2.421200e+02;
 mb:mb, at=2.577800e+02;
 bpv:bpv, at=2.663000e+02;
 qd.3:qd.3, at=2.688500e+02;
 mscbv:mscbv, at=2.711150e+02;
 cbv.3:cbv.3, at=2.716650e+02;
 mb:mb, at=2.799200e+02;
 mb:mb, at=2.955800e+02;
 mb:mb, at=3.112400e+02;
 bph:bph, at=3.197600e+02;
 qf.4:qf.4, at=3.223100e+02;
 mscbh:mscbh, at=3.245750e+02;
 cbh.4:cbh.4, at=3.251250e+02;
 mb:mb, at=3.333800e+02;
 mb:mb, at=3.490400e+02;
 mb:mb, at=3.647000e+02;
 bpv:bpv, at=3.732200e+02;
 qd.4:qd.4, at=3.757700e+02;
 mscbv:mscbv, at=3.780350e+02;
 cbv.4:cbv.4, at=3.785850e+02;
 mb:mb, at=3.868400e+02;
 mb:mb, at=4.025000e+02;
 mb:mb, at=4.181600e+02;
 bph:bph, at=4.266800e+02;
 qf.5:qf.5, at=4.292300e+02;
 mscbh:mscbh, at=4.314950e+02;
 cbh.5:cbh.5, at=4.320450e+02;
 mb:mb, at=4.403000e+02;
 mb:mb, at=4.559600e+02;
 mb:mb, at=4.716200e+02;
 bpv:bpv, at=4.801400e+02;
 qd.5:qd.5, at=4.826900e+02;
 mscbv:mscbv, at=4.849550e+02;
 cbv.5:cbv.5, at=4.855050e+02;
 mb:mb, at=4.937600e+02;
 mb:mb, at=5.094200e+02;
 mb:mb, at=5.250800e+02;
 bph:bph, at=5.336000e+02;
end:marker, at=5.346000e+02;
endsequence;

51

// forces and other constants

l.bpm:=.3;
bang:=.509998807401e-2;
kqf:=.872651312e-2;
kqd:=-.872777242e-2;
ksf:=.0198492943;
ksd:=-.039621283;
acbv1:=1.e-4;
acbh1:=1.e-4;
!save,sequence=fivecell,file,mad8;

s := table(twiss,bpv[5],betx);
myvar := sqrt(beam->ex*table(twiss,betx));
use, period=fivecell;
select,flag=twiss,column=name,s,myvar,apertype;
twiss,file;
n = 0;
create,table=mytab,column=dp,mq1,mq2;
mq1:=table(summ,q1);
mq2:=table(summ,q2);
while (n < 11)
{
 n = n + 1;
 dp = 1.e-4*(n-6);
 twiss,deltap=dp;
 fill,table=mytab;
}
write,table=mytab;
plot,haxis=s,vaxis=aper_1,aper_2,colour=100,range=#s/cbv.1,notitle;
stop;

prints the following user table on output:

@ NAME %05s "MYTAB"
@ TYPE %04s "USER"
@ TITLE %08s "no-title"
@ ORIGIN %16s "MAD-X 1.09 Linux"
@ DATE %08s "10/12/02"
@ TIME %08s "10.45.25"
* DP MQ1 MQ2
$ %le %le %le
 -0.0005 1.242535951 1.270211135
 -0.0004 1.242495534 1.270197018
 -0.0003 1.242452432 1.270185673
 -0.0002 1.242406653 1.270177093
 -0.0001 1.242358206 1.270171269
 0 1.242307102 1.27016819
 0.0001 1.242253353 1.270167843
 0.0002 1.242196974 1.270170214
 0.0003 1.24213798 1.270175288
 0.0004 1.242076387 1.270183048
 0.0005 1.242012214 1.270193477

and produces a twiss file with the additional column myvar, as well as a plot file with the aperture values
plotted.

52

Example of joing 2 tables with different length into a third table making use of the length of either table as
given by table("your_table_name", tablelength) and adding names by the "_name" attribute.

title, "summing of offset and alignment tables";
 set, format="13.6f";

 readtable, table=align, file="align.ip2.b1.tfs"; // mesured alignment
 readtable, table=offset, file="offset.ip2.b1.tfs"; // nominal offsets

 n_elem = table(offset, tablelength);

 create, table=align_offset, column=_name,s_ip,x_off,dx_off,ddx_off,y_off,dy_off,ddy_off;

 calcul(elem_name) : macro = {
 x_off = table(align, elem_name, x_ali) + x_off;
 y_off = table(align, elem_name, y_ali) + y_off;
 }

 one_elem(j_elem) : macro = {
 setvars, table=offset, row=j_elem;
 exec, calcul(tabstring(offset, name, j_elem));
 fill, table=align_offset;
 }

 i_elem = 0;
 while (i_elem < n_elem) { i_elem = i_elem + 1; exec, one_elem($i_elem); }

 write, table=align_offset, file="align_offset.tfs";

stop;

hansg, May 8, 2001

53

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Range and Class Selection Format
RANGE: A range can be defined starting at a given element and ending at another element, both
elements included. Two forms exist:

range=position;
range=position1/position2;

In the first case, only one element is selected; in the second case, one or several elements are
selected. NOTE: position1 must not be behind position2 in the sequence.

"position" is composed of the element name and an optional occurrence count in the sequence:

mq.ir5.l6..1 ! no occurrence count given
mb[17] ! occurrence count given

There are two predefined MAD indices:
#S. The start of the beam line expanded by USE,
#E. The end of the beam line expanded by USE.

If, in the USE statement, only a range is selected:

use,period=lhcb1,range=ir1/ir5;

then "#s" and "#e" refer to the start and end of the expanded range, of course.

Examples for ranges:

..,range=#s; ! first element

..,range=#s/#e; ! full expansion range

..,range=mb[5]/#e; ! from mb 5 to end

..,range=mq.ir5.l6..1; ! first occurrence of element mq.ir5.l6..1

CLASS: The single name of a class (no occurrence counts). A class is the name of an element (or
basic type) from which other elements have been derived. Example:

mq:quadrupole;
q1:mq;
q2:mq;
q1..a:q1;
q2..b:q2;

makes classes from mq, q1, and q2. Selection class="mq" will actually select q1, q2, q1..a, and q2..b
in the above example.

hansg, June 17, 2002

54

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Sectormap output
The flag "sectormap" on the Twiss command (together with an element selection via
select,flag=sectormap,...) causes a file "sectormap" to be written.

For each user-selected element, it contains the user-selected coefficients of the kick vector K (6 values), of
the first-order map R (6 x 6 values) and of the second-order map T (6 x 6 x 6 values)

The sector file is the output of a standard TFS table, which means that the set of columns of interest may
be selected through a MAD-X command such as the following:

select,flag=my_sect_table,column=name,pos,k1,r11,r66,t111;

Each line of the sectormap file contains for each selected element, the set of chosen K,R,T matrix
coefficients:

@ NAME %13s "MY_SECT_TABLE"

@ TYPE %09s "SECTORMAP"

@ TITLE %08s "no-title"

@ ORIGIN %19s "MAD-X 3.04.62 Linux"

@ DATE %08s "18/12/08"

@ TIME %08s "10.33.58"

55

* NAME POS K1 R11 R66 T111

$ %s %le %le %le %le %le

"FIVECELL$START" 0 0 1 1 0

"SEQSTART" 0 0 1 1 0

"QF.1" 3.1 -1.305314637e-05 1.042224745 1 0

"DRIFT_0" 3.265 7.451656548e-21 1 1 0

"MSCBH" 4.365 -1.686090613e-15 0.9999972755 1 0.006004411526

"CBH.1" 4.365 0 1 1 0

"DRIFT_1" 5.519992305 -6.675347543e-21 1 1 0

"MB" 19.72000769 2.566889547e-18 1.000000091 1 -4.135903063e-25

"DRIFT_2" 21.17999231 -1.757758802e-20 1 1 0

"MB" 35.38000769 2.822705549e-18 1.000000091 1 -4.135903063e-25

"DRIFT_2" 36.83999231 2.480880093e-20 1 1 0

"MB" 51.04000769 3.006954115e-18 1.000000091 1 -4.135903063e-25

"DRIFT_3" 52.21 -4.886652187e-20 1 1 0

...

...

...

Of course, the select statement can be combined with additional options to filter-out the list of
elements, such as in the following statement, which for instance only retains drift-type elements:

select,flag=my_sect_table,class=drift,column=name,pos,k1,r11,r66,t111;

K coefficients range: K1... K6

R coefficients range:

R11 ... R61

R12 ... R62

...

R61 ... R66

56

T coefficients range:

T111 ... T611

T121 ... T621

...

T161 ... T661

T112 ... T612

...

T166 ... T666

In the above notation, Rij stands for "effect on the i -th coordinate of the j -th coordinate in phase-space",
whereas Tijk stands for "combined effect on the i -th coordinate of both the j -th and k -th coordinates in
phase-space" along the lattice.

The maps are the accumulated maps between the selected elements. They contain both the alignment, and
field errors present. Together with the starting value of the closed orbit (which can be obtained from the
standard twiss file) this allows the user to track particles over larger sectors, rather than element per
element. A typical usage therefore lies in the interface to other programs, such as TRAIN.

hansg, May 8, 2001

57

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Variable Declarations
In the following, "=" means that the variable at the left receives the current value of the expression at
right, but does not depend on it any further, whereas ":=" makes it depend on this expression, i.e. every
time the expression changes, the variable is re-evaluated, except for "const" variables.

var = expression;
var := expression;
real var = expression; // identical
real var := expression; // to above
int var = expression; // truncated if expression is real
int var := expression;
const var = expression;
const var := expression;
const real var = expression; // identical
const real var := expression; // to above
const int var = expression; // truncated if expression is real
const int var := expression;

hansg, May 8, 2001

58

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Identifiers or Labels
A label begins with a letter, followed by up to fifteen letters, digits, decimal points (.), or underscores (_).
Characters beyond the sixteenth are dropped, but should be avoided, and the resulting sequence must be
unique.

A label may refer to a keyword, an element, a beam-line, a sequence, etc. The MAD-X keywords are
protected; using one of them as a label results in a fatal error.

hansg, May 8, 2001

59

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Command Attributes
The following types of attributes are available in MAD:

A name or string attribute refers to an object, or a string.
A logical attribute selects or deselects an option.
An integer attribute is a counter, as for repetition in a beam line.
A real expression defines a datum for a command, it may be varied in matching. An expression is
built of a combination of operator and operand.
A constraint, specifies a matching constraint.
A variable name selects a variable to be matched.

hansg, May 8, 2001

60

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Name or String Attributes
A name or string attribute often selects one of a set of options:

use,period=lhc; // expand the LHC sequence

It may also refer to a user-defined object:

twiss,file=optics; // specifies the name of the OPTICS output file

It may also define a string:

title,"LHC version 6.2";

The case of letters is only significant if a string is enclosed in quotes, otherwise all characters are
converted to lower at reading. On the other hand, strings that do not contain blanks do not need to be
enclosed in quotes. Example:

call,file="my.file";
call,file=my.file;
call,file=MY.FILE;
call,file="MY.FILE";
call,file=’MY.FILE’;

In the first three cases, MAD-X will try to read a file my.file, in the last two it will try to read MY.FILE.

hansg, May 8, 2001

61

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Logical Attributes
Many commands in MAD require the setting of logical values (flags) to represent the on/off state of an
option. A logical value "flag" can be set in two ways:

flag | flag = true

It can be reset by:

-flag | flag=false

Example:

option,-echo; // switch off copying the input to the standard output

The default for a logical flag is normally false, but can be found e.g. for options by the command

help,option;

hansg, May 8, 2001

62

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Integer Attributes
An integer attribute usually denotes a count. Example:

myline:line=(-3*(a,b,c));

In this case, a litteral integer is requested; however, in the following

rfc:rfcavity,harmon=12345;

or

rfc:rfcavity,harmon=num;

"num" may be an integer variable, a real variable, or an expression (in the two latter cases, the value is
truncated).

hansg, May 8, 2001

63

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Real Expressions
To facilitate the definition of interdependent quantities, any real value and integer value can be entered as
an arithmetic expression. When a value used in an expression is redefined by the user or changed in a
matching process, the expression is reevaluated. Expression definitions may be entered in any order. MAD
evaluates them in the correct order before it performs any computation. At evaluation time all operands
used must have values assigned.

An expression is built from a combination of operator and operand, and it may contain random generators.

Operators in Arithmetic Expressions
An expression can be formed using the following operators:

Arithmetic operators

+ Addition,
- Subtraction,
* Multiplication,
/ Division,
^ Exponentiation.

Ordinary functions

sqrt(x) square root,
log(x) natural logarithm,
log10(x) logarithm base 10,
exp(x) exponential,
sin(x) trigonometric sine,
cos(x) trigonometric cosine,
tan(x) trigonometric tangent,
asin(x) arc sine,
acos(x) arc cosine,
atan(x) arc tangent,
sinh(x) hyperbolic sine,
cosh(x) hyperbolic cosine,
tanh(x) hyperbolic tangent,
abs(x) absolute value;

64

random number generators

ranf() random number, uniformly distributed in [0,1],
gauss() random number, gaussian distribution with unit standard deviation,
tgauss(x) random number, gaussian distribution with unit standard deviation, truncated at x standard
deviations;

in the above cases, "x" can be any expression, i.e. contain other functions, variable or constant
expressions. To initialize the MAD-X random generator use the Eoption command.

table access functions

table(x,z): accesses value of the named table column "z" of table "x"; example: table(summ,q1)
returns the hor. tune of the Twiss summary table "summ".
table(x,y,z): accesses value of the named table column "z" for element "y" (first table row with that
name) of table "x"; example: table(twiss,mb.12,betx) returns the beta_x at element mb.12 from the
Twiss table "twiss". When the element is called with its proper name, as in the example above, the
value is returned at the first occurrence of the element of this name. If the value is needed at a
occurrence number: NNN, then "[NNN]" has to be appended to the name, e.g. in the above example
one obtains the betx of the 23th occurrence of the element "mb.12" by changing the example to:
"table(twiss,mb.12[23],betx)". Mind you that the old, but little known, form:
"table(twiss,mb.12->23,betx)" continues to work. Lastly, if NNN exceeds the maximum occurrence
number the return value is arbitrarily small.

Beware:
Unnamed Drifts are not included in the table name database, so as to speed up the search for "real"
elements. Therefore, those unnamed drifts cannot be found. However, named drifts can be searched
for.
Due to the importance of finding elements in the table for a proper functioning of the MAD-X runs,
the programs throws a "fatal_error" if an element cannot be found in the table.

There is a second option of this function with 3 entries
table(x,z,N_row): accesses the value of the named table column "z" at the "N_row" number of rows
of table "x" (row numbers start at 1); example: table(twiss,betx,370) returns the beta_x at row
number "370" of the Twiss table "twiss". The return value is zero if "N_row" is outside of the
allowed range.

Note that "N_row" has to be a number and not a variable. However, the Macro facility in MAD-X
allows one to use a variable instead.

A typical example could look like this, in fact the square root of betx (user defined variable myvar) is
added to the twiss table:

myvar := sqrt(table(twiss,betx));
select,flag=twiss,column=name,s,myvar,betx;

twiss,file;

65

Or another arbitrary test case of adding k1l taken from the Twiss table:

Define macro:

mycrap(xx,yy,zz): macro = {myval = table(xx,yy,zz);};

Use macro in loop:

i = 0;
incval = 0;
while (i < 100) {
value,i;
exec,mycrap(twiss,k1l,$i);
incval = incval + myval;
value,i,myval,incval;
i = i + 1;

}

Features as of Version 3_03_50

FILL,TABLE=t,ROW=n;

fill a table row with the present variable values. If ROW is negative or missing a new row is created.
If ROW is greater than the number of rows, the last row is selected without creating a new row.

SETVARS,TABLE=t,ROW=n;

set variables according to the column names of the given table and the values of the given row. if
ROW is negative, missing or greater than the number of rows, the last row is selected.

An example can be found at: Special Features

The length of a table can be determined by using the attribute "tablelength" via
table("your_table_name", tablelength). This is useful when creating a table from existing ones. See
an example at: user table II

Operands in Arithmetic Expressions
An expression may contain the following operands:

Literal constants
Numerical values are entered like FORTRAN constants. Real values are accepted in INTEGER or REAL
format. The use of a decimal exponent, marked by the letter D or E, is permitted.

Examples:

66

http://www.cern.ch/frs/mad-X_examples/special_features

1, 10.35, 5E3, 314.1592E-2

Symbolic constants
MAD recognizes some mathematical and physical constants. Their names must not be used for
user-defined labels.

Additional symbolic constants may be defined to simplify their repeated use in statements and
expressions.

CONST name=constant-expression;

defines a real constant with the name given. An existing symbolic constant can be redefined, but it cannot
change in a matching procedure.

Example:

const in = 0.0254;

mad name symbol value used unit

pi pi 4 * atan(1) 1

twopi 2 pi 2 * pi 1

degrad 180/pi 180 / pi deg/rad

raddeg pi/180 180 / pi rad/deg

e e exp(1) 1

emass m_e .510998902*10(-3) GeV

pmass m_p .938271998 GeV

mumass m_mu .1056583568 GeV

clight c 2.99792458*10**8 m/s

qelect elem. charge 1.602176462e-19 As

Parameter labels
Often a set of numerical values depends on a common variable parameter. Such a parameter must be
defined as a global parameter. A global parameter always has a current value; however, this value may be
re-evaluated or not, depending on the parameter definition:

x = a;

x is set to the current value of a and not changed, even if a changes. This makes assignments such as

67

x = x + 1;

perfectly valid (this replaces the old SET instruction). The definition of the deferred expression

x := a;

assign the current value of a to x every time x is used, i.e. it is re-evaluated using the latest value of a;
therefore,

x := x + 1;

results in an infinite loop (!) when x is used (error abort). Of course, the following definitions are
equivalent:

x = 0.1;
x := 0.1;

When such a parameter is used in an expression, MAD uses the current value of the parameter if the
expression is deferred:

Example:

x:=1.0;
d1: drift,l = x;
d2: drift,l := 2.0 - x;

When the value of X is changed, the length of the drift d1 remains unchanged, that of d2 is recalculated.

Element or command attributes
In arithmetic expressions the attributes of physical elements or commands can occur as operands. They are
named respectively by

element-name->attribute-name
command-name->attribute-name

Values are assigned to attributes in element definitions or commands.

Example:

D1: DRIFT,L=1.0;
D2: DRIFT,L=2.0-D1->L;

D1->L refers to the length L of the drift space D1.

Expressions and Random Values
The definition of random machine imperfections requires evaluation of expressions containing random
functions. These are evaluated like any other expression when the expression is used, i.e. only once if a
"=" assignment refers to it, or every time if the assignment is ":="; this latter case is used by the error
generation routines.

68

Example:

a := 3*ranf();

Every time a is used, it gets a random value assigned from a uniform distribution between 0 and 3.

error: ealign,range,dx:=sigma*gauss();

All elements in range are assigned independent random displacements sampled from a Gaussian
distribution with standard deviation sigma.

hansg, May 8, 2001

69

http://www.cern.ch/Hans.Grote/hansg_sign.html

EOPTION: Set Error Options
The random generator for MAD is taken from [Knuth]. The error option command specifies different
seeds for random values:

EOPTION,SEED=real,ADD=logical;

SEED: Selects a particular sequence of random values. A SEED value is an integer in the range
[0...999999999] (default: 123456789). SEED alone continues with the current sequence See also:
Random values. SEED may be an expression.
ADD: If this logical flag is set, an EALIGN or EFCOMP, causes the errors to be added on top of
existing ones. If it is not set, new errors overwrite any previous definitions. The default value is
TRUE if it is omitted in the EOPTION command. The default value is false if no EOPTION
command is used.
Please note a recent modification: the default value for the ADD option is only applied as long as the
ADD option has not been set explicitly. Once it was set with EOPTION, it is NOT reset to the default
when the ADD option is omitted in subsequent calls to EOPTION.

Example:

EOPTION,SEED=987456321;

Werner Herr 18.6.2002

70

http://consult.cern.ch/xwho/people/1808

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Program Flow Statements

IF

if (logical_expression) {statement 1; statement 2; ...; statement n; }

where "logical_expression" is one of

expr1 oper expr2
expr11 oper1 expr12 && expr21 oper2 expr22
expr11 oper1 expr12 || expr21 oper2 expr22

and oper one of

== ! equal
<> ! not equal
< ! less than
> ! greater than
<= ! less than or equal
>= ! greater than or equal

The expressions are arithmetic expressions of type real. The statements in the curly brackets are
executed if the logical expression is true.

ELSEIF

elseif (logical_expression) {statement 1; statement 2; ...; statement n; }

Only possible (in any number) behind an IF, or another ELSEIF; is executed if logical_expression is
true, and if none of the preceding IF or ELSEIF logical conditions was true.

ELSE

else {statement 1; statement 2; ...; statement n; }

Only possible (once) behind an IF, or an ELSEIF; is executed if logical_expression is true, and if
none of the preceding IF or ELSEIF logical conditions was true.

71

For a real life example, see ELSE example.

WHILE

while (logical_condition){statement 1; statement 2; ...; statement n; }

executes the statements in curly brackets while the logical_expression is true. A simple example (in
case you have forgotten the first ten factorials) would be

option,-info; ! otherwise you get redifiniton warnings
n=1; m=1;
while (n <= 10)
{
 m = m * n; value, m;
 n = n + 1;
};

For a real life example, see WHILE example.

MACRO

label: macro = {statement 1; statement 2; ...; statement n; };
label(arg1,...,argn): macro = {statement 1; statement 2; ...; statement n; };

The first form allows the execution of a group of statements via a single command:

exec, label;

will execute the statements in curly brackets exactly once. This command can be issued any number of
times.

The second form allows to replace strings anywhere inside the statements in curly brackets by other
strings, or integer numbers prior to execution. This is a powerful construct and should be handled with
care.

Simple example:

option,-echo,-info; ! otherwise the output is somewhat confusing
simple(xx,yy): macro = { xx = yy^2 + xx; value, xx;};
a = 3;
b = 5;
exec, simple(a,b);

Somewhat more tricky (a "$" in front of an argument means that the truncated integer value of this
argument is used for replacement, rather than the argument string itself).

72

tricky(xx,yy,zz): macro = {mzz.yy: xx, l = 1.yy, kzz = k.yy;};
n=0;
while (n < 3)
{
 n = n+1;
 exec,tricky(quadrupole,$n,1);
 exec,tricky(sextupole,$n,2);
};

Whereas the actual use of the preceding example is NOT recommended, a real life example, showing the
full power (!) of macros is to be found under macro usage for the usage, and under macro definition for
the definition.

Beware of the following rules:
Generally speaking: special constructs like IF, WHILE, MACRO will only allow one level of inclusion of
another special construct .
Macros must not be called with numbers, but with strings (i.e. variable names in case of numerical
values), i.e.

NOT

exec,thismacro($99,$129);

BUT

n1=99; n2=219;
exec,thismacro($n1,$n2);

hansg, June 17, 2002

73

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Real life example for IF statements, and MACRO usage

! Creates a footprint for head-on + parasitic collisions at IP1+5
! of lhc.6.5; both lhcb1 (for tracking) and lhcb2 (to define the
! beam-beam elements, i.e. weak-strong) are used; there are flags to
! select head-on, left, and right parasitic separately at all IPs.
! The bunch spacing can be given in nanosec and automatically creates
! the beam-beam interaction points at the correct positions.
! It is important to set the correct BEAM parameters, i.e. number
! of particles, emittances, bunch length, energy.

!--- For completeness, all files needed by this job are copied
! to the local directory ldb. The links to the the originals
! in offdb (official database) are commented out.

Option, warn,info,echo;
!System,
"ln -fns /afs/cern.ch/eng/sl/MAD-X/dev/test_suite/foot/V3.01.01 ldb";
!system,"ln -fns /afs/cern.ch/eng/lhc/optics/V6.4 offdb";
Option, -echo,-info,warn;
SU=1.0;
call, file = "ldb/V6.5.seq";
call,file="ldb/slice_new.madx";
Option, echo,info,warn;

!+++++++++++++++++++++++++ Step 1 +++++++++++++++++++++++
! define beam constants
!++

b_t_dist = 25.e-9; !--- bunch distance in [sec]
b_h_dist = clight * b_t_dist / 2 ; !--- bunch half-distance in [m]
ip1_range = 58.; ! range for parasitic collisions
ip5_range = ip1_range;
ip2_range = 60.;
ip8_range = ip2_range;

npara_1 = ip1_range / b_h_dist; ! # parasitic either side
npara_2 = ip2_range / b_h_dist;
npara_5 = ip5_range / b_h_dist;
npara_8 = ip8_range / b_h_dist;

value,npara_1,npara_2,npara_5,npara_8;

 eg = 7000;
 bg = eg/pmass;
 en = 3.75e-06;
 epsx = en/bg;
 epsy = en/bg;

74

Beam, particle = proton, sequence=lhcb1, energy = eg,
 sigt= 0.077 ,
 bv = +1, NPART=1.1E11, sige= 1.1e-4,
 ex=epsx, ey=epsy;

Beam, particle = proton, sequence=lhcb2, energy = eg,
 sigt= 0.077 ,
 bv = -1, NPART=1.1E11, sige= 1.1e-4,
 ex=epsx, ey=epsy;

beamx = beam%lhcb1->ex; beamy%lhcb1 = beam->ey;
sigz = beam%lhcb1->sigt; sige = beam%lhcb1->sige;

!--- split5, 4d
long_a= 0.53 * sigz/2;
long_b= 1.40 * sigz/2;
value,long_a,long_b;

ho_charge = 0.2;

!+++++++++++++++++++++++++ Step 2 +++++++++++++++++++++++
! slice, flatten sequence, and cycle start to ip3
!++

use,sequence=lhcb1;
makethin,sequence=lhcb1;
!save,sequence=lhcb1,file=lhcb1_thin_new_seq;
use,sequence=lhcb2;
makethin,sequence=lhcb2;
!save,sequence=lhcb2,file=lhcb2_thin_new_seq;
!stop;

option,-warn,-echo,-info;
call,file="ldb/V6.5.thin.coll.str";
option,warn,echo,info;

! keep sextupoles
ksf0=ksf; ksd0=ksd;
use,period=lhcb1;
select,flag=twiss.1,column=name,x,y,betx,bety;
twiss,file;
plot,haxis=s,vaxis=x,y,colour=100,noline;

use,period=lhcb2;
select,flag=twiss.2,column=name,x,y,betx,bety;
twiss,file;
plot,haxis=s,vaxis=x,y,colour=100,noline;
seqedit,sequence=lhcb1;
flatten;
endedit;

seqedit,sequence=lhcb1;
cycle,start=ip3.b1;
endedit;

seqedit,sequence=lhcb2;
flatten;

75

endedit;

seqedit,sequence=lhcb2;
cycle,start=ip3.b2;
endedit;

bbmarker: marker; /* for subsequent remove */

!+++++++++++++++++++++++++ Step 3 +++++++++++++++++++++++
! define the beam-beam elements
!++
!
!===
! read macro definitions
option,-echo;
call,file="ldb/bb.macros";
option,echo;

!
!===
! this sets CHARGE in the head-on beam-beam elements.
! set +1 * ho_charge for parasitic on, 0 for off

 on_ho1 = +1 * ho_charge; ! ho_charge depends on split
 on_ho2 = +0 * ho_charge; ! because of the "by hand" splitting
 on_ho5 = +1 * ho_charge;
 on_ho8 = +0 * ho_charge;

!
!===
! set CHARGE in the parasitic beam-beam elements.
! set +1 for parasitic on, 0 for off
 on_lr1l = +1;
 on_lr1r = +1;
 on_lr2l = +0;
 on_lr2r = +0;
 on_lr5l = +1;
 on_lr5r = +1;
 on_lr8l = +0;
 on_lr8r = +0;

!
!===
! define markers and savebetas
assign,echo=temp.bb.install;
!--- ip1
if (on_ho1 <> 0)
{
 exec, mkho(1);
 exec, sbhomk(1);
}
if (on_lr1l <> 0 || on_lr1r <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {

76

 exec, mkl(1,$n);
 exec, sbl(1,$n);
 n=n+1;
 };
}
if (on_lr1r <> 0 || on_lr1l <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, mkr(1,$n);
 exec, sbr(1,$n);
 n=n+1;
 };
}
!--- ip5
if (on_ho5 <> 0)
{
 exec, mkho(5);
 exec, sbhomk(5);
}
if (on_lr5l <> 0 || on_lr5r <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, mkl(5,$n);
 exec, sbl(5,$n);
 n=n+1;
 };
}
if (on_lr5r <> 0 || on_lr5l <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, mkr(5,$n);
 exec, sbr(5,$n);
 n=n+1;
 };
}
!--- ip2
if (on_ho2 <> 0)
{
 exec, mkho(2);
 exec, sbhomk(2);
}
if (on_lr2l <> 0 || on_lr2r <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, mkl(2,$n);
 exec, sbl(2,$n);
 n=n+1;
 };
}

77

if (on_lr2r <> 0 || on_lr2l <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, mkr(2,$n);
 exec, sbr(2,$n);
 n=n+1;
 };
}
!--- ip8
if (on_ho8 <> 0)
{
 exec, mkho(8);
 exec, sbhomk(8);
}
if (on_lr8l <> 0 || on_lr8r <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, mkl(8,$n);
 exec, sbl(8,$n);
 n=n+1;
 };
}
if (on_lr8r <> 0 || on_lr8l <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, mkr(8,$n);
 exec, sbr(8,$n);
 n=n+1;
 };
}
assign,echo=terminal;
call,file=temp.bb.install;
system, "rm temp.bb.install";
!
!===
! install bb markers
assign,echo=temp.bb.install;
!--- ip1
if (on_ho1 <> 0)
{
exec, inho(mk,1);
}
if (on_lr1l <> 0 || on_lr1r <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, inl(mk,1,$n);
 n=n+1;
 };
}

78

if (on_lr1r <> 0 || on_lr1l <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, inr(mk,1,$n);
 n=n+1;
 };
}
!--- ip5
if (on_ho5 <> 0)
{
exec, inho(mk,5);
}
if (on_lr5l <> 0 || on_lr5r <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, inl(mk,5,$n);
 n=n+1;
 };
}
if (on_lr5r <> 0 || on_lr5l <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, inr(mk,5,$n);
 n=n+1;
 };
}
!--- ip2
if (on_ho2 <> 0)
{
exec, inho(mk,2);
}
if (on_lr2l <> 0 || on_lr2r <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, inl(mk,2,$n);
 n=n+1;
 };
}
if (on_lr2r <> 0 || on_lr2l <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, inr(mk,2,$n);
 n=n+1;
 };
}
!--- ip8
if (on_ho8 <> 0)

79

{
exec, inho(mk,8);
}
if (on_lr8l <> 0 || on_lr8r <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, inl(mk,8,$n);
 n=n+1;
 };
}
if (on_lr8r <> 0 || on_lr8l <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, inr(mk,8,$n);
 n=n+1;
 };
}
assign,echo=terminal;
seqedit,sequence=lhcb2;
call,file=temp.bb.install;
endedit;
system, "rm temp.bb.install";

!
!===
!--- get beta functions at bb in all four IPs
use,period=lhcb2;
!select,flag=twiss,class=bbmarker,column=name,s,x,y;
twiss, sequence=lhcb2; !,file;
!--- separation for halo collisions at IP2
on_sep2 = 2.118 * sqrt(epsx * r2ip2->betx) / 0.0007999979093;
value,on_sep2;
!===
! define bb elements
assign,echo=temp.bb.install;
!--- ip1
if (on_ho1 <> 0)
{
exec, bbho(1);
}
if (on_lr1l <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, bbl(1,$n);
 n=n+1;
 };
}
if (on_lr1r <> 0)
{
 n=1; ! counter
 while (n < npara_1)

80

 {
 exec, bbr(1,$n);
 n=n+1;
 };
}
!--- ip5
if (on_ho5 <> 0)
{
exec, bbho(5);
}
if (on_lr5l <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, bbl(5,$n);
 n=n+1;
 };
}
if (on_lr5r <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, bbr(5,$n);
 n=n+1;
 };
}
!--- ip2
if (on_ho2 <> 0)
{
exec, bbho(2);
}
if (on_lr2l <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, bbl(2,$n);
 n=n+1;
 };
}
if (on_lr2r <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, bbr(2,$n);
 n=n+1;
 };
}
!--- ip8
if (on_ho8 <> 0)
{
exec, bbho(8);
}
if (on_lr8l <> 0)

81

{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, bbl(8,$n);
 n=n+1;
 };
}
if (on_lr8r <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, bbr(8,$n);
 n=n+1;
 };
}
assign,echo=terminal;
call,file=temp.bb.install;
system, "rm temp.bb.install";
!
!===
! install bb elements
assign,echo=temp.bb.install;
!--- ip1
if (on_ho1 <> 0)
{
exec, inho(bb,1);
}
if (on_lr1l <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, inl(bb,1,$n);
 n=n+1;
 };
}
if (on_lr1r <> 0)
{
 n=1; ! counter
 while (n < npara_1)
 {
 exec, inr(bb,1,$n);
 n=n+1;
 };
}
!--- ip5
if (on_ho5 <> 0)
{
exec, inho(bb,5);
}
if (on_lr5l <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {

82

 exec, inl(bb,5,$n);
 n=n+1;
 };
}
if (on_lr5r <> 0)
{
 n=1; ! counter
 while (n < npara_5)
 {
 exec, inr(bb,5,$n);
 n=n+1;
 };
}
!--- ip2
if (on_ho2 <> 0)
{
exec, inho(bb,2);
}
if (on_lr2l <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, inl(bb,2,$n);
 n=n+1;
 };
}
if (on_lr2r <> 0)
{
 n=1; ! counter
 while (n < npara_2)
 {
 exec, inr(bb,2,$n);
 n=n+1;
 };
}
!--- ip8
if (on_ho8 <> 0)
{
exec, inho(bb,8);
}
if (on_lr8l <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, inl(bb,8,$n);
 n=n+1;
 };
}
if (on_lr8r <> 0)
{
 n=1; ! counter
 while (n < npara_8)
 {
 exec, inr(bb,8,$n);
 n=n+1;

83

 };
}
assign,echo=terminal;
select,flag=seqedit,class=bbmarker;
seqedit,sequence=lhcb2;
remove,element=selected;
endedit;
select,flag=seqedit,clear;

seqedit,sequence=lhcb1;
call,file=temp.bb.install;
endedit;

!--- Now the beam-beam element installation is complete

system, "rm temp.bb.install";

seqedit,sequence=lhcb1;
cycle,start=ip1;
endedit;

use,period=lhcb1;
!twiss, sequence=lhcb1;
!
! make footprint
!

option,trace;
small=0.05;
big=sqrt(1.-small^2);
track;
xs=small; ys=small;
value,xs,ys;
start,fx=xs,fy=ys; // zero amplitude
nsigmax=6;
n=1; // sigma multiplier
m=0; // angle multiplier
while (n <= nsigmax)
{
 angle = 15*m*pi/180;
 if (m == 0) {xs=n*big; ys=n*small;}
 elseif (m == 6) {xs=n*small; ys=n*big;}
 else
 {
 xs=n*cos(angle);
 ys=n*sin(angle);
 }
 value,xs,ys;
 start,fx=xs,fy=ys;
 m=m+1;
 if (m == 7) { m=0; n=n+1;}
};
dynap,fastune,turns=1024;
endtrack;

84

write,table=dynap,file;
write,table=dynaptune,file;
system,"foot < dynaptune > footprint";
stop;

Real life example of MACRO definitions

bbho(nn): macro = {
!--- macro defining head-on beam-beam elements; nn = IP number
print, text="bbipnnl2: beambeam, sigx=sqrt(rnnipnnl2->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnl2->bety*epsy),";
print, text=" xma=rnnipnnl2->x,yma=rnnipnnl2->y,";
print, text=" charge:=on_honn;";
print, text="bbipnnl1: beambeam, sigx=sqrt(rnnipnnl1->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnl1->bety*epsy),";
print, text=" xma=rnnipnnl1->x,yma=rnnipnnl1->y,";
print, text=" charge:=on_honn;";
print, text="bbipnn: beambeam, sigx=sqrt(rnnipnn->betx*epsx),";
print, text=" sigy=sqrt(rnnipnn->bety*epsy),";
print, text=" xma=rnnipnn->x,yma=rnnipnn->y,";
print, text=" charge:=on_honn;";
print, text="bbipnnr1: beambeam, sigx=sqrt(rnnipnnr1->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnr1->bety*epsy),";
print, text=" xma=rnnipnnr1->x,yma=rnnipnnr1->y,";
print, text=" charge:=on_honn;";
print, text="bbipnnr2: beambeam, sigx=sqrt(rnnipnnr2->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnr2->bety*epsy),";
print, text=" xma=rnnipnnr2->x,yma=rnnipnnr2->y,";
print, text=" charge:=on_honn;";
};

mkho(nn): macro = {
!--- macro defining head-on markers; nn = IP number
print, text="mkipnnl2: bbmarker;";
print, text="mkipnnl1: bbmarker;";
print, text="mkipnn: bbmarker;";
print, text="mkipnnr1: bbmarker;";
print, text="mkipnnr2: bbmarker;";
};

inho(xx,nn): macro = {
!--- macro installing bb or markers for head-on beam-beam (split into 5)
print, text="install, element= xxipnnl2, at=-long_b, from=ipnn;";
print, text="install, element= xxipnnl1, at=-long_a, from=ipnn;";
print, text="install, element= xxipnn, at=1.e-9, from=ipnn;";
print, text="install, element= xxipnnr1, at=+long_a, from=ipnn;";
print, text="install, element= xxipnnr2, at=+long_b, from=ipnn;";
};

sbhomk(nn): macro = {
!--- macro to create savebetas for ho markers
print, text="savebeta, label=rnnipnnl2, place=mkipnnl2;";
print, text="savebeta, label=rnnipnnl1, place=mkipnnl1;";
print, text="savebeta, label=rnnipnn, place=mkipnn;";
print, text="savebeta, label=rnnipnnr1, place=mkipnnr1;";
print, text="savebeta, label=rnnipnnr2, place=mkipnnr2;";
};

85

mkl(nn,cc): macro = {
!--- macro to create parasitic bb marker on left side of ip nn; cc = count
print, text="mkipnnplcc: bbmarker;";
};

mkr(nn,cc): macro = {
!--- macro to create parasitic bb marker on right side of ip nn; cc = count
print, text="mkipnnprcc: bbmarker;";
};

sbl(nn,cc): macro = {
!--- macro to create savebetas for left parasitic
print, text="savebeta, label=rnnipnnplcc, place=mkipnnplcc;";
};

sbr(nn,cc): macro = {
!--- macro to create savebetas for right parasitic
print, text="savebeta, label=rnnipnnprcc, place=mkipnnprcc;";
};

inl(xx,nn,cc): macro = {
!--- macro installing bb and markers for left side parasitic beam-beam
print, text="install, element= xxipnnplcc, at=-cc*b_h_dist, from=ipnn;";
};

inr(xx,nn,cc): macro = {
!--- macro installing bb and markers for right side parasitic beam-beam
print, text="install, element= xxipnnprcc, at=cc*b_h_dist, from=ipnn;";
};

bbl(nn,cc): macro = {
!--- macro defining parasitic beam-beam elements; nn = IP number
print, text="bbipnnplcc: beambeam, sigx=sqrt(rnnipnnplcc->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnplcc->bety*epsy),";
print, text=" xma=rnnipnnplcc->x,yma=rnnipnnplcc->y,";
print, text=" charge:=on_lrnnl;";
};

bbr(nn,cc): macro = {
!--- macro defining parasitic beam-beam elements; nn = IP number
print, text="bbipnnprcc: beambeam, sigx=sqrt(rnnipnnprcc->betx*epsx),";
print, text=" sigy=sqrt(rnnipnnprcc->bety*epsy),";
print, text=" xma=rnnipnnprcc->x,yma=rnnipnnprcc->y,";
print, text=" charge:=on_lrnnr;";
};

hansg, June 17, 2002

86

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Parameter Statements

Relations between Variable Parameters
A relation is established between variables by the statement

parameter-name = expression;

or

parameter-name := expression;

The first form evaluates the expression at the right immediately and assigns its value to the parameter. The
second form assigns the value by evaluating the expression at right every time the parameter is actually
used. This holds as well for element parameters - beware ! If you want to modify e.g. the strength of a
quadrupole later (e.g. in a match, or by entering a new value for a parameter on which it depends) then the
defition has to be

qd:quadrupole,k1:= ak1;

and not

qd:quadrupole,k1 = ak1;

In the latter case, k1 will be set to the current value of ak1, and will not change when ak1 changes.

Parameters not yet defined have the value zero.

Example:

gev = 100;
beam,energy=gev;

the parameter on the left may appear on the right as well:

x = x+1;

Increases the value of x by 1. As a result, the SET statement of MAD-8 is no longer necessary and is not
implemented.

Circular definitions are allowed in the first form:

a = b + 2;
b = a * b;

However, circular definitions in the second form are forbidden:

87

a := b + 2;
b := a * b;

will result in an error.

VALUE: Output of Parameters
The VALUE statement

VALUE = expression;

or

VALUE = expression1, expression2, ...;

evaluates the current value of "expression" resp. "expression1" etc. and prints the
result on the standard output file.

Example:

p1 = 5;
p2 = 7;
value,p1*p2-3;

After echoing the command, this prints:

p1*p2-3 = 32 ;

Another example:

option,-warn;
while (x < 100) {x = x + 1;}
value,x,x^2,log10(x);

After echoing the command, this prints:

x = 100 ;
x^2 = 10000 ;
log10(x) = 2 ;

hansg 11.9.2000

88

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Constraints
In matching it is desired to specify equality constraints, as well as lower and upper limits for a quantity.
MAD accepts the following forms of constraints:

! equality constraint:
name=expression

! upper limit:
name<expression

! lower limit:
name>expression

! both upper and lower limit for the same name:
name<expression,name>expression

hansg, May 8, 2001

89

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Variable Names
A variable name can have one of the formats:

1. parameter-name
2. element-name->attribute-name
3. command-name->attribute-name
4. beam%sequence-name->attribute-name
5. table(table-name,..,..)

The first format refers to the value of the global parameter "parameter-name", the second and third
formats refer to the real attribute "attribute-name" of the element "element-name", or the command
"command-name". NUmber four is specific to beams belonging to a particular sequence (for details see
sequences and beams). Number five allows extraction of variables from existing tables, as specified in
table access.

hansg, May 8, 2001

90

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Regular Expressions
Some commands allow selection of items via "regular expression" strings. Such a pattern string must be
enclosed in single or double quotes. MAD-X follows regexp (Unix regular expression patterns) for
matching. The following features are implemented:

A "search string" below is the string containing the pattern, a "target string" is the string being searched
for a possible match with the pattern.

"^" at the start of the search string: Match following search string at the start of the target string;
otherwise the search string can start anywhere in the target string. To search for a genuine "^"
anywhere, use "\^".
"$" at the end of the search string: Match preceding search string at the end of the target string;
otherwise the search string can end anywhere in the target string. To search for a genuine "$"
anywhere, use "\$".
".": Stands for an arbitrary character; to search for a genuine ".", use "\."
"[xyz]": Stands for one character belonging to the string contained in brackets (example: "[abc]"
means one of a, b, c).
"[a-ex-z]": Stands for ranges of characters (example: "[a-zA-Z]" means any letter).
"[^xyz]" (i.e. a "^" as first character in a square bracket): Stands for exclusion of all characters in the
list, i.e. "[^a-z]" means "any character but a lower case letter".
"*": Allows zero or more repetitions of the preceding character, either specified directly, or from a
list. (examples: "a*" means zero or more occurrences of "a", "[A-Z]*" means zero or more
upper-case letters).
"backslash-c" (e.g. "\."): Removes the special meaning of character c.

All other characters stand for themselves. Example:

select,flag=twiss,pattern="^d..$" ;
select,flag=twiss,pattern="^k.*qd.*\.r1$" ;

The first command selects all elements whose names have exactly three characters and begin with the
letter "D". The second command selects elements beginning with the letter "K", containing the string
"QD", and ending with the string ".R1". The two occurrences of ".*" each stand for an arbitrary number
(including zero) of any character, and the occurrence "\." stands for a literal period.

hansg, May 8, 2001

91

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Control Statements
MAD-X consists of a core program, and modules for specific tasks such as twiss parameter calculation,
matching, thin lens tracking, and so on.

The statements listed here are those executed by the program core. They deal with the I/O, element and
sequence declaration, sequence manipulation, statement flow control (e.g. IF, WHILE), MACRO
declaration, saving sequences onto files in MAD-X or MAD-8 format, and so on.

Program flow control
IF
ELSEIF
ELSE
WHILE
MACRO

General control
ASSIGN
CALL
COGUESS
CREATE
DUMPSEQU
EXEC
EXIT
FILL
HELP
OPTION
PRINT
QUIT
READTABLE
RETURN
SAVE
SAVEBETA

92

SELECT
SET
SHOW
STOP
SYSTEM
TABSTRING
TITLE
USE
VALUE
WRITE

Beam specification
BEAM
RESBEAM

PLOT
PLOT
RESPLOT
SETPLOT

Sequence editing

SEQEDIT
FLATTEN
INSTALL
MOVE
REMOVE
CYCLE
REFLECT
ENDEDIT

hansg, June 17, 2002

93

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

General Control Statements

ASSIGN

assign, echo = file_name;

where "file_name" is the name of an output file, or "terminal". This allows switching the echo stream
to a file or back, but only for the commands value, show, and print. Allows easy composition of
future MAD-X input files. A real life example (always the same) is to be found under footprint
example.

CALL

call, file = file_name;

where "file_name" is the name of an input file. This file will be read until a "return;" statement, or
until end_of_file; it may contain any number of calls itself, and so on to any depth.

COGUESS

coguess,tolerance=double,x=double,
 px=double,y=double,py=double,t=double,pt=double;

sets the required convergence precision in the closed orbit search ("tolerance", see as well Twiss
command tolerance.

The other parameters define a first guess for all future closed orbit searches in case they are different
from zero.

CREATE

create,table=table,column=var1,var2,_name,...;

creates a table with the specified variables as columns. This table can then be filled, and finally one
can write it in TFS format. The attribute "_name" adds the element name to the table at the specified
column, this replaces the undocumented "withname" attribute that was not always working properly.

94

See the user table I example;

or an example of joining 2 tables of different length in one table including the element name: user
table II

DELETE

delete,sequence=s_name,table=t_name;

deletes a sequence with name "s_name" or a table with name "t_name" from memory. The sequence
deletion is done without influence on other sequences that may have elements that were in the deleted
sequence.

DUMPSEQU

dumpsequ, sequence = s_name, level = integer;

Actually a debug statement, but it may come handy at certain occasions. Here "s_name" is the name
of an expanded (i.e. USEd) sequence. The amount of detail is controlled by "level":

level = 0: print only the cumulative node length = sequence length
 > 0: print all node (element) names except drifts
 > 2: print all nodes with their attached parameters
 > 3: print all nodes, and their elements with all parameters

EXEC

exec, label;

Each statement may be preceded by a label; it is then stored and can be executed again with "exec,
label;" any number of times; the executed statement may be another "exec", etc.; however, the major
usage of this statement is the execution of a macro.

EXIT

exit;

ends the program execution.

95

FILL

Every command

fill,table=table;

adds a new line with the current values of all column variables into the user table created beforehand.
This table one can then write in TFS format. See as well the user table example.

HELP

help,statement_name;

prints all parameters, and their defaults of the statement given; this includes basic element types.

OPTION

option, flag { = true | false };
option, flag | -flag;

sets an option as given in "flag"; the part in curly brackets is optional: if only the name of the option
is given, then the option will be set true (see second line); a "-" sign preceding the name sets it to
"false".

Example:

option,echo=true;
option,echo;

are identical, ditto

option,echo=false;
option,-echo;

The available options are:

 name default meaning if true
 ==== ======= ===============
 bborbit false the closed orbit is modified by beam-beam kicks
 sympl false all element matrices are symplectified in Twiss
 echo true echoes the input on the standard output file
 trace false prints the system time after each command
 verify false issues a warning if an undefined variable is used
 warn true issues warnings
 info true issues informations
 tell false prints the current value of all options
 reset false resets all options to their defaults
 rbarc true converts the RBEND straight length into the arc length
 thin_foc true if false suppresses the 1(rho**2) focusing of thin dipoles
 no_fatal_stop false Prevents madx from stopping in case of a fatal error. Use at your own risk.

The option "rbarc" is implemented for backwards compatibility with MAD-8 up to version 8.23.06
included; in this version, the RBEND length was just taken as the arc length of an SBEND with

96

inclined pole faces, contrary to the MAD-8 manual.

PRINT

print,text="...";

prints the text to the current output file (see ASSIGN above). The text can be edited with the help of a
macro statement. For more details, see there.

QUIT

quit;

ends the program execution.

READTABLE

readtable,file=filename;

reads a TFS file containing a MAD-X table back into memory. This table can then be manipulated as
any other table, i.e. its values can be accessed, it can be plotted, written out again etc.

READMYTABLE

readmytable,file=filename,table=internalname;

reads a TFS file containing a MAD-X table back into memory. This table can then be manipulated as
any other table, i.e. its values can be accessed, it can be plotted, written out again etc. An internal
name for the table can be freely assigned while for the command READTABLE it is taken from the
information section of the table itself. This feature allows to store multiple tables of the same type in
memory without overwriting existing ones.

RESBEAM

resbeam,sequence=s_name;

resets the default values of the beam belonging to sequence s_name, or of the default beam if no
sequence is given.

97

RETURN

return;

ends reading from a "called" file; if encountered in the standard input file, it ends the program
execution.

SAVE

save,beam,sequence=sequ1,sequ2,...,file=filename,beam,bare;

saves the sequence(s) specified with all variables and elements needed for their expansion, onto the
file "filename". If quotes are used for the "filename" capital and low characters are kept as specified,
if they are omitted the "filename" will have lower characters only. The optional flag can have the
value "mad8" (without the quotes), in which case the sequence(s) is/are saved in MAD-8 input
format.

The flag "beam" is optional; when given, all beams belonging to the sequences specified are saved at
the top of the save file.

The parameter "sequence" is optional; when omitted, all sequences are saved.

However, it is not advisable to use "save" without the "sequence" option unless you know what you
are doing. This practice will avoid spurious saved entries. Any number of "select,flag=save"
commands may precede the SAVE command. In that case, the names of elements, variables, and
sequences must match the pattern(s) if given, and in addition the elements must be of the class(es)
specified. See here for a SAVE with SELECT example.

It is important to note that the precision of the output of the save command depends on the output
precision. Details about default precisions and how to adjust those precisions can be found at the SET
Format instruction page.

The Attribute ’bare’ allows to save just the sequence without the element definitions nor beam
information. This allows to re-read in a sequence with might otherwise create a stop of the program.
This is particularly useful to turn a line into a sequence to seqedit it. Example:

tl3:line=(ldl6,qtl301,mqn,qtl301,ldl7,qtl302,mqn,qtl302,ldl8,ison);
DLTL3 : LINE=(delay, tl3);
use, period=dltl3;

save,sequence=dltl3,file=t1,bare; // new parameter "bare": only sequ. saved
call,file=t1; // sequence is read in and is now a "real" sequence
// if the two preceding lines are suppressed, seqedit will print a warning
// and else do nothing
use, period=dltl3;
twiss, save, betx=bxa, alfx=alfxa, bety=bya, alfy=alfya;
plot, vaxis=betx, bety, haxis=s, colour:=100;
SEQEDIT, SEQUENCE=dltl3;
 remove,element=cx.bhe0330;
 remove,element=cd.bhe0330;

98

ENDEDIT;

use, period=dltl3;
twiss, save, betx=bxa, alfx=alfxa, bety=bya, alfy=alfya;

SAVEBETA

savebeta, label=label,place=place,sequence=s_name;

marks a place "place" in an expanded sequence "s_name"; at the next TWISS command execution, a
beta0 block will be saved at that place with the label "label". This is done only once; in order to get a
new beta0 block there, one has to re-issue the command. The contents of the beta0 block can then be
used in other commands, e.g. TWISS and MATCH.

Example (after sequence expansion):

savebeta,label=sb1,place=mb[5],sequence=fivecell;
twiss;
show,sb1;

will save and show the beta0 block parameters at the end (!) of the fifth element mb in the sequence.

SELECT

select, flag=flag,range=range,class=class,pattern=pattern,
 slice=integer,column=s1,s2,s3,..,sn,sequence=s_name,
 full,clear;

selects one or several elements for special treatment in a subsequent command. All selections for a
given command remain valid until "clear" is specified; the selection criteria on the same command
are logically ANDed, on different SELECT statements logically ORed.

Example:

select,flag=error,class=quadrupole,range=mb[1]/mb[5];
select,flag=error,pattern="^mqw.*";

selects all quadrupoles in the range mb[1] to mb[5], and all elements (in the whole sequence) the
name of which starts with "mqw" for treatment by the error module.

"flag" can be one of the following::
seqedit: selection of elements for the seqedit module.
error: selection of elements for the error assignment module.
makethin: selection of elements for the makethin module that converts the sequence into one
with thin elements only.
sectormap: selection of elements for the sectormap output file from the Twiss module.
table: here "table" is a table name such as twiss, track etc., and the rows and columns to be
written are selected.

99

For the RANGE, CLASS, PATTERN, FULL, and CLEAR parameters see SELECT.

"slice" is only used by makethin and prescribes the number of slices into which the selected elements
have to be cut (default = 1).

"column" is only valid for tables and decides the selection of columns to be written into the TFS file.
The "name" argument is special in that it refers to the actual name of the selected element. For an
example, see SELECT.

SHOW

show,command;

prints the "command" (typically "beam", "beam%sequ", or an element name), with the actual value
of all its parameters.

STOP

stop;

ends the program execution.

SYSTEM

system,"...";

transfers the string in quotes to the system for execution.

Example:

system,"ln -s /afs/cern.ch/user/u/user/public/some/directory short";

TABSTRING

tabstring(arg1,arg2,arg3)

The"string function" tabstring(arg1,arg2,arg3) with exactly three arguments; arg1 is a table name
(string), arg2 is a column name (string), arg3 is a row number (integer), count starts at 0. The
function can be used in any context where a string appears; in case there is no match, it returns
void.

100

TITLE

title,"...";

inserts the string in quotes as title in various tables and plots.

USE

use,period=s_name,range=range;

expands the sequence with name "s_name", or a part of it as specified in the range.

VALUE

value,exp1,exp2,...;

prints the actual values of the expressions given.

Example:

a=clight/1000.;
value,a,pmass,exp(sqrt(2));

results in

a = 299792.458 ;
pmass = 0.938271998 ;
exp(sqrt(2)) = 4.113250379 ;

WRITE

write,table=table,file=file_name;

writes the table "table" onto the file "file_name"; only the rows and columns of a preceding
select,flag=table,...; are written. If no select has been issued for this table, the file will only contain
the header. If the FILE argument is omitted, the table is written to standard output.

hansg, June 17, 2002

101

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Set Statements
set,format="...", sequence="...";

The set command allows 2 actions:

1) Format
The first command lets you vary the output precision.

parameter: format = s1, s2, s3

(up to) three strings defining the integer, floating, and string output format for the save, show, value, and
table output. The formats can be given in any order and stay valid until replaced. The defaults are:

"10d","18.10g","-18s".

They follow the C convention. The quotes are mandatory. The allowed formats are:

"nd" for integer with n = field width.

"m.nf" or "m.ng" or "m.ne" for floating, m field width, n precision.

"ns" for string output.

The default is "right adjusted", a "-" changes it to "left adjusted". Example:

set,format="22.14e";

changes the current floating point format to 22.14e; the other formats remain untouched.

set,format="s","d","g";

sets all formats to automatic adjustment according to C conventions.

2) Sequence
The second command lets you choose the current sequence without having to use the "USE" command,
which would bring you back to a bare lattice without errors. The command only works if the chosen
sequence had been activated before with the "USE" command, otherwise a warning will be issued and
MAD-X will continue with the unmodified current sequence. This command is particularly useful for
commands that do not have the sequence as an argument like "EMIT" or "IBS".

hansg, frs, June 18, 2003

102

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Frank/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

RESBEAM: reset beam defaults
label: RESBEAM,SEQUENCE=name;

If the sequence name is omitted, the default beam is reset.

Default BEAM Data:
PARTICLE POSITRON
ENERGY 1 GeV
EX 1 rad m
EY 1 rad m
ET 1 rad m
KBUNCH 1
NPART 0
BCURRENT 0 A
BUNCHED .TRUE.
RADIATE .FALSE.

hansg, January 24, 1997

103

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Edit a Beam Line Sequence
With the help of the commands explained below, a sequence may be modified in many ways: the starting
point can be moved to another place; the order of elements can be inverted; elements can be inserted one
by one, or as a whole group with one single command; single elements, or classes thereof can be removed;
elements can be replaced by others; finally, the sequence can be "flattened", i.e. all inserted sequences are
replaced by their actual elements, such that a flattened sequence contains only elements. It is good practice
to add a flatten; statement at the end of a seqedit operation to ensure a fully operational sequence. And
this is particularly useful for the save command to properly save shared sequences and to write out in
MAD-8 format.

SEQEDIT

seqedit, sequence=s_name;

selects the sequence named for editing. The editing is performed on the non-expanded sequence; after
having finished the editing, one has to re-expand the sequence if necessary.

EXTRACT

extract,sequence=s_name,from=MARKER_1,to=MARKER_2,newname=p;

From the sequence named "s_name" is extracted a new sequence with name "p" starting from
MARKER_1 and ending at MARKER_2. The new sequence "p" can be USEd as any other sequence.
It is declared as "shared" and can therefore be combined E.G. into the cycled original sequence.

FLATTEN

flatten;

This command includes all sequences in the sequence being edited, if any. The resulting sequence
contains only elements.

104

INSTALL

install, element=name,class=class_name,at=real,from=place|selected;

where the parameters have the following meaning:
element: name of the (new) element to be inserted (mandatory)
class: class of the new element to be inserted (mandatory)
at: position where the element is to be inserted; if no "from" is given,this is relative to the start
of the sequence. If "from" is given, it is relative to the position specified there.
from:either a place (i.e. the name(+occurrence count) of an element already existing in the
sequence, e.g. mb[15], or mq.a..i1..4 etc.; or the string "selected"; in this latter case an element
of the type specified will be inserted behind all elements in the sequence that are currently
selected by one or several SELECT commands of the type

select,flag=seqedit,class=.., pattern=.., range=..;

Attention: No element definitions inside seqedit.

MOVE

move, element=name|selected,by=real,to=real,from=place;

element: name of the existing element to be moved, or "selected", in which case all elements
from existing SELECT commands will be moved; in the latter case, "by" must be given.
by: amount by which the element(s) is/are to be moved; no "to" nor "from" in this case.
to: position to which the element has to be moved; if no from, then this is relative to the start of
the sequence; otherwise, it is relative to the place given in "from".
from: place in the sequence with respect to which the element is to be positioned.

REMOVE

remove, element=name|selected;

element: name of the existing element to be removed, or "selected", in which case all elements
from existing SELECT commands will be removed.
Attention: It is a bad idea to remove all markers from a sequence! In particular the "start="
marker and the new markers added by "cycle" must never be removed from a sequence.

CYCLE

cycle,start=place;

This makes the sequence start at the place given, which must be a marker.

105

In the case there is a shared sequence in the used sequence, the command FLATTEN has to be used
before the command CYCLE. Example:

flatten ; cycle,start=place;

REFLECT

reflect;

This inverts the order of element in the sequence, starting from the last element.

If there are shared sequences inside the USEd sequence, the command FLATTEN must be used
before the command REFLECT. Alternatively each shared sequence must first be reflected.
Example:

flatten ; reflect;

REPLACE

replace,element=name1|selected,by=name2;

Element with name1 is replaced by element with name2. If name1 is "selected", then all elements
selected by SELECT commands will be replaced by the element name2.

ENDEDIT

endedit;

terminates the sequence editing process. The nodes in the sequence are renumbered according to their
occurrence which might have changed during editing.

hansg, June 17, 2002

106

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Elements and Markers
Element Input Format
Aperture, Geometric
MARKER: Marker Definition
DRIFT: Drift Space
Bending Magnet

RBEND: Rectangular Bending Magnet
SBEND: Sector Bending Magnet
Dipedge Element

QUADRUPOLE
SEXTUPOLE
OCTUPOLE
MULTIPOLE
SOLENOID
Closed Orbit Corrector

HKICKER: Horizontal Orbit Corrector
VKICKER: Vertical Orbit Corrector
KICKER: Combined Orbit Corrector

Transverse Kicker
RFCAVITY
CRABCAVITY
ELSEPARATOR: Electrostatic Separator
Beam Position Monitor

HMONITOR: Horizontal Monitor
VMONITOR: Vertical Monitor
MONITOR: Combined Monitor
INSTRUMENT: Other Beam Instrumentation

Collimators
RCOLLIMATOR:Rectangular Collimator
ECOLLIMATOR:Elliptic Collimator

Coordinate Transformations
YROTATION: Rotation About the Vertical Axis
SROTATION: Rotation Around the Longitudinal Axis

BEAMBEAM: Beam-Beam Interaction
MATRIX: Arbitrary Element
Editing Element Definitions

107

Element Class

hansg, January 24, 1997

108

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Element Input Format
All physical elements are defined by statements of the form

label: keyword {,attribute};

Example:

QF: QUADRUPOLE,L=1.8,K1=0.015832;

where

label is a name to be given to the element (in the example QF),
keyword is an element type keyword (in the example QUADRUPOLE).
attribute normally has the form "attribute-name=attribute-value" or "attribute-name:=attribute-value"
(except for multipoles).
attribute-name selects the attribute, as defined for the element type keyword (in the example L and
K1).
attribute-value gives it a value (in the example 1.8 and 0.015832). The value may be specified by an
expression. The "=" assigns the value on the right to the attribute at the time of definition, regardless
of any further change of the right hand side; the ":=" re-evaluates the expression at the right every
time the attribute is being used. For constant right hand sides, "=" and ":=" are of course equivalent.

Omitted attributes are assigned a default value, normally zero.

A special format is used for a multipole:

m:multipole, kn= {kn0, kn1, kn2, ..., knmax},
 ks= {ks0, ks1, ks2, ..., ksmax};

where kn and ks give the integrated normal and skew strengths, respectively. The commas are mandatory,
each strength can be an expression; their position defines the order. example:

m:multipole, kn={0,0,0,myoct*lrad}, ks={0,0,0,0,-1.e-5};

defines a multipole with a normal octupole, and a skew decapole component.

To know the current maximum order, enter the command

help,multipole;

and count.

109

hansg, January 24, 1997

110

http://www.cern.ch/hansg/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Dipedge Element
A thin element describing the edge focusing of a dipole has been introduced in order to make it possible to
track trajectories in the presence of dipoles with pole face angles. Only linear terms are considered since
the higher order terms would the tracking non-symplectic. The transformation of the machine elements
into thin lenses leaves dipedge untouched and splits correctly the SBENDS’s.

It does not make sense to use it alone. It can be specified at the entrance and the exit of a SBEND. They
are defined by the commands:

label : dipedge, h=real, e1=real, fint=real, hgap=real, tilt=real;

It has zero length and five attributes.

H: Is angle/length or 1/rho (default: 0 m-1 - for the default the dipedge element has no effect). (must
be equal to that of the associated SBEND)
E1: The rotation angle for the pole face.The sign convention is as for a SBEND Bending Magnet.
Note that it is different for an entrance and an exit. (default: 0 rad).
FINT: field integral as for SBEND sector bend. Note that each dipedge has its own fint, so fintx is no
longer necessary.
HGAP: half gap height of the associated SBEND Bending Magnet.

TILT: The roll angle about the longitudinal axis (default: 0 rad, i.e. a horizontal bend). A positive
angle represents a clockwise rotation.

frs, February 27, 2005

111

http://www.cern.ch/Frank.Schmidt/frs_sign.html

MULTIPOLE: General Thin Multipole
label: MULTIPOLE,LRAD=real,TILT=real,
 KNL:={..,..,..}, KSL:={..,..,..};

A MULTIPOLE is a thin-lens magnet of arbitrary order, including a dipole:

LRAD: A fictitious length, which was originally just used to compute synchrotron radiation effects.
A non-zero LRAD in conjunction with the OPTION thin_foc set to a true logical value takes into
account of the weak focussing of bending magnets.
TILT: The roll angle about the longitudinal axis (default: 0 rad). A positive angle represents a
clockwise rotation of the multipole element.

Please note that contrary to MAD8 one has to specify the desired TILT angle, otherwise it is
taken as 0 rad. We believe that the MAD8 concept of having individual TILT values for each
component and on top with default values led to considerable confusion and allowed for
excessive and unphysical freedom. Instead, in MAD-X the KNL/KSL components can be
considered as the normal or skew multipole components of the magnet on the bench, while the
TILT attribute can be considered as an tilt alignment error in the machine.
KNL: The normal multipole coefficients from order zero to the maximum; the parameters are
positional, therefore zeros must be filled in for components that do not exist. Example of a thin-lens
sextupole:

ms:multipole, knl:={0, 0, k2l};

KSL: The skew multipole coefficients from order zero to the maximum; the parameters are
positional, therefore zeros must be filled in for components that do not exist. Example of a thin-lens
skew octupole:

ms:multipole, ksl:={0, 0, 0, k3sl};

Both KNL and KSL may be specified for the same multipole.

A multipole with no dipole component has no effect on the reference orbit, i.e. the reference system at its
exit is the same as at its entrance. If it includes a dipole component, it has the same effect on the reference
orbit as a dipole with zero length and deflection angle K0L, being the first component of KNL above.

hansg, Frank.Schmidt, August 28, 2003

112

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Transverse Kicker
The type TKICKER should be used to create horizontal, vertical or combined transverse kickers
physically equivalent to elements of type KICKER, but not used by the closed orbit correction module
(see CORRECT command).

Examples of elements that may use the type TKICKER:

Fast kickers for injection, dump & tune
Magnetic septa towards beam dump
Dampers of transverse beam oscillations
Undulator & Wiggler magnets

For further information on element type TKICKER and its attributes, look at the documentation of the
orbit corrector type KICKER.

madx team, September 15, 2011

113

http://cern.ch/mad/madx/cororbit/co_correct.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Collimators
Two types of collimators are defined:

ECOLLIMATOR. Elliptic aperture,
RCOLLIMATOR. Rectangular aperture.

label: ECOLLIMATOR,TYPE=name,L=real,XSIZE=real,YSIZE=real;
label: RCOLLIMATOR,TYPE=name,L=real,XSIZE=real,YSIZE=real;

Either type has three real attributes:

L: The collimator length (default: 0 m).
XSIZE: The horizontal half-aperture (default: unlimited).
YSIZE: The vertical half-aperture (default: unlimited).

For elliptic apertures, XSIZE and YSIZE denote the half-axes respectively, for rectangular apertures they
denote the half-width of the rectangle. Optically a collimator behaves like a drift space, but during
tracking, it also introduces an aperture limit. The aperture is checked at the entrance. If the length is not
zero, the aperture is also checked at the exit.

Example:

COLLIM: ECOLLIMATOR,L=0.5,XSIZE=0.01,YSIZE=0.005;

The straight reference system for a collimator is a cartesian coordinate system.

NOTE: When a collimator is displaced transversally in order to model an asymmetric collimator, particle
losses in tracking are reported with respect to the displaced reference system, not with respect to the
surrounding beam line.

hansg, January 24, 1997

114

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Coordinate Transformations

YROTATION: Rotation About the Vertical Axis

label: YROTATION,TYPE=name,ANGLE=real;

The element YROTATION rotates the straight reference system about the vertical (y) axis. YROTATION
has no effect on the beam, but it causes the beam to be referred to the new coordinate system

x2=x1cos(theta)-s1sin(theta), y2=x1sin(theta)+s1cos(theta),

It has one real attribute:

ANGLE: The rotation angle theta (default: 0 rad). It must be a small angle, i.e. an angle comparable
to the transverse angles of the orbit.

A positive angle means that the new reference system is rotated clockwise about the local y-axis with
respect to the old system.

Example:

KINK: YROTATION,ANGLE=0.0001;

SROTATION: Rotation Around the Longitudinal Axis

label: SROTATION,ANGLE=real;

The element SROTATION rotates the straight reference system about the longitudinal (s) axis.
SROTATION has no effect on the beam, but it causes the beam to be referred to the new coordinate
system

x2=x1cos(psi)-y1sin(psi), y2=x1sin(psi)+y1cos(psi),

It has one real attribute:

ANGLE: The rotation angle psi (default: 0 rad)

A positive angle means that the new reference system is rotated clockwise about the s-axis with respect to
the old system.

Example:

115

ROLL1: SROTATION,ANGLE=PI/2.;
ROLL2: SROTATION,ANGLE=-PI/2.;
HBEND: SBEND,L=6.0,ANGLE=0.01;
VBEND: LINE=(ROLL1,HBEND,ROLL2);

The above is a way to represent a bend down in the vertical plane, it could be defined more simply by

VBEND: SBEND,L=6.0,K0S=0.01/6;

hansg, June 17, 2002

116

http://www.cern.ch/Hans.Grote/hansg_sign.html

BEAMBEAM: Beam-beam Interaction
The command BEAMBEAM may be inserted in a beam line to simulate a beam-beam interaction point:

label: BEAMBEAM, SIGX=real,SIGY=real,
 XMA=real,YMA=real,CHARGE=real
 BBSHAPE=int,WIDTH=real,BBDIR=int;

The beam-beam interaction is represented by a four-dimensional interaction with a thin element, i.e.
horizontal and vertical non-linear kicks. The code for this element has been contributed by J.M. Veuillen
(1987) and extended by S. Sorge (2007).

SIGX: The horizontal extent of the opposite beam (default: 1 m). Meaning depends on parameter
BBSHAPE.
SIGY: The vertical extent of the opposite beam (default: 1 m). Meaning depends on parameter
BBSHAPE.
XMA: The horizontal displacement of the opposite beam with respect to the ideal orbit (default: 0
m).
YMA: The vertical displacement of the opposite beam with respect to the ideal orbit (default: 0 m).
CHARGE: The charge of particles in the opposite beam in elementary charges. It is set by default
CHARGE=1. So, if you want to describe collisions between beams containing the same particles
having a charge different from 1, you have to set CHARGE explicitly in BEAM and in
BEAMBEAM.
BBSHAPE: The parameter to choose the radial density shape of the opposite beam (default: 1)

BBSHAPE=1: Gaussian shape (default), SIGX/SIGY: standard deviation in vertical/horizontal
direction.
BBSHAPE=2: trapezoidal shape, SIGX/SIGY: half width of density profile, i.e. distance from
the centre to half edge region with linear decrease of density in horizontal/vertical direction.
Still only circular opposite beam possible, i.e. in the calculations
SIGX’=SIGY’=(SIGX+SIGY)/2 is used, if SIGX and SIGY have different values

117

BBSHAPE=3: hollow-parabolic shape, SIGX/SIGY: distance from the centre to the maximum
of the parabolic density profile in vertical/horizontal direction. Still only circular opposite beam possible,
i.e. in the calculations SIGX’=SIGY’=(SIGX+SIGY)/2 is used, if SIGX and SIGY have different values

118

The restriction to circular opposite beams in the cases BBSHAPE=2,3 appears to be sufficient,
because such beam profiles are more important for the description of the interaction between the
particle beam and an electron beam of an electron cooler, which are usually circular.
WIDTH: The relative extent of the edge region, absolute value is given by WIDTH*SIGX and
WIDTH*SIGY vertical and horizontal direction, respectively. For

BBSHAPE=1, WIDTH is meaningless and will be ignored.
BBSHAPE=2, WIDTH denotes the full width of the edge region in units of SIGX (or SIGX’ and
SIGY’, respectively, if SIGX and SIGY are not equal), i.e. if WIDTH=0.01 and SIGX=5 mm,
the edge region has a full width of 0.05 mm. It must be WIDTH < 2.0.
BBSHAPE=3, WIDTH denotes the full width at half maximum of the parabolic density profile
in units of SIGX (or SIGX’ and SIGY’, respectively, if SIGX SIGY are not equal. It must be
WIDTH < SQRT(2.0).

BBDIR: The parameter to choose the direction of motion of the opposite beam relative to the beam
considered. It determines the sign of the Lorenz force between the both beams (default: -1):

BBDIR=-1: Beams move in the opposite direction as in a collider. Therefore, the Lorenz force
enhances the beam-beam interaction.
BBDIR=0: Opposite beam does not move, Lorenz force is neglected
BBDIR=1: Beams move in the same direction as in an electron cooler. So, the Lorenz force
reduces the beam-beam interaction.

Note:
The particles in the beam considered may have a momentum deviation given by DELTAP

119

defined in the TRACK command.
The opposite beam is assumed to have the velocity according to the unperturbed energy o the
particles in the beam considered. So, only the direction of motion can be chosen.
In the case of motion in the opposite direction (BBDIR=-1), the time of interaction between the
beams is given by tau = length/(2*beta*c_light), where length is the length of a bunch in the opposite
beam. In the case of motion in the same direction (BBDIR=1) as in an electron cooler, this time is given
by tau = length/(beta*c_light), where length is the length of the cooler. So, the factor 1/2 is inserted only
for BBDIR=-1 to calculate correct results.

A beam-beam element requires the particle energy (ENERGY) and the particle charge (CHARGE) as well
as the number of particles per bunch (NPART) to be set by a BEAM command before any calculations are
performed.

Examples of a four-dimensional beam-beam element definition:

Collider regime example:

beam, particle=positron,npart=1.e12,energy=50.0;
bb: beambeam,sigx=1.e-3,sigy=5.e-4,charge=1.;

Electron cooler example:

gamma0=1.032; ! relativistic factors
beta0=sqrt(1.0-1.0/gamm0/gamma0);

i_e=0.2; ! electron current
re_cool=0.01; ! electron beam radius
l_cool=5.0; ! cooling length
nelect=i_e*l_cool/beta0/clight/qelect; ! electron number in e-cooler

beam,particle=antiproton,gamma=gamma0,npart=nelect;
bb_ecool:beambeam,sigx=re_cool,sigy=re_cool,bbshape=2,width=0.01,charge=-1,bbdir=1;

For the definition of the LHC head-on and parasitic beam-beam elements see beam-beam element
examples.

hansg, ssorge, July 13, 2007

120

http://www.cern.ch/Hans.Grote/hansg_sign.html

MATRIX: Arbitrary Element
label: MATRIX,TYPE=name,L=real,KICK1=real,...,KICK6=real,
 RM11=real,...,RM66=real,
 TM111=real,...,TM666=real;

The MATRIX permits the definition of an arbitrary transfer matrix. It has four real array attributes:

L: Length of the element, which may be zero.
KICKi: Defines the kick of the element acting on the six phase space coordinates.
RMik: Defines the linear transfer matrix (6*6) of the element.
TMikl: Defines the second-order terms (6*6*6) of the element.

Data values not entered are taken from the identity transformation, kick and second order terms are zero as
default. In the thin-lens tracking module the length of an arbitrary matrix is accepted, however no second
order are allowed to avoid non symplectic tracking runs. In the latter case the tracking run will be aborted.

frs, June 25, 2003

121

http://www.cern.ch/Frank/Schmidt/frs_sign.html

Editing Element Definitions
An element definition can be changed in two ways:

Entering a new definition: The element will be replaced in the main beam line expansion.
Entering the element name together with new attributes: The element will be updated in place,
and the new attribute values will replace the old ones.

This example shows two ways to change the strength of a quadrupole:

QF: QUADRUPOLE,L=1,K1=0.01; ! Original definition of QF
QF: QUADRUPOLE,L=1,K1=0.02; ! Replace whole definition of QF
QF,K1=0.02; ! Replace value of K1

When the type of the element remains the same, replacement of an attribute is the more efficient way.

Element definitions can be edited freely. The changes do not affect already defined objects which belong
to its element class.

hansg, January 24, 1997

122

http://www.cern.ch/Hans.Grote/hansg_sign.html

Element Classes
The concept of element classes solves the problem of addressing instances of elements in the accelerator
in a convenient manner. It will first be explained by an example. All the quadrupoles in the accelerator
form a class QUADRUPOLE. Let us define three subclasses for the focussing quadrupoles, the
defocussing quadrupoles, and the skewed quadrupoles:

MQF: QUADRUPOLE,L=LQM,K1=KQD; ! Focussing quadrupoles
MQD: QUADRUPOLE,L=LQM,K1=KQF; ! Defocussing quadrupoles
MQT: QUADRUPOLE,L=LQT; ! Skewed quadrupoles

These classes can be thought of as new keywords which define elements with specified default attributes.
We now use theses classes to define the real quadrupoles:

QD1: MQD; ! Defocussing quadrupoles
QD2: MQD;
QD3: MQD;
 ...
QF1: MQF; ! Focussing quadrupoles
QF2: MQF;
QF3: MQF;
 ...
QT1: MQT,K1S=KQT1; ! Skewed quadrupoles
QT2: MQT,K1S=KQT2;
 ...

These quadrupoles inherit all unspecified attributes from their class. This allows to build up a hierarchy of
objects with a rather economic input structure.

The full power of the class concept is revealed when object classes are used to select instances of elements
for various purposes. Example:

select,flag=twiss,class=QUADRUPOLE; ! Select all quadrupoles for the
 ! Twiss TFS file

More formally, for each element keyword MAD maintains a class of elements with the same name. A
defined element becomes itself a class which can be used to define new objects, which will become
members of this class. A new object inherits all attributes from its class; but its definition may override
some of those values by new ones. All class and object names can be used in range selections, providing a
powerful mechanism to specify positions for matching constraints and printing.

hansg, January 24, 1997

123

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Beam Line Sequences
MAD-X accepts two forms of an accelerator definition: sequences and lines. However, the sequence
definition is the only one used internally; lines are converted into sequences when they are USEd.
Consequently, only sequences can be saved (written onto a file) by MAD-X.

The corresponding sequence of statements defining a sequence is

name: SEQUENCE,REFER=keyword,REFPOS=name,LENGTH=real
label: class,AT=real{,attributes} | class,AT=real | sequ_name, AT=real
 ...
ENDSEQUENCE

where "real" means a real number, variable, or expression.

The first line gives the sequence name, a REFER flag (entry, centre, or exit) which specifies at which part
of the element its position along the beam line will be given (default: centre), a REFPOS argument used
for sequence insertion, and the total length.

Inside the sequence ... endsequence bracket three types of commands may be placed:

an element declaration as usual, with an additional "at" attribute giving the element position relative
to the start of the sequence; CAUTION: an existing definition for an element with the same name will
be replaced, however, defining the same element twice inside the same sequence results in a fatal
error, since a unique object (this element) would be placed at two different positions.
a class name with a position; this causes an instance of the class to be placed at the position given.
For uses inside ranges, instances of the same class can be accessed with an occurrence count.
a sequence name with a position; this causes the sequence with that name to be placed at the position
indicated. The entry, centre, or exit of the inserted sequence are placed at the position given,
UNLESS a "refpos" (the name of an element in the inserted sequence) is given, in which case the
sequence is inserted such that the refpos element is at the insertion point.

When the sequence is expanded in a USE command, MAD generates the missing drift spaces. At this
moment, overlapping elements will cause "negative drift length" errors.

For efficiency reasons MAD-X imposes an important restriction on element lengths and positions: once
a sequence is expanded, the element positions and lengths are considered as fixed; in order to vary a
position or element length, a re-expansion of the sequence becomes necessary. The MATCH command
contains a special flag "vlength" to match element lengths.

124

Example:

! define a default beam (otherwise fatal error)
beam;
! Define element classes for a simple cell:
b: sbend,l=35.09, angle = 0.011306116;
qf: quadrupole,l=1.6,k1=-0.02268553;
qd: quadrupole,l=1.6,k1=0.022683642;
sf: sextupole,l=0.4,k2=-0.13129;
sd: sextupole,l=0.76,k2=0.26328;
! define the cell as a sequence:
sequ: sequence,l=79;
 b1: b, at=19.115;
 sf1: sf, at=37.42;
 qf1: qf, at=38.70;
 b2: b, at=58.255,angle=b1->angle;
 sd1: sd, at=76.74;
 qd1: qd, at=78.20;
 endm: marker, at=79.0;
endsequence;

hansg, June 17, 2002

125

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Beam Lines
The accelerator to be studied is known to MAD-X either as a sequence of physical elements called
sequence, or as a hierarchically structured list of elements called a beam line. A beam line is built from
simpler beam lines whose definitions can be nested to any level. A powerful syntax allows to repeat, to
reflect, or to replace pieces of beam lines. However, internally MAD-X knows only sequences, and lines
as shown below are converted into flat sequences with the same name when they are expanded.
Consequently, only sequences can be SAVEd onto a file (see save).

Formally a beam line is defined by a LINE command:

label(arg{,arg}): LINE=(member{,member});

Label gives a name to the beam line for later reference.

The formal argument list (arg{,arg}) is optional (see below). Each "member" may be one of the following:

Element label,
Beam line label,
Sub-line, enclosed in parentheses,
Formal argument name,
Replacement list label.

Beam lines may be nested to any level.

Simple Beam Lines
The simplest beam line consists of single elements:

label: LINE=(member{,member});

Example:

l: line=(a,b,c,d,a,d);
 use,period=l;

The USE command tells MAD to perform all subsequent calculations on the sequence

a,b,c,d,a,d

126

Sub-lines
Instead of referring to an element, a beam line member can refer to another beam line defined in a separate
command. This provides a shorthand notation for sub-lines which occur several times in a beam line.
Lines and sub-lines can be entered in any order, but when a line is expanded, all its sub-lines must be
known.

Example:

l: line=(a,b,s,b,a,s,a,b);
s: line=(c,d,e);
 use,period=l;

this example produces the following expansion steps:

1. replace sub-line s:

(a,b,(c,d,e),b,a,(c,d,e),a,b)

2. omit parentheses:

a,b,c,d,e,b,a,c,d,e,a,b

Reflection and Repetition
An unsigned repetition count and an asterisk indicate repetition of a beam line member. A minus prefix
causes reflection, i.e. all elements in the subsequence are taken in reverse order. Sub-lines of reflected
lines are also reflected, but physical elements are not. If both reflection and repetition are desired, the
minus sign must precede the repetition count.

Example:

r: line=(g,h);
s: line=(c,r,d);
t: line=(2*s,2*(e,f),-s,-(a,b));
 use,period=t;
Attention: the repetition "2*s" will only work if
"s" is itself a line. In case "s" is an element replace by
"2*(s)".

Proceeding step by step, this example produces

1. Replace sub-line S:

((c,r,d),(c,r,d),(e,f),(e,f),(d,-r,c),(b,a))

2. replace sub-line r:

((c,(g,h),d),(c,(g,h),d),(e,f),(e,f),(d,(h,g),c),(b,a))

127

3. omit parentheses:

c,g,h,d,c,g,h,d,e,f,e,f,d,h,g,c,b,a

Note that the inner sub-line R is reflected together with the outer sub-line S.

Replaceable Arguments
A beam line definition may contain a formal argument list, consisting of labels separated by commas and
enclosed in parentheses. Such a line can be expanded for different values of its arguments. When this line
is referred to, its label must be followed by a list of actual arguments separated by commas and enclosed
in parentheses. These arguments must be beam line, or element names. The number of actual arguments
must agree with the number of formal arguments. All occurrences of a formal argument on the right-hand
side of the line definition are replaced by the corresponding actual argument.

Example:

s: line=(a,b,c);
l(x,y): line=(d,x,e,3*y);
l4f: line=(4*f);
lm2s: line=(-2*s);
res: line=l(l4f,lm2s);

Proceeding step by step, this example generates the expansion

d,f,f,f,f,e,c,b,a,c,b,a,c,b,a,c,b,a,c,b,a,c,b,a

Second example:

cel(sf,sd): line=(qf,d,sf,d,b,d,qd,d,sd,d,b,d);
arc: line=(cel(sf1,sd1),cel(sf2,sd2),cel(sf1,sd1));
 use,period=arc;

This example generates the expansion

1. Replace the line CEL and its formal arguments:

((qf,d,(sf1),d,b,d,qd,d,(sd1),d,b,d)
 (qf,d,(sf2),d,b,d,qd,d,(sd2),d,b,d)
 (qf,d,(sf1),d,b,d,qd,d,(sd1),d,b,d))

2. Omit parentheses:

qf,d,sf1,d,b,d,qd,d,sd1,d,b,d
qf,d,sf2,d,b,d,qd,d,sd2,d,b,d
qf,d,sf1,d,b,d,qd,d,sd1,d,b,d

Warning: Line Depreciation
MADX has been devolopped using sequences, in fact internally the code works with sequences only.
Consequently, there may exist some inconveniences when only lines are used. It is recommended to
convert as soon as possible lines into sequences (by means of the save command) in a design phase and to
use only sequences for a finalised machine.

128

Limits of Construction of Lines
Since Lines are in fact depreciated there are some limits of how they can be constructed. Please find below
a running MADX run which shows an example of OK (valid) and WRONG (invalid) cases.

!--
beam, PARTICLE=electron, energy=1;

qf: QUADRUPOLE, L:=1,K1:=1;
qd: QUADRUPOLE, L:=1,K1:=-1;
d: DRIFT, l=1;
m: MARKER;

rpl(a,b): LINE=(a,b);
sl: LINE=(qf,d,qd);
test0: LINE=(rpl(sl,sl)); !OK
test1: LINE=(rpl((sl),(sl))); !OK
test2: LINE=(rpl((sl),(-sl))); !OK
test3: LINE=(sl,-sl); !OK
test4: LINE=(rpl((3*sl),(3*sl))); ! WRONG
test5: LINE=(3*sl,3*sl); !OK
test6: LINE=(rpl((3*sl),(-3*sl))); ! WRONG
test7: LINE=(3*sl,-3*sl); !OK

use, period=test0;
twiss,BETX=1,bety=1;

use, period=test1;
twiss,BETX=1,bety=1;

use, period=test2;
twiss,BETX=1,bety=1;

use, period=test3;
twiss,BETX=1,bety=1;

use, period=test4;
twiss,BETX=1,bety=1;

use, period=test5;
twiss,BETX=1,bety=1;

use, period=test6;
twiss,BETX=1,bety=1;

use, period=test7;
twiss,BETX=1,bety=1;
!--

hansg, June 17, 2002

129

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Defining aperture in MAD-X
A new feature of MAD-X is the ability to set an aperture for a particular element, or parent of a set of
elements. This removes the need of placing a collimator next to every element to do aperture tracking. The
aperture of any elements can be specified (excepts drifts) by the use of the following parameters:

APERTYPE This can have seven text values: CIRCLE, RECTANGLE, ELLIPSE, LHCSCREEN (a
superposition of a CIRCLE and a RECTANGLE), MARGUERITE (two LHCSCREENS, one rotated
by 90 degrees), RECTELLIPSE (a superposition of an ELLIPSE and a RECTANGLE) and
RACETRACK.
APERTURE This is an array of values, the number and meaning of which depends on the
APERTYPE:

APERTYPE
of

parameters
meaning of parameters

CIRCLE 1 radius

ELLIPSE 2 horizontal half axis, vertical half axis

RECTANGLE 2 half width and half height

LHCSCREEN 3 half width, half height (of rect.) and radius (of circ.)

MARGUERITE 3 half width, half height (of rect.) and radius (of circ.)

RECTELLIPSE 4
half width, half height (of rectangle), horizontal half axis, vertical
half axis (of ellipse)

RACETRACK 3 horizontal, vertical shift, radius shift

FILENAME 0
where the file contains a list of x and y coordinates outlining the
shape. This option is only supported by the aperture module, see
below.

Here is an example for setting an ELLIPTICAL aperture for the main dipoles for the LHC.

MB : SBEND, L := l.MB, APERTYPE=ELLIPSE, APERTURE={0.02202,0.02202};

And an example for setting a FILENAME aperture for another magnet. Notice that no aperture parameters
are needed.

130

MB: SBEND, L := 5, APERTYPE=myfile;

The syntax of myfile should be like this:

x0 y0
xi yi
...
xn yn

Notes concerning the use of aperture:

There is some inconsistency in the parameter definition for the different APERTYPE. This is
historical and has to be kept for backwards compatibility. Pay some attention to the parameters you
introduce!
When MAKETHIN is called all the thin slices inherit the aperture from their original thick lens
version.
When the SIXTRACK command is called (see the SixTrack converter module C6T) the apertures are
ignored by default. To convert the apertures as well the APERTURE flag has to be set.
Aperture parameters are like all parameters and are inherited by offspring. Like other parameters
they can also be overridden by the offspring elements if necessary.

The APERTYPE and the APERTUREs themselves can be conveniently added to the TWISS table (see
Twiss Module) by using the SELECT command. E.G. the command:

select,flag=twiss,clear;
select,flag=twiss,column=name,s,betx,alfx,mux,bety,alfy,muy,apertype,aper_1,aper_2;

and a subsequent TWISS command will put the aperture information together with the specified TWISS
parameters into the TWISS table.

Defining tolerances in MAD-X
A parameter closely connected to the aperture is the sum of the mechanical and alignment tolerances. The
mechanical tolerance is the maximal error margin of errors in the element body which causes a decrease
of aperture, and the alignment tolerance is a mislignment of the element in the accelerator, which also
causes a decrease of aperture. The tolerance is given in the transverse plane as a racetrack, like in the
picture below.

131

A tolerance can be assigned to each element in a MAD-X sequence as a vector:

Syntax: APER_TOL = {r, g, s};

MB : SBEND, L := l.MB, APER_TOL={1.5, 1.1, 0};

APERTURE MODULE
Computes the n1 values for a piece of machine. Each element is sliced into thick subelements at given
intervals, and the available aperture is computed at the end of each slice. The computation is based on the
last Twiss table, so it is important to run the Twiss and aperture commands on the same period or
sequence, see the aperture example below. Also showed in the example is how n1 values can be plotted.

The minimum n1 for each element is written to the last Twiss table, to allow for matching by aperture.

Aperture,

file=filename,
halofile=filename,
pipefile=filename,
range=range,
exn=real,
eyn=real,
dqf=real,
betaqfx=real,
dp=real,
dparx=real,
dpary=real,

132

cor=r,
bbeat=real,
nco=integer,
halo={real,real,real,real},
interval=real
spec=real,
notsimple=logical,
trueprofile=filename,
offsetelem=filename;

where the parameters have the following meaning:
file: Output file with aperture table. Default = none
halofile: Input file with halo polygon coordinates. Will suppress an eventual halo parameter.
Default = none
range: Range given by elements. Default = #s/#e
exn: Normalised horizontal emittance. Default = 3.75*e-6
eyn: Normalised vertical emittance. Default = 3.75*e-6
dqf: Peak linear dispersion [m]. Default = 2.086
betaqfx: Beta x in standard qf [m]. Default = 170.25
dp: Bucket edge at the current beam energy. Default = 0.0015
dparx: Fractional horizontal parasitic dispersion. Default = 0.273
dpary: Fractional vertical parasitic dispersion. Default = 0.273
cor: Maximum radial closed orbit uncertainty [m]. Default = 0.004
bbeat: Beta beating coefficient applying to beam size. Default = 1.1
nco: Number of azimuth for radial scan. Default = 5
halo: Halo parameters: {n, r, h, v}. n is the radius of the primary halo, r is the radial part of the
secondary halo, h and v is the horizontal and vertical cuts in the secondary halo. Default = {6,
8.4, 7.3, 7.3}
interval: Approximate length in meters between measurements. Actual value: nslice =
nodelength/interval, nslice is rounded down to closest integer, interval = nodelength/nslice.
Default = 1.0
spec: Aperture spec, for plotting only. Gives the spec line in the plot. Default = 0.0
notsimple: Use only if one or more beamscreens in the range are considered not to be a "simply
connex". Since all MAD-X apertypes are simply connex, this is only possible if an input file
with beam screen coordinates are given. See below for a graphical example. Default = false.
trueprofile: A file containing a list of magnets, and for each magnet a list of horizontal and
vertical deviations from the ideal magnet axis. These values may come from measurements done
on the magnet. See below for example. Default = none.
offsetelem: A file containing a reference point in the machine, and a list of magnets with their
offsets from this point described as a parabola. See below for example. Default = none.

Not simply connex beam pipes
Methodically, the algorithm for finding the largest possible halo is fairly simple. The distance from
halo centre to the first apex (i = 0) in the halo is calculated (l_i), and the equation for a line going
through these points is derived. This line is then compared with all lines making the pipe polygon to
find their respective intersection coordinates. The distance h_i between halo centre and intersection

133

are then divided by l_i, to find the maximal ratio of enlargement, as seen below. This procedure is
then repeated for all apexes i in the halo polygon, and the smallest ratio of all apexes is the maximal
enlargement ratio for this halo to just touch the pipe at this particular longitudinal position.

There is one complication to this solution; polygons which are not simple connexes. (Geometrical
definition of ‘‘simply connex’’: A figure in which any two points can be connected by a line segment,
with all points on the segment inside the figure.) The figure below shows what happens when a beam pipe
polygon is not a simple connex. The halo is expanded in such a way that it overlaps the external polygon
in the area where the latter is dented inwards.

134

To make the module able to treat all kinds of polygons, notsimple must be activated. With this option
activated, apexes are strategically added to the halo polygon wherever the beam pipe polygon might have
an inward dent. This is done by drawing a line from halo centre to each apex on the pipe polygon. An apex
with its coordinates on the intersection point line-halo is added to a table of halo polygon apexes. The
result is that the halo polygon has a few ‘‘excessive’’ points on straight sections, but the algorithm used
for expansion will now never miss a dent in the beam pipe. The use of the notsimple option significantly
increases computation time.

135

Trueprofile file syntax
This file contains magnet names, and their associated displacements of the axis for an arbitrary
number of S, where So is the start of the magnet and Sn the end. The interval between each S must be
regular, and X and Y must be given in meters. The magnet name must be identical to how it appears in the
sequence. The displacements are only valid for this particular magnet, and cannot be assigned to a family
of magnets. n1 is calculated for a number of slices determinated by the number of Si.

136

Layout of file:

magnet.name1
So X Y
Si X Y
Si X Y
Sn X Y

magnet.name2
So X Y
Si X Y
Si X Y
Sn X Y

etc.

Example of file:

!This is the start of the file.
!Comments are made with exclamation marks.

mb.a14r1.b1
0 0.0002 0.000004
7.15 1.4e-5 0.3e-3
14.3 0.0000000032 4e-6

!further comments can of course be added

mq.22r1.b1
0 0.3e-5 1.332e-4
1.033 0.00034 0.3e-9
2.066 0 0.00e-2
3.1 4.232e-4 0.00000003

!This is the end of the file.

Offsetelem file syntax
This file contains coordinates describing how certain elements are displaced w.r.t. a given reference
point in the machine. It might be used with elements in insertions, or other special-purpose elements
that has a magnet axis which does not coincide with the reference trajectory. We operate with two
coordinate system, s,x and s,y, where the reference point is the origin and the actual element axis is
described as a parabola with coefficients A, B and C. For each element we give two sets of
coefficients, one for horizontal displacement and one for vertical:

X_offs(s) = Ax*s^2 + Bx*s + Cx

and

Y_offs(s) = Ay*s^2 + By*s + Cy

. The coordinate systems are in meters.

137

Layout of file: --- FOR MADX VERSION 3.XX AND OLDER ONLY---

reference.point

magnet.name1
Ax Bx Cx
Ay By Cy

magnet.name2
Ax Bx Cx
Ay By Cy

etc.

Example of file:

!This is the start of the file.
!First we give a reference point. The origin of the
!coordinate system will be at the START of this element.

mq.12r1.b1

!Then we give a list of elements and their displacement
!w.r.t. the reference point.

mcbxa.3l2
0 -2.56545 -3
0 -2.3443666 0

!The next nodes use the same reference point.
!Elements offset w.r.t. another point must be given in another file,
!together with the new reference point.

mcbxa.3r2
0.3323 32.443355 -0.84
0.2522 32.554363 0.0

!This is the end of the file.

Layout of file: --- FOR MADX VERSION 4.XX ONWARDS : now TFS format ---

note that variable names changes with : Ax -> DDX_OFF, Bx -> DX_OFF, Cx -> X_OFF, same for
Y The column S_IP is useless but mandatory (!). It results from a misunderstanding. Content is
ignored. In a future version, it will be suppressed (but will not induce an error if present).

@ NAME %06s "OFFSET"
@ TYPE %06s "OFFSET"
@ REFERENCE %10s "mq.12r1.b1"
* NAME S_IP X_OFF DX_OFF DDX_OFF Y_OFF DY_OFF DDY_OFF
"mq.12r1.b1" 0.0 -3.0 -2.56545 0.0 0.0 -2.3443666 0.0
"mcbxa.3r2" 0.0 -0.84 32.443355 0.3323 0.0 32.554363 0.2522

A python script to convert a file from the old V.3.XX format to the new V4.xx can be found at :

/afs/cern.ch/eng/lhc/optics/V6.503/aperture/convert_offsets.py

usage : convert_offsets.py filename

138

As an example we see in the picture below how the horizontal axes of elements m1 and m2 does not
coincide with the reference trajectory.

The X_ref(s) and Y_ref(s) of the reference trajectory are calculated via an internal call to the Survey
module. X_offs(s) and Y_offs(s) are derived from the coefficients given in the file. The resulting

X_tot(s) = X_ref(s) - X_offs(s)

and

Y_tot(s) = Y_ref(s) - Y_offs(s)

are taken into account in the aperture calculations.

Aperture command example
The aperture module needs a Twiss table to operate on. It is important not to USE another period or
sequence between the Twiss and aperture module calls, else aperture looses its table. One can choose
the ranges for Twiss and aperture freely, they need not be the same.

use, period=lhcb1;
select, flag=twiss,range=mb.a14r1.b1/mb.a17r1.b1,column=keyword,name,parent,k0l,k1l,s,betx,bety,n1;
twiss, file=twiss.b1.data, betx=beta.ip1, bety=beta.ip1, x=+x.ip1, y=+y.ip1, py=+py.ip1;
plot,haxis=s,vaxis=betx,bety,colour=100;

select, flag=aperture, column=name,n1,x,dy;
aperture, range=mb.b14r1.b1/mb.a17r1.b1, spec=5.235;
plot,table=aperture,noline,vmin=0,vmax=10,haxis=s,vaxis=n1,spec,on_elem,style=100;

139

The select command can be used to choose which columns to print in the output file.
Column names: name, n1, n1x_m, n1y_m, apertype, aper_1, aper_2, aper_3, aper_4, rtol, xtol, ytol, s,
betx, bety, dx, dy, x, y, on_ap, on_elem, spec

n1 is the maximum beam size in sigma, while n1x_m and n1y_m is the n1 values in si-units in the x-
and y-direction.

aper_# means for all apertypes but racetrack:
aper_1 = half width rectangle
aper_2 = half heigth rectangle
aper_3 = half horizontal axis ellipse (or radius if circle)
aper_4 = half vertical axis ellipse

For racetrack, the aperture parameters will have the same meaning as the tolerances:
aper_1 and xtol = horizontal displacement of radial part
aper_2 and ytol = vertical displacement of radial part
aper_3 and rtol = radius
aper_4 = not used

On_elem indicates whether the node is an element or a drift, and on_ap whether it has a valid
aperture. The Twiss parameters are the interpolated values used for aperture computation.

When one wants to plot the aperture, the table=aperture parameter is necessary. The normal line of
hardware symbols along the top is not compatible with the aperture table, so it is best to include noline.
Plot instead the column on_elem along the vaxis to have a simple picture of the hardware. Spec can be
used for giving a limit value for n1, to have something to compare with on the plot. This example provides
a plot,

140

where we see the n1, beta functions and the hardware symbolized by on_elem.

Ivar Waarum, 24.02.05 - Mark Hayes, 19.06.02

141

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SixTrack: Produce input files for tracking in SixTrack
In dynamic aperture studies [SixTrack] is often used because of its speed and controllability. However the
input files are notoriously difficult to produce by hand. This command may be used to produce SixTrack
files from a sequence in MAD-X’s memory.

N.B.: The files contain all information concerning optics, field errors and misalignments. Hence these
should all be set and a

TWISS,SAVE;

command should always be issued beforehand.

The generation of the SixTrack input files is then done by the command:

SIXTRACK, CAVALL,
 MULT_AUTO_OFF,
 MAX_MULT_ORD,
 SPLIT,
 APERTURE,
 RADIUS = ref. radius of magnets;

The parameters are defined as:

CAVALL - (optional flag) This puts a cavity element (SixTrack identifier 12) with Volt, Harmonic
Number and Lag attributes at each location in the machine. Since for large hadron machines the
cavities are typically all located at one particular spot in the machine and since many cavities slow
down the tracking simulations considerably all cavities are lumped into one and located at the first
appearance of a cavity. This default is enforced by omitting this flag.
MULT_AUTO_OFF - (optional flag, default = .FALSE.) If .TRUE. this module does not process
zero value multipoles. Moreover, multipoles are prepared in SixTrack (file fc.3) to be treated up to
the order as specified with MAX_MULT_ORD.
MAX_MULT_ORD - (optional parameter, default = 11) Process up to this order for mult_auto_off =
.TRUE..
SPLIT - (optional flag) OBSOLETE. This splits all the elements in two. This is for backwards
compatibilty only. The user should now use the MAKETHIN command instead.
APERTURE - (optional flag) Set this to convert the apertures from MAD-X to SixTrack, so SixTrack
will track with aperture.
RADIUS - (optional, default value is 1m). This sets the reference radius for the magnets. This
argument is optional but should normally be set.
Note: the bv flag is presently ignored
WARNING: SixTrack and c6t are presently set up for names of a maximum of 16 characters!!!!!

142

Therefore, it is mandatory to respect this limit for MAD-X names.

The command will then always produce the following file:

fc.2 - contains the basic structure of the lattice.

and may produce any or all of the following files, depending on the sequence:

fc.3 - contains the multipole mask(s).
fc.3.aux - contains various beam parameters.
fc.8 - contains the misalignments and tilts.
fc.16 - contains the field errors and/or combined multipole kicks.
fc.34 - file with various optics parameters at various locations (not needed by SixTrack but may be
used as input to [SODD].)

For a full description of these files see [SixTrack] and for information on running SixTrack see [Run
Environment].

Mark Hayes 20.06.02

143

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

MAKETHIN: Slice a sequence into thin lenses
This module converts a sequence with thick elements into one composed entirely of thin elemtens as
required by the default MAD-X tracking.

Slicing is done by the MAKETHIN command:

MAKETHIN,SEQUENCE=sequence name,
 STYLE=slicing style;

The parameters are defined as:

SEQUENCE chooses the sequence you wish to slice.
STYLE (optional) chooses the slicing style. The options are:

SIMPLE : this is a simplified slicing algorithm which produces any number of equal strength
slices at equidistant positions with the kick in the middle of each slice.
COLLIM : this is the default slicing for collimators. If only one slice is chosen it is placed in the
middle of the old element. If two slices are chosen they are placed at either end. Three slices or
more are treated as one slice.
[TEAPOT] (default): this is the standard slicing as used by MAD9. N.B. This has a maximum of
four slices for any one object.

By default all elements are converted to one thin element positioned at the center of the thick element. To
get a greater slicing for certain elements use a standard SELECT command with FLAG=MAKETHIN and
CLASS, RANGE or PATTERN:

SELECT,FLAG=MAKETHIN,
 CLASS=class,RANGE=range,
 SLICE=no of slices;

The created thin lens sequence has the following properties:

The created sequence has the same name as the original. The original is therefore no longer available
and has to be reloaded if it is needed again.
The slicer also slices any inserted sequence used in the main sequence. These are also given the same
names as the originals.
Any component changed into a single thin lens has the same name as the original.
If a component is sliced into more than one slice, the individual slices have the same name as the
original component and a suffix ..1 , ..2 , etc... and a marker will be placed at the center with the
original name of the component.

144

Hints:

See the examples for makethin.
Compare the optics before and after slicing with makethin. Consider to increase the number of slices
and rematch after makethin to reach the required accuracy.
Consider to replace rbend by sbend + thin quads taking into account the edge focusing before slicing
with makethin.
The selection works on the current sequence. Consider to insert a "USE,SEQUENCE=.." before
SELECT

Helmut Burkhardt, September 2005

145

http://mad.home.cern.ch/frs/mad-X_examples/makethin/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

DYNAP: Tunes, Tune Footprints, Smear and Lyapunov
Exponent

DYNAP can be called instead of RUN inside a TRACK command:

DYNAP,TURNS=real, FASTUNE=logical,LYAPUNOV=real,MAXAPER:={..,..,..,..,..,..},ORBIT=logical;

For each previously entered start command, DYNAP tracks two close-by particles over a selected number
of turns, from which it obtains the betatron tunes with error, the action smear, and an estimate of the
lyapunov exponent. Many such companion particle-pairs can be tracked at the same time, which speeds up
the calculation. The smear is defined as 2.0 (wxymax - wxymin) / (wxymax + wxy min), where the

wxymin,max refer to the miminum and maximum values of the sum of the transverse betatron invariants

wx+wy during the tracking. The tunes are computed by using an FFT and either formula (18) or formula
(25) of CERN SL/95-84 (AP), depending on whether the number of turns is less-equal or larger than 64.

The arguments have the following meaning:

TURNS: The number of turns to be tracked (default: 64, present maximum: 1024).
FASTUNE: A logical flag. If set, the tunes are computed (default: false).
MAXAPER: If the particle phase-space coordinates exceed certain maximum values, the particle is
considered lost. The maximum aperture is a vector of 6 real numbers (default: (0.1, 0.01, 0.1,0.01,
1.0, 0.1)).
LYAPUNOV: The launch distance between two companion particles added to the x coordinate
(default: 1.e-7 m).
ORBIT: A logical flag. If set, the flag orbit is true during the tracking and its initialization (default:
true). This flag should be set to be true, if normalized coordinates are to be entered.

Example:

BEAM,PARTICLE=ELECTRON,ENERGY=50,EX=1.E-6,EY=1.E-8,ET=0.002,SIGT=1.E-2;
...
USE,PERIOD=FODO;
...
TRACK;
START,X=0.0010,Y=0.0017,PT=0.0003;
DYNAP,FASTUNE,TURNS=1024,LYAPUNOV=1.e-7;
ENDTRACK;
...

The first command defines the beam parameters. It is essential that the longitudinal emittance ET is set.
The command use selects the beam line or sequence. The track activates the tracking module, start enters
the starting coordinates (more than one particle can be defined), dynap finally tracks two nearby particles

146

with an initial distance lyapunov for each start definition over turns revolutions, and endtrack terminates
the execution of the tracking module.

The results are stored in the DYNAP and DUNAPTUNE tables, and can be obtained by the commands

value,table(dynap,smear);

resp.

value,(dynaptune,tunx),(dynaptune,tuny),(dynaptune,dtune);

More generally, all results can be printed to a file, using the commands

write,table=dynap,file;
write,table=dynaptune,file;

The output file ’lyapunov.data’ lists the turn number and phase distance between the two Lyapunov
partners, respectively, allowing for visual inspection of chaoticity.

frankz 20.03.2006

147

http://consult.cern.ch/xwho/people/62690

Fully Coupled Motion and Radiation

EMIT: Equilibrium Emittances
The command

EMIT,DELTAP=real,TOL=tolerance;

adjusts the RF frequencies such as to obtain the specified average energy error. More precisely, the
revolution frequency f0 is determined for a fictitious particle with constant momentum error

DELTAP = deltas = delta(E) / ps c

which travels along the design orbit. The RF frequencies are then set to

fRF = h f0 .

If the machine contains at least one RF cavity, and if synchrotron radiation is on, the EMIT command
computes the equilibrium emittances and other electron beam parameters using the method of [Chao]. In
this calculation the effects of quadrupoles, sextupoles, and octupoles along the closed orbit is also
considered. Thin multipoles are used only if they have a fictitious length LRAD different from zero.

If the machine contains no RF cavity, if synchrotron radiation is off, or if the longitudinal motion is not
stable, it only computes the parameters which are not related to radiation.

The tolerance is for the distinction static/dynamic: if for the eigenvalues of the one-turn matrix, |e_val_5| <
tol and |e-val_6| < tol, then the longitudinal motion is not considered, otherwise it is. The default for TOL
is 1.000001.

In the current implementation, the BEAM values of the emittances and beam sizes are only updated for
deltap = zero. Example:

RFC: RFCAVITY,HARMON...,VOLT=...;
 BEAM,ENERGY=100.0,RADIATE;
 EMIT,DELTAP=0.01;

Remark: This module assumes nearly constant lattice functions inside elements. This assumption works
for many machines, like LEP (see example), but it fails when the lattice funcionts largely vary inside
single elements. In the later case it is advised to slice the elements as shown in ALBA.

R. Tomás Last updated:

148

http://frs.home.cern.ch/frs/mad-X_examples/emit/LEP/
http://frs.home.cern.ch/frs/mad-X_examples/emit/ALBA/
http://consult.cern.ch/xwho/people/69118

Error Definitions
This chapter describes the commands which provide error assignment and output of errors assigned to
elements. It is possible to assign alignment errors and field errors to single beam elements or to ranges or
classes of beam elements.
Elements, classes or ranges of elements are selected by the SELECT command.
ATTENTION: since errors can only be assigned to machine elements, it is necessary to FLATTEN a
sequence if it includes other sequences.
Errors can be specified both with a constant or random values. Error definitions consist of four types of
statements listed below. They may be entered after having selected a beam line by means of a USE
command.
WARNING: any further USE command will destroy the assigned errors. Use the ESAVE option to save
and reload errors.

EALIGN: Define Misalignments
Field Errors

EFCOMP: Components
EOPTION: Set Error Options
EPRINT: List Machine Imperfections
ESAVE: Save Machine Imperfections and read back from file

Werner Herr 18.6.2002

149

http://frs.home.cern.ch/frs/Xdoc/control/seqedit.html#flatten
http://frs.home.cern.ch/frs/Xdoc/error/error_save.html
http://consult.cern.ch/xwho/people/1808

EALIGN: Define Misalignments
Alignment errors are defined by the EALIGN command. The misalignments refer to the local reference
system for a perfectly aligned machine. Possible misalignments are displacements along the three
coordinate axes, and rotations about the coordinate axes. Alignment errors can be assigned to all beam
elements except drift spaces. The effect of misalignments is treated in a linear approximation. A Beam
position monitor can be given read errors in both horizontal and vertical planes. Monitor errors (MREX,
MREY, MSCALX and MSCALY) are ignored for all other elements. Each new EALIGN statement
replaces the misalignment errors for all elements in its range, unless EOPTION,ADD=TRUE has been
entered.

Alignment errors are defined by the statement

SELECT,FLAG=ERROR,RANGE=range,CLASS=name,PATTERN=string;
EALIGN, DX=real,DY=real,DS=real,
 DPHI=real,DTHETA=real,DPSI=real,
 MREX=real,MREY=real,
 MSCALX=real,MSCALY=real,
 AREX=real,AREY=real;

and elements are now selected by the SELECT command. The attributes are:

DX: The misalignment in the x-direction for the entry of the beam element (default: 0 m).
DX>0 displaces the element in the positive x-direction

DY: The misalignment in the y-direction for the entry of the beam element (default: 0 m).
DY>0 displaces the element in the positive y-direction

DS: The misalignment in the s-direction for the entry of the beam element (default: 0 m).
DS>0 displaces the element in the positive s-direction

DPHI: The rotation around the x-axis.
A positive angle gives a greater x-coordinate for the exit than for the entry (default: 0 rad).

DTHETA: The rotation around the y-axis according to the right hand rule (default: 0 rad).

DPSI: The rotation around the s-axis according to the right hand rule (default: 0 rad).

MREX: The horizontal read error for a monitor. This is ignored if the element is not a monitor
If MREX>0 the reading for x is too high (default: 0 m).

MREY: The vertical read error for a monitor. This is ignored if the element is not a monitor
If MREY>0, the reading for y is too high (default: 0 m).

AREX: The misalignment in the x-direction for the entry of an aperture limit (default: 0 m).
AREX>0 displaces the element in the positive x-direction

150

AREY: The misalignment in the y-direction for the entry of an aperture limit (default: 0 m).
AREY>0 displaces the element in the positive y-direction

MSCALX: The relative horizontal scaling error for a monitor. This is ignored if the element is not a
monitor.
If MSCALX>0 the reading for x is too high (default: 0). A value of 0.5 implies the actual reading is
multiplied by 1.5.

MSCALY: The relative vertical scaling error for a monitor. This is ignored if the element is not a monitor.
If MSCALY>0 the reading for y is too high (default: 0). A value of -0.3 implies the actual reading is
multiplied by 0.7.
Example:

SELECT,FLAG=ERROR,CLASS=MQ;
EALIGN,DX=0.002,DY=0.0004*RANF(),DPHI=0.0002*GAUSS();

Assigns alignment errors to all elements of class MQ.

SELECT,FLAG=ERROR,PATTERN="QF.*";
EALIGN,DX=0.001*TGAUSS(2.5),DY=0.0001*RANF();

Assigns alignment errors to all elements starting with "QF". TGAUSS(2.5) means a Gaussian distribution
cut at 2.5 sigma.

Figure 1: Example of Misplacement in the (x, s)-plane.

151

Figure 2: Example of Misplacement in the (x, y)-plane.

Figure 3: Example of Misplacement in the (y, s)-plane.

Figure 4: Example of Read Errors in a monitor

Last updated: 02.9.2002

Werner Herr 18.6.2002

152

http://consult.cern.ch/xwho/people/1808
http://consult.cern.ch/xwho/people/1808

Field Errors
Field errors can be entered as relative or absolute errors. Different multipole components can be specified
with different kinds of errors (relative or absolute). Relations between absolute and relative field errors are
listed below.

In MAD8 two commands were used for that purpose: EFIELD and EFCOMP. Only EFCOMP was
implemented in MAD-X since it provides the full functionality of EFIELD and there was no need for
duplication.

All field errors are specified as the integrated value int(K*ds) of the field components along the magnet
axis in m-i . There is no provision to specify a global relative excitation error affecting all field
components in a combined function magnet. Such an error may only be entered by defining the same
relative error for all field components.

Field errors can be specified for all magnetic elements by the statement

SELECT,FLAG=ERROR,RANGE=range,CLASS=name,PATTERN=string;
EFCOMP, ORDER:=integer,RADIUS:=real,
 DKN:={dkn(0),dkn(1),dkn(2),...},
 DKS:={dks(0),dks(1),dks(2),...},
 DKNR:={dknr(0),dknr(1),dknr(2),...},
 DKSR:={dksr(0),dksr(1),dksr(2),...};

and elements are now selected by the SELECT command. Each new EFCOMP statement replaces the
field errors for all elements in its range (s). Any old field errors present in the range are discarded or
incremented depending on the setting of EOPTION,ADD. EFCOMP defines them in terms of relative or
absolute components.

The attributes are:

ORDER: If relative errors are entered for multipoles, this defines the order of the base component to
which the relative errors refer. This reference strength kref always refers to the normal component. To use

a skew component as the reference the reference radius should be specified as a negative number. The
default is zero.
Please note that this implies to specify k0 to assign relative field errors to a bending magnet since k0 is

used for the normalization and NOT the ANGLE.

RADIUS: Radius R were dknr(i) or dksr(i) are specified for 0...i...20 (default 1 m). This attribute is
required if dknr(i) or dksr(i) are specified. If R is negativ, the skew component is used for the reference
strength.

DKN(i): Absolute error for the normal multipole strength with (2i+2) poles (default: 0 m-i).

DKS(i): Absolute error for the skewed multipole strength with (2i+2) poles (default: 0 m-i).

DKNR(i): Relative error for the normal multipole strength with (2i+2) poles (default: 0 m-i).

153

DKSR(i): Relative error for the skewed multipole strength with (2i+2) poles (default: 0 m-i).

Time memory effects:
The relative errors can be corrected for possible time memory effects. A correction term is computed and
added to the relative error.
The correction term is parametrized as a 3rd order polynomial in the reference strength kref according to:

Delta = sum (c i * k i
ref) i = 0,..3

The coefficients ci for the polynominal must be supplied in the command.

Two additional parameters and options are required:

HYSTER: if it is set to 1 applies the correction term derived from the reference strength and the
coefficients.

HCOEFFN and HCOEFFS: coefficients (normal and skew) for the computation of the correction term.
The 4 coefficients are specified in increasing order, starting with the 0th order. Each group of four
coefficients is valid for one order of the field errors. Trailing zeros can be omitted, preceding zeros must
be given.
Examples:
Example 1 (assign relative errors to quadrupoles);

select, flag=error, pattern="q.*";
efcomp, order:=1, radius:=0.010,
dknr:={0,4e-1,1e-1,2e-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
dksr:={0,4e-1,1e-1,2e-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

Example 2 (add time memory effect to relative errors):

select, flag=error, pattern="^q.*";
efcomp, order=1, radius=0.020, hyster=1,
hcoeffn:={0.000,0.000,0.000,0.000, // coefficients multipole order 0
 0.001,0.000,0.000,0.000, // coefficients multipole order 1
 0.000,0.000,0.002,0.000}, // coefficients multipole order 2
dknr:={0,1e-2,2e-4,4e-5,1e-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
dksr:={0,1e-2,2e-4,4e-5,1e-5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

See also: Random values and deferred expressions.

Werner Herr 6.12.2004

154

http://consult.cern.ch/xwho/people/1808

EPRINT: List Machine Imperfections
This command prints a table of errors assigned to elements. The range for these elements has to be
specified. Field errors are printed as absolute errors, because all relative errors are transformed to the
corresponding absolute error at definition time. An error print is requested by the statement

SELECT,FLAG=ERROR,RANGE=range,CLASS=name,PATTERN=string;
EPRINT;

and elements are now selected by the SELECT command.
A listing for ALL elements, i.e. not only the selected, can be obtained with the command

EPRINT,FULL=TRUE;

In that case, the SELECT command has no effect.

Werner Herr 18.6.2002

155

http://consult.cern.ch/xwho/people/1808

ESAVE: Save Machine Imperfections and read back
from file
Writing errors to a file:
This command saves a table of errors assigned to elements on a file, using a format which can be read in
again to obtain the same results. This allows dumping the errors and reloading them after a new USE
command. The range for these elements has to be specified. An error save is requested by the statement

ESAVE,FILE=string;

Example:

SELECT,FLAG=ERROR,RANGE=range,CLASS=name,PATTERN=string;
ESAVE,FILE=err.file;

and elements selected by the SELECT command are saved to the file.
To save the errors of all elements to a file, one can use:

SELECT,FLAG=ERROR,FULL;
ESAVE,FILE=err.file;

Please note: in case of field errors, the absolute errors are saved and not relative errors.
Setting errors from a table or file:
To assign errors from a file is not a priori straightforward. It may be required to re-assign existing errors
after a USE command was executed (which deletes all errors attached to a sequence).
Errors stored in the form of an internal table (errtab) can be directly attached to the appropriate positions
in the sequence with the command:

SETERR,TABLE=errtab;

The table errtab can be generated internally or from an external file (errfile) with the generic command
READMYTABLE.
The command sequence:

READMYTABLE,file=errfile,table=errtab;
SETERR,TABLE=errtab;

reads the file errfile into the table errtab and the command SETERR attaches the errors to the elements in
the active sequence.
The file errfile can be produced by a preceding ESAVE command or any other utility. It should follow the
format of a file generated with ESAVE (see example program).
Please note:
1. To assign correctly the errors from the file to the elements in the sequence, all elements must have
individual names, otherwise an identification is not possible. Elements in the file not identified in the
active sequence are ignored.
2. Errors are assigned to ALL elements found in the file and the FLAG=ERROR is set. Therefore the
number of elements selected corresponding to a command like:
SELECT, FLAG=ERROR,...;
can be different after the execution of SETERR.

156

Werner Herr 18.6.2002

157

http://consult.cern.ch/xwho/people/1808

The Intra-Beam Scattering Module (IBS)

As emphasized by its name, the Intra-Beam Scattering module (IBS) computes the
contribution to emittance growth rates due to Coulomb scattering of particles within
relativistic beams. The formalism used in this module is that derived by J.D. Bjorken
and S.K.Mtingwa [[Bjorken and Mtingwa]] in 1982. Contrary to other IBS-routines, the
Bjorken-Mtingwa formalism takes into account the variation of the lattice parameters
around the machine, rather than using average values. Consequently, the knowledge of
the optical functions of the machine is required. In MAD-X, this is achieved with the
‘‘ twiss’’ command.

It is well known that the intra-beam scattering growth times behave like:

where C accounts for some constants and the integrals for the scattering functions, N is

the number of particles in the bunch, is the relativistic factor and are the

normalized emittances in the horizontal, vertical and longitudinal plane respectively. It
thus follows that the second required input is a description of the beam parameters,
which is achieved via the ‘‘beam’’ command (see below).

Once the optical functions and the beam parameters have been defined, the evaluation of
the scattering growth times follows via the ‘‘ibs’’ command. The logical follow-up of
the MAD-X commands is illustrated in the two examples provided with the IBS-module.

Input of the beam parameters
This section briefly describes the parameters which have to be present in the ‘‘beam’’
command in order to run the IBS-module:

Type of particle
The parameter ‘‘particle=’’ is mandatory. It can take one of the following three values:
proton, electron or ion. For proton and electron, the parameter ‘‘particle’’ is the only
one to be defined. In case ion is used, two additional parameters have to be defined,
namely ‘‘mass=’’, which is typically the number of nucleons for the corresponding ion

158

multiplied by nmass the unified atomic mass unit [0.931494013 GeV/(c**2)] , and
‘‘charge=’’ for the number of charges.

The energy
The definition of the energy (total, kinetic, total energy of the ions or energy per
nucleon) is a difficult one. In the present approach, the energy is the total energy of the
particle. For ions, the expected input is the proton equivalent energy, i.e. the total
energy a proton would have when circulating in the defined machine. As an illustration,
in the LHC, protons will be injected with an energy of 450 GeV. Consequently, to
evaluate the growth times for Lead ions at injection in the LHC, one has to input
energy=450*charge. Therefore the above example of Lead at the LHC injection energy
may look as follows in the MAD-X input language:

nucleon=208; charge=82;
beam,particle=ion,charge=charge,energy=450*charge,mass=nucleon*nmass;

An important check for the correctness of the input is the printed value of the relativistic
factor . The latter should correspond to:

The number of particles
The number of particles (or number of ions) is defined with the parameter ‘‘npart= ’’.

Beam sizes - Emittances
This part of the input is used to define the normalized emittances (horizontal, vertical
and longitudinal). The required parameters are the physical transverse emittances (ex=
and ey= [m]), the bunch length (sigt= [m]) and the relative energy spread (sige=).

File Attribute
If FILE="file_name" appears MAD-X produces a table and writes on a file for each
element of the machine: ELEMENT NAME, Position S [m], DELS [m] (Length
Difference of consecutive Elements in the Table), TLI (Longitudinal growth time), TXI
(Horizontal growth time), TYI (Vertical growth time).

159

Examples
The two examples provided for the module Intra-Beam Scattering illustrate the
commands required to run the module. The two examples have been selected such as to
highlight the differences between a computation for protons and that for ions. Both
examples compute the IBS growth times at injection into the LHC. The examples are
located at http://frs.home.cern.ch/frs/Xdoc/mad-X.html.

Frank Schmidt 2003-05-23

160

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Matching Module
Before a match operation at least one sequence must be selected by means of a USE command. Matching
is then initiated by the MATCH command. The matching module can act on more than one sequence
simultaneously by specifying more than one sequence when INITIATING the matching mode. From this
command to the corresponding ENDMATCH command MAD accepts the matching commands listed
below. For a mathematical description of the minimisation procedures see [James]. In particular one may
do the following:

Define the sequence(s) the matching module will work on
Set initial conditions for transfer line matching
Define constraints
Define the parameters to be varied
Match by different methods.

The matching commands are described in detail below. Some other commands can also be issued during
matching.

Enter and Leave Matching Mode
MATCH: Initiating the Matching Mode
ENDMATCH: Leave Matching Mode

Define Variable Parameter
VARY: Set Parameter to Vary

Constraint
CONSTRAINT: Simple Constraint
CONSTRAINT: User Defined Variables
WEIGHT: Matching Weights
GLOBAL: Global Constraints
GWEIGHT: Weights for Global Constraints

Matching Methods
LMDIF: Fast Gradient Minimisation
MIGRAD: Gradient Minimisation
SIMPLEX: Simplex Minimisation
JACOBIAN: Newton Minimisation

Expression Matching with USE_MACRO

Matching Examples

161

Oliver Brüning, June, 2002; Riccardo de Maria, February, 2006.

162

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Enter and Leave Matching Mode
Before matching at least one SEQUENCE must be selected by means of a USE command. The matching
module can act on more than one sequence simultaneously by specifying more than one sequence when
INITIATING the matching mode:

Initiating the Matching Module
The ’match’ command can be either used for matching a periodic cell or for matching an insertion to
another part of the machine. Both matching modes are initiated by the MATCH command.

Cell matching:

In the first mode the matching routine is initiated only with one attribute specifying the sequence(s)
the matching module will work on. In this matching mode the periodicity of the optics functions is
enforced at the beginning and end of the selected range.

MATCH, SEQUENCE=’name1’, ’name2’,..,nema-n’;

Insertion matching:

In the second mode, called insertion matching, the matching routine is initiated with two attributes:
one specifying the sequence(s) the matching module will work on and one specifying the initial
conditions of the optic functions for each sequence. In this case the initial values are assumed as
exact.

Specification of Initial Values: The initial values of the optical functions for the insertion
matching can either be specified in form of a SAVEBETA command or by explicitly stating the
individual optic function values after the ’MATCH’ command. The two options can be entered
as

MATCH,sequence=’name1’,’name2’,..,’name-n’,BETA0=’beta01’,’beta02’,..,’beta0n’;

or

MATCH,SEQUENCE=’sequence-name’, BETX=real,ALFX=real,MUX=real,
 BETY=real,ALFY=real,MUY=real,
 X=real,PX=real,Y=real,PY=real,
 DX=real,DY=real,DPX=real,DPY=real,
 DELTAP=real;

> Examples:
Example 1:

163

CELL: SEQUENCE=(...) ;
INSERT: SEQUENCE=(...) ;
USE,PERIOD=cell;
SAVEBETA,LABEL=bini,place=#e;
TWISS,SEQUENCE=cell;
USE,PERIOD=insert;
MATCH,SEQUENCE=insert,BETA0=bini;
CONSTRAINT,SEQUENCE=insert,RANGE=#e,MUX=9.345,MUY=9.876;

This matches the sequence ’INSERT’ with initial conditions to a new phase advance. The
initial conditions are given by the periodic solution for the sequence CELL1.
Example 2:

USE,PERIOD=INSERT;
MATCH,SEQUENCE=insert;
CONSTRAINT,SEQUENCE=insert,RANGE=#e,MUX=9.345,MUY=9.876;

This matches the beam line ’INSERT’ with periodic boundary conditions to a new phase
advance.

The initial conditions can also be transmitted by a combination of a SAVEBETA command and
explicit optic function specifications:

USE,CELL1;
SAVEBETA,LABEL=bini,PLACE=#E;
TWISS,SEQUENCE=CELL1;
USE,PERIOD=LINE1;
MATCH,SEQUENCE=LINE1,BETA0=bini,MUX=1.234,MUY=4.567;

This example transmits all values of the SAVEBETA array ’bini’ as initial values to the
MATCH command and overrides the initial phase values by the given values.

An additional CONSTRAINT may be imposed in other places, i.e. intermediate or end values of the
optics functions at the transition point.

More than one active sequence:

The matching module can act on more than one sequence simultaneously by specifying more than
one sequence after the MATCH command:

MATCH,SEQUENCE=LINE1,CELL1,BETA0=bini1,bini2;

This example initiates the matching mode for the ’LINE1’ and the ’CELL1’ sequence. The Twiss
module function of the two sequences are calculated with fixed initial conditions. The SAVEBETA
array ’bini1’ is used for calculating the optics functions of sequence ’LINE1’ and the SAVEBETA
array ’bini2’ for calculating the optics functions of sequence ’CELL1’. Without the initial conditions
the matching module will work in the CELL mode.

Special speed flag:

The "slow" attribute enforces the old and slow matching procedure. Recently a number of parameter, like
"RE56", have been added to list of matchable parameters. Nevertheless, some parameters might only be
available when using the "slow" attribute.

164

Further attributes of the TWISS statements
are:

RMATRIX: If this flag is used the one-turn map at the location of every element is calculated and
prepared for storage in the TWISS table.
Target values for the matrix elements at certain positions in the sequence can be specified with the
help of the CONSTRAINT command and the keywords: RE, RE11...RE16...RE61...RE66, where
REij refers to the "ij" matrix component.

> Examples:

Example 1:
MATCH,RMATRIX,SEQUENCE=’name’,BETA0=’beta-block-name’;
CONSTRAINT,SEQUENCE=insert,RANGE=#e,RE11=-2.808058321,re22=2.748111197;
VARY,NAME=kqf,STEP=1.0e-6;
VARY,NAME=kqd,STEP=1.0e-6;

This matches the sequence ’name’ with initial conditions to new values for the matrix elements
’RE11’ and ’RE22’ by varying the strength of the main quadrupole circuits.

CHROM: If this flag is used the chromatic functions at the location of every element are calculated
and prepared for storage in the TWISS table.
Target values for the chromatic functions at certain positions in the sequence can be specified with
the help of the CONSTRAINT command and the keywords WX, PHIX, WY, PHIY,....

Leave Matching Mode
The ENDMATCH command terminates the matching section and deletes all tables related to the matching
run.

ENDMATCH;

Oliver Brüning, October, 2003; Riccardo de Maria, January, 2008.

165

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

References

MAD Home Page, MAD-8 User Guide,

1
The Graphical Kernel System (GKS). ISO, Geneva, July 1985. International Standard ISO 7942.

2
B. Autin and Y. Marti. Closed Orbit Correction of Alternating Gradient Machines using a small
Number of Magnets. CERN/ISR-MA/73-17, CERN, 1973.

3
D.P. Barber, K. Heinemann, H. Mais and G. Ripken, A Fokker--Planck Treatment of Stochastic
Particle Motion within the Framework of a Fully Coupled 6-dimensional Formalism for
Electron-Positron Storage Rings including Classical Spin Motion in Linear Approximation, DESY
report 91-146, 1991.

4
R. Bartolini, A. Bazzani, M. Giovannozzi, W. Scandale and E. Todesco, Tune evaluation in
simulations and experiments, CERN SL/95-84 (AP) (1995).

5
J. D. Bjorken and S. K. Mtingwa. Particle Accelerators 13, pg. 115.

6
E. M. Bollt and J. D. Meiss, Targeting chaotic orbits to the Moon through recurrence, Phys. Lett. A
204,373 (1995).

7
P. Bramham and H. Henke. private communication and LEP Note LEP-70/107, CERN.

8
Karl L. Brown. A First-and Second-Order Matrix Theory for the Design of Beam Transport Systems
and Charged Particle Spectrometers. SLAC 75, Revision 3, SLAC, 1972.

9
Karl L. Brown, D. C. Carey, Ch. Iselin, and F. Rothacker. TRANSPORT - A Computer Program for
Designing Charged Particle Beam Transport Systems. CERN 73-16, revised as CERN 80-4, CERN,
1980.

10
A. Chao. Evaluation of beam distribution parameters in an electron storage ring. Journal of Applied
Physics, 50:595-598, 1979.

166

http://www.cern.ch/mad
http://cern.ch/Hans.Grote/mad/mad8/user/mad.html

11
A. W. Chao and M. J. Lee. SPEAR II Touschek lifetime. SPEAR-181, SLAC, October 1974.

12
M. Conte and M. Martini. Particle Accelerators 17, 1 (1985).

13
E. D. Courant and H. S. Snyder. Theory of the alternating gradient synchrotron. Annals of Physics,
3:1-48, 1958.

14
Ph. Defert, Ph. Hofmann, and R. Keyser. The Table File System, the C Interfaces. LAW Note 9,
CERN, 1989.

15
M. Donald and D. Schofield. A User’s Guide to the HARMON Program. LEP Note 420, CERN, 1982.

16
A. Dragt. Lectures on Nonlinear Orbit Dynamics, 1981 Summer School on High Energy Particle
Accelerators, Fermi National Accelerator Laboratory, July 1981. American Institute of Physics,
1982.

17
D. A. Edwards and L. C. Teng. Parametrisation of linear coupled motion in periodic systems. IEEE
Trans. on Nucl. Sc., 20:885, 1973.

18
M. Giovannozzi, Analysis of the stability domain of planar symplectic maps using invariant
manifolds, CERN/PS 96-05 (PA) (1996).

19
H. Grote. GXPLOT User’s Guide and Reference Manual. LEP TH Note 57, CERN, 1988.

20
LEP Design Group. Design Study of a 22 to 130 GeV electron-positron Colliding Beam Machine
(LEP). CERN/ISR-LEP/79-33, CERN, 1979.

M. Hanney, J. M. Jowett, and E. Keil. BEAMPARAM - A program for computing beam dynamics and
performance of electron-positron storage rings. CERN/LEP-TH/88-2, CERN, 1988.

22
R. H. Helm, M. J. Lee, P. L. Morton, and M. Sands. Evaluation of synchrotron radiation integrals.
IEEE Trans. Nucl. Sc., NS-20, 1973.

23
F. James. MINUIT, A package of programs to minimise a function of n variables, compute the
covariance matrix, and find the true errors. program library code D507, CERN, 1978.

167

24
E. Keil. Synchrotron radiation from a large electron-positron storage ring. CERN/ISR-LTD/76-23,
CERN, 1976.

25
D. E. Knuth. The Art of Computer Programming. Volume 2, Addison-Wesley, second edition, 1981.
Semi-numerical Algorithms.

26
J. Laskar, C. Froeschle and A. Celletti, The measure of chaos by the numerical analysis of the
fundamental frequencies. Application to the standard mapping, Physica D 56, 253 (1992).

27
H. Mais and G. Ripken, Theory of Coupled Synchro-Betatron Oscillations. DESY internal Report,
DESY M-82-05, 1982.

28
M. Meddahi, Chromaticity correction for the 108/60 degree lattice, CERN SL/Note 96-19 (AP)
(1996).

29
J. Milutinovic and S. Ruggiero. Comparison of Accelerator Codes for a RHIC Lattice. AD/AP/TN-9,
BNL, 1988.

30
B. W. Montague. Linear Optics for Improved Chromaticity Correction. LEP Note 165, CERN, 1979.

31
Gerhard Ripken, Untersuchungen zur Strahlführung und Stabilität der Teilchenbewegung in
Beschleunigern und Storage-Ringen unter strenger Berücksichtigung einer Kopplung der
Betatronschwingungen. DESY internal Report R1-70/4, 1970.

32
F. Ruggiero, Dynamic Aperture for LEP 2 with various optics and tunes, Proc. Sixth Workshop on
LEP Performance, Chamonix, 1996, ed. J. Poole (CERN SL/96-05 (DI),1996), pp. 132--136.

33
L. C. Teng. Concerning n-Dimensional Coupled Motion. FN 229, FNAL, 1971.

34
U. Völkel. Particle loss by Touschek effect in a storage ring. DESY 67-5, DESY, 1967.

35
R. P. Walker. Calculation of the Touschek lifetime in electron storage rings. 1987. Also SERC
Daresbury Laboratory preprint, DL/SCI/P542A.

168

36
P. B. Wilson. Proc. 8th Int. Conf. on High-Energy Accelerators. Stanford, 1974.

37
A. Wrülich and H. Meyer. Life time due to the beam-beam bremsstrahlung effect. PET-75-2, DESY,
1975.

MAD Home Page, MAD-8 User Guide,

fci, January 23, 1997

169

http://www.cern.ch/mad
http://cern.ch/Hans.Grote/mad/mad8/user/mad.html
http://wwwslap.cern.ch/fci/fci_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Define Variable Parameter

VARY: Define Variable Parameter
A parameter to be varied is specified by the command

VARY,NAME=variable,STEP=real,LOWER=real,UPPER=real;

It has four attributes:

NAME: The name of the parameter or attribute to be varied,
STEP: The approximate initial step size for varying the parameter. If the step is not entered, MAD
tries to find a reasonable step, but this may not always work.
LOWER: Lower limit for the parameter (optional),
UPPER: Upper limit for the parameter (optional).
SLOPE: allowed change rate (optional, available only using JACOBIAN routine). Limit the
parameter to increase (SLOPE=1) decrease (SLOPE=-1) only.
OPT: optimal value for the parameter (optional, available only using JACOBIAN routine).

Examples:

VARY,NAME=PAR1,STEP=1.0E-4; ! vary global parameter PAR1
VARY,NAME=QL11->K1,STEP=1.0E-6; ! vary attribute K1 of the QL11
VARY,NAME=Q15->K1,STEP=0.0001,LOWER=0.0,UPPER=0.08; ! vary with limits

If the upper limit is smaller than the lower limit, the two limits are interchanged. If the current value is
outside the range defined by the limits, it is brought back to range. If a parameter comes outside the limits
during the matching process the matching module resets the parameter to a value inside the limits and
informs the user with a message. If such a ’rescaling’ occurs more than 20 times the matching process
terminates. The user should either eliminate the corresponding parameters from the list of varied
parameters or change the corresponding upper and lower limits before restarting the matching process.
After a matching operation all varied attributes retain their value after the last successful matching
iteration. Using JACOBIAN routine, STRATEGY=3, in case the number of parameters is greater the the
number of constraint, if a parameter comes outside the limits, it is excluded automatically from the set of
variables and a new solution is searched.

Oliver Brüning, June, 2002. Riccardo de Maria, February, 2006.

170

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Constraints

CONSTRAINT: Simple Constraint
Simple constraints are imposed by the CONSTRAINT command. The CONSTRAINT command has three
attributes:

the SEQUENCE entry specifies the sequence for which the constraint applies.
the RANGE entry specifies the position where the constraint must be satisfied. The RANGE can
either be the name of a single element in the sequence or a range between two elements. In the later
case the two element names must be separated by a ’/’: RANGE=nam1/name2
the optics functions to be constrained

The optic functions can be constraint in four different ways:

lower limits: ’BETX > value’ -> type1
upper limits: ’BETX < value’ -> type2
lower and upper limits: ’BETX < value1,BETX > value2’ -> type3
target value: BETX=value -> type 4

In case one element is affected my more than one constraint command the last CONSTRAINT will be
chosen. For example, one can specify the maximum acceptable beta function over a range of the sequence
and specify the target beta function for one element that lies inside this range. In this case one must first
specify the constraint that affects the whole range and then the constraint for the single element. This way
the constraint of the target value overrides the previous constraint on the upper limit for the selected
element. For example, the following constraint statements limit the maximum horizontal beta function
between ’marker1’ and ’marker2’ to 200 meter and require a horizontal beta function of 180 meter at
element ’name1’:

CONSTRAINT,SEQUENCE=sequence-name,RANGE=’marker1’/’marker2’,BETX<200.0;
CONSTRAINT,SEQUENCE=sequence-name,RANGE=’name1’/’marker2’,BETX=100.0;

When the two constraint statements are interchanged the horizontal beta function at element ’name1’ will
only be limited to less than 200 meter and NOT constrained to 100 meter!

The CONSTRAINTS can either be specified with explicit values for the constraints of the optic functions
or via a pre-calculated SAVEBETA module. The first options has the form:

CONSTRAINT,SEQUENCE=sequence-name,RANGE=position,BETX=real,ALFX=real,MUX=real,
 BETY=real,ALFY=real,MUY=real,
 X=real,PX=real,Y=real,PY=real,
 DX=real,DY=real,DPX=real,DPY=real;

171

Here all linear lattice functions (BETX, BETY, ALFX, ALFY, MUX, MUY, DX, DY, DPX, DPY) or
chromatic lattice functions (WX, XY, PHIX, PHIY, DMUX, DUMY, DDX, DDY, DDPX, DDPY) are
constrained at the selected range to the corresponding values.

The second form of the CONSTRAINT command has the form

CONSTRAINT,SEQUENCE=sequence-name,RANGE=position,BETA0=beta0-name,MUX=real,MUY=real

Here all of (BETX, BETY, ALFX, ALFY, MUX, MUY, DX, DY, DPX, DPY) are constrained in the
selected points to the corresponding values of a pre-calculated SAVEBETA module. In the above example
the phases (MUX, MUY) are overridden by the numerical values specified via ’MUX=real’ and
’MUY=real’. Normally ‘‘RANGE’’ refers to a single position.

User Defined Matching Constraints
In addition to the nominal TWISS variables the user can define a limited set of ’user-defined’ variables in
the constrint statement. This allows, for example, the matching of the nromalized dispersion or the
mechanical aperture. The MATCH module allows four user defined variables called: mvar1, mvar2,
mvar3 and mvar4. The variables can be defined according to the general variable declaration rules of
deferred exressions. For example, in order to match the normalized dispersion at a certain location in the
sequence one would first define a variable:

mvar1 := table(twiss,dx)/sqrt(table(twiss,betx));

After that the user has to select the variable for output in the TWISS statement (see TWISS module and
SELECT for more details on the TWISS module and SELECTION statements):

select, flag=twiss, clear;
select, flag=twiss, column=keyword,, name, s, betx, dx, mvar1;
twiss, sequence=’sequence-name’,file=twiss.file;

The variable can now be referenced like any other TWISS variable in the constraint command:

constraint, sequence=’sequence-name’,range=’location’,mvar1=’target-value’;

Matching Weights
The matching procedures try to fulfil the constraints in a least square sense. A penalty function is
constructed which is the sum of the squares of all errors, each multiplied by the specified weight. The
larger the weight, the more important a constraint becomes. The weights are taken from a table of current
values. These are initially set to weight default values, and may be reset at any time to different values.
Values set in this way remain valid until changed again. The command

WEIGHT, BETX=real,ALFX=real,MUX=real,
 BETY=real,ALFY=real,MUY=real,
 X=real,PX=real,Y=real,PY=real,
 DX=real,DPX=real,DY=real,DPY=real;

changes the weights for subsequent constraints. The weights are entered with the same name as the linear
lattice functions orbit coordinate to which the weight applies. Frequently the matching weights serve to

172

select a restricted set of functions to be matched.

Default Matching Weights

name weight name weight name weight name weight name weight name weight

BETX 1.0 ALFX 10.0 MUX 10.0 BETY 1.0 ALFY 10.0 MUY 10.0

X 10.0 PX 100.0 Y 10.0 PY 100.0 T 0.0 PT 0.0

DX 10.0 DPX 100.0 DY 10.0 DPY 100.0 -

WX 10.0 PHIX 10.0 DMUX 100.0 WY 10.0 PHIY 10.0 DMUY 100.0

DDX 10.0 DDPX 100.0 DDY 10.0 DDPY 100.0 -

MVAR1 10.0 MVAR2 10.0 MVAR3 10.0 MVAR4 10.0 -

GLOBAL: Global Matching Constraints
In addition to conventional matching constraints that specify the optics functions at a certain position in
the sequence the user can also constrain global optics parameters such as, for example, the overall
machine tune and the machine chromaticity. Such global optics parameters can be constraint via the
GLOBAL command, having the following syntax:

GLOBAL,SEQUENCE=sequence-name,Q1=real,Q2=real,dQ1=real,dQ2=real,&
 ddQ1=real,ddQ2=real;

Global matching weights can be (re)set by the new GWEIGHT command, having attributes identical to
those of GLOBAL. All the attributes are optional and have the following meaning:

Q1, Q2, dQ1, dQ2
enable a correction of tunes and chromaticities in presence of magnetic imperfections or
misalignments,

ddQ1, ddQ2
enable a correction of nonlinear chromaticities

Oliver Brüning, June, 2002

173

http://bruening.home.cern.ch/bruening/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Matching Methods
MADX currently supports four different matching algorithms:

LMDIF: Fast Gradient Minimisation
The LMDIF command minimises the sum of squares of the constraint functions using their numerical
derivatives:

LMDIF,CALLS=integer,TOLERANCE=real;

It is the fastest minimisation method available in MAD. The command has two attributes:
CALLS: The maximum number of calls to the penalty function (default: 1000).
TOLERANCE: The desired tolerance for the minimum (default: 10**(-6)).

Example:

LMDIF,CALLS=2000,TOLERANCE=1.0E-8;

MIGRAD: Gradient Minimisation
The MIGRAD command minimises the penalty function using the numerical derivatives of the sum
of squares:

MIGRAD,CALLS=integer,TOLERANCE=real,STRATEGY=1;

The command has three attributes:
CALLS: The maximum number of calls to the penalty function (default: 1000).
TOLERANCE: The desired tolerance for the minimum (default: 10**(-6)).
STRATEGY: A code for the strategy to be used (default: 1). Details are given in [James].

Example:

MIGRAD,CALLS=2000,TOLERANCE=1.0E-8;

174

SIMPLEX: Simplex Minimisation
The SIMPLEX command minimises the penalty function by the simplex method:

SIMPLEX,CALLS=integer,TOLERANCE=real;

Details are given in [James]. The command has two attributes:
CALLS: The maximum number of calls to the penalty function (default: 1000).
TOLERANCE: The desired tolerance for the minimum (default: 10**(-6)).

Example:

SIMPLEX,CALLS=2000,TOLERANCE=1.0E-8;

JACOBIAN: Newton Minimisation
The JACOBIAN command minimises the penalty function calculating the Jacobian and solving the
linear problem. A QR or LQ decomposition is performed when the system is over or
under-determined. Before starting the matching routine two optional transformations (COOL and
RANDOM) are performed.

JACOBIAN,CALLS=integer,TOLERANCE=real,REPEAT=integer,STRATEGY=integer,COOL=real,BALANCE=real, random=real;

The command has the attributes:
CALLS: The maximum number of calls to the penalty function (default: 30).
TOLERANCE: The desired tolerance for the minimum (default: 10**(-6)).
REPEAT: The number of call of the JACOBIAN routine (default: 1).
BISEC: Selects the maximum number of iteratation used to determin the step length which
reduces the penalty function during the main iteration. A large number (i.e. 6) reduce the
probability to diverge from the solution, but increase the one for being trapped in a local minum.
STRATEGY: A code for the strategy to be used (default: 3). If STRATEGY=1 the routine resets
the values of the variables which exceeds the limits. If STRATEGY=2 the routine print the
Jacobian and exit without matching. If STRATEGY=3 the routine disables the variables which
exceeds the limits keeping however the number of variables greater or equal to the number of
the constraints.
COOL, BALANCE: The factors which specify the following transformation:

 if "balance" >=0
 newval=(1-cool)*oldval+cool*((1-balance)*maxval+balance*minval)
 else
 newval=(1-cool)*oldval+cool* optval

where newval is the new value after the transformation, oldval is the previous value,
maxval, minval, optval are the maximum value, minimum value, optimal value of the
variable specified in the VARY command.
RANDOM: The factors which specify the following transformation:

175

 newval= (1+ random * rand()) * oldval

where newval is the new value after the transformation, oldval is the previous value,
rand() is a stochastic variable with a uniform (-0.5,0.5) distribution.

Example:

JACOBIAN,CALLS=20,TOLERANCE=1.0E-8,STRATEGY=3,COOL=0.1,BALANCE=0.5,RANDOM=0.01;

Oliver Brüning, June, 2002. Riccardo de Maria, February, 2006.

176

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Introduction
It is possible to match user defined expressions with the USE_MACRO keyword. The general input
structure for a match command is the following:

MATCH,USE_MACRO;
... VARY statements ...
USE_MACRO, NAME=macro1;
 or
macro1: MACRO={ ... madx statements};
CONSTRAINT, expr= "lhs1 < | = | > rhs1";
CONSTRAINT, expr= "lhs2 < | = | > rhs2";
... CONSTRAINT statements ...
MACRO 2 definition
... CONSTRAINT statements ...
MACRO n definition
... CONSTRAINT statements ...
... METHODS statements ...
ENDMATCH;

The algorithm for evaluating the penalty function is the following:

execute the first macro,
evaluate and compute the difference between the lhs and the rhs the first set of expressions,
in case of other macros, evaluates in order the macro and the expressions
the set of differences are minimized by the selected method using the variables defined in the VARY
statements.

Initiating the Matching Module with USE_MACRO
With:

 MATCH,USE_MACRO;

the ’match’ command can be used for matching any expression which can be defined through expression.
It requires a slightly different syntax.

VARY statements
In the USE_MACRO mode the vary statement follows the same rules of the other modes explained in the
section Define Variable Parameter

177

Macro definitions
The macro to be used in the matching routine can be defined in two ways:

using USE_MACRO statement:

 USE_MACRO, NAME=macro1;

defining a new macro on the fly using the usual syntax for macros.

After a macro definition is necessary to define a set of constraints exclusively with the following syntax:

 CONSTRAINT, expr= "lhs = rhs";

or

 CONSTRAINT, expr= "lhs < rhs";

or

 CONSTRAINT, expr= "lhs > rhs";

where "lhs" and "rhs" are well defined MadX expressions. Other set of macro and constraints can be
defined afterwards.

Examples
The following example the USE_MACRO mode can emulate a matching script which uses the normal
syntax.
Normal syntax:

MATCH,SEQUENCE=LHCB1,LHCB2;
 VARY, NAME=KSF.B1, STEP=0.00001;
 VARY, NAME=KSD.B1, STEP=0.00001;
 VARY, NAME=KSF.B2, STEP=0.00001;
 VARY, NAME=KSD.B2, STEP=0.00001;
 GLOBAL,SEQUENCE=LHCB1,DQ1=QPRIME;
 GLOBAL,SEQUENCE=LHCB1,DQ2=QPRIME;
 GLOBAL,SEQUENCE=LHCB2,DQ1=QPRIME;
 GLOBAL,SEQUENCE=LHCB2,DQ2=QPRIME;
 LMDIF, CALLS=10, TOLERANCE=1.0E-21;
ENDMATCH;

USE_MACRO syntax:

MATCH,USE_MACRO;
 VARY, NAME=KSF.B1, STEP=0.00001;
 VARY, NAME=KSD.B1, STEP=0.00001;
 VARY, NAME=KSF.B2, STEP=0.00001;
 VARY, NAME=KSD.B2, STEP=0.00001;
 M1: MACRO={ TWISS,SEQUENCE=LHCB1; };
 CONSTRAINT, EXPR= "TABLE(SUMM,DQ1)=QPRIME";
 CONSTRAINT, EXPR= "TABLE(SUMM,DQ2)=QPRIME";
 M2: MACRO={ TWISS,SEQUENCE=LHCB2; };

178

 CONSTRAINT, EXPR= "TABLE(SUMM,DQ1)=QPRIME";
 CONSTRAINT, EXPR= "TABLE(SUMM,DQ2)=QPRIME";
 LMDIF, CALLS=10, TOLERANCE=1.0E-21;
ENDMATCH;

Oliver Brüning, October, 2003; Riccardo de Maria, February, 2006.

179

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Matching Examples
All matching examples and the related files for executing the MADX sample jobs can be found on the
’afs’ directory under:

/afs/cern.ch/group/si/slap/share/mad-X/test_suite/match/V3.02.03.

Simple Periodic Cell
Match a simple cell to given phase advances:

FIVE-CELL

Simple Periodic Cell
Match the matrix elements of the linear transfer matrix at the end of a sequence 5 periodic cells:

RMATRIX

Transfer line with initial conditions
Match a sequence of 5 periodic cells with initial conditions to given beta-functions at the end of the
sequence:

Transfer line

Global tune matching in a sequence of 5 periodic cells
Match the global tune of a sequence of 5 periodic cells:

Global tune

180

Global tune matching for the LHC
Match the global tune for beam1 of the LHC:

Global tune for the LHC

Global chromaticity matching for the LHC
Match the global chromaticity for beam1 of the LHC:

Global chromaticity for the LHC

Global chromaticity matching for both beams of the LHC
Match the global chromaticity for beam1 and beam2 of the LHC:

Global chromaticity for both beams of the LHC

IR8 insertion matching for beam1 of the LHC
Match the insertion IR8 with initial conditions to given values of the optics functions at the IP and the
end of the insertion:

IR8 insertion matching for beam1 of the LHC

IR8 insertion matching for beam1 of the LHC with upper
limits on the optics functions
Match the insertion IR8 with initial conditions to given values of the optics functions at the IP and the
end of the insertion while limiting the maximum acceptable beta functions over the whole insertion:

IR8 insertion matching for beam1 of the LHC with upper limits for all beta functions inside the insertion

Simultaneous orbit matching at IP8 for beam1 and beam2 of
the LHC
Match simultaneously the orbit of beam1 and beam of the LHC at IP8 with initial conditions to the
same given values at the IP:

181

Orbit matching at IP8 for beam1 and beam2 of the LHC

IR8 beta squeeze for beam1 using JACOBIAN matching
routine
Try to find a beta squeeze for IR8 starting from 10 meters.

Beta squeeze for IR8

Mathching first and second order chromaticity of the LHC
using USE_MACRO option.
Match simultaneously the first and second order chromaticity by defining macros which compute
them using the TWISS command or PTC.

Second order chromaticity

Mathching s position using VLENGTH flag.
match the positions of elements and the total sequence length for a simple sample sequence.

s position matching

Mathching s position using USE_MACRO.
match the positions of elements and the total sequence length for a simple sample sequence using
USE_MACRO.

s position matching

Oliver Brüning, June, 2002; Riccardo de Maria, August, 2007.

182

http://bruening.home.cern.ch/bruening/
http://rdemaria.home.cern.ch/rdemaria/

Orbit Correction
This chapter describes the commands which can be used to correct the closed orbit or a trajectory. The
distorted orbit is taken from an internal or external TFS table.
Purpose of this Module:
The purpose of this orbit module is to provide some basic tools to assess the performance of an orbit
correction system of a machine in the design phase.
Although some interface is available, it cannot and does not provide the full functionality expected from a
dedicated online orbit correction and steering program.

CORRECT: Correction commands and parameters
Activate/Deactivate correctors and monitors
READ/WRITE corrector settings
COPTION: Global Correction Options

Werner Herr 22.10.2008

183

http://consult.cern.ch/xwho/people/1808

CORRECT: Orbit Correction
The CORRECT statement makes a complete closed orbit or trajectory correction using the computed
values at the monitors from the Twiss table.
The CORRECT command has the following format (not all possible options included, some options are
valid only for special algorithms):

CORRECT, ORBIT=myorbit,MODEL=mymodel,TARGET=mytarget,
 FLAG=ring,MODE=lsq,
 MONERROR=integer,MONON=real,MONSCALE=real,
 PLANE=x,COND=integer,RESOUT=integer,
 CLIST=file1,MLIST=file2;

The command CORRECT is set up with defaults which should allow a reasonable correction for most
cases with a minimum of required options (see Example 1 below).
The orbit correction must always be preceded by TWISS commands which generate Twiss tables. The
most recent Twiss table is assumed to contain the optical parameters and the distorted orbits.
The options used in the CORRECT command are:

FLAG: FLAG can be "ring" or "line", either a circular machine or a trajectory is corrected.
Default flag is "ring".
MODE: MODE defines the method to be used for corrections.
Available modes are LSQ, MICADO and SVD. The first performs a least squares minimization using
all available correctors. The mode SVD uses a Singular Value Decomposition to compute a
correction using all available correctors. The latter can also be used to condition the response matrix
for the modes LSQ or MICADO (using COND=1). It is highly recommended to precede a LSQ
correction by a SVD conditioning (set COND=1).
The mode MICADO is a "best kick" algorithm. Naive use or using it with a large number of
correctors (see option NCORR) can give unexpected results. To avoid the creation of local bumps, it
is recommended to precede a MICADO correction by a SVD conditioning (set COND=1).
Default mode is MICADO.
PLANE: If this attribute is x, only the horizontal correction is made; if it is y, only the vertical
correction is made. (This differs from the MAD8 implementation).
Default plane is horizontal.
COND: When COND is 1, a Singular Value Decomposition is performed and the response matrix
CONDitioned to avoid linearly dependent correctors. This can be used to avoid creation of artificial
bumps during a LSQ or MICADO correction (requires some computing time). Please note: this
option is not robust since it depends on parameters which control the determination of singular values
and redundant correctors. These can be set with the commands SNGVAL and SNGCUT. Both
parameters depend on the machine and may need adjustment. Default values are adjusted to large
machines and "reasonable" performance for smaller machines.
NCORR: Only used by the MICADO algorithm. Defines the number of correctors to be used, unless
set to 0 in which case all available correctors are used.
Default is 0 (all available correctors).
SNGVAL: Used to set the threshold for finding singular values with the COND command. (Hint:
smaller number finds fewer singular values).
Use with care !

184

Default is 2.0
SNGCUT: Used to set the threshold for finding redundant correctors with the COND command.
(Hint: larger number finds fewer redundant correctors).
Use with extreme care !
Default is 50.0
MONERROR: When MONERROR is 1, the alignment errors on monitors assigned by EALIGN
MREX and MREY are taken into account, otherwise they are ignored.
Default is 0.
MONSCALE: When MONSCALE is 1, the scaling errors on monitors assigned by EALIGN
MSCALX and MSCALY are taken into account, otherwise they are ignored.
Default is 0.
MONON: MONON takes a real number between 0.0 and 1.0. It determines the number of available
monitors. If the command is given, each monitor is considered valid with a probability MONON. In the
average a fraction (1.0 - MONON) of the monitors will be disabled for the correction, i.e. they are
considered not existing. This allows to study the effect of missing monitors.
Default is 1.0 (100 %).
CORRLIM: A limit on the maximum corrector strength can be given and a WARNING is issued if it
is exceeded by one or more correctors. Please note: the strengths computed by the correction
algorithms are NOT limited, only a warning is printed !
Default is 1.0 mrad.
Normally the last active table provides the orbit to be corrected and the model for the correction. This
can be overwritten by the appropriate options. Optionally, these tables can be given names like in: TWISS,
TABLE=name; (see documentation on TWISS command). To use these named tables, one of the
following optional parameters must be used:
ORBIT: When this parameter is given, the orbit to be corrected is taken from a named table. The
default is the last (named or unnamed) Twiss table.
MODEL: When this parameter is given, the model for the correction is taken from a named Twiss
table. The default is the last (named or unnamed) Twiss table.
TARGET: When this parameter is given, the correction is made to a named target orbit,
pre-computed with a TWISS command. Default is correction to the zero orbit.
Please note: the target orbit is normally computed by MAD within the same job.

Two attributes affect the printing of tables and results:

CLIST=file: Corrector settings (in units of rad) before and after correction printed to file
MLIST=file: Monitor readings (in units of m) before and after correction printed to file
RESOUT: This command outputs the results for all monitors and all correctors in a computer
readable format if its integer argument is larger than 0. The argument is added to the output. Useful
to analyze runs with loops to produce large statistics.
ATTENTION: May produce gigantic outputs for large machines.
TWISSUM: If the argument of twissum is larger than 0, it prints maximum orbit and r.m.s. for both
planes taken from the Twiss summary table in computer readable form. Allows to analyze orbits etc.
at elements that are not monitors or correctors. The argument is added to the output. Only for output:
no correction is made, all other commands are ignored.

185

Obsolete commands or options:

ITERATE, ITERMAX /* Done with loop feature in MAD commands */
THREADER, THRTOL, WRORBIT /* Not part of orbit correction module */
M1LIST, M2LIST /* Replaced by MLIST */
C1LIST, C2LIST /* Replaced by CLIST */
GETORBIT, PUTORBIT /* Replaced by generic TFS access */
GETKICK, PUTKICK /* Replaced by generic TFS access */

EXAMPLES (for complete MAD input files see section on examples):
Example 1 (correct orbit in horizontal plane, taken from most recent Twiss table, using default algorithm
(MICADO)):
CORRECT,PLANE=x;
Example 2 (no correction, only output of Twiss summary):
CORRECT,TWISSUM=1;
Example 3 (correct orbit in horizontal plane, corrector and monitor output on table):
CORRECT,PLANE=x,MODE=lsq,CLIST=corr.out,MLIST=mon.out;
Example 4 (correct orbit in horizontal plane, use alignment and scaling errors, 15% of orbit correctors
faulty): CORRECT,PLANE=x,MONERROR=1,MONSCALE=1,MONON=0.85;

Last updated: 22.10.2008

Werner Herr 14.06.2006

186

http://consult.cern.ch/xwho/people/1808
http://consult.cern.ch/xwho/people/1808

Activate/Deactivate Correctors or Monitors
To provide more flexibility with orbit correction two commands are provided:

USEMONITOR, STATUS=flag,
 [,SEQUENCE=sequence][,RANGE=range][,CLASS=class][,PATTERN=regex]
USEKICK, STATUS=flag,
 [,SEQUENCE=sequence][,RANGE=range][,CLASS=class][,PATTERN=regex]

The purpose of the two commands is:

USEMONITOR: Activates or deactivates a selection of beam position monitors. This command
affects elements of types MONITOR, HMONITOR, or VMONITOR.
USEKICK: Activates or deactivates a selection of orbit correctors. This command affects elements of
types KICKER, HKICKER, or VKICKER.

Both commands have the same attributes:

STATUS: If this flag is true (on), the selected elements are activated. Active orbit monitor readings
will be considered, and active correctors can change their strengths in subsequent correction
commands. Inactive elements will be ignored subsequently.
SEQUENCE: The sequence can be specified, otherwise the currect sequence is used for this
operation.
RANGE, CLASS, PATTERN: The usual selection commands are used to identify the elements for
this operation.

Example:

USE,... ! set working beam line
... ! define imperfections
USEKICK,RANGE=..., OFF; ! deactivate selected correctors
USEMONITOR,RANGE=..., OFF; ! deactivate selected monitors
CORRECT,NCORR=32; ! uses different set of correctors
USEKICK,RANGE=..., OFF; ! deactivate different set of correctors
CORRECT,NCORR=32; ! uses different set of correctors

Werner Herr 18.6.2002

187

http://consult.cern.ch/xwho/people/1808

This page is under construction, options presently only available in MADX development version.

CSAVE: Write orbit correctior settings to file

SETCORR: Set orbit correctior settings
Werner Herr 18.6.2002

188

http://consult.cern.ch/xwho/people/1808

COPTION: Set Orbit Correction Options
The random generator for MAD is taken from [Knuth].
In the orbit program monitors can be randomly disabled and
the correct option command specifies different seeds for random values:

COPTION,SEED=integer,PRINT=2

SEED: Selects a particular sequence of random values.
A SEED value is an integer in the range [0...999999999] (default: 123456789).
SEED alone continues with the current sequence
See also: Random values.
SEED may be an expression.
PRINT: This flag can take integer values and controls the printout.
In general: the higher its value the more printout is produced.
For PRINT=0 no output is produced.
The default value is 1 (Correction summary is given).

Example:

COPTION,SEED=987456321,PRINT=2;

Werner Herr 18.6.2002

189

http://consult.cern.ch/xwho/people/1808

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PLOT
Values contained in MAD-X tables can be plotted in the form column versus column, with up to four
differently scaled vertical axes; furthermore, if the horizontal axis is the position "s" of the elements in a
sequence, then the symbolic machine can be plotted above the curves as well. In certain conditions True
interpolation inside the element is available (through calls to the Twiss module for each slice) . The
"environment" (interpolation, line thickness, annotation size, PostScript format) can be set with the setplot
command.

PLOT

 plot, vaxis=vname1,vname2,..,vnamen,
vaxis1=vname1,vname2,..,vnamen, vaxis2=vname1,vname2,..,vnamen,
vaxis3=vname1,vname2,..,vnamen, vaxis4=vname1,vname2,..,vnamen,
haxis=vname, hmin=real, hmax=real, vmin=reals, vmax=reals, bars=integer,
style=integer, colour=integer, symbol=integer, noversion=logical,
interpolate=logical, noline=logical, notitle=logical, marker_plot=logical,
range_plot=logical, table=table_name, particle=particle1,particle2,..,particlen,
multiple=logical, title=string, range=range, file=file_name_start,
ptc=logical, ptc_table=table_name, trackfile=table_name;

where the parameters have the following meaning:
vaxis: one or several variables from the table to be plotted against the (only) vertical axis.
vaxis1: one or several variables from the table to be plotted against the vertical axis number 1
(out of 4 possible ones).
vaxis2: one or several variables from the table to be plotted against the vertical axis number 2
(out of 4 possible ones).
vaxis3: one or several variables from the table to be plotted against the vertical axis number 3
(out of 4 possible ones).
vaxis4: one or several variables from the table to be plotted against the vertical axis number 4
(out of 4 possible ones).
Important: vaxis and vaxisI are exclusive in their application!
haxis: name of the horizontal variable
hmin: lower horizontal edge
hmax: upper horizontal edge; to be used, both hmin and hmax must be given.
vmin:lower edges of vertical axes, up to four numbers
vmax:upper edges of vertical axes, up to four numbers; both vmin and vmax must be given for
an axis to be effective.
bars: 0 (default) or 1 - in the latter case, all curve points coming from the table are connected

190

with the horizontal axis by vertical bars.
style: 1 (default), 2, 3, or 4: curve style, being solid, dashed, dotted, and dot-dashed; a value of
100 makes MAD-X use these four styles in turn for successive curves in the same plot. If style is 0 no
curve is printed between points. N.B. If symbol and style are null at the same time, style is forced to its
default value (= 1).
colour: 1 (default), 2, 3, , or 5: colour, being black, red, green, blue, and magenta; a value of 100
makes MAD-X use these five colours in turn for successive curves.
symbol: 0 (default), 1, 2, 3, 4, or 5: none, dot, "+", "*", circle, and "x". These symbols are potted
at all curve points; there size may have to be adapted (see below).
noversion: logical, default=false. If set true, the information concerning the madx version and
the date are suppressed from the title. This option frees more space for the user’s title.
interpolate: logical, default=false. Normally the curve points from the table are connected by
straight lines; if "interpolate" is requested, then on-momentum Twiss parameters such as beta, alfa, and
dispersion are interpolated with calls to the Twiss module inside each element, for all other variables
splines are used to smooth the curves.
noline: logical, default=false. If s is the horizontal variable, then the machine will be plotted in
symbolic form above the curve plot (except for tables having been read back into MAD-X). This may
result in a thick black block if the horizontal scale is too large. "noline" allows the user to suppress the
machine plotting.
notitle: logical, default=false. If true, suppresses the title line.
marker_plot: logical, default=false. If true, plotting is done also at the location of marker
elements. This is only useful for the plotting of non-continuous functions like the "N1" from the aperture
module. Beware that the PS file might became very large if this flag is invoked.
range_plot: logical, default=false. Needed to allow to specify a plotting range also for user
defined horizontal axis.
table: name of the table to be plotted from (default: twiss). If it is track, the data to be plotted are
taken from the tracking files generated for each required particle as defined by the attribute
particle. The name of this file has the following format: file name as defined by the attribute
trackfile, the observation point fixed to 1 and the particle number, e.g. testtrack.obs0001.p0003.
If the required file has not been generated by the previous MAD-X command track, no plot is done for
that particle. The plot is obtained through the gnuplot package. N.B. the previous track
command should contain the attribute dump. The tracking plots appends the plots to an existing
file specified via filename appended by .ps. The user should make sure that this file does not
exist before starting a MAD-X run!
particle: one or several numbers associated to the tracked particles for which the specified plot
has to be displayed.
multiple: logical, default=false. If true all the curves generated for each tracked particle are put
on one plot. Otherwise there will be one plot for each particle.
title: plot title string; if absent, the last overall title is used; if no such overall title as well, the
sequence name is used.
range: horizontal plot range given by elements.
file_name: start of the file name for the Postscript file(s). Only the first occurrence of such a
name will be used. Default is "madx" or "madx_track" if the table attribute is track. Depending
on the format (.ps or .eps, see below) the plots will either all be written into one file file_name.ps, or one
per plot into file_name01.eps, file_name02.eps, etc.
ptc: logical, default=false. If set true, the data to be plotted are taken from the table defined by

191

the attribute ptc_table which is expected to be generated previously by the ptc package. The data
belong to the column identified by one of the names set in the definition of the ptc twiss table.
Interpolation is not available and the attribute interpolate has no effect.
ptc_table: name of the ptc twiss table to be plotted from (default: ptc_twiss)
trackfile: first part of the name of the files containing tracking data for each particle (default:
track)

SETPLOT

 setplot,
post=integer,font=integer, lwidth=real,xsize=real,ysize=real,
ascale=real, lscale=real, sscale=real, rscale=real;

where the parameters have the following meaning:
post: default = 1. If =1, makes one PostScript file (.ps) with all plots; if =2, makes one
Encapsulated PostSscript file (.eps) per plot.
font: there are two defaults: 1 for screen plotting: this uses characters made from polygons; -1
for PostScript files; this is Times-Italic. There are various fonts available for positive and
negative integers, best to be tried out, since they will look different on different systems anyway.
GhostView will show strange vertical axis annotations, but the printed versions are normally
OK.
lwidth: default = 1. Allows the user to set the curve line width. Depends on the system as well,
so to be tried out.
xsize: bounding box size for PostScript, default=27 cm.
ysize: bounding box size for PostScript, default=19 cm.
ascale: annotation character height scale factor, default=1.
lscale: axis label character height scale factor, default=1.
sscale: curve symbol (see above) scale factor, default=1.
rscale: axis text character height scale factor, default=1.

RESPLOT

 resplot;

resets all defaults for the setplot command.

hansg, June 17, 2002, rdemaria rdemaria, September 2007.

192

http://www.cern.ch/Hans.Grote/hansg_sign.html
http://cern.ch/rdemaria

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SODD
This command will execute the Second Order Detuning and Distortion as described in the paper of J.
Bengtsson and J. Irwin "Analytical Calculation of Smear and Tune Shift " (SSC-232, February 1990), on
the beam line defined by the last USE command followed by a TWISS command. It is based on the
stand-alone program written by Frank Schmidt in November 1998 - January 1999 who also extended the
analytical computation to the second order distortion (cfr. Beam Physics Note 60 F. Schmidt "SODD: A
physics Guide"). It consists of three parts:

Subroutine detune (launched by the attribute detune)

It calculates the detuning function terms in first and second order in the strength of the multipoles. If the
attribute print_at_end has been set, the following two files (and the corresponding madx tables) are
created :

detune_1_end containing five columns :

1) ’multipole order’, 2) ’(hor., ver. plane => (1/2)’, 3) ’hor. or ver. detuning’, 4) ’order of horizontal
invariant’, 5) ’order of vertical invariant’.

detune_2_end containing five columns :

1) ’first multipole order’, 2) ’second multipole order’, 3) ’horizontal detuning’, 4) ’order of
horizontal invariant’, 5)’order of vertical invariant’.

If the attribute print_all has been set, the following two files (and the corresponding madx tables) are
created :

detune_1_all containing five columns :

1) ’multipole order’, 2) ’(hor., ver. plane => (1/2)’, 3) ’hor. or ver. detuning’, 4) ’order of horizontal
invariant’, 5)’order of vertical invariant’.

detune_2_all containing five columns :

1) ’first multipole order’, 2) ’second multipole order’, 3) ’horizontal detuning’, 4) ’order of
horizontal invariant’, 5) ’order of vertical invariant’.

193

Subroutine distort1 (launched by the attribute distort1)

It calculates the distortion function and the Hamiltonian terms in first order in the strength of the
multipoles. If the attribute print_at_end has been set, the two files (and the corresponding madx tables) are
created :

distort_1_F_end containing eight columns :

1) ’multipole order’, 2) ’cosine part of distortion’, 3) ’sine part of distortion’, 4) ’amplitude of
distortion’, 5) ’j’, 6) ’k’, 7) ’l’, 8) ’m’.

distort_1_H_end containing eight columns :

1) ’multipole order’, 2) ’cosine part of Hamiltonian’, 3) ’sine part of Hamiltonian’, 4) ’amplitude of
Hamiltonian’, 5) ’j’, 6) ’k’, 7) ’l’, 8) ’m’.

If the attribute print_all has been set, the following two files (and the corresponding madx tables) are
created :

distort_1_F_all containing eleven columns :

1) ’multipole order’, 2) ’appearance number in position range’, 3) ’number of resonance’, 4)
’position’, 5) ’cosine part of distortion’, 6) ’sine part of distortion’, 7) ’amplitude of distortion’, 8) ’j’,
9) ’k’, 10) ’l’, 11) ’m’.

distort_1_H_all containing eleven columns :

1) ’multipole order’, 2) ’appearance number in position range, 3) ’number of resonance’, 4)
’position’, 5) ’cosine part of Hamiltonian’, 6) ’sine part of Hamiltonian’, 7) ’amplitude of
Hamiltonian’, 8) ’j’, 9) ’k’, 10) ’l’, 11) ’m’.

Subroutine distort2 (launched by the attribute distort2)

It calculates the distortion function and Hamiltonian terms in second order in the strength of the
multipoles. If the attribute print_at_end has been set, the following two files (and the corresponding madx
tables) are created :

distort_2_F_end containing nine columns :

1) ’first multipole order’,2) ’second multipole order’, 3) ’cosine part of distortion’, 4) ’sine part of
distortion’, 5) ’amplitude of distortion’, 6) ’j’, 7) ’k’, 8) ’l’, 9) ’m’.

distort_2_H_end containing nine columns :

1) ’first multipole order’, 2) ’second multipole order’, 3) ’cosine part of Hamiltonian’, 4) ’sine part of
Hamiltonian’, 5) ’amplitude of Hamiltonian’, 6) ’j’, 7) ’k’, 8) ’l’, 9) ’m’.

194

N. B. The first row of every file is a header containing the names of the columns. This row is absent in the
internal tables.

SODD

sodd,
detune=logical,
distort1=logical,
distort2=logical,
start_stop = start,stop
multipole_order_range = fist,last
noprint = logical
print_all = logical
print_at_end = logical
nosixtrack = logical

where the parameters have the following meaning:
detune : logical, default=false. If true, the detune subroutine is executed.
distort1 : logical, default=false. If true, the distort1 subroutine is executed.
distort2 : logical, default=false. If true, the distort2 subroutine is executed.
start_stop : longitudinal interval of the beam line (in m). start and stop should be given as real numbers.
multipole_order_range : the lowest and the largest multipole order which will be taken in account. first
and last should be given as integers.
noprint : logical, default=false. If true, no file or internal table will be created to keep the results. In this
case the attributes print_all or print_at_end have no effect.
print_all : logical, default=false. If true, the files and internal tables containing results at each multipole
will be generated.
print_at_end : logical, default=false. If true, the files and internal tables containing results at the end of the
position range will be generated.
nosixtrack : logical, default=false. If true, the input file fc.34 will not be generated internally by invoking
the conversion routine of sixtrack and the user should provide it before the execution of the sodd
command.
A more detailed description can be found in

AB-note-2004-069

damico, September 10, 2004

195

http://documents.cern.ch/cgi-bin/setlink?base=internal&categ=ab&id=ab-note-2004-069
http://xwho.web.cern.ch/xwho/people/show/6175

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

GEOMETRIC LAYOUT
The SURVEY command computes the coordinates of all machine elements in a global reference system.
These coordinates can be used for installation. In order to produce coordinates in a particular system, the
initial coordinates and angles can be specified. The computation results are written on an internal table
(survey) and can be written on an external file. Each line contains the coordinates at the end of the
element.
The last "USEd" sequence is used except if another one is specified.

WARNING : in the case a machine geometry is constructed with thick lenses, the circumference will
change if the structure is converted into thin lenses (via the makethin command). This is an unavoidable
feature. ONLY the structure with thick lenses must be used for practical purposes.
INFORMATION : The skew dipole component of a MULTIPOLE element (MULTIPOLE,
KSL={FLOAT}) is NOT taken into account in the survey calculation. You should use a tilted normal
MULTIPOLE or BEND instead.

The survey calculation is launched by a single command line with the following syntax :

SURVEY, x0=double, y0=double, z0=double, theta0=double,
phi0=double, psi0=double,
 file=string, table=string, sequence=string;
parameter meaning default value
 x0 initial horizontal transverse coordinate 0.0
 y0 initial vertical transverse coordinate 0.0
 z0 initial longitudinal coordinate 0.0
theta0 initial horizontal angle 0.0
 phi0 initial vertical angle 0.0
 psi0 initial transverse tilt 0.0
 file name of external file null (default name survey)
 table name of internal table null (default name survey)
sequence name of sequence to be surveyed last used sequence

196

Example : average LHC ring with CERN coordinates.
REAL CONST R0 = 1.0; ! to obtain the average ring
OPTION, -echo, -info;
CALL, file="V6.4.seq.070602"; ! follow this link for the file
OPTION, echo;
BEAM, particle=proton, energy=450, sequence=lhcb1;
USE, period=lhcb1;
! SELECT, flag=survey,clear; ! uncomment if the optional select below is used
! optional SELECT to specify a class and the output columns
! SELECT, flag=survey, class=marker, column=name,s,psi;

SURVEY, x0=-2202.21027, z0=2710.63882, y0=2359.00656, theta0=-4.315508007,
phi0=0.0124279564, psi0=-0.0065309236, file=survey.lhcb1;
WRITE, table=survey; ! to display the results immediately
STOP;
!*********** The external file "survey.lhcb1" can now be read **************
F.Tecker, March 2006

197

http://cern.ch/mad/madx/survey/V6.4.seq.070602
http://frs.home.cern.ch/frs/Xdoc/control/general.html#write

SXF file input and output
The command

SXFWRITE,FILE=filename;

writes the currently (i.e. last) USEd sequence with all alignment and field errors in [SXF] format onto the
file specified. This then represents one "instance" of the sequence, where all parameters are given by
numbers rather than expressions; the file can be read by other programs to get a complete picture of the
sequence.

The command

SXFREAD,FILE=filename;

reads a file in SXF format, stores the sequence away and USEs it(!) in order to keep the existing errors.
The following does therefore work:

Example:

job 1:

! define sequence MYSEQU

use,mysequ;

! add alignment errors and field errors

sxfwrite,file=file;
stop;

job 2:

sxfread,file=file;
twiss;
stop;

hansg, January 24, 1997

198

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

TFS File Format
[TFS] files (Table File System) have been used in the LEP control system. The MAD program knows only
coded TFS files. The TFS format has been chosen for all table output of MAD-X. TFS formatted tables
can be read back into MAD-X, and may then be further processed.

Descriptor Lines
Column Formats
TFS file example

hansg, June 17, 2002

199

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Descriptor Lines
MAD-X writes the following descriptors on all tables:

COMMENT: The current title string from the most recent TITLE command.
ORIGIN: The version of MAD-X used.
DATE: The date of the MAD-X run.
TIME: The wall clock time of the MAD-X run.
TYPE: The type of the table: e.g. TWISS

Additional descriptors exist in the Twiss table, as well as the Track tables.

hansg, June 17, 2002

200

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Twiss TFS file header
The format of the twiss table is best illustrated with an TFS file example.

It should be mentioned that MAD-X allows to access parameters from twiss and other tables using the
table access function.

hansg, June 17, 2002

201

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Column Formats
The column formats used are listed in the TFS columns table.

Table: 1Column Formats used in TFS Tables

C format Meaning C format

%hd Short integer (%8d)

%le Long float (%-18.10g)

%ks String of length k ("\"-18s\"") Table: 1Column Formats used in TFS Tables

Control lines begin with the TFS control character, followed by a blank. Data lines begin with two blanks.
Columns are also separated by one blank character. The column width is chosen such as to accommodate
the large of the column name and the data values of the column.

hansg, June 17, 2002

202

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

TOUSCHEK: Touschek Lifetime and Scattering Rates
The TOUSCHEK module computes the Touschek lifetime and the scattering rates around a lepton or
hadron storage ring, based on the formalism of Piwinski [A. Piwinski, "The Touschek Effect in Strong
Focusing Storage Rings," DESY-98-179; see also Piwinski’s article on Touschek lifetime in the Handbook
of Accelerator Physics and Engineering (A. Chao, M. Tigner, eds.), World Scientific, 1999] .

The syntax of the TOUSCHEK command is:

TOUSCHEK, FILE;

TOUSCHEK should be called after a TWISS command. One or several cavities with rf voltages should be
defined prior to calling TWISS and TOUSCHEK. [Warning: Calling EMIT between the TWISS and
TOUSCHEK commands leads to TOUSCHEK using wrong beam parameters, even if the BEAM
command is reiterated.]

The momentum acceptance is taken from the bucket size taking into account the energy loss per turn U0
from synchrotron radiation. The value of U0 is computed from the second synchrotron radiation integral
synch_2 in the TWISS summ table (synch_2 is calculated only when the TWISS option ’chrom’ is
invoked), using Eq. (3.61) in Matt Sands’ report SLAC-121, which was generalized to the case of several
harmonic rf systems. If synch_2=0, not defined, or not calculated, zero energy loss is assumed.

In the case of several rf systems with nonzero voltages, it is assumed that the lowest frequency system
defines the phase of the outer point on the separatrix when calculating the momentum acceptance, and that
all higher-harmonic systems are either in phase or in anti-phase to the lowest frequency system. (Note: if a
storage rings really uses a different rf scheme, one would need to change the acceptance function in the
routine cavtousch for that ring.)

The arguments have the following meaning:

FILE: The name of the output file (default: ’touschek’)

Example:

BEAM,PARTICLE=PROTON,ENERGY=450,NPART=1.15e11,EX=7.82E-9,EY=7.82E-9,ET=5.302e-5,SIGE=7.164e-4,SIGT=0.1124,RADIATE=TRUE;

...

USE,PERIOD=FODO;

203

...

VRF=400;

...

SELECT,FLAG=TWISS,CLEAR;
TWISS,CHROM,TABLE,FILE;

TOUSCHEK,FILE;

...

The first command defines the beam parameters. It is essential that the longitudinal emittances and bunch
length are set. The command use selects the beam line or sequence. The next command assign a value to
the cavity rf voltage vrf (example name). The select clear previous assignments to the twiss module, twiss
calculates and saves the values of all twiss parameters for all elements in the ring; the touschek command
computes the Touschek lifetime and writes it to the file ’touschek’ (default name).

The results are stored in the TOUSCHEK tables, and can be written to a file (with the default name
’touschek’ in the example above), or values can be extracted from the table using the value command as
follows

value,table(touschek,name),table(touschek,s),table(touschek,tli),table(touschek,tliw),table(touschek,tlitot);

where ’name’ denotes the name of a beamline element, s the position of the center of the element, tli the
instanteneous Touschek loss rate within the element, and tliw the instantaneous rate weighted by the
length of the element divided by the circumference (its contribution to the total loss rate), and tlitot the
accumulated loss rate adding the rates over all beamline elements through the present position. The value
of tlitot at the end of the beamline is the inverse of the Touschek lifetime in units of 1/s.

Also, all results can be printed to a file using the command

write,table=touschek,file;

The MADX Touschek module was developed by Catia Milardi and Frank Zimmermann .

frankz 11.03.2008

204

http://consult.cern.ch/xwho/people/62690

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Twiss Module
The TWISS command causes computation of the [Courant and Snyder] linear lattice functions, and
optionally of the chromatic functions. The coupled functions are calculated in the sense of [Edwards and
Teng]. For the uncoupled cases they reduce to the C and S functions. It operates on the working beam line
defined in the latest USE command. One can also specify either a SEQUENCE="sequence_name" or a
LINE="line_name" on the TWISS command. Moreover, one can restrict the TWISS calculation to a
desired RANGE.

The relative energy error DELTAP may be entered in one of the 2 forms

DELTAP=real{,real}DELTAP=initial:final:step

The first form lists several numbers, which may be general expressions, separated by commas. The second
form specifies an initial value, a final value, and a step, which must be constant expressions, separated by
colons.

Examples:

DELTAP=0.001 ! a single valueDELTAP=0.001,0.005 ! two valuesDELTAP=0.001:0.007:0.002 ! four values

If DELTAP is missing, MAD-X uses the value 0.0.

Further attributes of the TWISS statements are:

CHROM: A logical flag. If set, MAD-X also computes the chromatic functions.

Please note that this option is needed for a proper calculation of the chromaticities in the presence of
coupling!

FILE: If FILE="file_name" appears MAD-X writes a full TFS Twiss table Example TFS Twiss table
on the disk file "file_name". FILE alone is equivalent to FILE="twiss":
TABLE (overrides SAVE): MAD-X creates a full Twiss table in memory and gives it the name
TWISS, unless TABLE="table_name" appears on the command, then it is called table_name. This
table includes linear lattice functions as well as the chromatic functions for all positions. An
important new feature of MAD-X is the possibility to access entries of tables and in particular the
twiss table (see table access).
CENTRE: This flag enforces the calculation of the linear lattice functions at the center of the element
instead of the end of it. Mind you that since this is inside the element the closed orbit includes the
misalignment of the element.
RMATRIX: If this flag is used the the one-turn map at the location of every element is calculated and
prepared for storage in the TWISS table. Using the SELECT command and using the column RE,

205

RE11...RE16...RE61...RE66 these components will be added to the TWISS table, i.e. with "column,
RE" and "column, REij" one gets all or the component "ij" respectively.
SECTORMAP: This flag initiates the calculation of a sector map as described at: SECTORMAP.
SECTORFILE: Used to write SECTORMAPs to the file SECTORFILE="file_name", if missing the
output of SECTORMAP will go to the file "sectormap" with the format as found in SECTORMAP.
KEEPORBIT: The keeporbit attribute (with an optional name, keeporbit="name") stores the orbit
under this name at the start, and at all monitors.
USEORBIT: The useorbit attribute (with an optional name, useorbit="name") uses the start value
provided for the closed orbit search; the values at the monitors are used by the threader.
COUPLE (obsolete) : This MAD8 option can no longer be set since TWISS in MAD-X is always
calculated in coupled mode. MAD-X computes the coupled functions in the sense of [Edwards and
Teng]. For the uncoupled cases they reduce to the C and S functions.
Twiss calculation is 4D only! : The Twiss command will calculate an approximate 6D closed orbit
when the accelerator structure includes an active cavity. However, the calcuation of the Twiss
parameters are 4D only. This may result in apparently non-closure of the beta values in the plane with
non-zero dispersion. The full 6D Twiss parameters can be calculated with the ptc_twiss command.
RIPKEN: This flags will calculate the Ripken-Mais TWISS parameters (beta11, beta12, beta21,
beta22, alfa11, alfa12, alfa21, alfa22, gama11, gamma12, gamm21 and gamm22) using betx, bety, alfx,
alfy, gamax, gamay, R11, r12, R21 and R22 as input.

The tables are suitable for plot. After a successful TWISS run MAD-X creates an implicit table of
summary parameters named "summ" which includes tunes, chromaticities etc (Please note that the chrom
option is needed for a proper calculation of the chromaticities in the presence of coupling!) versus the
selected values of DELTAP. Notice that in MAD-X DELTAP is converted in PT, which is used as
longitudinal variable. Dispersive and chromatic functions are hence derivatives with respects to PT(see
table). These summary parameters can later be accessed via the table access function using the
aforementionned implicit table named "summ". There is no way to change the name of this summary
table.

Twiss Parameters for a Period
The simplest form of the TWISS command is

TWISS, DELTAP=real{,value},CHROM, TABLE=table_name;

It computes the periodic solution for the specified beam line for all values of DELTAP entered (or for
DELTAP = 0, if none is entered).

Example:

USE,period=OCT;TWISS,DELTAP=0.001,CHROM;

This example computes the periodic solution for the linear lattice and chromatic functions for the beam
line OCT. The DELTAP value used is 0.001. Apart from saving computing time, it is equivalent to the
command sequence

206

RING: LINE=(4*(OCT,-OCT)); USE,period=RING; TWISS,DELTAP=0.001,CHROM;

Initial Values from a Periodic Line
It is possible to track the lattice functions starting with the periodic solution for another beam line. If this
is desired the TWISS command takes the form

TWISS, DELTAP=real{,value},LINE=beam-line, MUX=real,MUY=real, TABLE=table_name;

No other attributes should appear in the command. For each value of DELTAP MAD-X first searches for
the periodic solution for the beam line mentioned in LINE=beam-line: The result is used as an initial
condition for the lattice function tracking.

Example:

CELL: LINE=(...);INSERT: LINE=(...); USE,period=INSERT; TWISS,LINE=CELL,DELTAP=0.0:0.003:0.001,CHROM,FILE;

For four values of DELTAP the following happens: First MAD-X finds the periodic solution for the beam
line CELL: Then it uses this solution as initial conditions for tracking the lattice functions of the beam line
CELL: Output is also written on the file TWISS:

If any of the beam lines was defined with formal arguments, actual arguments must be provided:

CELL(SF,SD): LINE=(...);INSERT(X): LINE=(...); USE,period=INSERT; TWISS,LINE=CELL(SF1,SD1);

Given Initial Values
Initial values for linear lattice functions and chromatic functions may also be numerical. Initial values can
be specified on the TWISS command:
TWISS, BETX=real,ALFX=real,MUX=real, BETY=real,ALFY=real,MUY=real, DX=real,DPX=real,DY=real,DPY=real, X=real,PX=real,Y=real,PY=real, T=real,PT=real, WX=real,PHIX=real,DMUX=real, WY=real,PHIY=real,DMUY=real, DDX=real,DDY=real,DDPX=real,DDPY=real, R11=real,R12=real,R21=real,R22=real, !coupling matrix TABLE=table_name, TOLERANCE=real, DELTAP=real:real:real;

All initial values for linear lattice functions and chromatic functions are permitted, but BETX and BETY
are required. Moreover, a beta0 block can be added as filled by the savebeta command or see below. The
lattice parameters are taken from this block, but will be overwritten by explicitly stated lattice parameters.
As entered, the initial conditions cannot depend on DELTAP, and can thus be correct only for one such
value.

Tolerance
This value defines the maximum closed orbit error of all six orbit components during the closed orbit
search. The default value is 1.e-6. The value is only valid for the current twiss command; a permanent
value can be entered via the COGUESS command.

SAVEBETA: Save Lattice Parameters
Initial lattice parameters can be transfered for later commands, in particular for twiss or the match module,
by using the savebeta command sequence.

207

It should be mentioned that parameters can be also accessed from tables using the table access function.

USE,period=...;SAVEBETA,LABEL=name,PLACE=place,SEQUENCE=s_name;TWISS,...;

When reaching the place in the sequence "s_name" during execution of TWISS, MAD-X will save a beta0
block with the label name: This block is filled with the values of all lattice parameters in place. Example
1:

USE,period=CELL;SAVEBETA,LABEL=END,PLACE=#E,SEQUENCE=CELL;TWISS;USE,period=INSERT;TWISS,BETA0=END;

This first example calculates the periodic solution of the line CELL, and then track lattice parameters
through INSERT, using all end conditions (including orbit) in CELL to start.

Example 2:

USE,period=CELL;SAVEBETA,LABEL=END,PLACE=#E,SEQUENCE=CELL;TWISS;USE,period=INSERT;TWISS,BETX=END->BETY,BETY=END->BETX;

This is similar to the first example,but the beta functions are interchanged (overwritten).

frs, 06-Apr-2003. Revised in February 2007.

208

http://cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC Set-up Parameters
The E. Forest s Polymorphic Tracking Code (PTC) is a kick code, allowing a symplectic integration
through all accelerator elements giving the user full control over the precision (number of steps and
integration type) and exactness (full or extended Hamiltonian) of the results. The degree of exactness is
determined by the user and the speed of his computer. The main advantage is that the code is inherently
based on the map formalism and provides users with all associated tools.

The PTC code is actually a library that can be used in many different ways to create an actual module that
calculates some property of interest. Several modules using the PTC code have been presently
implemented in MAD-X. These MADX-PTC modules [b] are executed by the following commands:
ptc_twiss, ptc_normal, ptc_track, ptc_track_line. To perform calculations with these MADX-PTC
commands, the PTC environment must be initialized, handled and turned off by the special commands
within the MAD-X input script.

Synopsis
PTC_CREATE_UNIVERSE, sector_nmul_max=integer, sector_nmul=integer,
ntpsa=logical, symprint=logical;
PTC_CREATE_LAYOUT, time=logical, model=integer, method=integer,
nst=integer, exact=logical, offset_deltap=double,
errors_out=logical, magnet_name=string, resplit=logical,
thin=double, xbend=double, even=logical;
.........................
PTC_READ_ERRORS, overwrite=logical;
.........................
PTC_MOVE_TO_LAYOUT, index=integer;
.........................
PTC_ALIGN;
.........................
PTC_END;

Commands
PTC_CREATE_UNIVERSE;

sector_nmul_max=integer, sector_nmul=integer
Description

The "PTC_CREATE_UNIVERSE" command is needed to set-up the PTC environment.

209

http://cern.ch/mad/madx/ptc_twiss/ptc_twiss.html
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://cern.ch/mad/madx/ptc_track/ptc_track.html
http://cern.ch/mad/madx/ptc_track_line/ptc_track_line.html

Options

Option Meaning
Default
Value

Value
Type

SECTOR_NMUL_MAX

Global variable in PTC needed for exact
sector bends defining up to which order
Maxwell’s equation are solved [a, page
76-77]. The value of SECTOR_NMUL_MAX
must not be smaller than SECTOR_NMUL
otherwise MAD-X stops with an error.

10 integer

SECTOR_NMUL

Global variable in PTC needed for exact
sector bends defining up to which order the
multipole are included in solving Maxwell’s
equation up to order SECTOR_NMUL_MAX.
Multipoles of order N with N >
SECTOR_NMUL and N ≤
 SECTOR_NMUL_MAX are treated a la
SixTrack.

10 integer

NTPSA

This attribute invokes the second DA package
written in C++ and kindly provided by
Lingyun Yang lyyang@lbl.gov. Etienne Forest
has written the wrapper to allow both the use
of the legendary DA packages written in
Fortran by Martin Berz (default) or this new
DA package. It is expected that this DA
package will allow for the efficient calculation
of a large number of DA parameters.

.FALSE. logical

SYMPRINT
This flag allows the supression of the printing
of the check of symplecticity. It is
recommended to leave this flag set to TRUE.

.TRUE. logical

PTC_CREATE_LAYOUT,
 time=logical, model=integer, method=integer,
 nst=integer, exact=logical, offset_deltap=double, errors_out=logical, magnet_name=string,
resplit=logical, thin=double, xbend=double, even=logical;

Description
The "PTC_CREATE_LAYOUT" command creates the PTC-layout according to the
specified integration method and fills it with the current MAD-X sequence defined in the
latest USE command.
The logical input variable time controls the coordinate system that is being used.

Options

210

http://cern.ch/mad/madx/control/general.html#use

Option Meaning
Default
Value

Value
Type

TIME

5D

"time=true":
fifth
coordinate is
PT,
pt =∆E/p0c;

.TRUE. logical

"time=false":
fifth
coordinate
is DELTAP,
δp=∆p/p0

6D

"time=true":
MAD-X
coordinate
system {-ct,
pt }

"time=false":
second PTC
coordinate
system
{-pathlength,
δp}

MODEL
Type of element:
1, 2,or 3.

1 integer

METHOD
Integration order
(2, 4, 6) [a,
Chapter K]

2 integer

NST
Number of
integration steps:
1, 2, 3, .

1 integer

EXACT

Switch to turn on
calculations with
an exact
Hamiltonian,
otherwise the
expanded
Hamiltonian is
used.

.FALSE. logical

OFFSET_DELTAP

Beware: Expert
flag! The relative
momentum
deviation of the
reference
particle
(6D case ONLY).
This option
implies
"totalpath=true".

0.0 double ERRORS_OUT

Flag to write-out multipolar errors in Efcomp
table format. Two tables are filled
"errors_field" and "errors_total". In the first
case only field errors are written out and in the
second one also desired field components are
added. The latter is useful e.g. to include the
strength of correctors. The choice of magnets is
defined by the "magnet_name" attribute (see
below). As usual the tables can be written to
files for later use for read-in via the
"ERRORS_IN" flag:
write,
table=errors_field,file=Your_Errors_Field_File;
write,
table=errors_total,file=Your_Errors_Total_File;
The "ERRORS_IN" flag has precedence over
this "ERRORS_OUT" flag.

.FALSE. logical MAGNET_NAME

Simple selection for
the names of magnet
to be used for an
error write-out using
the "ERRORS_OUT"
flag (see above). In
fact, the errors are
recorded for all
magnets with their
name starting with
the exact string of
"MAGNET_NAME".

NULL string RESPLIT

Flag to
apply the
PTC resplit
procedure.
This is
meant to
create an
"adaptive"
setting of the
"METHOD"
and "NST"
attributes
according to
the strength
of the
quadrupoles
(using the
"THIN"
attribute)
and
separatedly
the dipoles
(using the
"XBEND"
attribute).
Additionally,
there is the
"EVEN"
attribute for
even and
odd number
of splits.

.FALSE. logical THIN

This is the
main
"RESPLIT"
attribute. It is
meant for
splitting
quadrupoles
according to
their strength.
The default of
"THIN=0.001"
has shown in
practice to
work well
without
costing too
much with
respect of
performance.

0.001 double XBEND

This attribute is
meant for
splitting dipoles,
e.g.
"XBEND=0.001".
It is an optional
"RESPLIT"
attribute and
therefore has the
default set to -1,
which means no
splitting. A
splitting by
"XBEND=0.001"
maybe advisable
for dipoles as
well.

-1
(off)

double EVEN

Switch to ensure even
number of splits when
using the PTC
"RESPLIT" procedure.
The default is
"EVEN=TRUE". This is
particularly useful when
one attempts to calculate
"PTC_TWISS" with then
"CENTER_MAGNETS"
option, i.e. if one would
like to calculate the
TWISS parameters in the
center of the element.
Uneven number of splits
will be achieved with
"EVEN=FALSE".

.TRUE. logical

Remarks
TIME: at small energy (β0 <<1), momentum-dependent variables like dispersion will

depend strongly on the choice of the logical input variable "time". In fact, the derivative
(∂/∂δp) and (∂/∂pt) are different by the factor β0 . One would therefore typically choose

the option "time=false", which sets the fifth variable to the relative momentum deviation
δp .

MODEL : 1 for "Drift-Kick-Drift"; 2 for "Matrix-Kick-Matrix"; 3 for
"Delta-Matrix-Kick-Matrix" (SixTrack-code model).
NST: sets the same value for all "thick" elements (l > 0) of a beam-line. Please note, that
each individual element may have its own NST value (see below).

PTC_READ_ERRORS,
 overwrite=logical;

Description
The "PTC_READ-ERRORS" command let’s you read any numbers of "errors_read"
tables READMYTABLE

Options

Option Meaning
Default
Value

Value
Type

OVERWRITE
Flag to either OVERWRITE the read-in errors (on
request by using this flag) or by DEFAULT just
add them to multipole components already present.

.FALSE. logical

Remarks

211

http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/control/general.html#readmytable

PTC_MOVE_TO_LAYOUT,
 index=integer;

Description
Several PTC layouts can be created within a one PTC-"universe". The layouts are
automatically numbered with sequential integers by the MAD-X code. The
"PTC_MOVE_TO_LAYOUT" is used for an activation of a requested layout and the
next PTC commands will be applied to this active PTC layout until a new PTC layout will
be created or activated.

Option

Option Meaning Default Value Value Type

INDEX
Number of the PTC layout to be
activated.

1 integer

PTC_ALIGN;
Description

The "PTC_ALIGN" command is used to apply the MAD-X alignment errors to the
current PTC layout.

PTC_END;
Description

The "PTC_END" command is turning off the PTC environment, which releases all
memory back to the MAD-X world proper;

Additional Options for Physical Elements
[SBEND | RBEND | QUADRUPOLE | SEXTUPOLE | OCTUPOLE | SOLENOID],
 l=double,,tilt=double,, nst=integer, ...,
 knl:={0, double, double,..}, ksl:={0, double, double,..};

Description
1. The full range of normal and skew multipole components on the bench can be
specified for the following physical elements: sbend, rbend, quadrupole, sextupole,
octupole and solenoid. Multipole coefficients are specified as the integrated value
" ∫K ds" of the field components along the magnet axis (see the table below). These
multipole components in PTC are spread over a whole element, if l > 0. This is a
considerable advantage of PTC input compare to MAD-X which allows only thin
multipoles.
2. To preserve the reference orbit of straight elements, dipole components for those
elements are ignored, knl(0)=0, ksl(0)=0.
3. Individual NST values for a particular "thick" element (l > 0) can be specified.
For example, in MAD-X any RF cavity is represented by a single kick, while PTC
splits the RF cavity into (global) NST segments. In this way, PTC considers properly
transit-time effects of the cavity. In case, one wants to reproduce the approximate
results of MAD-X, one can use NST=1 for RF cavity in PTC.

Multipoles on Bench (PTC only)

212

http://cern.ch/mad/madx/Introduction/multipole.html
http://cern.ch/mad/madx/Introduction/multipole.html

Option Meaning
Default
Value

Value
Type

KNL

The
normal
multipole
coefficient

0 [m-1]
double
 array

KSL
The skew
multipole
coefficient

0 [m-1]
double
 array

Remarks
Length l: Bending magnets (sbend, rbend) are treated as "markers", if l = 0.
Additional Field Errors: A full range of multipole field errors can be additionally
specified with EFCOMP command. Errors are added to the above multipole fields
on the bench.

Caution
A user has to understand that PTC exists inside of MAD-X as a library. MAD-X offers the
interface to PTC, i.e. the MAD-X input file is used as input for PTC. Internally, both PTC and
MAD-X have their own independent databases which are linked via the interface.
With the "PTC_CREATE_LAYOUT" command, only numerical numbers are transferred
from the MAD-X database to the PTC database.
Any modification to the MAD-X database is ignored in PTC until the next call to
"PTC_CREATE_LAYOUT".
For example, a deferred expression of MAD-X after a "PTC_CREATE_LAYOUT"
command is ignored within PTC.

Examples
Examples for any MADX-PTC module contain the above PTC set-up commands.

References

a) E. Forest, F. Schmidt and E. McIntosh, Introduction to the Polymorphic Tracking Code ,
CERN-SL-2002-044-AP, KEK report 2002-3, July 2002.

b) F. Schmidt, "‘MAD-X PTC Integration’’, Proc. of the 2005 PAC Conference in Knoxville, USA,
pp.1272.

See Also
ptc_twiss, ptc_normal, ptc_track, ptc_track_line.

V. Kapin (ITEP) and F. Schmidt, March 2006

213

http://cern.ch/mad/madx/error/error_field.html
http://cern.ch/mad/madx/error/error_field.html#efcomp
http://cern.ch/mad/madx/Introduction/expression.html#defer
http://doc.cern.ch/archive/electronic/cern/preprints/sl/sl-2002-044.pdf
http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?200302020
http://cern.ch/Frank.Schmidt/report/MPPE012.pdf
http://cern.ch/mad/madx/ptc_twiss/ptc_twiss.html
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://cern.ch/mad/madx/ptc_track/ptc_track.html
http://cern.ch/mad/madx/ptc_track_line/ptc_track_line.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Overview of MAD-X Tracking Modules
A number of particles with given initial conditions can be tracked through a beam-line or a ring. The
particles can be tracked either for a single passage or for many turns.

While MAD-X [a] is keeping most of the functionality of its predecessor MAD-8, the trajectory tracking
in MAD-X is considerably modified comparing to MAD-8 . The reason is that in MAD8 the thick lens
tracking is inherently not symplectic, which implies that the phase space volume is not preserved during
the tracking, i.e. contrary to the real particle the tracked particle amplitude is either growing or decreasing.

The non-symplectic tracking as in MAD-8 has been completely excluded from MAD-X by taking out the
thick lens part from the tracking modules. Instead two types of tracking modules (both symplectic) are
implemented into MAD-X.

The first part of this design decision is the thin-lens tracking module (thintrack) which tracks symplecticly
through drifts and kicks and by replacing the end effects by their symplectic part in form of an additional
kick on either end of the element. This method demands a preliminary conversion of a sequence with thick
elements into one composed entirely of thin elements (see the MAKETHIN command). The details of its
usage are given on the page "thintrack".

The second part of this design decision is to produce a thick lens tracking module based on the PTC code
[b] that allows a symplectic treatment of all accelerator elements giving the user full control over the
precision (number of steps and integration type) and exactness (full or extended Hamiltonian) of the
results.

The first PTC thick-lens tracking module is named ptc_track. It has the same features as the thin-lens
tracking code (thintrack) except it treats thick-lenses in a symplectic manner.

 There is a second PTC tracking module called the line tracking module (ptc_track_line). It is meant for
tracking particles in CLIC, in fact it treats beam-lines containing traveling-wave cavities and includes a
beam acceleration.

References
a) F. Schmidt, "‘MAD-X PTC Integration’’, Proc. of the 2005 PAC Conference in Knoxville,

USA, pp.1272.
b) E. Forest, F. Schmidt and E. McIntosh, Introduction to the Polymorphic Tracking Code,

CERN-SL-2002-044-AP, KEK report 2002-3, July 2002.
See Also

PTC Set-up Parameters

214

http://cern.ch/mad/madx/mad8web/mad8.html
http://cern.ch/mad/madx/thintrack/thintrack.html
http://cern.ch/mad/madx/makethin/makethin.html
http://cern.ch/mad/madx/thintrack/thintrack.html
http://cern.ch/mad/madx/ptc_track/ptc_track.html
http://cern.ch/mad/madx/thintrack/thintrack.html
http://cern.ch/mad/madx/ptc_track_line/ptc_track_line.html
http://clic-study.web.cern.ch/CLIC-Study/
http://cern.ch/Frank.Schmidt/report/MPPE012.pdf
http://doc.cern.ch/archive/electronic/cern/preprints/sl/sl-2002-044.pdf
http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?200302020
http://cern.ch/mad/madx/ptc_general/ptc_general.html

V. Kapin (ITEP) and F. Schmidt, March 2006

215

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Thin-Lens Tracking Module (thintrack)
The thin-lens tracking module of MAD-X performs element per element tracking of (one to many)
particle trajectories in the last used sequence. Only thin elements are allowed (apart from the element
drift), which guarantees the symplecticity of the coordinate transformation. Any lattice can be converted
into a "thin element" lattice by invoking the makethin command.

Synopsis
TRACK, onepass, deltap= double, dump;
 START, x= double, px= double, y= double, py= double, t= double,
pt= double;
 RUN, turns= integer;
ENDTRACK;

Commands
TRACK, deltap= double, onepass, dump, onetable, file= string; (MAD-X version 1)
TRACK, deltap= double, onepass, damp, quantum, dump, aperture, onetable, file= string;
 (MAD-X version 2)
TRACK, deltap= double, onepass, damp, quantum, dump, aperture, onetable, recloss, file= string;
 (MAD-X version 3)
 [commands];
ENDTRACK;

Description
The TRACK command initiates trajectory tracking by entering the thin-lens tracking
module. Several options can be specified, the most important being dump, deltap and
aperture.
Inside the block TRACK-ENDTRACK a series of initial trajectory coordinates can be
specified by the START command (as many commands as trajectories). This will be usually
done in a while-loop. Note that the coordinates are either canonical coordinates or
action-angle variables!

For usual tracking (single/multi-turn), all coordinates are specified with respect to the
actual closed orbit (possibly off-momentum, with magnet errors) and NOT with
respect to the reference orbit.
If the option onepass is used, the coordinates are specified with respect to the
reference orbit. The name "onepass" might be misleading: Still tracking can be single-
or multi-turn!

The tracking is actually started with the RUN command, where the option turns defines for
how many turns the particles will be tracked in the given sequence.
If the option dump is used, the particle coordinates are written to files at each turn. The

216

output files are named automatically. The name given by the user is followed by
.obsnnnn(observation point), followed by .pnnnn(particle number). Hence filenames look like
track.obs0001.p0001 .
Tracking is terminated by the command ENDTRACK.

Options

Option Meaning Default Value
Value
Type

DELTAP
relative momentum offset for reference
closed orbit (switched off for onepass)

0.0 double

ONEPASS
the sequence is treated as transfer line (no
stability test, ie. no closed-orbit search)

.FALSE.=
closed-orbit search

logical

DAMP
introduce synchrotron damping (needs RF
cavity, RADIATE in BEAM)

.FALSE.= no
damping

logical

QUANTUM
introduce quantum excitation via random
number generator and tables for photon
emission

.FALSE.= no
excitation

logical

DUMP
write the particle coordinates in files (names
generated automatically)

.FALSE.= no file
generated

logical

APERTURE
particle is lost if its trajectory is outside the
aperture of the current element. Notes.

.FALSE.= no
aperture check

logical

ONETABLE write all particle coordinates in a single file
.FALSE.= one file
per particle

logical

RECLOSS
create a table named "trackloss" in memory
with lost particles’ coordinates

.FALSE.= no table logical

FILE name for the track table "track", "trackone" string

UPDATE parameter update per turn
.FALSE.= no
update

string

Remarks
IMPORTANT: If an RF cavity has a no zero voltage, synchrotron oscillations are
automatically included. If tracking with constant momentum is desired, then the voltage of
the RF cavities has to be set to zero. If an RF cavity has a no zero voltage and DELTAP is
non zero, tracking is done with synchrotron oscillations around an off-momentum closed
orbit.

DELTAP

Defining a non-zero deltap results in a change of the beam momentum/energy without
changing the magnetic properties in the sequence. This leads to a new closed orbit, the
off-momentum closed orbit. Particle coordinates are then given with respect to this new
closed orbit, unless the option onepass is used!

217

ONEPASS

If the option onepass is used, no closed orbit is searched, which also means that no stability
test is done. Use this option if you want to get the particles’ coordinates with respect to the reference orbit
rather than the closed orbit. Unfortunately the name is misleading, but for backwards compatibility it is
kept. "onepass" does NOT restrict the tracking to one turn only!

APERTURE

If the aperture option is applied, the apertype and aperture information of each
element in the sequence is used to check whether the particle is lost or not. For further
information on the definition of apertures and different aperture types, see the
documentation of the APERTURE module.
In case no aperture information was specified for an element, the following procedure
will currently take place:
 → No aperture definition for element → Default apertype/aperture assigned
(currently this is apertype= circle, aperture = {0})
 → If tracking with aperture is used and an element with apertype= circle
AND aperture= {0} is encountered, then the first value of the maxaper vector is
assigned as the circle’s radius (no permanent assignment!). See option maxaper for the
default values.
 ⇒ Hence even if no aperture information is specified by the user for certain
elements, default values will be used!

RECLOSS

Traditionally, when a particle is lost on the aperture, this information is written to stdout.
To allow more flexible tracking studies, the lost particles’ coordinates and further
information can also be saved in a table in memory. Usually one would save this table to a
file using the WRITE command after the tracking run has finished. The following
information is available in the TFS table "trackloss":

Particle ID (number)
Turn number
Particle coordinates (x,px,y,py,t,pt)
Longitudinal position in the machine (s)
Beam energy
Element name, where the particle is lost

UPDATE

Changed behaviour for time variation in tracking. Use track command option ’update’
(e.g.: ’track, onepass, update;’) to use the following additions:

Introduced special variable (’tr$turni’) that can be used in expressions like ’KICK:=
sin(tr$turni)’ and is updated at each turn during tracking.
Introduced special macro (’tr$macro’) that can be user-defined (’tr$macro(turn):
macro = {whatever depending on turnnumber;};’) and is executed/updated at each
turn during tracking. (Macro is necessary e.g. for table access.)

218

START, x= double, px= double, y= double, py= double, t= double, pt= double;
START, fx= double, phix= double, fy= double, phiy= double, ft= double, phit= double;

Description
After the TRACK command, a series of initial trajectory coordinates has to be given by
means of a START command (as many commands as trajectories). The coordinates can be
either canonical coordinates,
START, X= double, PX= double, Y= double, PY= double, T= double, PT= double;
or action-angle coordinates,
START, FX= double, PHIX= double, FY= double, PHIY= double, FT= double, PHIT=
double;
For this case the normalised amplitudes are expressed in number of r.m.s. beam size FX ,

FY , FT (the actions being computed with the emittances in the BEAM command) in each
mode plane. The phases are PHIX , PHIY and PHIT expressed in radian. In the uncoupled

case, we have in the plane mode labelled z,
Z = Fz sqrt(Ez) cos(PHIz), Pz= Fz sqrt(Ez) sin(PHIz),

where Ez is the r.m.s. emittance in the plane Z.

Options

Option Meaning
Default
Value

Value
Type

Unit

X, PX, Y, PY, T, PT canonical coordinates 0.0 double m

FX, PHIX, FY, PHIY, FT,
PHIT

action-angle
coordinates

0.0 double rad

Remarks
For usual tracking (single/multi-turn), all coordinates are specified with respect to the
actual closed orbit (possibly off-momentum, with magnet errors) and NOT with
respect to the reference orbit.
If the option onepass is used, the coordinates are specified with respect to the
reference orbit. The name "onepass" might be misleading: Still tracking can be single-
or multi-turn!

OBSERVE, place= string;
Description

Coordinates can be recorded at places that have names. Such observation points are
specified by the command OBSERVE (as many commands as places). The output files are
named automatically. The name given by the user is followed by .obsnnnn(observation
point), followed by .pnnnn(particle number). Hence filenames look like
track.obs0001.p0001 .

Options

Option Meaning Default Value Value Type

PLACE name of the observation point string

219

Remarks
If no OBSERVE command is given, but the dump option in the TRACK command is used,
the particles trajectory coordinates are still recorded. The observation point is then the
starting point of the sequence.

RUN, maxaper= double array, turns= integer, ffile= integer;
Description

The actual tracking itself is launched by the RUN command. Via the option turns the user
can specify how many turns will be tracked.

Options

Option Meaning Default Value Value Type

MAXAPER
upper limits for the six
coordinates

{0.1, 0.01, 0.1, 0.01, 1.0,
0.1}

double
array

TURNS number of turns 1 interger

FFILE
periodicity for printing
coordinates

1 interger

Remarks
The limits defined by the maxaper option are only being taken into account if the aperture
option of the TRACK command is used.

Remarks
Plotting is possible in MAD-X, however it can also be done externally by using the files created
by TRACK.
The following internal tables are created while tracking:
tracksumm , trackloss , and trackone or track.obs$$$$.p$$$$ (depending on
option onetable).
These internal tables can be accessed via the table-access functions.

See Also
APERTURE, MAKETHIN

A. Koschik, February 2007

220

http://consult.cern.ch/xwho/people/74251

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Thick-Lens Tracking Module
(PTC-TRACK Module)

The PTC-TRACK module [a] is the symplectic thick-lens tracking facility in MAD-X [b]. It is based on
PTC library written by E.Forest [c]. The commands of this module are described below, optional
parameters are denoted by square brackets ([]). Prior to using this module the active beam line must be
selected by means of a USE command. The general PTC environment must also be initialized.

Synopsis
PTC_CREATE_UNIVERSE;
PTC_CREATE_LAYOUT, model=integer,method=integer, nst=integer,
[exact];
..........................
PTC_START,;
..........................
PTC_OBSERVE,....;
..........................
PTC_TRACK,;
..........................
PTC_TRACK_END;
..............................
PTC_END;

Commands
PTC_START,
 x=double, px=double, y=double, py=double, t=double, pt=double,
 fx=double, phix=double, fy=double, phiy=double, ft=double, phit=double ;

Description
To start particle tracking, a series of initial trajectory coordinates has to be given by means
of PTC_START command (as many commands as trajectories). It must be done before the
PTC_TRACK command. The coordinates can be either canonical coordinates (x, px, y, py,
t, pt) or action-angle coordinates (fx, phix, fy, phiy, ft , phit), which are expressed by the
normalized amplitude, Fz and the phase, Φz for the z-th mode plane (z={x,y,t}). The

actions are computed with the values of the emittances, Fz, which must be specified in the

preceding BEAM command. Fz are expressed in number of r.m.s. beam sizes and Φz are

expressed in radians.

221

http://cern.ch/mad/madx/control/general.html#use
http://cern.ch/mad/madx/ptc_general/ptc_general.html
http://cern.ch/mad/madx/Introduction/tables.html#canon
http://cern.ch/mad/madx/Introduction/beam.html

Options

Option Meaning Default Value Value Type

X, PX, Y, PY, T, PT canonical coordinates 0.0 double

FX, PHIX, FY, PHIY, FT, PHIT action-angle coordinates 0.0 double

Remarks
1. If the option closed_orbit in the PTC_TRACK command is active (see below), all
coordinates are specified with respect to the actual closed orbit (possibly off-momentum
with magnet errors) and NOT with respect to the reference orbit. If the option closed_orbit
is absent, then coordinates are specified with respect to the reference orbit.
2. In the uncoupled case, the canonical and the action-angle variables are related with
equations
z= Fz(Ez)1/2cos(Φz), pz= Fz(Ez)1/2sin(Φz).

3. The use of the action-angle coordinates requires the option closed_orbit in the
PTC_TRACK command.

4. If both the canonical and the action-angle coordinates are given in the PTC_START
command, they are summed after conversion of the action-angle coordinates to the
canonical ones.

PTC_OBSERVE,
 place=string;

Description
Besides of the beginning of the beam-line, one can define an additional observation points
along the machine. Subsequent PTC_TRACK command will then record the tracking data
on all these observation points.

Option

Option Meaning
Value
Type

PLACE

name of
observation
point
(markers
are very
much
preferred)

string

Remarks
1. The first observation point at the beginning of the beam-line is marked as "start" .
2. It is recommended to use labels of markers in order to avoid usage observations at the
ends of thick elements.
3. The data at the observation points other than at "start" can be produced by two different
means:
a) traditional (MADX) element-by-element tracking (use option element_by_element);

222

http://cern.ch/mad/madx/Introduction/label.html
http://cern.ch/mad/madx/Introduction/marker.html
http://cern.ch/mad/madx/thintrack/thintrack.html

b) coordinate transformation from "start" to the respective observation point using
high-order PTC transfer maps
(required option closed_orbit; turned off options radiation and element_by_element).

PTC_TRACK,
 deltap=double, icase=integer, closed_orbit, element_by_element, turns=integer,
 dump, onetable, maxaper=double array, norm=integer, norm_out,
 file[=string], extension=string, ffile=integer,
 radiation, radiation_model1, radiation_energy_loss, radiation_quadr,
 beam_envelope, space_charge;

Description
The PTC_TRACK command initiates trajectory tracking by entering the thick-lens tracking
module. Several options can be specified, the most important are presented in table "Basic
Options". There are also switches to use special modules for particular tasks. They are
presented in the table "Special Switches".
The tracking can be done element-by-element using the option element-by-element, or
"turn-by-turn" (default) with coordinate transformations over the whole turn. Tracking is
done in parallel, i.e. the coordinates of all particles are transformed through each beam
element (option element-by-element) or over full turns.
The particle is lost if its trajectory is outside the boundaries as specified by maxaper option.
In PTC, there is a continuous check, if the particle trajectories stays within the aperture
limits.
The Normal Form calculations (required option closed_orbit) is controlled by norm_no and
norm_out are used.

Basic Options

223

ICASE

DELTAP

CLOSED_ORBIT

ELEMENT_BY_ELEMENT

TURNS

DUMP

ONETABLE

MAXAPER

NORM_NO

NORM_OUT

FILE

EXTENSION

FFILE

Remarks
ICASE: has a highest priority over other options:
 a) RF cavity with non-zero voltage will be ignored for icase=4, 5;
 b) A non-zero deltap will be ignored for icase=4, 6.
However, if RF cavity has the voltage set to zero and for icase=6, the code sets icase=4.
DELTAP: is ignored for icase=6, but the option offset_deltap of the command
PTC_CREATE_LAYOUT may be used, if
the reference particle should have an momentum off-set as specified by offset_deltap.
CLOSED_ORBIT : It must be used for closed rings only. This option allows to switch ON
the Normal Form analysis, if required. If CLOSED_ORBIT is off, the sequence is treated
as a transfer line.
NORM_NO=1: makes the Normal Form linear (always true for MAD8/X).
FILE : The output file endings are: .obsnnnn(observation point), followed by .pnnnn
(particle number),

224

http://cern.ch/mad/madx/ptc_general/ptc_general.html
http://cern.ch/mad/madx/ptc_general/ptc_general.html

if the onetable option is not used.
Special Switches

Option Meaning
Default
 Value

Value
 Type

RADIATION

turn on the
synchrotron
radiation
calculated by an
internal
procedure of
PTC

.FALSE. logical

RADIATION_MODEL1

switch to turn on
the radiation
according to the
method given
in the Ref. [d]

.FALSE. logical

RADIATION_ENERGY_LOSS
adds the energy
loss for
radiation_model1

.FALSE. logical

RADIATION_QUADR

adds the
radiation in
quadrupoles.
It supplements
either radiation,
radiation_model1

.FALSE. logical

BEAM_ENVELOPE

turn on the
calculations
of the beam
envelope with
PTC

.FALSE. logical

SPACE_CHARGE
(under construction)

turn on the
simulations of
the
space charge
forces between
particles.

.FALSE. logical

Remarks
1. RADIATION: Has precedence radiation model1.
2. RADIATION_MODEL1 : Additional module by F. Zimmermann. The model simulates
quantum excitation via a random number generator and tables for photon emission. It can
be used only with the element-by-element tracking (option element-by-element).
3. RADIATION_ENERGY_LOSS: Of use for radiation_model1.
4. BEAM_ENVELOPE: It requires the options radiation and icase=6.
5. SPACE_CHARGE: This option is under construction and is reserved for future use.

225

PTC_TRACK_END;
Description

The PTC_TRACK_END command terminate the command lines related to the
PTC_TRACK module.

TRACKSUMM table

 The starting and final canonical coordinates are collected in the internal table "tracksumm"
(printed to the file with WRITE command).

Examples
Several examples are found on the here.

The typical tasks

 The following table facilitates the choice of the correct options for a number of tasks.

CLOSED_ORBIT

ELEMENT_BY_ELEMENT

PTC_START, X, PX, ...

PTC_START, FX, PHIX,

NORM_NO

NORM_OUT

PTC_OBSERVE

RADIATION

RADIATION_MODEL1

RADIATION_ENERGY_LOSS

RADIATION_QUAD

BEAM_ENVELOPE

SPACE_CHARGE

1) The tracking of a beam-line with default parameters.
2) As 1), but with element-by-element tracking and an output at observation points.
3) Tracking in a closed ring with closed orbit search and the Normal Forms calculations.
Both canonical and action-angle input/output coordinates are possible. Output at observation points is
produced via PTC maps.
4) Similar to "3)" except that output at observation points is created by element-by-element tracking.
5) The with PTC radiation.

References for PTC-TRACK

226

http://cern.ch/mad/madx/control/general.html#write
http://frs.home.cern.ch/frs/mad-X_examples/ptc_track

a) V. Kapin and F. Schmidt, PTC modules for MAD-X code, to be published as CERN internal note by
the end of 2006

b) F. Schmidt, "‘MAD-X PTC Integration’’, Proc. of the 2005 PAC Conference in Knoxville, USA,
pp.1272.

c) E. Forest, F. Schmidt and E. McIntosh, Introduction to the Polymorphic Tracking Code, KEK report
2002-3, July 2002

d) G.J. Roy, A new method for the simulation of synchrotron radiation in particle tracking codes,
Nuclear Instruments & Methods in Phys. Res., Vol. A298, 1990, pp. 128-133.

See Also
Overview of MAD-X Tracking Modules, PTC Set-up Parameters, thintrack, PTC-TRACK
Examples.

V. Kapin (ITEP) and F. Schmidt, July 2005; revised in April, 2006

227

http://cern.ch/Frank.Schmidt/report/MPPE012.pdf
http://cern.ch/mad/madx/tracking/tracking.html
http://cern.ch/mad/madx/ptc_general/ptc_general.html
http://cern.ch/mad/madx/thintrack/thintrack.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_track
http://frs.home.cern.ch/frs/mad-X_examples/ptc_track

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_TRACKLINE

PERFORMS A PARTICLE TRAJECTORY TRACKING
WITH ACCELERATION USING PTC

USER MANUAL

SYNOPSIS

PTC_TRACKLINE,
turns [integer, 1, 0] ,
onetable [logical, false, true],
everystep [logical, false, true],
tableallsteps [logical, false, true],
gcs [logical, false, true],
file [string, "track", "track"],
rootntuple [logical, false, true],
extension [string, "", ""];

228

Parameter
Name

Type
Default value Description

Not
present

Present,
but value

not
specified

turns integer 1 - Number of turns

onetable logical false true If false, tracking data are written to a single table for each
track for each observation point. Table names follow the
naming filename.obsMMMM.pNNNN, where
filename is settable prefix with file parameter (see below),
MMMM is observation point number and
NNNN is track number

If true, all data are written to single table called onetable

file string "track" "track" Name of file where track parameters are written, see
description of onetable switch above

rootntuple logical false true Stores data to ROOT file as ntuple. Accessible only if
RPLOT plugin is available. i.e. only if madxp is
dynamically linked and RPLOT plugin is present

everystep logical false true Switches on track parameters recording every integration
step. Normally tracking data are stored only at the end of
each element. Everystep mode allows the user to get finer
data points. It implies usage of the so called node (thin)
layout.

Track parameters are stored for each step in
thintracking_ptc.txt file. Storage of parameters in a table
for each step might be very memory consuming. To switch
it off use tableallsteps

Collective effects can be taken to the account only using
this mode (this feature of PTC is not interfaced into
MAD-X).

gcs logical false true Instructs the code to store track parameters in Global
Coordinate System - normally it starts at the entrance
phase of the first element.

229

Description

This MAD-X command performs ray tracking that takes to the account acceleration in traveling wave
cavities. It must be invoked in the scope of correctly initialized PTC environment, i.e. after
PTC_CREATE_UNIVERSE and PTC_CREATE_LAYOUT commands and before corresponding
PTC_STOP . All tracks that are spawned with PTC_START commands beforehand PTC_TRACKLINE
command is issued are tracked. Track parameters are dumped at every defined observation point (see
PTC_OBSERVE command). Please note that MAD-X always creates observation point at the end of a
sequence. Depending on value of onetable switch, all output information is stored in one table (and also
file), or in one table per track per observation point is written if the switch is false. The user must note that
track parameters plotting (see PLOT command) is only possible if onetable switch is set to false (status as
for Feb. 2006). This unfortunate solution is the legacy of the regular MAD-X track command, that is
designed for circular machines where the user usually tracks a few particles for many turns rather then
many particles for one turn each.

Tracks that do not fit in aperture are immediately stopped.

Behavior of PTC calculations can be adapted with PTC_SETSWITCH command and with appropriate
switches of PTC_CREATE_LAYOUT command.

Command parameters and switches

turns
integer, default value 1, no default value if value explicitly not specified

Number of turns around sequence. If layout is not closed then its value is enforced to 1.

onetable
boolean, default value false, if value explicitly not specified then true

If true then only one table is created and one file is written to disk. If false one file per track per
observation point is written. File format is filename.obsNNNN.pMMMM, where NNNN and
MMMM are numbers of observation point and track, respectively. Filename is defined by the switch
described below.

file
character string, default is "track"

name of file where track parameters are written, see description of onetable switch above.

PROGRAMMERS MANUAL
The routine PTC_TRACKLINE is implemented in file madx_ptc_trackcavs.f90 Its single parameter is the
number of observation points.

The call sequence from MAD-X interpreter is the following
exec_command in madxp.c;
pro_ptc_trackline in madxn.c; This routine creates appropriates tables where the track parameters are

230

http://cern.ch/mad/madx/ptc_general/ptc_general.html

stored, and after execution of the Fortran routine dumps filled table(s) to files.
w_ptc_trackline_ in wrap.f90; Just interface to the appropriate Fortran module
ptc_trackline in madx_ptc_trackline.f90

The key routine that enables appropriate calculation of beam and track parameters in the presence of
traveling wave cavities is setcavities.

Firstly, the ptc_trackline routine finds out which are the observation points. For this purpose array of
integers observedelements is allocated. Its length is equal to the number of elements in the sequence. All
elements are zero by default. If an element with an index n is an observation point then
observedelements[n] is equal to 1. This solution enables fast checking if track parameters should be sent to
a table after a given element.

Further setcavities subroutine is called if it was not executed yet before.

PTC_TRACKLINE reads the track initial parameters from the table with the help of gettrack function
(implemented in C in file madxn.c). For the performance reasons gettrack creates a two dimensional array
and buffers there all the initial track parameters upon first call. The array is destroyed with a call of
deletetrackstrarpositions function that is performed at the very end of ptc_trackline subroutine.

Tracking itself is implemented in a doubly nested loop. The external one goes over all initiated tracks, and
the internal one performs tracking of a given track element by element. The key PTC routine is called
TRACK. It propagates a track described by an array of 6 real numbers, denoted as X in equations below.
The important issue is that they are the canonical variables. In order to follow the standard MAD-X
representation the values that are written to tables and files are scaled appropriately to the reference
momentum for a given element. In the general case it changes along the line if traveling wave cavities are
present. Hence, momenta xp, yp and zp are

zp=sqrt((1+x(5))**2 - x(2)**2 - x(4)**2)
xp = x(2)/zp
yp = x(4)/zp

where array x containing 6 elements is the track position in the PTC representation, i.e. x(1) is horizontal
spacial coordinate, x(2) - horizontal momentum, x(3) - vertical spacial coordinate, x(4) - vertical
momentum, x(5) - δp/p0c, x(6) - longitudinal coordinate (caution, the exact meaning depends on the PTC

settings, see PTC_SETSWITCH command).

231

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_SETSWITCH

routine that sets the internal PTC switches

USER MANUAL

SYNOPSIS

PTC_SETSWITCH,
debuglevel = [i,0],
maxacceleration = [l, true, true],
exact_mis = [l, false, true],
totalpath = [l, false, true],
radiation = [l false, true],
fringe = [l, false, true],
time = [l, true, true];

Description

Using this command the user can set switches of PTC and the MAD-X-PTC interface, adapting this way
the program behavior to his needs.

Command parameters and switches

debuglevel
integer, default value 1, no default value if value explicitly not specified

Sets the level of debugging printout 0 none, 4 everything
maxacceleration

logical, default true, if value explicitly not specified then true

Switch saying to set cavities phases so the reference orbit is always on the crest, i.e. gains max
energy

exact_mis
logical, default false, true if value explicitly specified

Switch ensures exact misalignment treatment.
totalpath

logical, default false, true if value explicitly specified

232

If true, the 6th variable of PTC, i.e. 5th of MAD-X is the total path. If false it is deviation from the
reference particle, which is normally the closed orbit for closed layouts.

radiation
logical, default false, if value explicitly not specified then true:

Sets the radiation switch/internal state of PTC.
fringe

logical, default false, true if value explicitly specified:

Sets the fringe switch/internal state of PTC. If true the influence of the fringe fields is evaluated for
all the elements.

Please note that currently fringe fields are always taken to the account for some elements (f.g.
traveling wave cavities) even if this flag is set to false. The more detailed list of the elements will be
provided later, when the situation in this matter will be definitely settled.

time
logical, default true, if value explicitly not specified then true :

If true, Selects time of flight rather than path length. (cT to be precise) as the 6th variable of PTC, i.e.
5th of MAD-X.

PROGRAMMERS MANUAL
Values of the switches are stored in Fortran 90 module mad_ptc_intstate (mad_ptc_intstate.f90). The
command is processed by pro_ptc_setswitch C function in file madxn.c It call an appropriate routines of
the Fortran module to set each of the switches:

ptc_setdebuglevel
ptc_setaccel_method
ptc_setexactmis
ptc_setradiation
ptc_settotalpath
ptc_settime
ptc_setfringe

233

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_SetCavities

f90 routine that adjusts cavities and sets appropriate reference
momenta for a layout containing traveling wave cavities

PROGRAMMERS MANUAL

CAUTION For the time being cavities MUST not be placed one after another, and at least a marker must
be inserted between two neighboring accelerating structures. Otherwise, program will stop with the error
message.

Description

This routine sets up the properties of a layout and traveling wave cavities. The main goal is to update
reference beam energy for the elements that follow a traveling wave cavity. It traces the synchronous
particle, i.e. one that has all its parameters set to zero at the beginning of the layout under study. At the
point it arrives to a cavity, the parameters of the latter one are adjusted according to the switches defined
by the user. There are 2 cases

1. Leaves all parameters untouched
2. Phase of cavity is adjusted so it gives the maximum acceleration Afterwards to the calculated

phase the lag is added. This setting is acquired using set_switch command, setting maxaccel
parameter to true.

Afterwards, the synchronous particle is tracked through traveling wave cavity and its energy gain is
known. This energy becomes the reference one for all the elements downstream of the cavity. The particle
is tracked further to the next cavity, for which the procedure described above is repeated.

Parameters of the cavities are dumped to the file named twcavsettings.txt.

At the end patches at the ends of the cavities are set, so the parameters after them are calculated taking to
the account reference energy increase.

The exact program behavior depends on the PTC switches settings.

Please note that in PTC phase velocity of a cavities wave is always equal to speed of light. Hence, if PTC
internal state TIME is TRUE, what is the most correct setting, then voltage seen by a particle is varying
along the structure. If TIME is FALSE, track is assumed to fly with speed of light and in such case a
particle moves together with the wave front.

234

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_TWISS Module
(Ripken Optics Parameters)

The PTC_TWISS module of MAD-X [a] is based on the PTC code. It is a supplementary to the TWISS
module. The Twiss parameters are calculated in Ripken’s style (invented by G. Ripken in 1970 [31] and
most accessible in Ref. [b]). These parameters were available in MAD8 using the TWISS3 command. This
module is a typical example of the advantages when using PTC and its Normal Form technique (and of
course the object-oriented Fortran90 coding): once the rather modest programming has been performed
the Twiss calculation will always be automatically correct for all machine conditions like closed orbit,
coupling or after a new element has been introduced into the code. In a traditional coding like in MAD8
this depends on reprogramming and modifying the code at various places which is inherently error-prone.

The PTC_TWISS tracks a special representation of the beam in three degrees of freedom. It works on the
coupled lattice functions defined in Ref.[b], which are essentially the projections of the lattice functions
for the eigen-modes on the three planes. The PTC_TWISS lists the projections of the ellipses of motion
onto the three planes (x, px), (y, py), (t, pt) expressed them via the Ripken’s parameters bk ,j , ak ,j, gk ,j

along with the phase advances mj in selected positions, where index k=1...3 refers to the plane (x, y,...),

and the index j=1...3 denotes the eigen-mode. The PTC_TWISS also calculates the dispersion values
D1 ,...,D4 . In the MAD-X commands and tables, these parameters are denoted as

beta11,...,beta33, alfa11,...,alfa33, gama11,...,gama33, mu1,...,mu3,
disp1,...,disp4 , respectively.

The Ripken parametrization can be transformed into the Edwards-Teng parametrization (used in twiss
proper) using the formulae of Ref. [d]. The parameters are noted as betx, bety, alfx, alfy and
the coupling matrix: R11, R12, R21 and R22. In absence of coupling it holds: betx=beta11 ,
bety=beta22 , alfx=alfa11 and alfy=alfa22 .

PTC_TWISS can also compute the deltap/p-dependency of the Twiss parameters. The column names
beta11p,...,beta33p, alfa11p...,alfa33p, gama11p,...,gama33p denote the
derivatives of the optics parameters w.r.t. deltap/p. If one is interested in evaluating deltap/p-dependency
of the Twiss parameters, one must ensure that the order (no) of the map is set to 2 at least.. The derivatives
of the dispersion w.r.t. deltap/p have column names: disp1p,...,disp4p . Second and third order
derivatives have respective column names: disp1p2,...,disp4p2 for the second order, and
disp1p3,...,disp4p3 for the third order.

In addition, we compute momentum compaction factor ac up to 1st order (for icase=5) or 3rd order (for

icase=56). The values appear in the header of the ptc_twiss output file (zero means the value has not been
computed). This feature is currently only available in the development version.

235

For clarification: in the 4-D case, there is the following correspondence between MAD-X and the
Ripken’s notations: beta11® bxI , beta12® bxII , beta21® byI , beta22® byII , while in the uncoupled

4-D case beta11 is the same as the classical bx (betx) and beta22 is by (bety), while beta12

and beta21 are zero. When there is coupling all betaNN are non-zero and beta11 , beta22 are
distinctively different from bx , by , respectively.

PTC_TWISS also tracks the eigenvectors and prints them to Twiss table according to the SELECT
command (flag=ptc_twiss). Either all 36 components or particular components of the eigenvectors can be
selected with eign or eignij , respectively (j = number of eigenvector, i = number of coordinate {x, px , y,

py , t, pt }).

For ring lattices, PTC_TWISS computes momentum compaction, transition energy, as well as other
one-turn characteristics such as the tunes (Q1,Q2 and if icase=6 with cavity Qs) and chromaticities (for
no>=2).

Synopsis
PTC_CREATE_UNIVERSE;
PTC_CREATE_LAYOUT, model=integer,method=integer, nst=integer,
[exact];
..............................
SELECT, flag=ptc_twiss, clear;
SELECT, flag=ptc_twiss, column=name, s,
beta11,...,beta33,alfa11,..., alfa33,gama11,...,gama33,
beta11p,...,beta33p,alfa11p,...,alfa33p,gama11p,...,gama33p,
mu1,...,mu3,
disp1,...,disp4,
disp1p,...,disp4p,
disp1p2,...,disp4p2,
disp1p3,...,disp4p3,
[eign], eign11, ...,eign16,...,eign61,...,eign66;
..............................
PTC_TWISS;
..............................
PTC_END;

Commands
PTC_TWISS,
 icase=integer, deltap=double, closed_orbit, slice_magnets,
 range=string, file[=string], table[=string],
 initial_matrix_table, initial_matrix_manual, initial_map_manual, beta0=string,
 betx=double, alfx=double, mux=double,
 bety=double, alfy=double, muy=double,
 dx=double, dpx=double, dy=double, dpy=double,
 x=double, px=double, y=double, py=double, t=double, pt=double,
 re11=double, re12=double, ... ,re16=double,
 ..

236

 re61=double, re62=double, ... ,re66=double;
Description

The PTC_TWISS command causes computation of the Twiss parameters in the Ripken’s
style. It operates on the working beam line defined in the latest USE command. Several
options can be specified, the most important being icase, deltap, closed_orbit,
slice_magnets, no, and file, table. (see the table below). Other options should be specified
for particular tasks. Applications for the PTC_TWISS command are similar to the
TWISS-command. The PTC_TWISS can be applied to two basic tasks. It can calculate
either a periodical solution or a solution with initial conditions.

Options

ICASE

NO

DELTAP

CLOSED_ORBIT

DELTAP_DEPENDENCY

SLICE_MAGNETS

CENTER_MAGNETS

FILE

TABLE

SUMMARY_FILE

SUMMARY_TABLE

RANGE

INITIAL_MATRIX_TABLE

INITIAL_MATRIX_MANUAL

INITIAL_MAP_MANUAL

RE11,..., RE66

BETA0

betx, alfx, mux, bety, alfy, muy, dx,dpx,dy, dpy

x, px, y, py, t, pt

Remarks
ICASE: It can be internally corrected by the code. For example, if RF cavity has the
voltage set to zero and for icase=6, the code sets icase=4.

237

http://cern.ch/mad/madx/control/general.html#use
http://cern.ch/mad/madx/twiss/twiss.html
http://cern.ch/mad/madx/Introduction/ranges.html#range
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://cern.ch/mad/madx/twiss/twiss.html
http://cern.ch/mad/madx/Introduction/bibliography.html#edwards

Periodical Solution

PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file[=string], table[=string];

Description
This is the simplest form of the PTC_TWISS command, which computes the periodic
solution for a specified beam line. It may accept all basic options described in the above
table.

Evaluation of Twiss parameters inside magnets
PTC_TWISS,
 icase=integer, deltap=double, closed_orbit, slice_magnets
 range=string, file[=string], table[=string];

Description
This computes the periodic solution for a specified beam line and evaluates the Twiss
parameters at each thin-slice (a.k.a "integration-node") inside magnets. The number of such
integration-nodes is given by the number of steps (nst) selected when creating the PTC
layout. All other basic options described in the above table may be selected .

Example
An example is found in the PTC_TWISS Examples’ repository. .

Solution with Initial Conditions
Code Logic:

IF ("initial_matrix_table"=ON .AND.
& {the map-table exists}) THEN
 (from a Map-Table)

ELSEIF("initial_map_manual"=ON) THEN

 (from a Given Map File)

ELSEIF("initial_matrix_manual"=ON) THEN

 (from a Given Matrix)

ELSEIF(BETA0 block =ON) THEN

 (from Twiss Parameters via BETA0-block)

ELSE

 (from Given Twiss Parameters)

ENDIF

Initial Values from a Map-Table
(obtainable by a preceding PTC_NORMAL command):
 PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file[=string], table[=string],
 initial_matrix_table;

238

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/madX-examples/REF/ptc_twiss/SliceMagnets/?root=madx-examples
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html

Description
PTC_TWISS calculates a solution with initial conditions given as a map-table of
preceding ring or beam-line. It requires the input option initial_matrix_table and an
existence of the map-table in memory, which was generated by a preceding
PTC_NORMAL command.

Example
An example is found in the PTC_TWISS Examples in the folder "Example3".

Initial Values from a Map-File
(obtainable by a preceding PTC_NORMAL command):
 PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file[=string], table[=string],
 initial_map_manual;

Description
PTC_TWISS calculates a solution with initial conditions given as a map-file fort.18
obtained from a preceding ring or beam-line. It requires the input option
initial_map_manual and an existence of the map-file named a fort.18 file, which was
generated by a preceding PTC_NORMAL command.

Example
An example is found in the PTC_TWISS Examples in the folder "Example3".

Initial Values from a Given Matrix :
 PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file=string, table=string,
 initial_matrix_manual,
 re11=double, re12=double, ... ,re16=double,
 ..
 re61=double, re62=double, ... ,re66=double;

Description
PTC_TWISS calculates a solution with initial conditions given by the matrix, which is
"manually" entered on the command-line. It requires the option initial_matrix_manual.
MAD-X expects a symplectic 6x6 transfer matrix as input.

Example
An example is found in the PTC_TWISS Examples in the folder "Example4".

Initial Values from Twiss Parameters via BETA0-block:
 PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file[=string], table[=string],
 beta0=string;

Description
PTC_TWISS calculates a solution with initial conditions given by Twiss parameters, which
are transferred from the BETA0-block. The data in the the BETA0-block have to be filled
by a combination of the SAVEBETA and TWISS commands of a preceding ring or
beam-line. Note, that this case is limited to uncoupled motion of the preceding machine.

Example
An example is found in the PTC_TWISS Examples in the folder "Example1".

239

http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss/Example3/
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://cern.ch/mad/madx/ptc_normal/ptc_normal.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss/Example3/
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss/Example4/
http://cern.ch/mad/madx/control/general.html#savebeta
http://cern.ch/mad/madx/twiss/twiss.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss/Example1/

Initial Values from the Given Twiss Parameters:
 PTC_TWISS,
 icase=integer, deltap=double, closed_orbit,
 range=string, file[=string], table[=string],
 betx=double, alfx=double, mux=double,
 bety=double, alfy=double, muy=double,
 dx=double, dpx=double, dy=double, dpy=double,
 x=double, px=double, y=double, py=double,
 t=double, pt=double;

Description
PTC_TWISS calculates a solution with initial conditions given by the Twiss parameters,
which are explicitly typed on the command line. Note, that this case is also limited to
uncoupled motion of the preceding ring or beam-line.

Example
An example is found in the PTC_TWISS Examples in the folder "Example2".

References for PTC_TWISS

a) F. Schmidt, "‘MAD-X PTC Integration’’, Proc. of the 2005 PAC Conference in Knoxville, USA,
pp.1272.

b) G. Ripken and F. Willeke, "Methods of Beam Optics", DESY 88114, 1988.
c) K. Zhang, "PTC twiss with initial TWISS parameters", MAD-X Meeting 13 (04.07.2005), slides in

ppt.
d) V.A. Lebedev and S.A. Bogacsz, "Betatron motion with coupling of horizontal and vertical degrees

of motion", Thomas Jefferson National Accelerator Facility 2010.

See Also
TWISS, PTC_TWISS Examples.

V. Kapin (ITEP) and F. Schmidt, March 2006

240

http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss/Example2/
http://cern.ch/Frank.Schmidt/report/MPPE012.pdf
http://frs.home.cern.ch/frs/MAD-X_minutes/Meeting-13/minutes.html
http://frs.home.cern.ch/frs/MAD-X_minutes/Meeting-13/Input_of_PTC_TWISS_module.ppt
http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf
http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf
http://cern.ch/mad/madx/twiss/twiss.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_twiss

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_NORMAL Module
(Non-Linear Machine Parameters)

The PTC_NORMAL module of MAD-X [a,b] is based on PTC code. This module takes full advantage
of the PTC Normal Form analysis which is a considerable upgrade of what was available with the Lie
Algebra technique used in MAD8. It allows to calculate dispersions, chromaticities, anharmonicities and
Hamiltonian terms to very high order. In fact, the order is only limited by the RAM memory of your
computer and your patience to wait for the results.

The number of terms per order increases with some power law. The internal MAD-X tables are not
adequate to keep such large amounts of data. On the other hand, only a reduced set of this data is actually
needed by the user. Thus a much easier and flexible solution is to gather the users requirements with a
series of special MAD-X command called SELECT_PTC_NORMAL. A special MAD-X table is
dynamically built using just those commands and it will be filled by the next call to the
PTC_NORMAL-command.

Another essential advantage of this table is the fact that it is structured to facilitate exchange of Normal
Form (including Hamiltonian terms of high order) between MAD-X modules. The immediate goal is to
use this table to allow non-linear matching inside the present MAD-X MATCHING module.

Synopsis
PTC_CREATE_UNIVERSE;
PTC_CREATE_LAYOUT, model=integer,method=integer, nst=integer,
[exact];
..............................
SELECT_PTC_NORMAL, dx,..., gnfu;
..............................
PTC_NORMAL;
WRITE, table=normal_results, file=normal_results;
..............................
PTC_END;

Commands
SELECT_PTC_NORMAL,
dx=integer, dpx=integer, dy=integer, dpy=integer,
q1=0, dq1=integer, q2=0, dq2=integer,
anhx=integer array, anhy=integer array,
gnfu=integer,0,0, haml=integer,0,0,
eign=integer, integer;

241

Description
The SELECT_PTC_NORMAL command selects parameters to be calculated by the next
PTC_NORMAL command. The dispersion and tune parameters are defined by a name and
an integer number specifying their order. For example, the notation "dx=2" means the
horizontal dispersion to second order Dx

(2)=∂ (2)xco/∂δp
(2) , where "co" is abbreviation of

"closed orbit". The anharmonisities are defined by a name and three integer numbers: the
first is the order of ε1 , the second is the order of ε2 , the third is the order of δp . For

example, the notation "anhx=2,0,0" means second order in ε1 : ∂ (2)q1 /∂ε1
(2) .

Components of the eigenvectors at the end of the structure can be specified by two integers:
the first integer defines the eigenvector number, the second integer defines the coordinate
{ x, px , y, py , t, pt }.

The Generating Function can be specified by { n, 0, 0}. The positive and negative values
of n define the order of upright or skew resonances, respectively. The integers n2 and n3

are reserved for a future upgrade. For example, "gnfu=-5, 0, 0" will calculate all Generating
Function terms for skew decapoles. In the output table, one finds the cosine, sine and
amplitude coefficients as denoted by "GNFC", "GNFS", and "GNFA", respectively.
Similarily, the Hamiltonian terms can be specified by { n, 0, 0}. The positive and negative
values of n define the order of upright or skew resonances, respectively. For example,
"haml=3, 0, 0" will calculate all Hamiltonian terms for upright sextupoles. In the output
table, one finds the cosine, sine and amplitude coefficients as denoted by "HAMC",
"HAMS", and "HAMA", respectively.
Parameters

Notation Meaning Value

DX, DPX,
DY,DPY

dispersions, Dx
(n) , Dpx

(n) ,

Dy
(n) , Dpy

(n) n

Q1, Q2
horizontal and vertical
tunes q1

(0) , q2
(0) 0

DQ1, DQ2
derivatives of horizontal
and vertical tunes
∂ (n) q1 /∂δp

(n) , ∂ (n) q2 /∂δp
(n)

n

ANHX, ANHY Anharmonicities
n(ε1), n(ε2),

n(δp)

GNFU Generating Function n, 0, 0

HAML Hamiltonian n, 0, 0

EIGN
Eigenvector (the n2-th component

of the n1-th eigenvector)
n1 , n2

242

PTC_NORMAL,
 icase=integer, normal, closed_orbit,
 no=integer, map_table, deltap=double;

Description
The calculation of the parameters specified by the preceding SELECT_PTC_NORMAL
commands is initiated by the PTC_NORMAL command, which operates on the working
beam line defined in the latest USE command. The options for PTC_NORMAL command
are described in the table below.

Options

Option Meaning
Default
Value

Value
Type

ICASE

the
user-defined
dimensionality
of the
phase-space
(4, 5 or 6)

4 integer

NO
the order of
the map.

1 integer

CLOSED_ORBIT

the switch to
turn on
the closed
orbit
calculation.

.FALSE. logical

DELTAP

relative
momentum
offset
for reference
closed orbit

0.0 double

MAPTABLE
turn on the
map-table in
memory

.FALSE. logical

NORMAL

turn on the
calculation of
the Normal
Form

.FALSE. logical

Remarks

MAPTABLE : (requires no=1) creates the one-turn matrix which can be used by the next
PTC_TWISS command.

Example
The simple example is located on the Web-page for the PTC_NORMAL example.

243

http://cern.ch/mad/madx/control/general.html#use
http://cern.ch/mad/madx/ptc_twiss/ptc_twiss.html
http://frs.home.cern.ch/frs/mad-X_examples/ptc_normal

References for PTC_NORMAL

a) F. Schmidt, "‘MAD-X PTC Integration’’, Proc. of the 2005 PAC Conference in Knoxville, USA,
pp.1272.

b) E.T. d Amico, "Nonlinear parameters from PTC", MAD-X Meeting 7 (29.11.2004), notes (doc-file).
c) A. Schoch, "Theory of linear and non-linear perturbations of betatron oscillations in

alternating-gradient synchrotrons ", CERN-27-21, 1958.

.See Also
PTC_NORMAL example, PTC Set-up Parameters.

V. Kapin (ITEP) and F. Schmidt, March 2006

244

http://cern.ch/Frank.Schmidt/report/MPPE012.pdf
http://frs.home.cern.ch/frs/MAD-X_minutes/Meeting-7
http://frs.home.cern.ch/frs/MAD-X_minutes/Meeting-7/Nonlinear_parameters_from_PTC.doc
http://doc.cern.ch/yellowrep/1957/1957-021/p1.pdf
http://frs.home.cern.ch/frs/mad-X_examples/ptc_normal
http://cern.ch/mad/madx/ptc_general/ptc_general.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

MAD-X-PTC interface documentation - Auxiliaries

Available documents

PTC_Knob.html
PTC_SetKnobValue.html
PTC_PrintParametric.html
PTC_PrintFrames.html
PTC_Select.html
PTC_SelectMoment.html
PTC_SetSwitch.html
PTC_DumpMaps.html
PTC_SetCavities.html
PTC_EPlacement.html
ptc_general.html
ptc_track.html
ptc_track_line.html
ptc_twiss.html
ptc_normal.html
Under Construction Match_WithPTCKnobs.html
Under Construction PTC_Moments.html
this document

245

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_KNOB

USER MANUAL

SYNOPSIS

PTC_KNOB,
elementname = [s, none] ,
kn = [i, {-1}],
ks = [i, {-1}],
exactmatch = [l, true, true] ;

Description

Sets knobs in PTC calculations (currently ony in PTC_TWISS, PTC_NORMAL will follow). Knobs
appear as the additional parameters of the phase space. Twiss functions are then obtained as functions of
these parameters (Taylor series). Also map elements might be stored as functions of knobs, see ptc_select
command description to lear how to request given element to be stored as a Taylor series. The parametric
results can be further

1. written to a file with ptc_printparametric.
2. plotted and studied using rviewer command (rplot plugin).
3. used to obtain very quickly approximate values of lattice functions for given values of knobs

(ptc_setknobvalue). This feature is the foundation of a fast matching alorithm with PTC.

Example

dog leg chicane : Dipolar components of both rbends and dipolar and quadrupolar components of the
focusing quads set as knobs. Some first and second order map coefficients set to be stored as parametric
results. ptc_twiss command is performed and the parametric results are written to files in two formats. dog
leg chicane : Knobs values are matched to get requested lattice functions.

Command parameters and switches

elementname
string in range format,

246

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/knobs/knobs.madx
http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/matchknobs/matchknobs.madx
http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/matchknobs/matchknobs.madx

Specifies name of the element containing the knob(s) to be set.
kn,ks

list of integers,

Defines which order
exactmatch

logical, default true, if value explicitly not specified then true

Normally a knob is a property of a single element in a layout. The specified name must match
1:1 to an element name. This is the case when exactmatch is true.

Knobs might be alos set to all family of elements. In such case the exactmatch switch must be
false. A given order field component of all the elements that name starts with the name
specified by the user become a single knob.

initial

_

247

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_SETKNOBVALUE

USER MANUAL

SYNOPSIS

PTC_SETKNOBVALUE,
elementname = [s, none] ,
kn = [i, {-1}],
ks = [i, {-1}],
value = [r] ;

Description

With this command the user set a given knob value. In its effect all the values in

the twiss table used by the last ptc_twiss command
the columns specified with ptc_select, parametric=true;

are reevaluated using the buffered parametric results.

The parameters of the command basically contains the fields that allow to identify uniquely the knob and
the value to be set.

Example

dog leg chicane : strength of dipol field component in quads is matched to obtain required R56 value.

Command parameters and switches

elementname
string in range format,

Specifies name of the element containing the knob to be set.
kn,ks

list of integers,

Defines the knob

248

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/matchknobs/matchknobs.madx

value
real, default 0, if value explicitly not specified then 0

Specifies the value the knob is set to.

249

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_KNOB

USER MANUAL

SYNOPSIS

PTC_KNOB,
elementname = [s, none] ,
kn = [i, {-1}],
ks = [i, {-1}],
exactmatch = [l, true, true] ;

Description

Sets knobs in PTC calculations (currently ony in PTC_TWISS, PTC_NORMAL will follow). Knobs
appear as the additional parameters of the phase space. Twiss functions are then obtained as functions of
these parameters (taylor series). Also map elements might

Example

Not yet ready : postion of quads is matched to obtain required R566 value.

Command parameters and switches

elementname
string in range format,

Specifies name of the element containing the knob(s) to be set.
kn,ks

list of integers,

Defines which order
exactmatch

logical, default true, if value explicitly not specified then true

Normally a knob is a property of a single element in a layout. The specified name must match 1:1 to
an element name. This is the case when exactmatch is true.

250

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/eplacement/chicane.madx

Knobs might be alos set to all family of elements. In such case the exactmatch switch must be false.
Filed components of all the elements that name starts with the name specified by the user become a single
knob.

_

251

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_PRINTFRAMES

USER MANUAL

SYNOPSIS

PTC_PRINTFRAMES,
file = [s, none] ,
format = [s, text] ;

Description

Print to a specified file PTC geometry of a layout.

Example

Dog leg chicane with some elements displaced with help of ptc_eplacement:

Command parameters and switches

file
string,

Specifies name of the file.
format

string, default "text"

Format of geometry. Currently two formats are accepted:
text

Prints a simple text file.
rootmacro

Creates root macro that produces 3D display of the geometry.

252

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/eplacement/eplacement.madx
http://root.cern.ch/

253

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_SELECT

USER MANUAL

SYNOPSIS

PTC_SELECT,
table = [s, none, none],
column = [s, none, none],
polynomial = [i, none] ,
monomial = [s, none] ,
parametric = [l, false, true],
quantity = [s, none] ; "

Description

Selects map elements to be:

a) Stored in a user specified table and column. Table and column must be specified than, and such table
with such column must exists.

b) Stored as a function (taylor series) of knobs, if any is defined. Than, parametric should be set to
true. Both a) and b) can be joined in one command.

Examples

dog leg chicane : strength of quads is matched to obtain required T112 value.

dog leg chicane : postion of quads is matched to obtain required T566 value.

dog leg chicane : dipols and quads strengths are matched with the help of knobs to obtain required
momentum compaction and Twiss functions.

Command parameters and switches

table
string,

254

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/ptc_secordmatch/chicane.madx
http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/eplacement/chicane.madx
http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/matchwithknobs/matchwithknobs.madx

Specifies name of the table where values should be stored.
column

string,

Specifies name of the table where values should be stored.
polynomial

integer,

Specifies row of the map.
monomial

string composed of digits

Defines monomial of the polynomial in PTC nomenclature. Its lengh should be equal to number of
variables. Each of digits corresponds to the exponent of a variable. Monomial ’ijklmn’ defines
x i px

j yk py
l ∆Tm(∆p/p)n . For example, element=2 and monomial=1000000 defines coefficient of

the second polynomial (that defines px) close to x, in the other words it is R21.

parametric
logical, default false, if value explicitly not specified then true

If it is true, and any knobs are defined the map element is stored as the parametric result.

PROGRAMMERS MANUAL

The command is implemented pro_ptc_select function in madxn.c and by subroutine addpush in
madx_ptc_knobs.f90, that is part of madx_ptc_knobs_module

On the very beginning the existance of the table and within column is checked. In the case of failure, error
message is printed and the function is abandoned.

The command parameters are passed as the arguments of addpush Fortran routine. A selection is stored in
a type called tablepush_poly defined madx_ptc_knobs.inc. A newly created object is added to array named
pushes.

More then one element might be stored in a single table, so the module must assure that each of tables is
augmented only ones for each magnet (or integration slice). For that purpose array of tables to be
augmented (named tables) is stored separately and we assure that a table is listed here only ones. This is
simply done by checking if a table name is not already listed before adding a new element to the array.

In case the user requested an element to be stored in the paramteric format, and column in the array of
parametric results is reserved and the index of the column is remembered in index field of tablepush_poly
type is filled. In the other case this field is equal to zero.

The routine ptc_twiss (defined in file madx_ptc_twiss.f90), after tracking each of magnets in the
sequence, calls putusertable routine. This routine loops over selected elemetns defined in the pushes table.
For each of them it extracts the requested element from the map using .sub. operator of PTC and stores it
in the defined table and column. If index field is not zero and any knob is defined, it extracts the
polynomial using .par. operator, and stores it in the 2D array called results, in the row corresponding to
the number of the magnet (or integration step) and column defined by the index field.

255

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_SELECT_MOMENT

USER MANUAL

SYNOPSIS

PTC_SELECT_MOMENT,
table = [s, none, none],
column = [s, none, none],
moments = [s, none] ,
moments = [i, {0}] ,
parametric = [l, false, true],

Description

Selects a moment to be:

a) Stored in a user specified table and column.

b) Stored as a function (taylor series) of knobs, if any is defined. Than, parametric switch should be set
to true.

Both a) and b) can be joined in one command.

Examples

ATF2

Command parameters and switches

moment_s
list of coma separated strings composed of up to 6 digits

Defines moment of the polynomial in PTC nomenclature. String ’ijklmn’ (i,j,k,l,m,n are digits)
defines <xi px

j yk py
l ∆Tm(∆p/p)n>. For example, moments=1000000 defines <x1>

Note that for input we always use MAD-X notation where dp/p is always the 6th coordinate.
(Internaly PTC dp/p is the 5th coordinate. We perform automatic conversion that is transparent for
the user.) As the consequence RMS in dp/p is always defined as 000002, even in 5D case.

256

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/moments/moments.madx

This notations allows to define more then one moment with one command. In this case, the
corresponding column names are as the passed strings with "mu" prefix. However, they are always
extended to 6 digits, i.e. the trailing 0 are automatically added. For example, if specified moments=2, the
column name is mu200000.

This method does not allow to pass bigger numbers then 9. If you need to define such a moment, use
the command switch below.

moment
list of up to 6 coma separated integers,

Defines a moment. For example: moment=2 defines <x2> , moment=0,0,2 : <y2>, moment=0,14,0,2
: <px14py2>, etc.

table
string, default "moments"

Specifies name of the table where the calculated moments should be stored.
column

string

Ignored if moments is specified. Defines name of the column where values should be stored. If not
specified then it is automatically generated from moment the definition <xi px

j yk py
l ∆Tm(∆p/p)n>

=> mu_i_j_k_l_m_n (numbers separated with underscores).
parametric

logical, default false, if value explicitly not specified then true

If it is true, and any knobs are defined the map element is stored as the parametric result.

257

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_DUMPMAPS

USER MANUAL

SYNOPSIS

PTC_DUMPMAPS,
file = [s, ptcmaps, ptcmaps];

implemented by subroutine ptc_dumpmaps() in madx_ptc_module.f90

Description

PTC_DUMPMAPS dumps linear part of the map for each element of the layout into specified file.

Command parameters and switches

file
string, default value "ptcmaps", default value if value explicitly not specified is "ptcmaps"

Specifies name of the file to which the matrices are dumped to.

PROGRAMMERS MANUAL
The command is implemented by subroutine ptc_dumpmaps() in madx_ptc_module.f90. The matrix for a
single element is obtained by tracking identity map through an element, that is initialized for each element
by adding identity map to the reference particle. For the elements that change reference momentum (i.e.
traveling wave cavity) it is tracked to the end of the following marker, that has updated reference
momentum. Hence, each cavity must be followed by a marker. If it is not, setcavities subroutine detects
error and stops the program.

258

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_EPLACEMENT

USER MANUAL

SYNOPSIS

PTC_EPLACEMENT,
range = [s, none],
x = [r, 0], y = [r, 0], z = [r, 0],
phi = [r, 0],
theta = [r, 0],
onlyposition = [l, false, true] ,
onlyorientation = [l, false, true] ,
autoplacedownstream = [l, true, true] ,
refframe = [s, gcs] ;

Description

Places a given element at required position and orientation. All rotations are made around the front face of
the element.

Example

Dog leg chicane : postion of quads is matched to obtain required R566 value.

Command parameters and switches

range
string in range format,

Specifies name of the element to be moved.
x,y,z

real,

Coordinate of the front face of the magnet.
phi, theta

real,

259

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/eplacement/chicane.madx

polar (in xz plane, around z axis) and azimuthal (around x axis) angles, respectively.
refframe

string, default gcs

Defines the coordinate system with respect to which coordinates and angles are specified. Possible
values are:
gcs

global coordinate system
current

current position
previouselement

end face of the previous element
onlyposition

logical, default false, if value explicitly not specified then true

If true, only translation are performed and orientation of the element is not changed.
onlyorientation

logical, default false, if value explicitly not specified then true

If true, only rotations are performed and position of the element is not changed.
autoplacedownstream

logical, default true,

if true all the elements downstream are placed at default positions in respect to the moved element, if
false the rest of the layout stays untouched.

surveyall
logical, default true, if value explicitly not specified then true

If true, survey of all the line is performed after element placement at new position and orientation. It
is implemented mainly for the software debugging purposes. If patching was performed correctly, the
global survey should not change anything.

_

PROGRAMMERS MANUAL

The command is implemented pro_ptc_eplacement function in madxn.c and by subroutine
ptc_eplacement() in madx_ptc_eplacement.f90.

Sopecified range is resolved with help of get_range command. Number of the element in the current
sequence is resolved and passed as the parameter to the fortran routine. It allows to resolve uniquely the
corresponding element in the PTC layout.

TRANSLATE_Fibre and ROTATE_Fibre routines of ptc are employed to place and orient an element in
space. These commands adds rotation and translation from the current position. Hence, if the specified
reference frame is other then "current", the element firstly needs to be placed at the center of the reference
frame and then it is moved about the user specified coordinates.

260

After element placement at new position and orientation patch needs to be recomputed. If
autoplacedownstream is false then patch to the next element is also recomputed. Otherwise, the layout is
surveyed from the next element on, what places all the elements downstream with default position with
respect to the moved element.

At the end all the layout is surveyed, if surveyall flag is true, what normally should always take place.

261

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Matching with PTC knobs

USER MANUAL
This matching procedure takes advantage of the parametric results that are accessible with PTC. Namely,
parameters occuring in the matching constrains are obtained as functions (polynomials) of the matching
variables. In other words, each variable is a knob in PTC calculation. Evaluation of the polynomials is
relatively fast comparing to the regular PTC calculation what makes findining the minimum with the
parametrized constraints very fast.

However, the algorithm is not faster in a general case:

1. The calculation time dramatically increases with number of parameters and at some point penalty
rising from this overcomes the gain we get from the fast polynomial evaluation.

2. A parametric result is an approximation that is valid only around the nominal parameter values.

The algorithm:

1. Buffer the key commands (ptc_varyknob, constraint, ptc_setswitch, ptc_twiss or ptc_normal, etc)
appearing between match, useptcknobs=true; and any of matching actions calls (migrad,lmdif,jacobian,
etc)
2. When matching action appears,

a) set "The Current Variables Values" (TCVV) to zero
b) perform THE LOOP, i.e. points 3-17

3. Prepare PTC environment (ptc_createuniverse, ptc_createlayout)
4. Set the user defined knobs (with ptc_knob).
5. Set TCVV using ptc_setfieldcomp command
6. Run a PTC command (twiss or normal)
7. Run a runtime created script that performs a standard matching; all the user defined knobs are variables
of this matching.
8. Evaluate constraints expressions to get the matching function vector (I)
9. Add the matched values to TCVV
10. End PTC session (run ptc_end)
11. If the matched values are not close enough to zeroes then goto 3
12. Prepare PTC environment (ptc_createuniverse, ptc_createlayout)
13. Set TCVV using ptc_setfieldcomp command
(--- please note that knobs are not set in this case --)
14. Run a PTC command (twiss or normal)

262

15. Evaluate constraints expressions to get the matching function vector (II)
16. Evaluate a penalty function that compares matching function vectors (I) and (II) See points 7 and 14
17 If the matching function vectors are not similar to each other within requested precision then goto 3
18. Print TCVV, which are the matched values.

SYNOPSIS

MATCH, use_ptcknobs=true;

PTC_VARYKNOB:
 initial = [s, none] ,
 element = [s, none] ,
 kn = [i, -1],
 ks = [i, -1],
 exactmatch = [l, true, true],
 trustrange = [r, 0.1],
 step = [r, 0.0],
 lower = [r, -1.e20],
 upper = [r, 1.e20];

END_MATCH;

For the user convenience the limits are specified in the MAD-X units (k1,k2, etc). This also applies to
dipolar field where the user must specify limits of k0=angle/path_lengh. This guarantees concistency in
treatment of normal and skew dipol components.

Important: Note that inside the code skew magnets are represented only by normal component and tilt, so
the nominal skew component is always zero. Inside PTC tilt can not become a knob, while skew
component can. Remember about this fact when setting the limits of skew components in the matching.
When the final results are exported back to MAD-X, they are converted back to the "normal" state, so the
nominal skew compoment is zero and tilt and normal component are modified accordingly.

trustrange - defines the range the expansion is trusted

Description

Example

dog leg chicane :

263

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/matchknobs/.madx

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PTC_MOMENTS

USER MANUAL

SYNOPSIS

PTC_MOMENTS,
no = [i, 1],
xdistr = [s, gauss, gauss],
ydistr = [s, gauss, gauss],
zdistr = [s, gauss, gauss],

Description

Calculates moments previously selected with the ptc_select_moment command. It uses maps saved by the
ptc_twiss command, hence, the savemaps switch of ptc_twiss must be set to true (default) to be able to
calculate moments.

Examples

ATF2

Command parameters and switches

no
integer

order of the calculation, maximally twise the order of the last twiss
xdistr, ydistr, zdistr

string defining type of distribution for x, y, z dimension, respectively,
1. gauss - Gaussian
2. flat5 - flat distribution in the first of variables (dp over p) of a given dimension and Delta Dirac

in the second one (T)
3. flat56 - flat rectangular distribution

264

http://frs.web.cern.ch/frs/mad-X_examples/ptc_madx_interface/moments/moments.madx

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Known Differences to Other Programs

Definitions
MAD uses full 6-by6-matrices to allow coupling effects to be treated, and the canonical variable set (x, px

/ p0), (y, py / p0), (-ct, delta(E) / p0 c), as opposed to other programs most of which use the set (x, x’), (y,

y’), (-delta(s), delta(p)/p0). Like [Dragt], MAD uses the relative energy error py / p0 , which is equal the

relative momentum error delta = delta(p)/p0 multiplied by beta = v/c.

As from Version 8.13, MAD8 uses an additional constant momentum error deltas in all optical

calculations. The transfer maps contain the exact dependence upon this value; therefore the tunes for large
deviations can be computed with high accuracy as opposed to previous versions.

The choice of canonical variables in MAD still leads to slightly different definitions of the lattice
functions. In MAD the Courant-Snyder invariants in [Courant and Snyder] take the form

Wx = gammax x2 - 2 alphax x px + betax px
2

Comparison to the original form

Wx = gammax x2 - 2 alphax x x’ + betax x’ 2

shows that the orbit functions cannot be the same. A more detailed analysis, using

x’ = px / (1 + delta)

shows that all formulas can be made consistent by defining the MAD orbit functions as

betaxM = betaxC * (1 + delta), alphaxM = alphaxC , gammaaxM = gammaxC / (1 + delta),

For constant deltas along the beam line and delta = 0, the lattice functions are the same. In a machine

where delta varies along the circumference, e.g. in a linear accelerator or in an electron-positron storage
ring, the definition of the Courant-Snyder invariants must be generalised. The MAD invariants have the
advantage that they remain invariants along the beam line even for variable delta.

With the new method this problem occurs in Twiss module only for non-constant delta.

265

Treatment of Energy Error in TWISS
It has been noted in [Milutinovic and Ruggiero] that MAD returned tunes which are too low for non-zero
delta. The difference was found to be quadratic in delta with a negative coefficient. This problem has been
eliminated thanks to the new treatment of momentum errors from MAD8 Version 8.13 onwards.

hansg, January 24, 1997

266

http://www.cern.ch/Hans.Grote/hansg_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Index

a
Activate/Deactivate correctors and monitors
Aperture, Geometric
attribute
attribute-name
attribute-value

b
BEAM
BEAMBEAM: Beam-Beam Interaction
beam-beam element examples
beam position monitor
beam value defaults
Bending Magnet
beta0
BETA0-block (PTC)
bv flag

c
C6T
CALL
Canonical Variables Describing Orbits
CAVITY
CRABCAVITY
CELL Matching
CHARGE
chromatic lattice functions
CLASS
closed_orbit (PTC)
Closed Orbit
Closed orbit corrector
COGUESS

267

Collimators
Column Formats
Command and Statement Format
Command Attribute
Comments
constraint
CONSTRAINT
CONSTRAINT (User)
Control Statements
Conventions
Conversion to Sixtrack Input Format
Conversion to Thin Lens
Coordinate Transformations
COPTION: Global Correction Options
CORRECT: Correction commands and parameters
create
CYCLE

d
declarations
deferred exressions
Define Variable Parameter
DELETE
Descriptor Lines
Dipedge Element
DRIFT: Drift Space
Drift space
DUMPSEQU
Dynap Module

e
EALIGN
ECOLLIMATOR:Elliptic Collimator
Editing Element Definitions
EFCOMP: Components
Electrostatic separator
element class
Element Input Format
ELSE
ELSE example
ELSEIF

268

Emit Module
ENDEDIT
ENDMATCH
ENERGY
Enter and Leave Matching Mode
EOPTION: Set Error Options
EPRINT: List Machine Imperfections
Error Assignment Module
ESAVE: Save Machine Imperfections
Example TFS Twiss table
EXEC
EXIT
Expression
Expression Matching with USE_MACRO
EXTRACT

f
Field Errors
fill
FLATTEN
footprint example
FPP/PTC Documentation

g
Given Matrix (PTC)
Given Twiss (PTC)
GLOBAL: Global Constraints
global parameter
Global Reference System
GWEIGHT: Weights for Global Constraints

h
HELP
HKICKER: Horizontal Orbit Corrector
HMONITOR: Horizontal Monitor

269

http://mad.web.cern.ch/mad/PTC_proper

i
IBS module
icase (PTC)
Identifiers or Label
IF
INITIATING Matching
INSTALL
INSTRUMENT: Other Beam Instrumentation
integer attribute

j
JACOBIAN: Newton Minimisation

k
keyword
KICKER: Combined Orbit Corrector
knobs (PTC)
Known Differences to Other Programs

l
label
LINE
linear lattice functions
Line Tracking Module (ptc_track_line)
LMDIF: Fast Gradient Minimisation
local reference system
logical attribute

m
macro definition
macro statement
macro usage
makethin
Map-Table (PTC)
MARKER: Marker Definition
match element lengths
matching
Matching Examples

270

Matching Methods
mathematical and physical constants
MATRIX: Arbitrary Element
maxaper (PTC)
MIGRAD: Gradient Minimisation
MONITOR: Combined Monitor
MOVE
multipole

n
name of the parameter or attribute
name or string attribute
NEWS
Non-Linear Machine Parameters (ptc_normal)
Normalised Variables and other Derived Quantities
normalize
norm_no (PTC)
norm_out (PTC)
NPART
NST (PTC)

o
Octupole
onetable (PTC)
operand
operator
OPTION
Orbit Correction Module
orbit correctors
Overview of MAD-X Tracking Modules

p
PATTERN
periodic solution (PTC)
periodic solution
Physical Elements and Markers
Physical Units
place
PLOTcommand
Plug-ins for MAD-X extensions

271

position
PRINT
PTC Introduction
PTC Auxiliary Commands
PTC_CREATE_UNIVERSE and PTC_CREATE_LAYOUT commands
PTC_DumpMaps
PTC_EPlacement
PTC_KNOB.html
PTC_NORMAL.html
PTC_OBSERVE command
PTC_PrintFrames.html
PTC_SELECT.html
PTC_SELECT_MOMENT.html
PTC_SetCavities.html
PTC_SetKnobValue.html
PTC_SETSWITCH command
PTC Set-up Parameters
PTC_START
PTC_STOP
PTC_TRACK
PTC_TRACK_LINE
PTC_TWISS

q
Quadrupole
QUIT

r
RADIATION (PTC)
Random Generators
Range selection
RBEND: Rectangular Bending Magnet
rbend reference system
RCOLLIMATOR:Rectangular Collimator
READTABLE
real attribute
real expression
References
REFLECT
REMOVE
REPLACE

272

http://acc-physics.kek.jp/forest/PTC/Introduction.html

RESBEAM
RESPLOT
RETURN
RFCAVITY
Ripken Optics Parameters (PTC_TWISS)
RPLOT

s
save
savebeta
SAVE with SELECT
sbend reference system
SBEND: Sector Bending Magnet
sector bend
sectormap
select
seqedit
SEQEDIT
Sequence editing
Sequences
SET
SETCAVITIES (PTC)
setplot
Sextupole
SHOW
SIMPLEX: Simplex Minimisation
SODD
Solenoid
Solution with initial conditions (PTC)
SROTATION: Rotation Around the Longitudinal Axis
Statements
STOP
straight reference system
String attribute
Survey
SXF file input and output
SYSTEM

273

t
table access
table of summary parameters
TFS columns table
TFS file example
TFS File Format
Thick-Lens Tracking Module (ptc_track)
Thin-Lens Tracking Module (thintrack)
Threader
TITLE
TKICKER: Combined Transverse Kicker
tolerance
TOUSCHEK
Track tables
Twiss module
Twiss table

u
Units table
USE

v
VALUE
Variable
variable name
VARY
VKICKER: Vertical Orbit Corrector
VMONITOR: Vertical Monitor

w
WEIGHT: Matching Weights
WHILE
WHILE example
Wild Card Pattern
write
WX, PHIX, WY, PHIY,...

274

http://frs.home.cern.ch/frs/Xdoc/threader/threader.html

y
YROTATION: Rotation About the Vertical Axis

275

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Effect of the bv flag in MAD-X
When reversing the direction ("V") of a particle in a magnetic field ("B") while keeping its charge
constant, the resulting force V * B changes sign. This is equivalent to flipping the field, but not the
direction.

For practical reasons the properties of all elements of the LHC are defined in the MADX input as if they
apply to a clockwise proton beam ("LHC beam 1"). This allows a single definition for elements traversed
by both beams. Their effects on a beam with identical particle charge but running in the opposite direction
("LHC beam 2") must then be reversed inside the program.

In MADX this may be taken into account by setting the value of the BV attribute in the Beam commands.
In the case of LHC beam 1 (clockwise) and beam 2 (counter-clockwise), treated in MADX both as
clockwise proton beams, the Beam commands must look as follows:

 Beam, sequence=lhcb1, particle=proton, pc=450, bv=+1;
 Beam, sequence=lhcb2, particle=proton, pc=450, bv=-1;

frs, March 29, 2009

276

http://www.cern.ch/Frank.Schmidt/frs_sign.html

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

MAD-X News
Hans Grote and Frank Schmidt

MAD-X News
This is a loose collection of new features, new sample jobs, and other possibly interesting remarks
concerning MAD-X.

Work log between releases madX-4_00_09 and madX-4_00_19

Log report started Thu May 7 20:01:28 2009, ended Thu May 7 20:02:54 2009

elaface

Fixed argument of wrong type passed to the mtlmdl Fortran subroutine

warning fixed

Now the check for OSTYPE works with darwin9.0

frs

1) New TPSA package by lingyun.yang@gmail.com 2) General clean-up

Preliminary fix of memory crash - courtesy JBJ

Some rearrangements by Etienne and final clean-up of PTC

Workaround for a array out-off-bound problem due to LDA=16000 being
too small. 1) LDAMAX set to 110’000 & lda_used =100000 2) Program
stops when an out-off-bound array access is attempted. 3) Real fix needed to
make LDA dynamic

Missing general "public" statements which creates pseudo bugs

More clean-up for the TPSA upgrade

Fortran Clean-up: indenting, remove potentially uninitialized variable and
also remove unused variables

Minor clean-up concerning: character strings, possibly uninitialized
variables and unused variables

277

ONLINE needs: libmdblib.a libmdbmth.a librpnlib.a libSDDS1.a
libSDDS1c.a libz.a SLC5 needed: libX11.a

MAD-X production version 4.00.19

version madX-4_00_18_dev

Version 4.00.17: add LRAD to kickers

Version 4.00.16

Version 4.00.15

MAD-X version 4.00.14

MAD-X version madX-4_00_12_dev

version madX-4_00_12_dev

version madX-4_00_11_dev

version 4.00.10

version

Add attribute "range_plot" to allow range also for user defined horizontal
axis (courtesy HG)

Allowing plotting at markers using the "marker_plot" attribute. Courtesy
HG

Add ntpsa flag (if present the new C++ TPSA package by
lingyun.yang@gmail.com in invoked) and the symprint flag pronts the
symplecticity flag by default.

Remove "harmless" occurrence "dipole_bv" by the more obvious one
"other_bv"

remove tabs

Clean-up unused variables

Take out: Unused external reference RESULT_FROM_NORMAL found
with latest: NAG Fortran Compiler Release 5.2(668)

Minor clean-up

Get the compiler directives like "ifdef _WIN32_DLL working in F90 files
using the Lahey compiler. Special Fujitsi flags for lf95 invoked e.g. lf95 -c
-o1 -tp -lfe "-Cpp" -lfe "-D_WIN32_DLL" %FPP%\c_tpsa_interface.F90
-winconsole -ml msvc These compiler flags can be found at:
http://www.lahey.com/docs/fujitsu%20compiler%20option%20list.pdf

278

To wrap up for Windows

Modification for c_tpsa_interface.F90

Added new tpsa package

Fixing the passing of a double array instead of an integer array.

Etienne’s clean-up of AF

Fix C/C++ nonstandard features fix pseudo-bug in c_tpsa_interface.F90
found by NAG f95. Integer shall not be defined as an array of dimension 1.

Latest cleanup of Lingyun’s TPSA including tpsa.dll needed for Windows

Clean-up

- gfortran broken in gcc4.4 - Therefore back to g95 however the LIBX flags
must be fixed according to gcc being used

Fix the exclusion of f90 & F90 files with and without NTPSA

Yet another upgrade for MAC using g95

Clean-up for MAC

Generalization for f90/F90

Compiler preprocessing for c_tpsa_interface to drop DLL for LINUX

Add new tpsa

missing -fno-range-check flag for gfortran in particular for MAC

Back to standard "LF95"

Further adjustments to safeguard running with "gfortran" which can be
steered with the new "SLC4" flag.

Fix further gfortran for SLC4

Default compiler oh lxplus: lf95 gfortran with -Wall -pedantic DEBUG
flags even for Fortran

gfortran explanation for SLC4

Darwin fixes

no ONLINE as standard

More small fixes: - o4 off for lf95 - proper libraries for ONLINE

Fix gfortran Home link use proper LINK options for MAC

hbu

279

using semi automatic object file list

Makefile mac compatible

jbj

made more robust the capture of the Twiss data of the drift preceeding the
current element - solving the ’1st slice wrong n1’ supressed the memory
crash when aperture called twice with the same offsetlem in tfs format

nougaret

further prevent output mixup through forced flush when crossing the border
in the other direction (i.e. Fortran calling C, which is more rare than the
reverse)

handle flushing unit 6 on Intel ifort compiler

invoke ’call flush(6)’ as ’flush(6)’ with Intel compiler

suppress compilation warnings

skowron

Added filling of track summ table for ptc_trackline. Now the user can check
what were the final coordinates of tracking

If plugin support: link dynamically; if debug: do not put -O4 optimization;
g95 option: add proper debug flags

Work log between releases madX-4_00_09 and madX-4_00_19

Log report started Tue May 5 20:01:26 2009, ended Tue May 5 20:02:49 2009

elaface

Fixed argument of wrong type passed to the mtlmdl Fortran subroutine

warning fixed

Now the check for OSTYPE works with darwin9.0

frs

1) New TPSA package by lingyun.yang@gmail.com 2) General clean-up

Preliminary fix of memory crash - courtesy JBJ

Some rearrangements by Etienne and final clean-up of PTC

GET_C_J routine no longer needed

Missing general "public" statements which creates pseudo bugs

280

More clean-up for the TPSA upgrade

Fortran Clean-up: indenting, remove potentially uninitialized variable and
also remove unused variables

Minor clean-up concerning: character strings, possibly uninitialized
variables and unused variables

ONLINE needs: libmdblib.a libmdbmth.a librpnlib.a libSDDS1.a
libSDDS1c.a libz.a SLC5 needed: libX11.a

MAD-X production version 4.00.19

version madX-4_00_18_dev

Version 4.00.17: add LRAD to kickers

Version 4.00.16

Version 4.00.15

MAD-X version 4.00.14

MAD-X version madX-4_00_12_dev

version madX-4_00_12_dev

version madX-4_00_11_dev

version 4.00.10

version

Add attribute "range_plot" to allow range also for user defined horizontal
axis (courtesy HG)

Allowing plotting at markers using the "marker_plot" attribute. Courtesy
HG

Add ntpsa flag (if present the new C++ TPSA package by
lingyun.yang@gmail.com in invoked) and the symprint flag pronts the
symplecticity flag by default.

Remove "harmless" occurrence "dipole_bv" by the more obvious one
"other_bv"

remove tabs

Clean-up unused variables

Take out: Unused external reference RESULT_FROM_NORMAL found
with latest: NAG Fortran Compiler Release 5.2(668)

Minor clean-up

281

Get the compiler directives like "ifdef _WIN32_DLL working in F90 files
using the Lahey compiler. Special Fujitsi flags for lf95 invoked e.g. lf95 -c
-o1 -tp -lfe "-Cpp" -lfe "-D_WIN32_DLL" %FPP%\c_tpsa_interface.F90
-winconsole -ml msvc These compiler flags can be found at:
http://www.lahey.com/docs/fujitsu%20compiler%20option%20list.pdf

To wrap up for Windows

Modification for c_tpsa_interface.F90

Added new tpsa package

Fixing the passing of a double array instead of an integer array.

Etienne’s clean-up of AF

Fix C/C++ nonstandard features fix pseudo-bug in c_tpsa_interface.F90
found by NAG f95. Integer shall not be defined as an array of dimension 1.

Latest cleanup of Lingyun’s TPSA including tpsa.dll needed for Windows

Clean-up

- gfortran broken in gcc4.4 - Therefore back to g95 however the LIBX flags
must be fixed according to gcc being used

Fix the exclusion of f90 & F90 files with and without NTPSA

Yet another upgrade for MAC using g95

Clean-up for MAC

Generalization for f90/F90

Compiler preprocessing for c_tpsa_interface to drop DLL for LINUX

Add new tpsa

missing -fno-range-check flag for gfortran in particular for MAC

Back to standard "LF95"

Further adjustments to safeguard running with "gfortran" which can be
steered with the new "SLC4" flag.

Fix further gfortran for SLC4

Default compiler oh lxplus: lf95 gfortran with -Wall -pedantic DEBUG
flags even for Fortran

gfortran explanation for SLC4

Darwin fixes

282

no ONLINE as standard

More small fixes: - o4 off for lf95 - proper libraries for ONLINE

Fix gfortran Home link use proper LINK options for MAC

hbu

using semi automatic object file list

Makefile mac compatible

jbj

made more robust the capture of the Twiss data of the drift preceeding the
current element - solving the ’1st slice wrong n1’ supressed the memory
crash when aperture called twice with the same offsetlem in tfs format

nougaret

further prevent output mixup through forced flush when crossing the border
in the other direction (i.e. Fortran calling C, which is more rare than the
reverse)

handle flushing unit 6 on Intel ifort compiler

invoke ’call flush(6)’ as ’flush(6)’ with Intel compiler

suppress compilation warnings

skowron

Added filling of track summ table for ptc_trackline. Now the user can check
what were the final coordinates of tracking

If plugin support: link dynamically; if debug: do not put -O4 optimization;
g95 option: add proper debug flags

Work log between releases madX-4_00_09 and madX-4_00_19

Log report started Mon May 4 20:02:18 2009, ended Mon May 4 20:03:41 2009

elaface

Fixed argument of wrong type passed to the mtlmdl Fortran subroutine

warning fixed

Now the check for OSTYPE works with darwin9.0

frs

1) New TPSA package by lingyun.yang@gmail.com 2) General clean-up

283

Preliminary fix of memory crash - courtesy JBJ

Some rearrangements by Etienne and final clean-up of PTC

GET_C_J routine no longer needed

Missing general "public" statements which creates pseudo bugs

More clean-up for the TPSA upgrade

Fortran Clean-up: indenting, remove potentially uninitialized variable and
also remove unused variables

Minor clean-up concerning: character strings, possibly uninitialized
variables and unused variables

ONLINE needs: libmdblib.a libmdbmth.a librpnlib.a libSDDS1.a
libSDDS1c.a libz.a SLC5 needed: libX11.a

version madX-4_00_18_dev

Version 4.00.17: add LRAD to kickers

Version 4.00.16

Version 4.00.15

MAD-X version 4.00.14

MAD-X version madX-4_00_12_dev

version madX-4_00_12_dev

version madX-4_00_11_dev

version 4.00.10

version

Add attribute "range_plot" to allow range also for user defined horizontal
axis (courtesy HG)

Allowing plotting at markers using the "marker_plot" attribute. Courtesy
HG

Add ntpsa flag (if present the new C++ TPSA package by
lingyun.yang@gmail.com in invoked) and the symprint flag pronts the
symplecticity flag by default.

Remove "harmless" occurrence "dipole_bv" by the more obvious one
"other_bv"

remove tabs

284

Clean-up unused variables

Take out: Unused external reference RESULT_FROM_NORMAL found
with latest: NAG Fortran Compiler Release 5.2(668)

Minor clean-up

Get the compiler directives like "ifdef _WIN32_DLL working in F90 files
using the Lahey compiler. Special Fujitsi flags for lf95 invoked e.g. lf95 -c
-o1 -tp -lfe "-Cpp" -lfe "-D_WIN32_DLL" %FPP%\c_tpsa_interface.F90
-winconsole -ml msvc These compiler flags can be found at:
http://www.lahey.com/docs/fujitsu%20compiler%20option%20list.pdf

To wrap up for Windows

Modification for c_tpsa_interface.F90

Added new tpsa package

Fixing the passing of a double array instead of an integer array.

Etienne’s clean-up of AF

Fix C/C++ nonstandard features fix pseudo-bug in c_tpsa_interface.F90
found by NAG f95. Integer shall not be defined as an array of dimension 1.

Latest cleanup of Lingyun’s TPSA including tpsa.dll needed for Windows

Clean-up

- gfortran broken in gcc4.4 - Therefore back to g95 however the LIBX flags
must be fixed according to gcc being used

Fix the exclusion of f90 & F90 files with and without NTPSA

Yet another upgrade for MAC using g95

Clean-up for MAC

Generalization for f90/F90

Compiler preprocessing for c_tpsa_interface to drop DLL for LINUX

Add new tpsa

missing -fno-range-check flag for gfortran in particular for MAC

Back to standard "LF95"

Further adjustments to safeguard running with "gfortran" which can be
steered with the new "SLC4" flag.

Fix further gfortran for SLC4

285

Default compiler oh lxplus: lf95 gfortran with -Wall -pedantic DEBUG
flags even for Fortran

gfortran explanation for SLC4

Darwin fixes

no ONLINE as standard

More small fixes: - o4 off for lf95 - proper libraries for ONLINE

Fix gfortran Home link use proper LINK options for MAC

hbu

using semi automatic object file list

Makefile mac compatible

jbj

made more robust the capture of the Twiss data of the drift preceeding the
current element - solving the ’1st slice wrong n1’ supressed the memory
crash when aperture called twice with the same offsetlem in tfs format

nougaret

further prevent output mixup through forced flush when crossing the border
in the other direction (i.e. Fortran calling C, which is more rare than the
reverse)

handle flushing unit 6 on Intel ifort compiler

invoke ’call flush(6)’ as ’flush(6)’ with Intel compiler

suppress compilation warnings

skowron

Added filling of track summ table for ptc_trackline. Now the user can check
what were the final coordinates of tracking

If plugin support: link dynamically; if debug: do not put -O4 optimization;
g95 option: add proper debug flags

Work log between releases madX-4_00_07 and madX-4_00_09

Log report started Fri Mar 27 20:02:08 2009, ended Fri Mar 27 20:03:03 2009

286

frs

New files needed for MAD-X Version 4

Clean-up

Version 4.00.09

version 4.00.08

No lonfer needed for MAD-X Version 4

Clean wipes out fortran wrapper stuff

New Makefiles for Linux/Mac & Windows include all previous features

Work log between releases madX-4_00_00 and madX-4_00_07

Log report started Wed Mar 18 20:02:11 2009, ended Wed Mar 18 20:03:12 2009

frs

total_da_size set to very large (courtesy Piotr & Etienne)

madX-4_00_07_dev & first candidate for the production version

madX-4_00_06_dev

Fix of the faulty REPLACE command (coutesy HG)

madX-4_00_05_dev

madX-4_00_04_dev

Fix of the memory crash due to the USE command in a while loop (found
by EB - fixed courtesy HG)

MAD-X vesrion: 4.00.02

Version 4.00.01; fixing the crash due to conflict with markers (courtesy
HG)

Return NULL; needed to continue if the "no_fatal_stop" flag enforces
program continuation

Harmon no longer ignored (courtesy HG)

Fix lethal bug in DELETE command (courtesy HG)

suppress forbidden TAB character

reorganize twbtin more logically

287

The chromatic functions wx, phix, wy, phiy could not be initialized properly
for lines.

simplifying length fix

proper fix of doubling of the length of the machine with chrom & centre

suppress double length in summ table for chrom & currpos option

preparation for SLC5 in 32 & 64 bits

nougaret

Compute derivatives of the dispersion w.r.t. deltap

to scale from 32 to 64 bits platforms, obtain pointers size with
sizeof(uintptr_t)

one-turn parameters such as the tune should now depend on deltap

merged Frank and Piotr’s modifications

skowron

Removed one line from generated ROOT macros for plotting since the
ROOT command disapeared in the new versions

protection against seg fault in case the command is executed before
ptc_create_universe

Bug in knobs corrected

Twiss table was extended, definitions for new new columns were added in
ptc_madx_knobs.inc, but the code was not modified apropriately and
uninitialized univ. taylors were left in the results array

Swapped putusertable with puttwisstable so we values from the user table
are copied properly to the twiss table if requested. See ptc_secordmatch
example in the testsuite.

With modern versions of ROOT libraries were splitted to more files.
Updated the code to lead all that are needed in ROOT version 2.21

yisun

Remove two useless messages.

zwe

use beam_bv flag to change sign for beam two in simultaneous orbit
correction

288

Modifications to adapt to beam1/beam2 conventions for two beam orbit
correction.

Resolve problem with RESOUT option

Work log between releases madX-3_04_72 and madX-4_00_00

Log report started Mon Feb 16 07:02:11 2009, ended Mon Feb 16 07:03:06 2009

289

frs

readtable stops with fatal_error when file with table does not exist (courtesy
HG)

production version: madX-4_00_00

version: madX-3_04_77

Version: madX-3_04_76_dev

version: madX-3_04_75_dev

Fix the matching problem and the faulty set-up of the twiss_chrom flag
(courtesy HG)

Intermediate version with improvement concerning chromaticity including
coupling. More work concerning a hiccup in the matching of the LHC still
under way. (courtesy HG)

Initializing q1_val_p & q2_val_p clean-up to avoid compiler warning

Solenoid becomes a marker if the integrated strength is zero otherwise a
fake very short is used.

Take out doogy format for strlen - trivial clean-up

The flag chrom can now be set on demand. (coutesy HG)

Fixing small bug concerning undefined deltap. (courtesy YS)

hbu

keep new parameter mech_sep in slicing

jbj

/* BJ 13.02.2009. - added check |x-e| < dist_limit - removed useless
calculations of sqrt - made consistent use of dist_limit and min_double */ /*
BJ 13.02.2009 check if point x = (xm,ym) is in the segment [s,e] with s =
(startx,starty) and e = (endx,endy) by computing cosfi = (x-s).(x-e) /
|x-s||x-e|. cosfi = -1 : x is in first check if |x-s| and |x-e| are not too small.If
yes for one of them : in if OK , the zero divide check must be superfluous.
But keep it anyway. */

Work log between releases madX-3_04_68 and madX-3_04_72

Log report started Sun Feb 8 07:01:42 2009, ended Sun Feb 8 07:03:01 2009

290

frs

1) fix lethal error (no consequence for LHC) 2) Put back "etall" into DA
vector headers (both courtesy EF)

Fixing the Twiss chromaticity problem in presence of coupling by runnining
Twiss twice with different deltap (which is set to 1e-9) and calculate it
numerically. Good workaround! (courtesy HG)

MAD-X version: madX-3_04_71_dev

MAD-X version: madX-3_04_70_dev

Version: madX-3_04_69_dev

chrom also for matching

Drop individual BV flag, requested by Thys.

More changes to ensure the "chrom" option to be always on (courtesy HG)

Throw a warning if EXTRACT is using unknown markers! (courtesy HG)

Clean up a pseudo-bug concerning "AF never dereferenced" claimed by the
NAG compiler (courtesy EF)

Skip double allocation detected by G95

Fixing an inconsistent "TARGET" declaration found by NAG. (courtesy
EF)

Putting back incorrect chromaticity calculation

1) Fix proper disp & ddisp definition for ring with respect to lines 2)
Suppress chromaticity calculation in case of coupling since it is plain
wrong.

First MAD-X LHC commissioning version 3.04: 09.07.2007
1) Allowing reading and writing of SDDS data sets for
communication with the LHC control system.
2) A large amount of medium size and smaller code changes
and bug fixes.
3) Full blown development for CLIC purposes.
4) New Jacobian matching method.
5) Non-linear and parametric matching.

All changes for each file:
===

MAD-X proper

C Files:

- minor C inconsistencies and some clean-up
- Uninitiatized variables

aperture.c
- moved aperture code from madxn.c to new file aperture.c
- corrections:
- more apex in halo polygon

291

- corrected the construction of rectellipse in the general case
- secured potentially dangerous division by zero

c6t.c
- The brute force quick and dirty fix of frs has been reverted for a proper
fixing at the source of the problem, IE assigning different names for
different multipoles. It has been shown that SixTrack gives identical
results for the "brute force" and the "proper solution".
Courtesy Hans Grote (honorable ABP group member)
- Fixing the problem of using the same name for very different multipoles.
This is a quick fix and a more rigorous solution is needed.
- R(E)COLLIMATORs were treated as thick elements in the single element list
but later treated as thin elements leading to skrewed up linear optics
in SixTrack. They are kept as distinct elements and are not joined with
surrounding drifts.

gxx11c.c, gxx11psc.c
- Fix the month number in the ps files

madxc.c
- Added commands to allow reading of external orbit files
- Correct read_my_table for long data elements

madxe.c
- compiler warnings removed
- Changed default behaviour of ADD option

madxn.c, madxp.c, madxu.c
- moved aperture code from madxn.c to new file aperture.c
corrections:
- more apex in halo polygon
- corrected the construction of rectellipse in the general case
- secured potentially dangerous division by zero
- Avoid divisions by zero in the aperture module.
- minor C inconsistencies and some clean-up
- mad-X_3_66 bugs found by EK
- Array overflow reported from valgrind removed
- Special non-existing End marker has been dropped. courtesy HG
- mpar made compiling, three functions moved from matchc2.c to madxu.c
- current in table_list initialized to 0
- add warning when use_macro option is used with too many variables
- Introducing aptol_(1,2,3) "rtol", "xtol", "ytol" to be available in MAD-X
input and e.g. to be added to a TWISS table. Courtesy H.G.
Now table2(x,y) or stable(a,b,c) or things like that will not be modified.
- First step for node layout tracking in ptc_trackline
- fix a bug when you use a macro which define another macro for matching
- madX-3_03_48: "Final" fix of the TILT saga! Tilt is calculated exclusively
in twiss.F following the strategy:
0) These changes concern quad, sext, oct, elec separator;
 but NOT dipole or multipole
1) TILT input is the external tilt (+k ==> +ks for tilt < 0)
2) k & ks represent an internal tilt
3) at each element the total tilt & sqrt(k**2 + ks**2) is calculated
 including field errors, i.e. the correct way which might cause
 differences with MAD8
4) PTC has been adjusted appropriate
5) Possible effects on "survey" and "emit" will be tested
6) Many Thanks for HG for his help!
- Bug corrected, replaced abs with fabs
- Updated match with knobs
- Constraints for ranges with match,use_macro; implemented
- Debugging
a) madxp: Wrong sign of TILT when calculated from k & KS
b) madx_ptc_module: Total rewrite of TILT stuff!
- tilt clean-up coutesy HG
- Moments calculation fully imlemented; map buffering in ptc_twiss
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Introducing aptol_(1,2,3) "rtol", "xtol", "ytol" to be available in MAD-X
input and e.g. to be added to a TWISS table. Courtesy H.G.
- Adding gino command following madx_ptc_script_module
Problems:
1) pt not displayed in table.
2) deltap not in ptc_twiss header unless a twiss command was done before
 ptc_twiss!
Solution:
1) Set up y properly
2) Put "deltap" into header of the ptc_twiss table permanently
- Fix routine readrematrix by exchanging x(5) and x(6)
- Fixing the plot crash: the header is not read if it does not exist
(courtesy HG).
-
1) Stefan Sorge new module keeper!!!!
2) Second order detuning with proper "hor" and "ver" names. In fact,
vertical terms were missing.
-
1) Bad memory bug found by RdM. Piotr found using valgrind the solution:
in mymalloc("read_table", strlen(aux_buff->c)+1) the "+1" is essential
because the character string has a "\0" at the end.
2) In plot there is still the crash when reading the header - temporary
solution applied.
- Fix the headvalue routine which stumbled over a blank line. (courtesy HG)
- First step for node layout tracking in ptc_trackline
- Adding a C routine to read headers of TFS tables (courtesy HG)
- Taking deltap from table header both for TWISS and ptc_twiss (but
 NOT in case of a SUMM table!) and place on the plot.
- Move the set_variable routine from madxn.c to madxu.c. Needed to compile
mpars.
- new setvar command; fixed readtable bug
- Removed redundant debug printout
- Exact name matching implemented, now passing name with :x
- VORNAME assigned, the same as name of node in MADX but with capital letters
- Updated match with knobs
- Constraints for ranges with match,use_macro; implemented
- Adding "e1", "e2", "h1", "h2", "hgap", "fint", "fintx" to the twiss table
- Removed charge setting to the my_ring layout to make ptc_twiss running,
redundant printouts removed
- Moments calculation fully imlemented; map buffering in ptc_twiss
- Few bugs corrected (f.g. map initialized to nd2 instead of npara when
initial twiss provided). Moments seem to work (to be tested yet)

292

- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
-Not enough memory for buffers ==> FODO: LINE=(36*(CELL)); failed when cell
was a line itself
- clean-up of gino
- Adding gino command following madx_ptc_script_module
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
 The problem with table (and tabstring) replacement was correctly
stated, only in this case did simple string replacement take place (bad
implememtation, my mistake). It has been corrected, the files concerned
are madxd.h, madxp.c, and madxu.h in ~hansg/public/tmp
Now table2(x,y) or stable(a,b,c) or things like that will not be modified.
- In new_command_parameter_list pointer array of parameters initized with NULLs
- Write only long in TFS tables
- "string function" tabstring count start at 1 courtesy Hans Grote
- Now alos ptc_normal accepted in matching with ptcknobs; bug corrections
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- Implemented:
- Problem:
[1] Macro names and clashes with internal names
! OK
mycrap(xx,yy,zz): macro = {ingvar = table(xx,yy,zz);};
somenamesarelong(xx,yy,zz): macro = {ingvar = table(xx,yy,zz);};
! not OK
table2(xx,yy,zz): macro = {ingvar = table(xx,yy,zz);};
redtableclothing(xx,yy,zz): macro = {ingvar = table(xx,yy,zz);};
readtable,
file="/afs/cern.ch/user/h/hagen/public/MAD/ALL-emfq-0001.tfs";
Solution:courtesy Hans Grote
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
- New tracking feature by Andres Gomez Alonso:
Using flag "recloss" in the tracking command creates a table called
"trackloss", which keeps a record of lost particles. It can be saved
using the "write, table= trackloss" command.
- Changes for SDDS and online model
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed
- Correct bug in read_table: can read long integers now
- Sceleton for knobs and arbitrary element placement implemented. Lattice
visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Sodd table names usinf small letters only
- closing unit 34 to allow multiple SODD runs
- changing table entries to more logical names
- print out clean up
- Proper initialization of pointers to NULL’s, added function for deleting
command_list structures
- "string function" tabstring count start at 1 courtesy Hans Grote
- New function "exist" courtesy Hans Grote
- Add a ’;’ to the error message for a not found variable in the ’show’ command
- Error flag implemented that signals that error code occured
- If a user table is used by ptc_select then org_cols=num_cols.
Otherwise all values are overwritten by add_vars_to_table function.
- PTC_Enforce6D implemented

madxsdds.c
- Add SDDS module

makethin.c
- Fixing TILT in multipole kick and make TILT proper in thick octupole.
Courtesy HG
- Changing the conflicting "ksl" for the integrated solenoid strength to
"ksi". This name is reserved for the vector of the integrated skew
multipoles "ksl={};". Thick solenoid can now have normal "knl" and skew
"ksl" multipole errors in PTC, ignored in madx proper. Thin solenoids
are presently not considered in PTC.

matchc.c, matchc2.c
- knobs: better definition
- knobs file defines with ":="
- Experimental knob file generation
- fix a bug when you use a macro which define another macro for matching
- Comment corrected
- Syntax error at 405: code lines must come after declarations at least for
Windows "CL".
- Printouts redirected to prt_file
- mpar made compiling, three functions moved from matchc2.c to madxu.c
- Updated match with knobs
- Constraints for ranges with match,use_macro; implemented
- fix compilation warnings
- add warning when use_macro option is used with too many variables
- New jacobian routine with svd. Option COND added for controlling the SVD.
Increased number of constraints
- Corrected bug in match use_macro in match2_evaluate_exressions
- change in the print out of match summary when USE_MACRO
- Redundant printf removed
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.

293

3. Minor corrections and protections against segmentation vilation.
- Error flag is monitored in mtcond so if an error occured during macro
execution it is handled appropriately.

matchptcknobs.c
- Functions defined elsewhere should be defined with extern so linker does not
complain about multiple definitions
- Algorithm made more stable
- Typo corrected
- introduced correct treatment of magnet families
- Protection against deletion of NULL pointer added
- Parametric matching of initial conditions works now, final tests and debugging
to be done
- Updated match with knobs
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Corrected bug in match use_macro in match2_evaluate_exressions
- Now alos ptc_normal accepted in matching with ptcknobs; bug corrections
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.

rplot.c
- On some systems it is needed to load manually all needed ROOT libraries
- Bug correction
- Now alos ptc_normal accepted in matching with ptcknobs; bug corrections
- Code cosmetics
- Turn number added in rplot
- rviewer plugin intefaced; from now on rplot is a plugin instead of compiled
in optional code
- Sever bug in knobs corrected: attempt to delete not properly assocoated taylors
in case no knobs are set by the user

C Header Files:

madx.h
- Add parameter (units) for orbit correction
- Added: Enumeration type for matching mode; protection against multiple
inclusion.

madxl.h
- Definitions for tables used by Slice Tracking with PTC
- Momentum compaction "alfa" included into TWISS table for matching.
- Add "polarity" parameter to the twiss table
- Updated match with knobs
- Adding "e1", "e2", "h1", "h2", "hgap", "fint", "fintx" to the twiss table
- Suppressing "imax" in favor of "calib" - request by Thys Risselada
- Adding node value "kmax" (maximum K value) and "imax" (maximum Current value)
- New tracking feature by Andres Gomez Alonso:
Using flag "recloss" in the tracking command creates a table called
"trackloss", which keeps a record of lost particles. It can be saved
using the "write, table= trackloss" command.
- Added madX data types , mainly used in SDDS module
- New function "exist" courtesy Hans Grote
- Sodd table names usinf small letters only
- closing unit 34 to allow multiple SODD runs
- changing table entries to more logical names
- print out clean up

madxdict.h
- Experimental knob file generation
- Added option that tells to free memory at the end of the program execution.
Option for ptc_trackline added that switches on/off track parameters storage
in memory for every slice
- Fix traditional matching of alfa
- First step for node layout tracking in ptc_trackline
- Added ptc names of twiss functions to constraint, hence one can set
constraint in a range
- new setvar command; fixed readtable bug
- Add "polarity" parameter to the twiss table
- Clean-up
- wrap.f90
- Fixing the crash for sbend + exact + multipoles larger than 10. This set-up
requires to solve Maxwell’s equation up to SECTOR_NMUL_MAX. The default is
set to 10 to avoid excessive computing time. This is now safeguarded in
madxp. To this end the parameters SECTOR_NMUL and SECTOR_NMUL_MAX are
transfered from "ptc_create_layout" to "ptc_create_universe" such that
these global parameters can be set early enough. Internally in PTC the
parameter "lda_used" is incremented where needed from 1500 to 3000 and set
back. Moreover Etienne has done the following modifications to make this
possible:
"The modification I made in the new PTC I sent you are as follows:
You first select SECTOR_NMUL and SECTOR_NMUL_MAX. For all
multipole <= SECTOR_NMUL then maxwell’s is solved to order SECTOR_NMUL_MAX.
For multipole above SECTOR_NMUL , they are treated a la Sixtrack.
So for example, it you have errors to order 20, you may bother with maxwells
only to order nmul=4 and nmul_max=10 as far as Maxwell’s is concerned.
Multipole higher will be sixtrack multipoles.
- Updated match with knobs
-fix bug for select_ptc_normal
- Added commands to allow reading external orbit files
- Moments calculation fully imlemented; map buffering in ptc_twiss
- Few bugs corrected (f.g. map initialized to nd2 instead of npara when
initial twiss provided). Moments seem to work (to be tested yet)
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- New jacobian routine with svd. Option COND added for controlling the SVD.
Increased number of constraints
- Adding gino command following madx_ptc_script_module
- Suppressing "imax" in favor of "calib" - request by Thys Risselada
- Adding node value "kmax" (maximum K value) and "imax" (maximum Current value)
- drop useless lcavity since ywcavity has same mad-8 element code
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.

294

2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
- New tracking feature by Andres Gomez Alonso:
Using flag "recloss" in the tracking command creates a table called
"trackloss", which keeps a record of lost particles. It can be saved
using the "write, table= trackloss" command.
- change in beambeam command: usage of scattering beam
with different radial shapes is possible:
parameters:
bbshape: 1 (default) Gaussian, standard as before
 2 flattop (or trapezoidal)
 3 hollow-parabolic
width: for bbshape=2: fractional width of edge region
 for bbshape=3: fractional width of the parabolic part
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed
- Comment removed
- Element placement options added
- Commands for SDDS read and write
- Sceleton for knobs and arbitrary element placement implemented. Lattice
visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Introducing TRUERBEND and WEDGRBEND in PTC. To this end 2 flags have been
introduced in the NAD-X dictionary madxdict.h:
1) ptcrbend: if true it uses a PTC type RBEND
2) truerbend: if true it uses TRUERBEND; if false it uses WEDGRBEND
- Option for ptc_trackline position given in global coordinate system added.
- Changing the conflicting "ksl" for the integrated solenoid strength to
"ksi". This name is reserved for the vector of the integrated skew
multipoles "ksl={};". Thick solenoid can now have normal "knl" and skew
"ksl" multipole errors in PTC, ignored in madx proper. Thin solenoids
are presently not considered in PTC.
- PTC_Enforce6D implemented
- defaultlevel default has been 0 now 1 as planned originally

matchptcknobs.h
- Updated match with knobs
- Now alos ptc_normal accepted in matching with ptcknobs; bug corrections
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.

rplot.h
- Code cosmetics
- Turn number added in rplot
- rviewer plugin intefaced; from now on rplot is a plugin instead of compiled in
optional code
- Sever bug in knobs corrected: attempt to delete not properly assocoated taylors
in case no
knobs are set by the user

sdds.h
- New files for MAD-X On-Line Modeling Version

FORTRAN Files:

Changes:

emit.F and all Fortran Files
- Clean-up of unused variables
- Fortran Clean-Up

match.F
- tentative new output for matching var

matchjc.F
- better ending jacobian
- Penalty function printed with twise larger precision
- New jacobian routine with svd. Option COND added for controlling the SVD.
Increased number of constraints
- change in calls behavior for JACOBIAN

matchlib.F
1) Just the routines needed ==> 5 times smaller: 33% ==> 10%
2) Fortran90 Clean-up
- Changes needed to compile routine dlamc1 without optimization in extra file
matchlib2.F. Otherwise madx gets stuck in matching procedures. In all Linux
Makefiles matchlib2.F is compiled when using g77. For the Fortran90 compilers
lf95, g95, f95(NAG) and gfortran an optimized routine is used as provided by
Andy Vaught, the "g95" maintainer. For Windows the special compile flag:
-lfe "-D_G95" was needed (special undocumented Fujitsu compile flag of
the Lahey lf95) to compile this special Fortran90 version of dlamc1.
- Replacing the DLAMC1 by an improved Fortran90 one as proposed by
Andy Vaught
- remove Makefile_nag offending code
- New jacobian routine with svd. Option COND added for controlling the SVD.
Increased number of constraints

matchlib2.F
- Needed to compile routine dlamc1 without optimization. Otherwise madx
gets stuck in matching procedures.

295

orbf.F
- no blanks between & position 6 and the start of the code.

plot.F
- Add energy label "E" in routine "pegetn", I.E. 69th item of svanno(69)=E
- Safeguard uncontrolled access to unsupported labels like Energy
- Fixing the plot crash: the header is not read if it does not exist
(courtesy HG).
-
1) Bad memory bug found by RdM. Piotr found using valgrind the solution:
in mymalloc("read_table", strlen(aux_buff->c)+1) the "+1" is essential
because the character string has a "\0" at the end.
2) In plot there is still the crash when reading the header - temporary
solution applied.
- Fix the headvalue routine which stumbled over a blank line. (courtesy HG)
- Preliminary fix of the crash when the aperture table is used
- Adding a C routine to read headers of TFS tables (courtesy HG)
- Taking deltap from table header both for TWISS and ptc_twiss (but
 NOT in case of a SUMM table!) and place on the plot.
- Blanking out buffer if ptc_flag = true
- deltap plot entry taken from PTC plots

ptc_dummy.F
- First step for node layout tracking in ptc_trackline
- Missing dummy definitions added
- Moments calculation fully imlemented; map buffering in ptc_twiss
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Adding gino command following madx_ptc_script_module
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
- knobs implemented with PTC with pol_blocks; command to dump parametric results
to file or stdout; content of ptc_madx_tablepush.f90 moved to ptc_madx_knobs.f90,
the former one removed
- Sceleton for knobs and arbitrary element placement implemented. Lattice
visualization via ROOT macro. Printing detailed lattice geometry in PTC. Several
small bug corrections and some code cosmetics.
- PTC_Enforce6D implemented

sodd.F
- Suppression of excessive printing (courtesy SS)
-
1) Stefan Sorge new module keeper!!!!
2) Second order detuning with proper "hor" and "ver" names. In fact,
vertical terms were missing.
- Close unit 34 even on error output
- Sodd table names usinf small letters only
- closing unit 34 to allow multiple SODD runs
- changing table entries to more logical names
- print out clean up

trrun.F
- The argument "el" was removed from argument list of subroutine tmarb called
here (line 532 in trrun.F), because it did not coincide with the argument
list of the real subroutine tmarb in twiss.F.
- Bug found by Stefan Sorge in trrun/trinicmd: Variables ’bet0’ and ’bet0i’ were
undefined, leading to erronous results. Corrected.
- Fixing: Unwanted changes commented.
- The aperture of the collimators was checked before undergoing the (possible)
rotation at the entry of the element. Corrected now: If collimator has a roll
angle (’tilt’), coordinates are transformed to the rotated local coordinate
system and only after that apertures are checked.
- Add BV flag to the solenoids
- Some unnecessary changes taken out again by Andres Gomez Alonso.
- Inconsistent variable declarations of z0 encountered by Piotr when using
make -f Makefile_nag. Fixed.
- New tracking feature by Andres Gomez Alonso:
Using flag "recloss" in the tracking command creates a table called
"trackloss", which keeps a record of lost particles. It can be saved
using the "write, table= trackloss" command.
- safeguard faulty input
- change in beambeam command: usage of scattering beam
with different radial shapes is possible:
parameters:
bbshape: 1 (default) Gaussian, standard as before
 2 flattop (or trapezoidal)
 3 hollow-parabolic
width: for bbshape=2: fractional width of edge region
 for bbshape=3: fractional width of the parabolic part
- Changing the conflicting "ksl" for the integrated solenoid strength to
"ksi". This name is reserved for the vector of the integrated skew
multipoles "ksl={};". Thick solenoid can now have normal "knl" and skew
"ksl" multipole errors in PTC, ignored in madx proper. Thin solenoids
are presently not considered in PTC.

twiss.F
- Closed orbit implemented in the maps for the beambeam element with
flattop and hollow parabolic radial density profile, i.e. in the
subtoutines tmbb_flattop and tmbb_hollowparabolic in twiss.F
- Momentum compaction "alfa" included into TWISS table for matching.
- Add "polarity" parameter to the twiss table
- madX-3_03_48: "Final" fix of the TILT saga! Tilt is calculated exclusively
in twiss.F following the strategy:
0) These changes concern quad, sext, oct, elec separator;
 but NOT dipole or multipole
1) TILT input is the external tilt (+k ==> +ks for tilt < 0)

296

2) k & ks represent an internal tilt
3) at each element the total tilt & sqrt(k**2 + ks**2) is calculated
 including field errors, i.e. the correct way which might cause
 differences with MAD8
4) PTC has been adjusted appropriate
5) Possible effects on "survey" and "emit" will be tested
6) Many Thanks for HG for his help!
- safeguard atan2 against both arguments equal to zero
- Fixing TILT in multipole kick and make TILT proper in thick octupole.
Courtesy HG
- tilt clean-up coutesy HG
- Suppressing "imax" in favor of "calib" - request by Thys Risselada
- Adding node value "kmax" (maximum K value) and "imax" (maximum Current value)
- Add BV flag to the solenoids
- Correction of an error occurring in subroutine tmbb_flattop for ftrk=.false.
- safeguard faulty input
- change in beambeam command: usage of scattering beam
with different radial shapes is possible:
parameters:
bbshape: 1 (default) Gaussian, standard as before
 2 flattop (or trapezoidal)
 3 hollow-parabolic
width: for bbshape=2: fractional width of edge region
 for bbshape=3: fractional width of the parabolic part
- Changing the conflicting "ksl" for the integrated solenoid strength to
"ksi". This name is reserved for the vector of the integrated skew
multipoles "ksl={};". Thick solenoid can now have normal "knl" and skew
"ksl" multipole errors in PTC, ignored in madx proper. Thin solenoids
are presently not considered in PTC.

user2_photon.f90
- unnused dummy variable DMASS in subr. photon is removed

util.F
- Added seterrorflag routine that sets the error flag in c part if an error
occured.

FORTRAN Include Files:

plot.fi,touschek.fi, twiss0.fi, twissc.fi, win32calls.fi
- Clean-up of fi files
- Momentum compaction "alfa" included into TWISS table for matching.
- Add "polarity" parameter to the twiss table
- Adding node value "kmax" (maximum K value) and "imax" (maximum Current value)

===

PTC MODULES

Changes:

- Throw out unused variables
- Cleaned code so NAG warnings are minimized now: mainly unused variables
- Fortran Clean-Up

madx_ptc_distrib.inc
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).

madx_ptc_knobs.inc
- Bug Corrected: Parametric twiss results where not scaled with energy
- Moments calculation fully imlemented; map buffering in ptc_twiss
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed

madx_ptc_distrib.f90
- Moving from DAmap to Gmap
- Fortran Clean-Up
- Moments updated, initialization for 5D in twiss, moments not available in 5D
due to a bug and few others
- Removed charge setting to the my_ring layout to make ptc_twiss running,
redundant printouts removed
- Moments calculation fully imlemented; map buffering in ptc_twiss
- Few bugs corrected (f.g. map initialized to nd2 instead of npara when
initial twiss provided). Moments seem to work (to be tested yet)
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).

madx_ptc_eplacement.f90
- Root display support for new elements
- serious memory leak removed
- Added sextupoles, octupoles and not powered elements
- Corrected RBEND drawing
- Set of kinds added to drawing in root
- In root macro generation: added protection against inclusion of headers in
interpreted mode; automatical switch to white background; redundant debug
printout removed.
- Added header lines to ROOT macro that display layout geometry. This makes
 possible to compile a macro, what is a must in the case of lengthy machines.
- Removed redundant debug printout
- 2 interface routines added needeed by rplot
- Bugs with rotations corrected
- element placement works since now

madx_ptc_intstate.f90
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- add (lp) to logical function; indenting

297

- Enforce 6d implemented
- PTC_Enforce6D implemented
- defaultlevel default has been 0 now 1 as planned originally

madx_ptc_knobs.f90
- Bug Corrected: Parametric twiss results where not scaled with energy
- Exact name matching implemented, now passing name with :x
- Knobs for Initial parameters
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- PTC first changes stay October 2006 thinlens, cutting
- Updated to the new nomenclature (beta12->beta22,...)
- Bug corrected in the treatment of 4D and 5D cases; cosmetics;
- Universal taylor nullified at the initialization level
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- Do not print to file trailing blanks in the buffer
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
-Severe bug in knobs corrected: attempt to delete not properly assocoated
taylors in case no knobs are set by the user
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed
- Debug info printed only at appropriate debuglevel
- Sceleton for knobs and arbitrary element placement implemented.
Lattice visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.

madx_ptc_module.f90
- RF cavity treated as TW cavity now
-
1) madx_ptc_module without the ptc_normal stuff
2) fixing the "savemaps" bug
- Fix to restricted print out format
-
1) Se_status: preliminary fix of uninitialized variable RADIATION_NEW
2) madx_ptc_module: Fix of "ptc_normal" by fixing the string comparison
3) madx_ptc_module & madx_ptc_twiss: write & read traditional DA map format
-
PTC version including spin
- madX-3_03_48: "Final" fix of the TILT saga! Tilt is calculated exclusively
in twiss.F following the strategy:
0) These changes concern quad, sext, oct, elec separator;
 but NOT dipole or multipole
1) TILT input is the external tilt (+k ==> +ks for tilt < 0)
2) k & ks represent an internal tilt
3) at each element the total tilt & sqrt(k**2 + ks**2) is calculated
 including field errors, i.e. the correct way which might cause
 differences with MAD8
4) PTC has been adjusted appropriate
5) Possible effects on "survey" and "emit" will be tested
6) Many Thanks for HG for his help!
- Redundant debug info available only in high level debug mode
- VORNAME assigned, the same as name of node in MADX but with capital letters
- Too long line split into 3 lines
- useless print statements
- Fixing the crash for sbend + exact + multipoles larger than 10. This set-up
requires to solve Maxwell’s equation up to SECTOR_NMUL_MAX. The default is
set to 10 to avoid excessive computing time. This is now safeguarded in
madxp. To this end the parameters SECTOR_NMUL and SECTOR_NMUL_MAX are
transfered from "ptc_create_layout" to "ptc_create_universe" such that
these global parameters can be set early enough. Internally in PTC the
parameter "lda_used" is incremented where needed from 1500 to 3000 and set
back. Moreover Etienne has done the following modifications to make this
possible:
"The modification I made in the new PTC I sent you are as follows:
You first select SECTOR_NMUL and SECTOR_NMUL_MAX. For all
multipole <= SECTOR_NMUL then maxwell’s is solved to order SECTOR_NMUL_MAX.
For multipole above SECTOR_NMUL , they are treated a la Sixtrack.
So for example, it you have errors to order 20, you may bother with maxwells
only to order nmul=4 and nmul_max=10 as far as Maxwell’s is concerned.
Multipole higher will be sixtrack multipoles.
- Updated match with knobs
- Fix dum1 dum2 definition
- Missing declarations of dum1 and dum2 added
- Debugging
a) madxp: Wrong sign of TILT when calculated from k & KS
b) madx_ptc_module: Total rewrite of TILT stuff!
- Corrected state for 56D
- In 4D, before setting in internal state only_4D we remove delta, otherwise
delta stays
- replacing "asin" by "-atan2" thereby fixing the sign for quad, sext, oct
- set my_ring%charge=1 !preliminary fix
- Removed charge setting to the my_ring layout to make ptc_twiss running,
redundant printouts removed
- Moments calculation fully imlemented; map buffering in ptc_twiss
- Initialize mass(pma) and charge of MY_RING before set_madx
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Initial orbit NOT closed orbit for initial betax
- In case of instabilility in normal form, the code sets the global error
flag and returns to the main command loop instead of fatal
- fulfilled formalistic request for a change of the definition of numenclature
of the ptc_twiss variables: beta, alfa and gama
- Making unstable behavior in NormalForm a fatal error
- All PTC track commands and NormalForm executions are checked for unstable
behavior

298

- First fill user tables and at the end TWISS table
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
- Severe bug in knobs corrected: attempt to delete not properly assocoated
taylors in case no knobs are set by the user
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed
- Corrected twiss with parameters
- Sceleton for knobs and arbitrary element placement implemented.
Lattice visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Introducing TRUERBEND and WEDGRBEND in PTC. To this end 2 flags have been
introduced in the NAD-X dictionary madxdict.h:
1) ptcrbend: if true it uses a PTC type RBEND
2) truerbend: if true it uses TRUERBEND; if false it uses WEDGRBEND
- logical lp -> 4 and vice versa so NAG does not cry
- problem causing compiler warning removed
- open and close of unit 21 only for "getdebug() > 2"
- Error flag implemented that signals that error code occured
- Changing the conflicting "ksl" for the integrated solenoid strength to
"ksi". This name is reserved for the vector of the integrated skew
multipoles "ksl={};". Thick solenoid can now have normal "knl" and skew
"ksl" multipole errors in PTC, ignored in madx proper. Thin solenoids
are presently not considered in PTC.
- Check of initial conditions provided by the user on imput.
- PTC_Enforce6D implemented. If 6D TWISS calculation is performed with
 initial conditions (beta0 block) then non-zero betz is required
- Fix writing 5/5 components of closed_orbit to twiss table
- Bug corrected: writing maps should not be only in debug mode

madx_ptc_normal.f90
- Pulled out the stuff for the "ptc_normal" module since
"madx_ptc_module" is already very large.

madx_ptc_script.f90
- Adding gino command following madx_ptc_script_module

madx_ptc_setcavs.f90
- Cleaned code so NAG warnings are minimized now: mainly unused variables
- RF cavity treated as TW cavity now, bug correction
- temporary fix of non-existing "cav21" member
- RF cavity treated as TW cavity now
- Error flag implemented that signals that error code occured

madx_ptc_tablepush.f90
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90,
the former one removed
- Sceleton for knobs and arbitrary element placement implemented.
Lattice visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Proper handling of 6D: 5th column and row are swapped with 6th ones.
- Bug corrected. Added support for 6D case - 5th column and row is swapped with
the 6th one then.
- debug level 9 removed completely

madx_ptc_track_run.f90
- unnused dummy variable in subr. photon is removed
- Unused variables detected with Makefile_nag are removed
- the re-initialization of NaN-flags
- ICASE=56 created a fatal bug, fixed by setting ICASE=5.
- ICASE other than 4, 5, (56->5), 6 throws a fatal error
- For safety a "implicit none" statement plugged into every subroutine and also
every function, independent if strictly needed or not!
- PTC_Track tables: The last element is END (not START)
- NaN-tracks by TRACK of PTC are blocked and tracking is terminated
- Serious crash in ptc_track for unstable particles due to unitialized PTC
aperture check variable.
- Converted from windows to unix encoding
- Bug in madx_ptc_track_run.f90 for ICASE=5 is fixed (Numb. of Eigens => 4)
- Debug output only at debuglevel=4

madx_ptc_trackcavs.f90
- Removed bug in node tracking making impossible tracking for closed layouts
- First step for node layout tracking in ptc_trackline
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Track Global Coordinates corrected -> position is given with respect to
fibre not magnet
- Turn number added in rplot
- Added switch to ptc_trackline command so user can choose if tracks
shall be written to a ROOT ntuple. The feature is only accessible if rplot
plugin is installed and madx is compiled with plugin support.
- Sceleton for knobs and arbitrary element placement implemented.
Lattice visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Change "logical(dp)" to the correct "logical(lp)"
- Error flag implemented that signals that error code occured; Option for
track position given in global coordinate system added.
- debug level 9 removed completely

madx_ptc_twiss.f90,v
- mad-X_3_66 bugs found by EK
- Problems:

299

1) pt not displayed in table.
2) deltap not in ptc_twiss header unless a twiss command was done before
 ptc_twiss!
Solution:
1) Set up y properly
2) Put "deltap" into header of the ptc_twiss table permanently
- Fix routine readrematrix by exchanging x(5) and x(6)
- Adding deltap to ptc_twiss in case of initial conditions.
-
1) madx_ptc_module without the ptc_normal stuff
2) fixing the "savemaps" bug
- Don’t display orbit in debug 0 mode
-
1) Se_status: preliminary fix of uninitialized variable RADIATION_NEW
2) madx_ptc_module: Fix of "ptc_normal" by fixing the string comparison
3) madx_ptc_module & madx_ptc_twiss: write & read traditional DA map format
- Type twiss becomes "public" to overcome problem with g95. Probably okay
in g95 but may be overly picky.
- Bug corrected (p0c was written to twiss table instead of energy
- Bug Corrected: Parametric twiss results where not scaled with energy
- Few protections agains seg faults added. Redundant debug info available
only in high level debug mode
- Knobs for Initial parameters
- Moments updated, initialization for 5D in twiss, moments not available
in 5D due to a bug and few others
- Removed charge setting to the my_ring layout to make ptc_twiss running,
redundant printouts removed
- Moments calculation fully imlemented; map buffering in ptc_twiss
- Few bugs corrected (f.g. map initialized to nd2 instead of npara when
initial twiss provided). Moments seem to work (to be tested yet)
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).

wrap.f90
- needed changes to accept new "madx_ptc_normal_module"
- First step for node layout tracking in ptc_trackline
- Clean-up
- Added feature that allows to set values of several knobs
and only at the end recalculate values in tables.
Normally all tables are recalculated after setting a new value.
However, it slows dows parametric matching.
New command ptc_refreshtable
- Updated match with knobs
- In addmoment, t and delta swapped so the MADX input corresponds to the MADX
nomenclature.
- Moments calculation fully imlemented; map buffering in ptc_twiss
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- Etienne’s Gino stuff
- Adding gino command following madx_ptc_script_module
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation violation.
- PTC knobs (pol_blocks) almost completely interfaced to MAD-X.
User sets a knob with ptc_knob command.
Twiss parameters and user specified (with ptc_select) map components are
buffered in memory after every element in form of taylor series.
They can be dumped to text file in two formats with ptc_printparametric command.
They can be also visualized and further studied with rviewer from rplot plugin.
Further, user can set numeric values of knobs with ptc_setknobvalue what
updates all numeric values of the parameters in the tables.
This way knobs can be used in matching.
- knobs implemented with PTC with pol_blocks; command to dump parametric results
to file or stdout; content of ptc_madx_tablepush.f90 moved to ptc_madx_knobs.f90,
the former one removed
- Sceleton for knobs and arbitrary element placement implemented. Lattice
visualization via ROOT macro. Printing detailed lattice geometry in PTC. Several
small bug corrections and some code cosmetics.
- PTC_Enforce6D implemented

===

PTC proper

Files:

Sa_extend_poly.f90, Sb_sagan_pol_arbitrary.f90, Sc_euclidean.f90, Sd_frame.f90,
Se_status.f90, Sf_def_all_kinds.f90, Sh_def_kind.f90, Si_def_element.f90,
Si_def_element.f90, Sj_elements.f90, Sk_link_list.f90, Sl_family.f90,
Sm_tracking.f90, Sma_multiparticle.f90, Sn_mad_like.f90, So_fitting.f90,
Sp_keywords.f90, Spb_fake_gino_sub.f90, Sq_orbit_ptc.f90, Sqa_beam_beam_ptc.f90,
Sqb_accel_ptc.f90, Sr_spin.f90, St_pointers.f90,

Changes:

- PTC May 2007
- VORNAME assigned, the same as name of node in MADX but with capital letters
- Fixing the crash for sbend + exact + multipoles larger than 10. This set-up
requires to solve Maxwell’s equation up to SECTOR_NMUL_MAX. The default is
set to 10 to avoid excessive computing time. This is now safeguarded in
madxp. To this end the parameters SECTOR_NMUL and SECTOR_NMUL_MAX are
transfered from "ptc_create_layout" to "ptc_create_universe" such that
these global parameters can be set early enough. Internally in PTC the
parameter "lda_used" is incremented where needed from 1500 to 3000 and set
back. Moreover Etienne has done the following modifications to make this
possible:
"The modification I made in the new PTC I sent you are as follows:
You first select SECTOR_NMUL and SECTOR_NMUL_MAX. For all
multipole <= SECTOR_NMUL then maxwell’s is solved to order SECTOR_NMUL_MAX.
For multipole above SECTOR_NMUL , they are treated a la Sixtrack.
So for example, it you have errors to order 20, you may bother with maxwells
only to order nmul=4 and nmul_max=10 as far as Maxwell’s is concerned.
Multipole higher will be sixtrack multipoles.
- New PTC 2007
- PTC with crash security!

300

- First BB
- PTC version including spin
- O-tone Etienne:
Therefore I included this Zip file which contains the newest PTC. There are
a few minor bugs related to patches in the present CVS version of PTC. This
could affect the CHANGEREF command of Frank. It is fixed in this new PTC. In
addition I included some routines in pointers.f90 and the script file for the
example.
- Etienne’s clean-up
- Change faulty print out of Totalpath
1) Se_status: preliminary fix of uninitialized variable RADIATION_NEW
2) madx_ptc_module: Fix of "ptc_normal" by fixing the string comparison
3) madx_ptc_module & madx_ptc_twiss: write & read traditional DA map format
- PTC first changes stay October 2006 thinlens, cutting
- Introducing TRUERBEND and WEDGRBEND in PTC. To this end 2 flags have been
introduced in the NAD-X dictionary madxdict.h:
1) ptcrbend: if true it uses a PTC type RBEND
2) truerbend: if true it uses TRUERBEND; if false it uses WEDGRBEND
- Etienne O-tone:
I fixed a bug in the exit patches part of the backward survey. This bug was
noticed while doing the Daphne backward ring. Patching was done correctly
but the survey command was moving the layout. This reflects a bug in either
patching or survey: dangerous.
- The definition is:
integer, pointer:: CAVITY_TOTALPATH ! REAL PILL B0X =1 , FAKE =0 default
Accidentally it was set CAVITY_TOTALPATH=0
- Big bug in GETMAT7R and GETMAT7d DH wrong: "basically model 2 method 4 is
messed up"
- New PTC Etienne end of visit a) thin lense b) BB

Spb_fake_gino_sub.f90
- New file needed for "Gino Version"

pointers.f90
- remove bad temper comment
- Etienne’s Gino stuff
- Adding gino command following madx_ptc_script_module
- logical lp -> 4 and vice versa so NAG does not cry

Spc_pointers.f90, St_pointers.f90,
- Replaced by St_pointers.f90
- New 2007 PTC: this file replaces pointers.f90

Sq_orbit_ptc.f90
- New routines needed by PTC including spin

Sqa_beam_beam_ptc.f90, Sqb_accel_ptc.f90, Sr_spin.f90
- New routines needed by PTC including spin

===

FPP

Files:

a_def_all_kind.inc, a_def_element_fibre_layout.inc, a_def_frame_patch_chart.inc,
a_def_sagan.inc, a_def_worm.inc, a_scratch_size.f90, b_da_arrays_all.f90,
c_dabnew.f90, d_lielib.f90, h_definition.f90, i_tpsa.f90, j_tpsalie.f90,
k_tpsalie_analysis.f90, l_complex_taylor.f90, m_real_polymorph.f90,
n_complex_polymorph.f90, o_tree_element.f90

Changes:

- Throw out unused variables
- Fix single/double precision definition that crashed NAG f95
- logical=>logical(lp) needed for NAG f95
- Bug corrected - only first 10 elements of an array was zeroed instead of whole
- Check of initial conditions provided by the user on imput.
- pointers initialized to null in universal_taylor

e_define_newda.f90, f_newda.f90, g_newLielib.f90
- Experimental NEWDA no longer for this PTC version

===

Makefiles

Files:

Makefile, Makefile.bat, Makefile.prof, Makefile_develop, Makefile_g95,
Makefile_gdb, Makefile_gfortran, Makefile_nag, Makeonline

Changes:

- moved aperture code from madxn.c to new file aperture.c
corrections:
- more apex in halo polygon
- corrected the construction of rectellipse in the general case
- secured potentially dangerous division by zero
- Cleaned code so NAG warnings are minimized now: mainly unused variables
- PTC May 2007
- "madx_ptc_normal_module"
- PTC version including spin
- Changes needed to compile routine dlamc1 without optimization in extra file
matchlib2.F. Otherwise madx gets stuck in matching procedures. In all Linux
Makefiles matchlib2.F is compiled when using g77. For the Fortran90 compilers
lf95, g95, f95(NAG) and gfortran an optimized routine is used as provided by
Andy Vaught, the "g95" maintainer. For Windows the special compile flag:
-lfe "-D_G95" was needed (special undocumented Fujitsu compile flag of
the Lahey lf95) to compile this special Fortran90 version of dlamc1.
- Adjustments to produce 32bit executables on AMD64 (not complete yet)
- New PTC 2007: mod to Makefile due to filename change
- plugin support off
- New ptc_twiss, so A_ is tracked. This makes possible tracking of moments
(to be completed).
- New gino PTC version
- Take out "-fno-second-underscore" from the gcc flags. Add "LIBX" for FC5

301

as a comment.
- change in the print out of match summary when USE_MACRO
- Implemented:
1. ptc_setfieldcomp that set any order field strengh
to requested value. It enables matching of higher order field components.
2. Special matching mode use_ptcknob. It implements kind of macro
that emplys parametric PTC calculations to perform matching in a faster manner.
For further details see the comments at the top of matchptcknobs.c file.
3. Minor corrections and protections against segmentation vilation.
- linker option added to export main program symbols so the function can be
used from plugins
- plugin support switched off by default
- Optional plugin support added, that requires dynamic linking. Switched-Off
by default.
- corrected error
- knobs implemented with PTC with pol_blocks; command to dump parametric
results to file or stdout; content of ptc_madx_tablepush.f90 moved to
ptc_madx_knobs.f90, the former one removed
- Sceleton for knobs and arbitrary element placement implemented. Lattice
visualization via ROOT macro. Printing detailed lattice geometry in PTC.
Several small bug corrections and some code cosmetics.
- Missing dependencies added
- PTC with crash security!
First BB

Makefile.bat
- JMJ: Added line to compile fatchlib2.f and modified lines to link it into
madx.exe and madxp.exe.

Makefile_gfortran
- Makefile using gfortran - not working yet for PTC

Makeonline
New files for MAD-X On-Line Modeling Version

===

MAD-X production version 3.03: 04.05.2006
1) Documentation of standard PTC modules
2) New PTC module "ptc_track_line", i.e. lines with acceleration
3) Thin lens tracking in agreement with Ripken theory and PTC
4) Non-linear matching via encapsulated ptc_normal commands

All changes for each file:
Makefile
-replacing madxdev by madxp
-put pointers to the end on request of Etienne
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
===

Makefile.bat
-replacing madxdev by madxp
-put pointers to the end on request of Etienne
-Take out old Sb_1 and Sb_1 obj files
-some misplaced commands
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
===

madX/Makefile.prof
-replacing madxdev by madxp
-put pointers to the end on request of Etienne
-Makefile for profiling courtesy PS
===

Makefile_develop
-replacing madxdev by madxp
-put pointers to the end on request of Etienne
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
===

Makefile_g95
-replacing madxdev by madxp
-put pointers to the end on request of Etienne
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-Merged with version MAD-X 3.02.29
===

Makefile_nag
-Makefile for the NAG compiler -- for the moment not operational
===

Sa_extend_poly.f90
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to energybefore = nfen%energy*1000.
===

Sb_1_pol_template.f90
-No longer needed after PTC upgrade 25.04.2005
===

Sb_2_pol_template.f90
-No longer needed after PTC upgrade 25.04.2005
===

Sd_frame.f90
-Updated to energybefore = nfen%energy*1000.
===

Se_status.f90
-Drop the printing of "NO=10" in curvbend
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice

302

===

Sf_def_all_kinds.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

Sg_1_fitted.f90
-No longer needed after PTC upgrade 25.04.2005
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to energybefore = nfen%energy*1000.
===

Sg_1_template_my_kind.f90
-No longer needed after PTC upgrade 25.04.2005
===

Sg_2_template_my_kind.f90
-No longer needed after PTC upgrade 25.04.2005
===

Sg_sagan_wiggler.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Sh_def_kind.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Si_def_element.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Sk_link_list.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

Sl_family.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Sm_tracking.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Sma_multiparticle.f90
-Needed for PTC upgrade 25.04.2005
===

Sn_mad_like.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

So_fitting.f90
-Fixing initialization problems
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-Wrong definition of JMIN and EPSNOW!!!
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

Sp_keywords.f90
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
===

a_def_all_kind.inc
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

a_def_element_fibre_layout.inc
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

a_def_user1.inc

303

-No longer needed after PTC upgrade 25.04.2005
===

a_def_user2.inc
-No longer needed after PTC upgrade 25.04.2005
===

a_scratch_size.f90
-logical must be without (lp) when going into INQUIRE function
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
-All constants collected here. Carefully checked and reordered.
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

b_da_arrays_all.f90
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

d_lielib.f90
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

f_newda.f90
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

h_definition.f90
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

j_tpsalie.f90
-Fixing initialization problems
===

k_tpsalie_analysis.f90
-PTC with dvds implemented in the travelling wave cavity. The voltage is
given by: V=V0-dvds*z
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

madx_ptc_intstate.f90
-bug correction: always using eternal states instead of current ones.
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

madx_ptc_module.f90
-The restrictions "IF(l.ne.0)" are removed. =>
-bug correction: always using eternal states instead of current ones.
-Drop useless "make_states" call
-in my_state: if requested dimensionality 6 and there are cavities, enforce dalta and only_4d to false.
-Fixing division by l=zero in the multipole block
-if icase=6 then only_4d=false
-Reduntant debug printouts present only in debug mode
-Fine tuning debug print-out
-Fixing "eigen" print-out, the screw-up was due to 5D versus 6D
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-output of eigen have proper row/column swap from (pt,t) to (-t,pt)
-Fix the i2 variable bug of eigen in equaltwiss found Piotr - thanks
-bugs in subr. SUMM_MULTIPOLES..:
INTENT(INOUT) for key & normal_0123 initialized.
-eigenvector calculation in ptc_twiss
-6D "eign" in ptc_normal
1) Adding eigenvectors to ptc_normal
2) Suppress debug printing to unit 18/19
-remove bug (division by zero) due to dipole errors
-Finishing multipoles in thick elements
-Multipoles and Errors of any order are added to thick elements (for MADX-PTC only)
1) State "time" is default and can be set in create_layout.
2) C routines that write or read from TFS tables only operate with double
precision numbers. This will ensure a proper operation when PTC is
calculating in four-fold precision.
-Merged with version MAD-X 3.02.29
-Updated to head, bug corrected in equaltwiss
-compilation problem corrected
-updated latest head developements
-Reduntant debug printout removed
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

madx_ptc_script.f90
-put pointers to the end on request of Etienne
- Adapting Makefiles for non-linear matching and PTC upgrade
- PTC upgrade: Proper Thin Lens Lattice
===

madx_ptc_setcavs.f90
-Reduntant debug printouts present only in debug mode
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

madx_ptc_tablepush.f90
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-Updated to head, bug corrected in equaltwiss
updated latest head developements
===

madx_ptc_track_run.f90
-Fixing the closed orbit at the observation points for ELEMENT_BY_ELEMENT
-calculation of CO is removed when ELEMENT_BY_ELEMENT is forced to ON
at Closed_ORBIT=OFF.
-text of print-out is corrected
1) Fixing "element_by_element=false"
2) Add CT variable print-out in 5D
-remove bug (division by zero) due to dipole errors
-The sign for the second coord. system {-pathelength,deltap} is corrected
-Finishing multipoles in thick elements
-use "real(kind(1d0) :: dble_num_C" variable as a double precision buffer
number for an input parameter at all CALLs of the C-routine "double_to_table"

304

-clean-up estetics
1) State "time" is default and can be set in create_layout.
2) deltap is transfered to pt when "time" is on.
-Merged with version MAD-X 3.02.29
-Merged with version MAD-X 3.02.29
-Updated to head, bug corrected in equaltwiss
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

madx_ptc_trackcavs.f90
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-fill tables with single precision values
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

madxd.h
-New matching with macros that enables fitting of non-linear parameters with PTC
-version 3.02.25 => PTC examples (_track, _normal, _twiss) are checked on
abploc with "strict" version of madxdev
-The eigenvalue keyword is consistent set to the 2 characters "eign"
-eigenvector calculation in ptc_twiss
1) Adding "eign" to ptc_normal table "normal_results"
2) Grow table "normal_results" if needed
-Merged with version MAD-X 3.02.29
-Updated to head, bug corrected in equaltwiss
-updated latest head developements
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
-weight paramter in constraint command to be used with use macro
===

madxdict.h
-option no_fatal_stop to not let a fatal error kill madx
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-Cleaned version of thintrack. No delta_p dependence internally any more.
Only radiation part of code still contains delta.
Full 6D equations (Ripken) used.
Some further improvements.
Closed orbit still computed by twiss.
1) Adding "eign" to ptc_normal table "normal_results"
2) Grow table "normal_results" if needed
-Multipoles and Errors of any order are added to thick elements (for MADX-PTC only)
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-Merged with version MAD-X 3.02.29
-updated latest head developements
-weight paramter in constraint command to be used with use macro
===

madxl.h
-The eigenvalue keyword is consistent set to the 2 characters "eign"
-eigenvector calculation in ptc_twiss
1) Adding "eign" to ptc_normal table "normal_results"
2) Grow table "normal_results" if needed
-updated latest head developements
===

madxn.c
-Reverting to old warning routine
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-The eigenvalue keyword is consistent set to the 2 characters "eign"
-eigenvector calculation in ptc_twiss
-6D "eign" in ptc_normal
1) Adding "eign" to ptc_normal table "normal_results"
2) Grow table "normal_results" if needed
-Merged with version MAD-X 3.02.29
-updated latest head developements
-weight paramter in constraint command to be used with use macro
===

madxp.c
-option no_fatal_stop to not let a fatal error kill madx
-Reverting to old warning routine
-fmt can not be register variable
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-Merged with version MAD-X 3.02.29
-weight paramter in constraint command to be used with use macro
===

madxu.c
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-weight paramter in constraint command to be used with use macro
===

matchc.c
-Clean-up
-New matching with macros that enables fitting of non-linear parameters with PTC
-output fix
-weight paramter in constraint command to be used with use macro
===

matchc2.c
-New match library needed for non-linear matching -- readded due to dead
revision
-clean-up
-fix compiler complain
-output fix
-weight paramter in constraint command to be used with use macro
===

matchjc.F
-Clean-up
-Jacobian fix. Avoid twiss or macro to be called before a check on the variables limits
-New matching with macros that enables fitting of non-linear parameters with PTC
-weight paramter in constraint command to be used with use macro
===

matchlib.F
-New match library needed for non-linear matching -- readded due to dead
revision
===

o_tree_element.f90
-Updated to madX-3_02_16; bug corrected in madx_ptc_setcavs.f90
===

pointers.f90
put pointers to the end on request of Etienne
-Fix write statement that was changed by automatic clean-up, IE replacing
"pause" statements.
-Needed for PTC upgrade 25.04.2005
===

track.fi
-Cleaned version of thintrack. No delta_p dependence internally any more.

305

Only radiation part of code still contains delta.
Full 6D equations (Ripken) used.
Some further improvements.
Closed orbit still computed by twiss.
-Merged with version MAD-X 3.02.29
===

trrun.F
-Change the definition of the kicker. The acting on px/py now instead of
x’/y’ AK/FS
-Cleaned version of thintrack. No delta_p dependence internally any more.
Only radiation part of code still contains delta.
Full 6D equations (Ripken) used.
Some further improvements.
Closed orbit still computed by twiss.
-Merged with version MAD-X 3.02.29
===

twiss.F
-Take out debug printing of eigen
-remove bug (division by zero) due to dipole errors
===

user2_photon.f90
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

wrap.f90
-clean-up
1) Remove residual left-over definition of double precision numbers. Should
all be in a_scratch_size.f90.
2) The logical needs to be defined as "logical(lp)". Several instances found.
-updated latest head developements
===

MAD-X version 3.02.14: 12.04.2006
1) PTC modules have been cleaned up and are all documented by now
2) New "PTC_TRACK_LINE" for tracking lines including acceleration
written and maintained by Piotr Skowronski
3) Numerous bug fixes and clean-ups

All changes for each file:
Makefile

-Reverting to the previous version
-Temporal work around implemented: there is some problem with internal state
settings; \ in setcaenforcing preparing to merge with the recent HEAD
developements hoping that the problem was alread solved over there.
-new match mode
===

Makefile_develop

-new match mode
===

Makefile_gdb

-file Makefile_gdb was initially added on branch newmatch.
-Temporal work around implemented: there is some problem with internal state
settings; \ in setcaenforcing preparing to merge with the recent HEAD
developements hoping that the problem was alread solved over there.
-Dependences corrected so it can be made with -j N option
-new match mode
===

Sh_def_kind.f90,So_fitting.f90,a_scratch_size.f90,i_tpsa.f90,j_tpsalie.f90,

-Replace "double precision" by "real(dp)
-Merged newmatch-060411 with recent HEAD developement
===

madx_ptc_intstate.f90

-global debuglevel integer added (0 completely silent, 1 normal printout,
2 most important debug information, 3 everything
===

madx_ptc_module.f90

-
1) Fix priority order between ICASE and DELTAP and cavities
2) Convert DELTAP to PT
3) Proper conversion between variables for 5D
4) Clean-Up
5) Replace "double precision" by generic "real(dp)

MAD-X version 3.02.05: 22.03.2006
0) Stable Production Version
1) Tracking Linacs including acceleration using PTC
2) General PTC upgrade
3) Strict Compile Flags revealed a couple of subtle Fortran bugs like
the use of initialized variables and out-of bound usage of arrays
4) Examples including Documentation brought up to date

306

All changes for each file:
Makefile

-New functionality for PTC: track linac, ptc_twiss with acceleration,
ptc_select, ptc_script, ptc_dumpmaps
-Take out Sg_0_fitted.f90 since no longer needed for PTC upgrade.
===

Makefile.bat

-Fixes needed to get it to run on Windows
-Missing file added
-New functionality for PTC: track linac, ptc_twiss with acceleration,
ptc_select, ptc_script, ptc_dumpmaps
-Take out Sg_0_fitted.f90 since no longer needed for PTC upgrade.
-Updated to include matchjc.
-Default location for checked-out files changed, comment added.
===

Makefile_develop

-More interesting flags: --chk a,e,s,u,x --chkglobal --info
-Adapting to Piotr’s new PTC additions
-Switching to lf95 with very tough compile flags
-New functionality for PTC: track linac, ptc_twiss with acceleration,
ptc_select, ptc_script, ptc_dumpmaps
-Take out Sg_0_fitted.f90 since no longer needed for PTC upgrade.
===

Makefile_g95

-New functionality for PTC: track linac, ptc_twiss with acceleration,
ptc_select, ptc_script, ptc_dumpmaps
-Take out Sg_0_fitted.f90 since no longer needed for PTC upgrade.
===

madxp.c

-Indenting
-Fixing of: madxp.c:396: warning: ISO C90 forbids mixed declarations and code
-Reduntant debug printout removed
===

madxn.c

-Indenting
-Compiler warnings removed
-Fix a memory leak in "pro_ptc_twiss"
===

madxreg.c, madxu.c

-Indenting
===

makethin.c

-Warning on inconsistent child/parent slicing removed as this has become an
allowed feature + clean up of old, now rather obsolete comments.
===

madxd.h

-Compiler warnings removed
===

madx_ptc_setcavs.f90

-the variable "givendene" was uninitialized
===

madxdict.h

-In ptc_create_layout by default it is closed now
-fix defaults for matching with chrom
===

c6t.c

1) In case drifts are combined at the end of the machine, the "end_marker"
in fc.34 (input file for sodd) came with erroneous values for position,
beta-functions and phase advances.

2) For various reasons the number of elements with field errors and/or
alignment errors may vary between SixTrack and MAD-X. Obviously, the
physics is identical!
===

dynap.F

Various bug fixes, write out of distance in phase space into file
lyapunov.data FZ&FS
===

gxx11c.c

Defining templates mycalloc and myfree
===

ibsdb.F

In Routine twsint variable "alam" was used before being initialized, again
no effect on the results.
===

trrun.F

-Various bug fixes, write out of distance in phase space into file
lyapunov.data FZ&FS
-Fix bug in aperture check of "rectellipse":
The parameters of rectangle/ellipse were swapped, thus wrong.
===

twiss.F

-fixing the restsum problem of overwriten arrays and lack of initialization
-logical cplxy & dorad were uninitialize
===

poisson.F

-Fortran clean-up: implicit none etc.
===

madx_main.f90

Clean-up: missing public & implicit none statements
===

Sg_0_fitted.f90

-No longer needed after PTC upgrade
===

Sh_def_kind.f90

changed some stuff in kind7 and kind6(sixtrack)
===

So_fitting.f90

-unintialized. Line 979 added:
 mx=zero
===

Sa_extend_poly.f90, Sb_1_pol_template.f90, Sb_2_pol_template.f90,
Sb_sagan_pol_arbitrary.f90, Sb_sagan_pol_arbitrary.f90, Sc_euclidean.f90,
Sd_frame.f90, Se_status.f90, Sf_def_all_kinds.f90, Sg_1_fitted.f90,
Sg_1_template_my_kind.f90, Sg_2_template_my_kind.f90, Sg_sagan_wiggler.f90,
Sh_def_kind.f90, Si_def_element.f90, Sj_elements.f90, Sk_link_list.f90,
Sl_family.f90, Sm_tracking.f90,Sn_mad_like.f90, So_fitting.f90,
Sp_keywords.f90, a_def_all_kind.inc, a_def_element_fibre_layout.inc,
a_scratch_size.f90, b_da_arrays_all.f90, c_dabnew.f90,e_define_newda.f90,
h_definition.f90, i_tpsa.f90, j_tpsalie.f90, k_tpsalie_analysis.f90,
l_complex_taylor.f90, m_real_polymorph.f90, madx_ptc_module.f90,
n_complex_polymorph.f90, o_tree_element.f90, run_madx.f90

0) Features kindfitted, ZGOUBI are taken out.
1) Plug in "public" in each module
2) Partial unitialized array in "FIND_ORBIT_LAYOUT_noda" in "So_fitting.f90".
3) A couple of missing "implicit none" statements as described before.
4) check_iteration, check_interpolate_x, check_interpolate_y where
un-associate pointers after PTC upgrade.
===

Sg_1_fitted.f90, Sg_1_template_my_kind.f90, Sg_2_template_my_kind.f90,
Sg_sagan_wiggler.f90, Sh_def_kind.f90, Sp_keywords.f90, b_da_arrays_all.f90,

- Missing "implicit none" and "public" statement
- File "b_da_arrays_all.f90": ndamaxi initialized to zero
- File "Sh_def_kind.f90": unused variable "copyMULTIP" & "find_fb"
 removed
===

a_def_element_fibre_layout.inc

-Passive field for kind21 (twcavity) added containing a lag
===

madx_ptc_intstate.f90, madx_ptc_script.f90, madx_ptc_setcavs.f90,
madx_ptc_tablepush.f90, madx_ptc_track_run.f90, madx_ptc_trackcavs.f90,
madx_ptc_module.f90, wrap.f90, ptc_dummy.F, Sn_mad_like.f90, madxp.c, madxn.c,
madxu.c, rplot.c, madxd.h, madxdict.h, madxl.h, rplot.h

-Fortran code processed by frs’s indentation script
-Clean-up: missing public & implicit none statements
-New functionality for PTC: track linac, ptc_twiss with acceleration,
ptc_select, ptc_script, ptc_dumpmaps
===

madx_ptc_module.f90

-Fortran code processed by frs’s indentation script

307

-Normaliztion error found in the calculation of higher order chromaticity (RT)
===

madx_ptc_setcavs.f90
locate_all_cav substituted with new locate_all_twcav that counts only
twcavities
===

MAD-X version 3.02.01: 08.02.2006
1) Many bug fixes
2) "Jacobian" matching
4) PTC upgrade
3) Worldwide CVS read access from:
MAD-X Source

All changes for each file:
Makefile

-Modified to allow more flexible PTC modeling using madx_main.f90 and
run_madx.f90
-Adding new PTC file Sg_1_fitted.f90
-Missing dependence on madxreg.c

===

Makefile.bat

-Updated to include matchjc.
Default location for checked-out files changed, comment added.

-Modified to allow more flexible PTC modeling using madx_main.f90 and
run_madx.f90

-Adding new PTC file Sg_1_fitted.f90

===

Makefile_develop

-New match routine "jacobian".
In the matching routine there is the new command "jacobian" similar to lmdif.
It allows to use more variable than constraints, finding the least square
solution for the parameters to be varied.

-Modified to allow more flexible PTC modeling using madx_main.f90 and
run_madx.f90

-Bug fix of dependence of Sg_1_fitted.f90

-Adding new PTC file Sg_1_fitted.f90

1) Add missing dependence on madxreg.c
2) Replace obsolete g95 compiler flag "-g90" by "-g"

===

Makefile_g95

-The link option ’static’ does not yet work for ’madxdev’ using g95.

-Modified to allow more flexible PTC modeling using madx_main.f90 and
run_madx.f90

-Makefile using the g95 compiler

===

Sc_euclidean.f90, Sd_frame.f90, Se_status.f90, Sf_def_all_kinds.f90,
Sg_0_fitted.f90, Sg_1_fitted.f90, Sg_1_template_my_kind.f90,
Sg_2_template_my_kind.f90, Sg_sagan_wiggler.f90, Sh_def_kind.f90,
Si_def_element.f90, Sj_elements.f90, Sk_link_list.f90, Sl_family.f90
Sm_tracking.f90, So_fitting.f90, Sp_keywords.f90, a_def_all_kind.inc,
a_def_element_fibre_layout.inc, a_scratch_size.f90, h_definition.f90,
i_tpsa.f90, k_tpsalie_analysis.f90, l_complex_taylor.f90,
m_real_polymorph.f90, n_complex_polymorph.f90, o_tree_element.f90

-PTC Upgrade:
1) Improved Knobs
2) Acceleration
3) Add rectellipse aperture
4) Kill memory leaks

-More on PTC Upgrade:

In Etienne’s words:

The type pancake will be made of equidistant slices in cylindrical
coordinates amenable to rk2 or rk4 integration (nonsymplectic).
I will tentatively represent bx,by,bz by a polynomial in x-y. This
polynomial will be extracted using Berz’s wavelets.... This is my plan.

I will most likely destroy fitted magnets and this experimental multip.
Both will be taken over by pancake....

-fixing npara

-adding KINDMU

-Mytrue & Myfalse in call to ENGE_COM

-ENGE_COM has to have LOGICAL(LP) as the third variable

-add Runge Kutta, Zgoubi stuff

-Lethal bug in patch of tracking

-j_global, OTHER PROGRAM, TRACK_R

-ZGOUBI_MULTIP, patch, CHANGEREF, other_program

3) Add rectellipse aperture
4) Kill memory leaks

-Fix normalization of arc length in PTC. MAD-X always gives arc length
internally:
1) rbarc=true input straight length ==> internally arc length
2) rbarc=false arc length always

-Destructors and Constructors for my_1D_taylor

===

c_dabnew.f90

-Serious DA bug: do ib1 =2,invc+1 in routine mtree

PTC Upgrade:
1) Improved Knobs
2) Acceleration
3) Add rectellipse aperture
4) Kill memory leaks

===

a_def_frame_patch_chart.inc, a_def_worm.in,

New PTC include file

===

c6t.c

-For SixTrack runs the length of the machine has to be known to 1mu.
This value is transfered to SixTrack via fc.3.aux.

-Sequence length is written out to 1mu meter

-More work on the f34 fake crash

-Under certain conditions writing to unit 34 (twiss parameters for SODD)
failed leading to a fake MAD-X crash when running ’sixtrack’ or ’sodd’.

-Remove tabs introduce by earlier indenting. Indenting by 2 characters &
brackets below operator for better readability. FS has recipe to do it
semi-automatic.

===

c6t.h, gxx11c.c, gxx11psc.c, madx.h, madxl.h, madxreg.c, madxreg.h, madxu.c,
makethin.c, matchc.c, sxf.c, timel.c

-Remove tabs introduce by earlier indenting. Indenting by 2 characters &
brackets below operator for better readability. FS has recipe to do it
semi-automatic.

===

gxx11c.c

-Replacing calloc & free by the wrappers mycalloc & myfree

===

madx.h, madxd.h, madxdict.h, madxn.c, madxp.c, madxu.c, makethin.c

1) Warning if sequedit of lines and no action
2) New Attribute ’bare’ od ’save’ command
Example:

tl3:line=(ldl6,qtl301,mqn,qtl301,ldl7,qtl302,mqn,qtl302,ldl8,ison);
DLTL3 : LINE=(delay, tl3);
use, period=dltl3;

save,sequence=dltl3,file=t1,bare; // new parameter "bare": only sequ. saved
call,file=t1; // sequence is read in and is now a "real" sequence
// if the two preceding lines are suppressed, seqedit will print a warning
// and else do nothing
use, period=dltl3;
twiss, save, betx=bxa, alfx=alfxa, bety=bya, alfy=alfya;
plot, vaxis=betx, bety, haxis=s, colour:=100;
SEQEDIT, SEQUENCE=dltl3;
 remove,element=cx.bhe0330;
 remove,element=cd.bhe0330;
ENDEDIT;

use, period=dltl3;
twiss, save, betx=bxa, alfx=alfxa, bety=bya, alfy=alfya;

===

madx_main.f90

-2 of 2 routines to replace madxm.F: routines added in run_madx can be called
here

===

madx_ptc_module.f90

-Normaliztion error found in the calculation of higher order chromaticity (RT)

-Proper print-out of closed orbit in PTC

-Skew quadrupole, sextupole and octupole components k1s, k2s, k3s have

308

http://cern.ch/mad/madx/Introduction/source.html

been added respectively. Field error components are added as well.
Results have been confirmed with using k1, k2, k3 and the the proper tilt

-Finish patch; Survey output

1) Hans Grote non-dynamic buffer fix
2) Adding Generating Function to ptc_normal (more work needed!)

-initialization bug courtesy PS

-trivial formating like indenting trailing blanks etc

===

madx_ptc_track_run.f90

-Fix t pt which have reversed order in PTC

-trivial formating like indenting trailing blanks etc

===

madxc.c

-Hans Grote non-dynamic buffer fix

-Name added for namelist

===

madxd.h

-In the matching routine there is the new command "jacobian" similar to lmdif.
It allows to use more variable than constraints, finding the least square
solution for the parameters to be varied.

-Issuing the number of warnings during a MAD-X run

-Hans Grote non-dynamic buffer fix

-fixing the crash after "save" command courtesy HG

-name in namelist HG

1) Add fill_twiss_header_ptc routine and template to produce short but
proper ptc_twiss table headers.
2) Remove tabs introduce by earlier indenting. Indenting by 2 characters &
brackets below operator for better readability. FS has recipe to do it
semi-automatic.
3) madxn.c: remove unused variables
4) madxd.h: new version number

-Missing "for" loop over all sequences in memory in add_to_el_list.c
Adverse effect when trying to read in 2 previously "save"d sequences
(courtesy HG)

===

madxdict.h

-New match routine "jacobian".
In the matching routine there is the new command "jacobian" similar to lmdif.
It allows to use more variable than constraints, finding the least square
solution for the parameters to be varied.

-Hans Grote non-dynamic buffer fix

-solenoid and makethin selection consistency

-The deltap variable was wrongly defined in the match section, this lead to
a crash when matching was attempted with deltap. Crash fixed but
functionality still has to be tested (kindly pointed at WH)

===

madxl.h

1) Hans Grote non-dynamic buffer fix
2) Adapt for adding Generating Function to madx_ptc_module.f90

-SXF upgrade in particular adding the "angle" attribute NM

-Memory Leak Detection courtesy EM

-Wrong Touschek table definition in madxl.h

===

madxn.c

1) New match routine "jacobian". RdM
In the matching routine there is the new command "jacobian" similar to lmdif.
It allows to use more variable than constraints, finding the least square
solution for the parameters to be varied.
2) Fixing the Windows end-of-line problem of TFS tables. (courtesy HG)

-The normalization of mu to 2*pi has been done in "twiss" and "embedded twiss"
in the C part, as a result the value of a BETA0 block had an inconsistent
normalization (found my Frank Tecker).

-Write out sectormap file with variable format.

1) Hans Grote non-dynamic buffer fix
2) Adding Generating Function to ptc_normal (more work needed!)

-Names added for name_list HG
-allow "0" as the first letter of a file SB
-reset curr_obs_points=1

-drop unused variable

-Replacing malloc by the wrapper mymalloc

1) Add fill_twiss_header_ptc routine and template to produce short but
proper ptc_twiss table headers.
2) Remove tabs introduce by earlier indenting. Indenting by 2 characters &
brackets below operator for better readability. FS has recipe to do it
semi-automatic.
3) madxn.c: remove unused variables
4) madxd.h: new version number

===

madxp.c

-Issuing the number of warnings during a MAD-X run

-Fatal_error if row name is not found in TFS table.

1) Modifications to allow ’D’ format in routine get_val_num (courtesy HG)
2) The table_access with 3 variables table(x,y,z) has usually implied:
’accesses value named "z" for element "y" of table "x"’.
To specify a certain row number ’n’ in table access one can use: table(x,z,n).

-Hans Grote non-dynamic buffer fix

-fixing the crash after "save" command courtesy HG

- Names for namelist HG
- Fix input error la "a=2d" HG

1) Fix rare bug that produced wrong (straight) length of rbend in case
shared or un-flattened sequences are used. Bug fix in make_element
(courtesy HG)
2) Remove tabs introduce by earlier indenting. Indenting by 2 characters &
brackets below operator for better readability. FS has recipe to do it
semi-automatic.
3) Remove unused variables.

-Missing "for" loop over all sequences in memory in add_to_el_list.c
Adverse effect when trying to read in 2 previously "save"d sequences
(courtesy HG)

===

madxreg.c

-Replacing calloc/malloc/free by the wrappers mycalloc/mymalloc/myfree

===

madxu.c

-Modifications to allow ’D’ format (courtesy HG)

-Avoid potentially uninitialized variable

-Hans Grote non-dynamic buffer fix

-fixing the crash after "save" command courtesy HG

-Memory Leak Detection courtesy EM

-fixing a=2d input error HG
-names in namelist HG

-Missing "for" loop over all sequences in memory in add_to_el_list.c
Adverse effect when trying to read in 2 previously "save"d sequences
(courtesy HG)

===

makethin.c

-indentation

1) Hans Grote non-dynamic buffer fix
2) Issue message if thick bend has fringe fields

-improved treatement of selection conflicts

-selection consistency and solenoid

===

match.F, matchc.c, matchjc.F, matchsa.F

-New match routine "jacobian".
In the matching routine there is the new command "jacobian" similar to lmdif.
It allows to use more variable than constraints, finding the least square
solution for the parameters to be varied.

===

matchc.c

-name in namelist HG

-Replacing malloc by the wrapper mymalloc

===

plot.fi

-Increased buffer size for long axis annotation

===

run_madx.f90

-1 of 2 codes to replace madxm.f90: one can add more routines at the end

===

sxf.c

-Remove unused variables

-Hans Grote non-dynamic buffer fix

-SXF upgrade in particular adding the "angle" attribute NM

-name in namelist

===

trrun.F

-solenoid, Koschick + hbu

===

twiss.F

The normalization of mu to 2*pi has been done in "twiss" and "embedded twiss"
in the C part, as a result the value of a BETA0 block had an inconsistent
normalization (found my Frank Tecker).

309

-Add thin solenoid

-Fix rmatrix calculation - inverse similarity transformation

===

MAD-X version 3.00.01: 07.09.2005

Overview:
1) New major release featuring PTC as an integral part of MAD-X
PTC modules are:
a) ptc_twiss: Ripken style Twiss parameters now with intial optics conditions
b) ptc_track: the thick lens tracking module using PTC with most
 features of the thin lens tracking
c) ptc_normal: Nonlinear parameters, Hamiltonian terms etc.

2) Essential upgrade of makethin

3) IBS upgrade

4) Adding PS file in the plotting

5) Removing limit on length of macros

6) Clean-up

All changes for each file:
===
Makefile

-drop not needed epause.o & usleep.o

-Add missing dependence of madxp.c on madxreg.h

1) Mods needed due to added files in V3.00
2) Missing dependencies for touschek
3) maxcontine=100

a) Raising optimization to O4 in: Makefile
b) Full checking in: Makefile_develop
===
Makefile.bat

1) Mods needed due to added files in V3.00
2) Missing dependencies for touschek
3) maxcontine=100
===
Makefile_develop

-drop not needed epause.o & usleep.o

1) Mods needed due to added files in V3.00
2) Missing dependencies for touschek
3) maxcontine=100

a) Raising optimization to O4 in: Makefile
b) Full checking in: Makefile_develop

-FOPT=-Bstatic does not work on the MAC and has been taken out.

-The "-c" option was missing for MAC compilation.

-Fix bad link static flag "-static" by the proper "-Bstatic" one
===
a_scratch_size.f90 - Sp_keywords.f90

PTC Version ~February 2005 (courtesy Etienne Forest)
===
Sb_sagan_pol_arbitrary.f90, Sg_sagan_wiggler.f90, a_def_sagan.inc

-new code entity for PTC Version ~February 2005 (courtesy Etienne Forest)
===
a_def_arbitrary.inc

-no longer needed in PTC Version ~February 2005 (courtesy Etienne Forest)
===
c6t.c,v

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
dynap.F

-Modified dynap to track several pairs of particles;
write tunes, smear and lyapunov exponent of each
pair to tables dynap and dynaptune;
improve estimate of Lyapunov exponent by considering
3 angles in normalized phase space instead of 6-D distance
in original phase space.
===
epause.c, usleep.c

-No longer needed
===
gxx11.F, gxx11ps.F

-new track plot routine, plots are appended to existing ps file

-Flush in a portable way for ps plot

-During interactive use the ps plot file is consistent and can be viewed
after each plot command. (Not for tracking plot which uses a different system)
===
gxx11psc.c

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
ibsdb.F

-Code logic unchanged but: Fortran90 compatibility changes

-Remove one obsolete write command.

-IBS horizontal growth rate corrected; effect of vertical dispersion added to al three IBS growth rates.
===
madx.h

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
madx_ptc_module.f90

-Mods needed for the ptc_twiss upgrade and the new ptc_track module
===
madx_ptc_track_run.f90

-New ptc_track thick lens tracking module
===
madxc.c

-Revert "clean-up"

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-Fixing the limit of the length of 10000 characters for macros (courtesy HG)

-Clean up to avoid compiler warnings
===
madxd.h

-version number 3.00.01

-Changes to the Core Code needed for PTC upgrade V3.00

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-new track plot routine, plots are appended to existing ps file

-Version number V2.13.12

-Fixing the limit of the length of 10000 characters for macros (courtesy HG)

-new version number

-Fix of install bug (courtesy HG)

-Clean up to avoid compiler warnings
===
madxdict.h

-Fix of the "start" command bug in ptc_track. For the time being
"ptc_start" has to be used. To be followed up...

-Changes to the Core Code needed for PTC upgrade V3.00

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-introduce Werner’s improved readtable
===
madxe.c

-Revert "clean-up"

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-Clean up to avoid compiler warnings
===
madxl.h

-Changes to the Core Code needed for PTC upgrade V3.00

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
madxn.c

-Changes to the Core Code needed for PTC upgrade V3.00

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-remove set_selected_elements() now done in makethin.c

-new track plot routine, plots are appended to existing ps file

-Fixing the limit of the length of 10000 characters for macros (courtesy HG)

-Doubled the number of tracked particles in track_dynap so as to include
the Lyapunov partners.

-Tracking plot fix: now different postscript output filenames can be used.
Note: the plotting routine plots only at the end of mad executing a gnuplot
command file. The data used for plotting are last data stored in the table file.

-introduce Werner’s improved readtable, further clean-up
===
madxp.c

-Changes to the Core Code needed for PTC upgrade V3.00

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-new track plot routine, plots are appended to existing ps file

-Fixing the limit of the length of 10000 characters for macros (courtesy HG)
===
madxu.c

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-Fix of install bug (courtesy HG)
===
makethin.c

310

-compound_expr moved from madxn.c to makethin.c as only used here
and increased precision sprintf(tmp, "%e" -> sprintf(tmp, "%.14g"

-additional check in set_selected_elements() that current_sequ is not NULL

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-improved selection

-code for select,flag=makethin rewrittes, with class, range and pattern
===
matchc.c

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
photoni.inc

-New routine needed for Frank’s quadrupole radiation in ptc_track
===
plot.F

-The momemtum offset label is not displayed when deltap is the horizzontal axis
===
plot.fi

-simple clean-up
===
plot_b.fi

-simple clean-up
===
user2_photon.f90, poisson.F

-New routine needed for Frank’s quadrupole radiation in ptc_track
===
resindex.fi

-simple clean-up
===

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c

-Fixing the limit of the length of 10000 characters for macros (courtesy HG)
===
timel.c

-simple clean-up

-frs + hbu : General cleaning. Tabs to blanks. Remove blanks at eol.
Convert any C++ comments to ansi c comments.
Fix possible uninitialized variables in madxn.c
===
touschek.F

-simple clean-up
===
trrun.F

-simple clean-up

-Fix bug introduced to upgrade dynap

-Made TRRUN consistent with new version of DYNAP: removed switch=3, which was never active, and added Lyapunov calculation to switch=2.
===
wrap.f90

-Mods needed for the ptc_twiss upgrade and the new ptc_track module
===

MAD-X version 2.13.09: 09.03.2005

Overview:
1) New Touscheck module (CM & FZ)

2) Hamiltonian terms from the ptc_normal module put into TFS table
(Td’A)

3) Orbit correction: Changes to orbit correction: setcorr and input of
external file (WH)

4) Error module (WH):
- Changes to correction factor in EFCOMP
as requested by Massimo
- Additional routines to read errors from
ESAVE: seterror command

5) Aperture Module (Ivar Iwaarum): Various changes

6) Improved "readtable" command (WH)

7) New "dipedge" element in trrun & twiss module: this allows to track
(thin lens) through all systems that can be described with MAD-X
except higher order non-symplectic terms. (AV & FS)

8) Deselect command for twiss tables (HG)

9) Include tilt of various elements into the survey module (FT)

10) Complete clean-up of all Fortan77 & C routines to produce code
compliant with Fortran and C standards, suppress all warnings from
compilers with strict checking, unless acceptable (E.g. unused
variables due to include files)

10) Various bug fixes. Special thanks to Hans Grote for correcting
some tricky ones!

All changes for each file:
===
Makefile

- add resindex dependence + touschek typo
===
Makefile.bat

- naming bug of resindex.F
- Reintroduce location of proper .h files for CL compiler
- drop Include add resindex
===
Makefile_develop

- Fix bad link static flag "-static" by the proper "-Bstatic" one
- fully for testing now
- This development Makefile makes the most stringent tests both Fortran & C
- add resindex subroutine
- Produce static executables
===
madX/c6t.c

- avoid possible undefined "tag_element" & automatic indent
===
dynap.F

- Fortran clean-up with mymod, f2c, lf95, f95
===
emit.F

- In routine emdamp bv0 was uninitialized
- Fortran clean-up with mymod, f2c, lf95, f95
===
gxx11.F

- Fortran clean-up with mymod, f2c, lf95, f95
===
gxx11c.c

- solid & dash_list changed from "static unsigned char" to "static char"
courtesy HG
- get rid of C++ style
===
gxx11ps.F

- Fortran clean-up with mymod, f2c, lf95, f95
===
ibsdb.F

- minor cleaning
- Fortran clean-up with mymod, f2c, lf95, f95
===
madx.h

- Removed pedantic errors.
- Added possibility to give an elements true profile, and its offset
w.r.t. a point in space.
- Aperture command no longer prints aper1.out as default.
- Deselect command for tables (courtesy H.G.)
- Repair:
1) multiple negative Lines
2) bug in seq_replace
- Add:
deselect command (Courtesy HG)
- Changes for error, orbit and aperture module
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madx_ptc_module.f90

- change to mode definition: qx ==> q1 etc
- add Hamiltonian terms to ptc_normal Td’A
===
madxc.c

- Clean up to avoid compiler warnings
- Changes to orbit correction: setcorr and input of
external file.
===
madxd.h

- Clean up to avoid compiler warnings
- Removed pedantic errors.
- Added possibility to give an elements true profile, and its offset
w.r.t. a point in space.
- Aperture command no longer prints aper1.out as default.
- Deselect command for tables (courtesy H.G.)
- Fortran clean-up with mymod, f2c, lf95, f95
- fix res_index format fix
- Repair:
1) multiple negative Lines
2) bug in seq_replace
- Add:
deselect command (Courtesy HG)
- change to mode definition: qx ==> q1 etc
- add Hamiltonian terms to ptc_normal Td’A
- IWAARUM 07.01.2005:
aperture module now supports long file names for Twiss table output.
- IWAARUM 06.01.2005:
Altered function header of aper_write_table().
- Changes for error, orbit and aperture modules
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madxdict.h

- introduce Werner’s improved readtable
- Removed bug due to uppercase/lowercase in offsetelem file.
- Added the possibility to assign self-made apertures from external
coordinate files.
- Removed pedantic errors.
- Added possibility to give an elements true profile, and its offset
w.r.t. a point in space.
- Aperture command no longer prints aper1.out as default.
- Deselect command for tables (courtesy H.G.)
- Adding a "dipedge" element so as to have all elements available in the
thin-lens tracking except second order (non-symplectic) terms. FS & AV
- Fortran clean-up with mymod, f2c, lf95, f95
- Changes needed for the touschek module
- Repair:
1) multiple negative Lines
2) bug in seq_replace
- Add:
deselect command (Courtesy HG)
- change to mode definition: qx ==> q1 etc
- add Hamiltonian terms to ptc_normal Td’A
- Changes to error, orbit and aperture modules
- New options for errors to allow time memory
effects, extern option in orbit correction
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madxe.

- Clean up to avoid compiler warnings
- Changes to correction factor in EFCOMP
as requested by Massimo
- Additional routines to read errors from
ESAVE: seterror command
===
madxl.h

311

- Removed pedantic errors.
- Added possibility to give an elements true profile, and its offset
w.r.t. a point in space.
- Aperture command no longer prints aper1.out as default.
- Changes needed for the touschek module
- change to mode definition: qx ==> q1 etc
- add Hamiltonian terms to ptc_normal Td’A
- IWAARUM 06.01.2005:
Cleaned up aperture table.
Added n1 in SI units to the aperture table.
- Changes for orbit and aperture modules.
- Aperture table and additional apertypes
- n1 into Twiss table
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madxn.c

- introduce Werner’s improved readtable, further clean-up
- letting point "at" of an freshly installed element to the position
Courtesy HG
- Fix the "no haxis" bug introduced in the clean-up (found by JBJ)
- Removed bug due to uppercase/lowercase in offsetelem file.
- Added the possibility to assign self-made apertures from external
coordinate files.
- Suppress unused variables, safeguard potentially uninitialized variables,
sanity checks in embedded_twiss, exec_plot & sodd
- Removed pedantic errors.
- Added possibility to describe an elements true profile, and its
offset w.r.t. a point in space.
- Deselect command for tables (courtesy H.G.)
- Fix of pseudo-crash when an element had been re-installed (with class
attribute) in a seqedit - now simply ignored (courtesy HG)
- Changes needed for the touschek module
- Repair:
1) multiple negative Lines
2) bug in seq_replace
- Add:
deselect command (Courtesy HG)
- change to mode definition: qx ==> q1 etc
- add Hamiltonian terms to ptc_normal Td’A
- IWAARUM 06.01.2005:
No longer uses isnan().
No longer uses strcasecmp() and strncasecmp().
Corrected printing of n1 to Twiss table.
Changed ap# to aper_# in aperture table.
Removed printing of "node_minimum" line in aperture table.
- Added aperture module functions, plot function
can plot aperture table
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madxp.c

- Suppress unused variables, safeguard potentially uninitialized variables,
sanity checks in embedded_twiss, exec_plot & sodd
- Deselect command for tables (courtesy H.G.)
- Repair:
1) multiple negative Lines
2) bug in seq_replace
- Add:
deselect command (Courtesy HG)
- Call to aperture module
- revert Ivar’s last changes
- Aperture
madx.h: Added struct aper_node.
madxd.h: Added aperture module function declarations, the aperture
table and char aptwfile as global variables.
madxdict.h: Added aperture command and aper_tol argument for all elements.
madxl.h: Added MAXARRAY definition, racetrack as an apertype, an
aperture table definition and added n1 to the Twiss table definition.
madxn.c: Added all aperture functions, and made the exec_plot able to
print aperture tables.
madxp.c: Added call to pro_aperture.
===
madxu.c

- Fix of pseudo-crash when an element had been re-installed (with class
attribute) in a seqedit - now simply ignored (courtesy HG)
===
makethin.c

- implement element instrument
===
match.

- Fortran clean-up with mymod, f2c, lf95, f95
===
matchc.c

- Fortran clean-up with mymod, f2c, lf95, f95
===
matchsa.F

- Fortran clean-up with mymod, f2c, lf95, f95
===
orbf.F

- Formal changes to satisfy f2c and Fortran90 compatibility
===
plot.F

- Fortran clean-up with mymod, f2c, lf95, f95
- plot_style & plot_symbol have to be defined as integer arrays
- bug corrected in plot.F (check of style+symbol in wrong place).
Only the first variable was plotted.
===
plot_math.f

- add missing newline
===
resindex.F

- Fortran clean-up with mymod, f2c, lf95, f95
- Finding resonance indices
===
resindex.fi

- Fortran clean-up with mymod, f2c, lf95, f95
- Finding resonance indices
===
sodd.F

- Fortran clean-up with mymod, f2c, lf95, f95
- Fix of mix-up of data and define statements
- adjust sodd results to PTC NormalForm by multiplying with multiples of 1000
===
survey.F

- suelem in util.F returns tilt for all elements (except BEND + MULT
with angle=0)
- GLOBALTILT takes into account tilt for all elements now
- repeated angle initialization taken out
===
sxf.c

- automatic indent
===
touschek.F

- Fortran clean-up with mymod, f2c, lf95, f95
- Well tested touschek module
===
touschek.f

- General input for touschek.F
===
trrun.F

- Adding a "dipedge" element so as to have all elements available in the
thin-lens tracking except second order (non-symplectic) terms. FS & AV
- Fortran clean-up with mymod, f2c, lf95, f95
- Introduction of dipedge. AV
===
twiss.F

- Adding a "dipedge" element so as to have all elements available in the
thin-lens tracking except second order (non-symplectic) terms. FS & AV
- Fortran clean-up with mymod, f2c, lf95, f95
- Activating synch_1, synch_2,synch_3,synch_5, first use in touschek
- Centre option corrected when closed orbit present
===
util.F

- suelem in util.F returns tilt for all elements (except BEND + MULT
with angle=0)
- GLOBALTILT takes into account tilt for all elements now
- Fortran clean-up with mymod, f2c, lf95, f95
===

MAD-X version 2.13: Update-I WH 09.12.2004
error module:
1. allows to add time memory effects to
 field errors, see documentation on
 EFCOMP
2. set errors directly from a file previously
 produced by an ESAVE command

orbit module:
1. set correctors directly from a file
 produced by a CORRECT command
2. allow correction of orbits read from
 and external file.
3. READMYTABLE as new generic table access
 function.

Aperture Module:

madxn.c:
16 function definitions for the aperture module.
A change in
exec_plot allows the PLOT-command to take the argument table=aperture to
print an aperture table.
Inserted a line in pro_twiss which saves the output filename for the twiss
table.

madxp.c:
A call to pro_aperture.

madxl.h:
Added racetrack as a possible apertype.
Defined the aperture table.
Added n1 to the Twiss table.

madxd.h:
16 aperture function declarations.
Added char aptwfile as global variable.

madx.h:
New aperture struct declaration.

madxdict.h:
Aperture command definition.
Added aper_tol as a possible argument to all elements.

MAD-X version 2.13: FS 23.11.2004
Summary:
The first step has been done for MAD-X matching with nonlinear terms
from PTC. By the end of the year matching should be operation in the
latest MAD-X version 2.13.

Changes with respect to the previous version listed per modified routine:
===
Makefile

-Extra link flag to work under SLC3
===
Makefile.bat

-Fix of SET INCLUDE path for stdio.h
===
emit.F

-Fix the notorious tilt issues since this was still in the intermediate
state using k0/k0s instead of tilt.
===
madx_ptc_module.f90

-nonlinear ptc acquisition -- Td’A
-fixed illegal extension "<>" by ".ne."
-use current index in structure table instead of external indexing
-length instead of dimension in character definition for "string_from_table"

-Allow any rest mass
===
madxd.h

-nonlinear ptc acquisition -- Td’A
-use current index in structure table instead of external indexing

-add cf77flush template
===
madxdict.h

-nonlinear ptc acquisition -- Td’A
===
madxl.h,v

nonlinear ptc acquisition -- Td’A
===
madxn.c,v

-fix "read_table" bug (courtesy HG)

-nonlinear ptc acquisition Td’A
-use current index in structure table instead of external indexing

-Two essential select bugs (courtesy HG)
===
madxp.c,v

-fix "read_table" bug (courtesy HG)

-nonlinear ptc acquisition Td’A
-use current index in structure table instead of external indexing

-Fix of faulty "resbeam" command found by EK and fixed courtesy HG
===
madxu.c

-C routine cf77flush for flushing unit 6 in C & F subroutines
===
plot.F

-fixed 4th argument of comm_para

-attribute ’trackfile’ for plot.

-correct treatment of tracking plots for particles for which no tracking is
available.

-check of the zero values of the style & symbole attributes.
===
timest.f90

-First timing routine needed for PTC
===
timex.f90

-Second timing routine needed for PTC
===
trrun.F

-correction of bug in thin multipole focusing. AV
===

312

MAD-X version 2.12: FS 29.09.2004
Summary:
Main new addition is the SODD module added courtesy Eric
d’Amico. Split madxn.c madxu.c into the parser part madxp.c and the
rest back to madxn.c madxu.c (courtesy HG). The parser consists only
of these three routines and the MAD-X header files. This allows to
attach other applications to the MAD-X parser as requested by SLAC and
Cornell. It can read and save (MAD8 format as well!) beams,variables,
elements and sequences. In the routine "control" one can add hooks
for any additional command as required by the parser users. The parser
is provided as an extra program in the binary directory for Linux,
Windows and MAC OS-X.

Changes with respect to the previous version listed per modified routine:
===
Makefile

For f90 case timel.c is replace by timest.f90 and timex.f90 to allow for
identical code on Linux and Windows.

Modify Lahey compile flags for version 6.2C

added timel.o (used by Sodd.F routines) in madx_objectsf77.

Actually the flag "-g" makes the code very slow therefore the change is
reverted.

put in -g compile flag for debug which should not slow down code
===
Makefile.bat

Using timest.f90 and timex.f90 instead of timel.c for timing to avoid
the missing *.h system files

Trivial Makefile for Windows
===
Makefile_develop

For f90 case timel.c is replace by timest.f90 and timex.f90 to allow for
identical code on Linux and Windows.

Add the "sodd" in development Makefile

Adding Helmut Burkhardt’s modifications needed for MAC OS10

Simple Makefile for testing and development
===
c6t.c

forgotten reset of global variable last_row=0 after usage FS

small bug fixed concerning the special f34 write out

A more general fix of the special f34 write out was needed. It should now
work for thin and thick lattices as well. To this end a new routine:
"my_table_row" had to written that allows to find the table row number
including occurrence count.

Correct special write out on fc.34 (position,name,magnet name magnet type,
betax,betay,mux,muy) for sodd input
===
c6t.h

A more general fix of the special f34 write out was needed. It should now
work for thin and thick lattices as well. To this end a new routine:
"my_table_row" had to written that allows to find the table row number
including occurrence count.
===
madx_ptc_module.f90

Adding closed orbit correctors strength and dipole errors to the kickers.

minor mods in preparation of CVF Windows version
===
madxd.h

Madx Version 2.12

Added sodd command.

Added scatter plot for tracking using gnuplot package
===
madxdict.h

Added sodd command.

Added scatter plot for tracking using gnuplot package

===
madxl.h

Added sodd command.

Changed int to constant in size of char plot_title & version_title
===
madxn.c

Added sodd command.

changed int to constant in size of char plot_title & version_title

1) Added scatter plot for tracking using gnuplot package
2) Adding bv flag to update_element function (courtesy Hans Grote)
===
madxu.c

Added sodd command.
===
makethin.c

bug fix affecting combined function magnets
===
sodd.F

Enlarge by 1 of length of character variable "name_5"
in routine "write_table()"

Changed routine name from error to prror.

Added command sodd.
===
trrun.F

Introduction of srot. Preliminary check by HB. AV
===
match.F,matchsa.F,plot.F,plot.fi,ptc_dummy.F,survey.F,trrun.F,twiss.F,util.F,

clean-up & missing implicit none
===

MAD-X version 2.11: FS 02.06.2004
Summary:
A) Simultaneous closed correction of 2 beams including common elements.
B) Major memory problem solved concerning malloc & free.
C) Implementing missing dipole edge effects in plot thereby reaching
its final state of development.
D) Using the Lahey f95 compiler: performance and platform portability.
E) Bug fixes

Changes with respect to the previous version listed per modified routine:
===
Latest:
-BV flag was left unchanged when an element was updated (Courtesy Hans
Grote)
-The missing SROT was activated in the trrun.F (AV)
-The scatter plot for tracking data was added to the plot module using
gnuplot. This is the final addition to the basic plotting facilities.
===
Working file: makethin.c

bug fix affecting combined function magnets
===
Working file: madX/emit.F

Dipole contribution had been ignored in the emit module for thin lenses.
Allowing cavity with zero length in accordance with RA
===
Working file: madX/madx.h

Changes for two beam orbit corrections
===
Working file: madX/madxc.c

-A few changes to correct for version inconsistencies
-Changes for two beam orbit correction and tilted monitors
===
Working file: madX/madxd.h

-Version number 2.11
-Add missing match_i_work variable definition
-Completed fringe fields treatment in the plot module.
-Changes for two beam orbit corrections
-In macros the attribute "table" is now correctly treated (found by WH,
fixed courtesy HG)
===
Working file: madX/madxdict.h

-Changes for two beam orbit corrections
-Added ptc & ptc_table attributes to the command plot. This allows plotting
data from twiss tables produced by PTC package.
-Bug fixes in plot module (phase advances by two pi, range,
reset of start & end nodes in pro_embedded_twiss).
-Interpolate attribute instead of spline attribute in plot command.
-No interpolation is now default.
-Added interpolate attribute to setplot command.
===
Working file: madX/madxn.c

-The Track module works now with the observe attribute for closed machines.
-Completed fringe fields treatment in the plot module.
-Setting necessary flags for "damp" & "quantum" tracking ITEP collaboration
-In macros the attribute "table" is now correctly treated (found by WH,
fixed courtesy HG)
-Bug fixes in plot module (phase advances by two pi, range,
reset of start & end nodes in pro_embedded_twiss).
-Interpolate attribute instead of spline attribute in plot command.
-No interpolation is now default.
-Added interpolate attribute to setplot command.
-Removed a few forgotten _WIN32 compiler directives
===
Working file: madX/madxu.c

-Completed fringe fields treatment in the plot module.
-Changed memory offset in MYALLOC and MYCALLOC to avoid
wrong alignment of data structures
-Offset is now 8 bytes (4 bytes before)
-In macros the attribute "table" is now correctly treated (found by WH,
fixed courtesy HG)
===
Working file: madX/match.F

Added the ’implicit none’ at the beginning of the subroutine. OB
===
Working file: madX/matchc.c

Changed the variable type in the ’matchsa’ soubroutine call
from ’double_working_array’ to ’int_working_array’. OB.
===
Working file: madX/matchsa.F

add missing implicit none statements
===
Working file: madX/orbf.F

-Added implicit none to PRIMAT and PRDMAT
-Changes and additions for two beam orbit correction
===
Working file: madX/plot.F

-The command "implicit none" has been taken out from the file plot.fi and
added to all the subroutines of plot.F which include plot.fi.
-Added ptc & ptc_table attributes to the command plot. This allows plotting
data from twiss tables produced by PTC package.
-Bug fixes in plot module (phase advances by two pi, range,
reset of start & end nodes in pro_embedded_twiss).
-Interpolate attribute instead of spline attribute in plot command.
-No interpolation is now default.
-Added interpolate attribute to setplot command.
-Removed a few forgotten _WIN32 compiler directives
===
Working file: madX/plot.fi

-The command "implicit none" has been taken out from the file plot.fi and
added to all the subroutines of plot.F which include plot.fi.
-Bug fixes in plot module (phase advances by two pi, range,
reset of start & end nodes in pro_embedded_twiss).
-Interpolate attribute instead of spline attribute in plot command.
-No interpolation is now default.
-Added interpolate attribute to setplot command.
===
Working file: madX/plot_b.fi

Added ptc & ptc_table attributes to the command plot. This allows plotting
data from twiss tables produced by PTC package.
found missing and added by FS
===
Working file: madX/twiss.F

The "damp" & "quantum" part has been included for the multipoles like in
Mad8. This concludes the first round of of adding "damp" & "quantum" to the
track command.
===
Working file: madX/Sa_extend_poly.f90
Working file: madX/Sd_frame.f90
Working file: madX/Se_status.f90
Working file: madX/Sf_def_all_kinds.f90
Working file: madX/Sh_def_kind.f90
Working file: madX/Si_def_element.f90
Working file: madX/Sk_link_list.f90
Working file: madX/Sl_family.f90
Working file: madX/Sm_tracking.f90
Working file: madX/Sn_mad_like.f90
Working file: madX/So_fitting.f90
Working file: madX/Sp_keywords.f90
Working file: madX/a_def_all_kind.inc
Working file: madX/a_def_element_fibre_layout.inc
Working file: madX/a_scratch_size.f90
Working file: madX/h_definition.f90
Working file: madX/i_tpsa.f90
Working file: madX/j_tpsalie.f90
Working file: madX/k_tpsalie_analysis.f90
Working file: madX/l_complex_taylor.f90
Working file: madX/m_real_polymorph.f90
Working file: madX/n_complex_polymorph.f90
Working file: madX/o_tree_element.f90

Etienne’s major clean-up
===
Working file: madX/Makefile

Changing f95 compiler to Lahey with static link
Nag still available for debugging
===

MAD-X version 2.10: FS 27.03.2004
Changes with respect to the previous version:

Additions

-fix of the problem with the "table" attribute in the macro environment
-first minor fix of emit, which still does not work for a thin lens lattices
-linking the plotting to the PTC table ptc_twiss
-"damp" & "quantum" attribute to thinlens tracking in collaboration with ITEP

New Files

-gxx11ps.F & gxx11psc.c needed for PS production on Windows Courtesy Hans Grote
-a_def_arbitrary.inc PTC arbitrary include file Courtesy Etienne Forest
-o_tree_element.f90 tree tracking for the new map element Courtesy Etienne Forest

Windows Version

-Taking out compiler directives not needed for Lahey om Windows.
-Windows version of gxx11.F useful to produce ps files courtesy HG

PTC

-Fixing missing k1 in wedge (now MAD-X has to be fixed!) adding Taylor Map
 (arbitrary Matrix in MAD-X but any order) Courtesy Etienne Forest
-Watch orbit PTC routines for overflows, officialize thin dipole stuff,
 some clean-up courtesy E. Forest
-Watch orbit PTC routines for overflows, officialize thin dipole stuff,
 some clean-up courtesy E. Forest
-Monster bug found in PTC concerning solenoids courtesy E. Forest
-(Re)fixing solenoid for the DRIFT-KICK-DRIFT (kind2) mode E.Forest & FS
-Adding range and initial matrix (first go) FS

Makefile

-Modernize Courtesy Helmut Burkhardt
-gxx11ps.F/gxx11ps_f77.F excluded from compile of all .F

save command

-Adding a flatten to the save command if needed Courtesy H.G.
-fixing all 3 save deficiencies and "no element definition allowed
 in seqedit" courtesy H.G
-Fixing the q->k1=something problem being ommitted in save courtesy HG

plot command

-Fixing various plotting bugs FS&TdA
-global variables for plot TdA
-plot upgrade, 2 new routines (pro_)embedded_twiss TdA
-take out illegal tab
-Element slicing by creation of intermediate nodes.
-Direct use of twiss routines in computing Twiss parameters
 for these intermediate nodes.
-Table access to Twiss parameters at intermediate nodes.
-Clearing of intermediate nodes on exit of each element.
-Display of momentum spread given in %. 16.03.2004 TdA
-Fixing the improper resetting of e2 at exit of a rbend
 (sbend was okay) Courtesy Ed’A

touschek module

-touscheck set-up FS

match module

-Updated the dictionary file to include user defined
 variables for the MATCH routine. OB

twiss module

-Allowing fintx (fint at end of bend) to be zero courtesy C.Milardi
-Add the thin_foc flag to supress the 1/(rho**2) focussing term of thin
 dipoles. Needed for compatibility with old LHC lattices.
-correcting warning printout

c6t.c

-fixing faulty variable passing to "create_aperture" FS

c_dabnew.f90

-Adding da counter

madxc.c

-drop printing of nonexisting variable FS

madxu.c

-fix missing myfree of p_loc in routine grow_table TdA
-2 new routines for plotting "interp_node" and "reset_interpolation" TdA
-missing mymalloc in expand_curr_sequ
-"c_node" instead "node" in replace_one in routine seq_replace

timel.c

-syntax error FS
-Fixing HZ unconditional to 60

MAD-X version 2.00: FS 24.11.2003
Changes in version mad-X 2.00:
=============================

+++++++++++++
Main Changes:
+++++++++++++

1) There is now the first development version of MAD-X including PTC. The binary is madxdev and
it id compiled in debug mode to find problems fast.
2) Smaller clean-up

+++++++++++++
Changes per
Modules or
file
+++++++++++++

+++++++++++++
Makefile:
+++++++++++++

1) use default gcc compiler on MacOSX
2) Go to ieee error handling such that the FORTRAN90 madxdev (MAD-X+PTC)
does not stop on infinity. Gives a friendly message about it.
3) Updated file to include compilation of the ’matchsa.F’ file. OB
Modification to avoid crash when orbit correction is
attempted without valid twiss_table.
===

+++++++++++++
madxdict.h:
+++++++++++++

1) New Version MAD-X PTC 2.00
2) Added option FULL (true,false=default) to EPRINT command
3) Revert to full version but keep mods of OB
4) Modified file to include ’rmatrix’ matching. -> entries for ’match’ and
’constraint’ key words. OB
5) Dispersion, Tunes, Chromaticities and Anharmonicities to arbitrary Order
===

+++++++++++++
madxe.c:
+++++++++++++

1) Changed factor in printout for field errors for
command EPRINT
2) Changes to EPRINT to allow printout of all elements,
activated with: EPRINT, FULL=TRUE;
===

+++++++++++++
madxl.h:
+++++++++++++

1) Add rectellipse aperture
===

+++++++++++++
madxn.c:
+++++++++++++

1) New Version MAD-X PTC 2.00
2) mu in beta0 now in rad -- courtesy H.G.
3) Reinstallation of the fix to activate the tolerance attribute of TWISS
4) Intermediate restoration however found memory bug to be fixed
5) Added code in routines exec_plot & store_node_value to permit access by the routine peintp in file plot.F to the routines tmbend & tmquad in twiss.F --- E.T. d’Amico
6) Modified file to include ’rmatrix’ matching. OB
7) Activate the tolerance attribute of the twiss command it superseeds what
you get from coguess
8) Fixing faulty interpretation of "E" format of attribute deltap of the twiss module courtesy Hans Grote
9) Supress initial message about unknown sequence HG
10) Fix access of unknown pointer HG
===

+++++++++++++
madx_ptc_module.f90:
+++++++++++++

New file for Version MAD-X PTC 2.00
===

+++++++++++++
match.F:
+++++++++++++

1) Modified file to include ’rmatrix’ matching and updated the match summary
for matching with more than one sequence file. OB
===

+++++++++++++
matchc.c:
+++++++++++++

1) correction of small format error in fprintf
2) file modified to include ’rmatrix’ matching and to update the match summary
for matching with more than one sequence file. OB
===

+++++++++++++
matchsa.F:
+++++++++++++

1) Remove special DOS characters and replace dfloat by dble (FORTRAN90 conflict)
2) New fortran source file for ’simulated annealing’ matching. The file has been
prepared by Dobrin Kaltchev. The matching works but one might still run into
problems with TWISS if no stable matrix is found during the matching. OB
===

+++++++++++++
plot.F:
+++++++++++++

1) Accidental switching off of e2 at the end of bends - FS & Ed’A
2) Correct treatment of e2 within dipole.
3) SPLINE atribute is now obsolete for twiss parameters plots. A warning message is issued if used.Twiss parameters plots are now always interpolated.
4) Zeroing uninitialize variables
===

+++++++++++++
ptc_dummy.F:
+++++++++++++

New file for Version MAD-X PTC 2.00
===

+++++++++++++
ptc_input.f90:
+++++++++++++

1) not needed for New Version MAD-X PTC 2.00
2) frame/chart/patch flags commented
3) Fixing cavity handling in the MAD-X PTC combination
===

+++++++++++++
ptc_normal.f90:
+++++++++++++

1) not needed for New Version MAD-X PTC 2.00
2) Fixing cavity handling in the MAD-X PTC combination
3) Dispersion, Tunes, Chromaticities and Anharmonicities to arbitrary Order
===

+++++++++++++
ptc_twiss.f90:
+++++++++++++

1) not needed for New Version MAD-X PTC 2.00
2)Fixing cavity handling in the MAD-X PTC combination
===

+++++++++++++
set_para.f90:
+++++++++++++

not needed for New Version MAD-X PTC 2.00
===

+++++++++++++
trrun.F:
+++++++++++++

Introduction of rectellipse in tracking. AV
===

+++++++++++++
ttwm_dum.F:
+++++++++++++

not needed for New Version MAD-X PTC 2.00
===

+++++++++++++
twiss.F:
+++++++++++++

1) Transfer maps of lines are were evaluated as for rings FS & CM (Frascati)
2) Zeroing uninitialize variables
3) When using the centre option the misalignment was not properly handled in
the center of the element, although it was done properly when reaching the
end of the element. Found by WH.
===

+++++++++++++
u1_twiss.f90:
+++++++++++++

not needed for New Version MAD-X PTC 2.00
===

+++++++++++++
wrap.f90:
+++++++++++++

New files for Version MAD-X PTC 2.00
===

+++++++++++++
zza_keywords.f90:
+++++++++++++

Small upgrade to remove unnecessary stuff
===

313

MAD-X version 1.12: FS 04.07.2003
Changes with respect to the previous version:

Changes in version mad-X 1.12:
=============================

++++++++
Changes:
++++++++

1) Safeguard free to avoid "segmentation faults" using "myfree"
2) orbf.F: Changes to allow correction to target orbit.
Remove unused and uninitialized variable lgfile.
3) Fixing position matching
4) SXF mods to protect against loose user input:
-when the position is missing, it is inserted directly behind the preceding
element, like for a LINE.
-If a bend does have "arc" undefined it uses "l" as length.
Courtesy of Hans Grote.
5) Clean-up and Windows Version Compatibility
6) Remove command EFIELD from dictionary madxdict.h
7) We had an old value of the "Unified Atomic Mass Unit", spotted by J. Jowett.
8) Element lengths had to be defined before the definition of the element,
i.e. concerning length the ":=" operator did not function properly.
Detected by AV solved by HG
9) If a one or both plains are unstable you now get the
"cosmux,cosmuy" for evaluation and a warning instead of a program
exit.
10) orbf.F: Changes to allow correction to target orbit.
Remove unused and uninitialized variable lgfile.
11) New set command
 a) variable format of printout
 b) select current sequence
12) Change beam command on request:
for ion only:
 a) give total energy
 b) use mass & charge
 c) attribute nucleon suppressed
13) Adding arbitrary matrix element twiss, thintrack & makethin
14) Fix plot problem of variables starting with ’r’ which had been
stripped.
15) Slicing of solenoid
16) New free in the orbit part plus minor clean-up.
17) When "Cycle"ing the machine internally a marker was created with a
separate name. However, when using "save" afterwards 2 identical
markers were defined causing a crash.
18) Obsolete options removed for TRACK and DYNAP / AV
19) A faulty "free" caused the "remove of ranges" to fail.
===

MAD-X version 1.11: FS 26.04.2003
Changes with respect to the previous version:

Changes in version mad-X 1.11:
=============================

+++++++++++++
Main Changes:
+++++++++++++

1) Introduce missing stability check in the vertical plane (AV&FS).
2) Introduce missing aperture attributes when saving to a file (HB).
3) Problem solved with the plot module, i.e. due the change from
"k0/k0s" to "angle/tilt" the info about bends was missing such that
the figures of the dispersion displayed nasty and unphysical kinks (Td’A&FS).
4) PC version it became necessary to drop trailing blanks and special
characters from all files. All ".f" had to renamed ".F" to allow precompiling
with compiler directives (JJ&FS).
5) A very first and still buggy PC version is available (JJ). However, checks
have been done to verify that LINUX version still works fine (WH&FS).

+++++++++++++
Changes per
Modules or
file
+++++++++++++

+++++++++++++
c6t:
+++++++++++++

fixed segmentation fault which was due to a faulty free-ing of object that
had already been freed before
===

+++++++++++++
madxc.c:
+++++++++++++

-Change to fextim
-Routine ftime replaced in fextim.
-Changes to comply with new format of make_table
===

+++++++++++++
madxd.h:
+++++++++++++

-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
===

+++++++++++++
madxdict.h:
+++++++++++++

TWISS docu clean-up
===

+++++++++++++
madxe.c:
+++++++++++++

-Changed order of columns in ESAVE
-New version of ESAVE, prints now alignment errors as well as field errors
===

+++++++++++++
madxl.h:
+++++++++++++

-Fix order of vraiables in efield table
- Memory Leak clean-up
- Reduce table size to the minimum necessary HG & FS
-Changed order of columns for ESAVE
-Remove usage of k0 + k0s for dipole
-Fix bug in twiss table (bv flag error at angle and k0,
 angle contained length_square)
-Changes to EFIELD table definition used by ESAVE
===

+++++++++++++
madxn.c:
+++++++++++++

-fix in update_element, avoids loss of information in writing a sequence
-TWISS docu clean-up
-Fixed another serious "segmentation fault" due to a faulty free. Thanks to HG
-Fixed a bug that crashed the program when putting apertures in a twiss table.
-The margin for the table size had been chosen slightly too small.
-An attempted fix for a free leak caused serious problems with lines and had to be removed.
-Memory Leak clean-up
-Reduce table size to the minimum necessary HG & FS
-Keep k0 & k0s to be read in. "Angle" remains master
-Remove usage of k0 + k0s for dipole
-Fix bug in twiss table (bv flag error at angle and k0,
 angle contained length_square)
-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
===

+++++++++++++
madxu.c:
+++++++++++++

-Fixed another serious "segmentation fault" due to a faulty free. Thanks to HG
-Memory Leak clean-up
-Reduce table size to the minimum necessary HG & FS
-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
===

makethin.c:
-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
===

plot.F:
use angle&tilt instead of k0l&k0sl since the later are no longer calculated
from the former in madxn.c
===

survey.F:
correction of angle for output with dipole_bv
===

+++++++++++++
sxf.c:
+++++++++++++

-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
===

+++++++++++++
trrun.F:
+++++++++++++

-drop prints and suppress nn=24 AV+FS
-Tilt implemented in tracking. Tested on simple example. AV
-Apertures for all elements but drifts (AV).
-Clean-up of dimensions + introduction of initialisations (FS+AV)
===

+++++++++++++
twiss.F:
+++++++++++++

-Stability check for the vertical plane was faulty (bug detected courtesy
André Verdier)
-TWISS docu clean-up
-fatal error -> warning for multiple def. in sequ.
-print bpm name in threader routine
-remove names of lines from list of lines to allow thin lens expansion (ti8 problem)
-Clean-up of dimensions + introduction of initialisations (FS+AV)
===

+++++++++++++
twtrr.fi
+++++++++++++

-Clean-up of dimensions + introduction of initialisations (FS+AV)
===

+++++++++++++
util.F:
+++++++++++++

-Clean-up of dimensions + introduction of initialisations (FS+AV)
===

MAD-X version 1.10: HG & FS 20.01.2003
Changes with respect to the previous version:

Changes in version mad-X 1.10:
=============================

New commands:

coguess,x=..,px=..,y=..,py=..,t=..,pt=..,tolerance=..;

introduces the user’s guess of the closed orbit start; it will be
used for all subsequent TWISS executions.
tolerance is the maximum error (in any component) for the closed
orbit convergence test (default = 1.e-6).

threader,vector={xmax,ymax,att}; defaults: {5.e-3,5.e-3,1.}

sets the parameters for the threader (see below).
xmax, ymax: orbit excursion (at a monitor) at which threader acts;
att : attenuation factor for the kicks applied by the threader.

New command parameters:

twiss,keeporbit,useorbit;
match,useorbit;

The keeporbit (with an optional name, keeporbit=name) stores the orbit
under this name at the start, and at all monitors.

useorbit (with an optional name, useorbit=name) uses the start value
provided for the closed orbit search; the values at the monitors are
used by the threader (see below).

match,useorbit;

transfers the useorbit request to the Twiss module.

option,threader;

When set, the threader checks at all monitors the difference with
respect to the stored orbit there (from keeporbit) if useorbit is
present. The threader then provides kicks (if possible) to reduce
the orbit difference below the maxima specified on the threader
command. This procedure allows to thread with orbit bumps present.

save,class=..,pattern="..";

The save command without sequence specification saves all sequences
present, their elements, and their variables (this is not new).
When a class is specified in addition, all saved elements must belong
to that class; when a pattern is specified, the names of all
sequences, elements, and variables saved must match the regular
expression provided. Example: the user want to save all variables
containing the string"mb", and only those, i.e. no elements:

save,class=nonesuch,pattern="mb.*";

beam,particle=ion,nucleon=..;

The ion has the following effect:
the total mass is set to nucleon (a real number) * nmass (an average
nucleon mass); the total energy is set to charge * beam_energy.
See as well the IBS module documentation.

MAD-X version 1.09: FS 09.12.2002
Changes with respect to the previous version:

New Developments and Important Fixes:

A) New SXF Module:

Introduction of the SXF module - reading and writing SXF files - HG 4.12.02

B) Tilt restored:

Tilt restored, global tilt introduced in Twiss and Survey Module

C) MadX SixTrack Convertor:

a) Fixed bug allowing evaluation of expressions for aperture parameter.

b) A vertical field error is no longer treated as a vertical kicker. The same
cure is used as for the horizontal case.

c) fixed two problems:
1. missing last component of a (skew) multipole.
2. multipoles with dipole component are now correctly split with the b1
component listed in the fc.2 file. (altered subroutine pre_multipole)

d) Kickers are now converted properly MH & FS

e) Addition of tilt to sixtrack input. (MH+FRS)

f) Minor formatting changes to remove superfluous comments.

g) Addition of tilt_err flag (MH+FRS).

D) Important Add-Ons:

1. Access to multipole components from the command line:
 name->k0l, name->k0sl etc.

2. Addition of variables to (any internal) table:
 select,flag=table,column=name,s,betx,...,var1,var2,...; ot
 select,flag=table,full,column=var1,var2,...; ! default col.s + new
 will write the current value of var1 etc. into the table each trime
 a new line is added; values from the same (current) line can be
 accessed by these variables, e.g.
 var1:= sqrt(beam->ex*table(twiss,betx));
 in the case of table above being "twiss". The plot command accepts
 the new variables.
 Remark: this replaces the "string" variables of MAD-8

3. User-defined tables:
 create,table=name,column=var1,var2,...;
 creates a table with the columns specified.
 fill,table=name;
 adds one line to the table with the current values of var1 etc.
 write,table=name{,file=filename}; ! {} means "optional"
 will write the table in TFS format onto the file or, if missing,
 onto standard output.
 Remark: this replaces the "push" etc. commands of MAD-8

 HG 9.12.2002

Fixes and Minor Improvements:

a) Fixing bug in match range - HG 22.11.2002

b) Added a working array in the ’mtmigr’ function definition.

c) Introduced advertised defaults for and for plot module

d) Tolerance changed into maxaper for tracking and dynap AV+FS

e) Bug fix in tracking: deltap on TRACK command now transmitted
INFO from TWISS suppressed if called from matching - HG 20.11.02

f) modified slicer to copy tilt parameter across again.

g) Slicer: Fixed LRAD bug. Because of default l=0 the lrad was always
being overwritten by the length when sliced (it assumed the user had asked
for a length=0 element). NEW DEFAULT: any object with length=0 is just
copied to the thin sequence and not "sliced". i.e. magnetic elements are
only converted to thin_mutipoles if they have a length. If they have no
length they retain their original type. (i.e. l=0 sextupoles remain
sextupoles).

h) Introduction of character string length of names for all Fortran modules.
(AV&FS)

i) Modified the working array numbers for ’symeig’ subroutine.

j) Added a working array for the MIGRAT routine.

k) SUELEM, SUMTRX AND SUTRAN moved to util.f (used also in twiss). AV+FS

l) Misalignment of apertures introduced. AV

m) Dimension of al_errors changes to 14. It compiles. No other test. AV

n) Tolerance changed into maxaper AV+FS

o) Accidental FORTRAN90 feature found in FORTRAN77 subroutine charconv: "<" instead of ".lt."

p) Cleanup of Unix Incosistencies:
darwin (MacOS compatibility);consistency of unix header files;
hbu include unistd.h for sleep;hbu include stdlib.h for getenv;
hbu replace old ftime by gettimeofday for newer gnu compilers;
hbu consistency of include for unix header files

MAD-X version 1.08: FS 18.11.2002
Changes with respect to the previous version:

New Features:

-Added emit code

-Added tilt element parameter, mods in twiss + twiss output file

-Introduction of globaltilt to align the quadrupoles

-Added SXF file export - HG 7.11.02

-Removing drifts from line SAVE

-Added filename + extension for track files

-Added range to TWISS and MATCH

-Added SIGT to twiss file header - HG 14.11.02

-Windows Version in progress:
#ifndef exclusion of body of exec-plot is a temporary fix so that
the WIN32 version does not try to do X11 graphics.
However this has the consequence that the program will not
make Postscript files either. HG will make a clean separation of
these graphics functions later. (JMJ). With this change the WIN32
version now compiles but does not yet link.

-Introducing _WIN32 flag - HG 6.11.02

-add current_eopt command to allow the show command to show the updated eoption(s)

-Error module:
Changes to allow assignment of relative errors to multipoles with
only skew components, this requires a NEGATIVE radius

Bugs Fixes and minor Changes:

-Communicates maxmul parameter between twiss and trrun.

-In the call suelem the 4th passed variable was missing.

-Fixed bug in trrun (buffer with max. number of particles) HG 22.10.02

-Changed template for trrun AV & FS

-Fixed bug in trrun (buffer with max. number of particles) HG 22.10.02

-Restoring the definition of el in ttrf AV & FS

-Fixed minor typo in track_run and track_dynap. Print message when exiting the
track module. This helps to avoid confusion since before after a missing start
command nothing was written at all.

-Marguerite introduced and tested on single element.

-Correction of Phi and Psi. Yet to be tested on transfer lines. AV

-atan2 removed from survey FS & AV

-changed thin creation to allow inheritance of the aperture parameter correctly.

-Fixing missing k0 in SAVE

-Replacing min and max by mymin and mymax

-Introducing _WIN32 flag - HG 6.11.02

-Fixed buf_dxt, buf_dyt for both track_dynap and track_run which call trrun AV & FS

-Increased number of dp numbers to 100000000

-Introduced _WINDOWS_ compile flag - HG 29.10.02

-Fixed bug in table value evaluation - HG 21.10.02

-Fixed bug in write_nice (SAVE output) - HG 17.10.02

-Fixed bug in seqedit INSTALL (simultaneous element definition)

-Fixed trivial bug in expression list copy routine -

-Removing second level of includes in c6t.c,

-moved include of c6t.h to madxn.c (JMJ).

-Fixed trivial bug in expression list copy routine -

-Clean-up of emit.f and madxdict.h - HG 28.10.02

-Fixing output format of SAVE statement

-Fixing missing k0 in SAVE

-Replacing min and max by mymin and mymax

-Fixed bug in sectormap file creation - HG 3.11.02

-Fixed trivial bug in expression list copy routine -

-Fixed bug in special command check - HG 8.11.02

-Removing second level of includes in c6t.c,

-moved include of c6t.h to madxn.c (JMJ).

-Fixing output format of SAVE statement

MAD-X version 1.06: FS 16.10.2002
Changes with respect to the previous version:

New command MONCUT in correction module
Addition of EMIT module - HG 15.10.02
Correction of RF cavity map
Correction in drift slicing
Additions to track tables
Estetics in slicer MH

MAD-X version 1.05: HG 25.9.2002
Changes with respect to the previous version:

SURVEY:
correction of multipole treatment, various small mods.

ORBIT CORRECTION:
Orbit correction module changed to make 3 algorithms
available: MICADO, LSQ (Least Squares correction) and
SVD (Singular Value Decomposition). Selected with MODE
option in the CORRECT command.
The latter technique can optionally be used to configure
the response matrix for MICADO or LSQ to avoid bumps
and unphysical corrector strengths. Selected with
COND=1 option in the CORRECT command.
Highly recommended: read the forthcoming report before
use.

New sample job to create footprints for LHC: HG 18.9.2002
/afs/cern.ch/group/si/slap/share/mad-X/test_suite/foot/V1.04/footprint.mad

Creates a footprint for head-on + parasitic collisions at IP1+5
of lhc.6.4; both lhcb1 (for tracking) and lhcb2 (to define the
beam-beam elements, i.e. weak-strong) are used; there are flags to
select head-on, left, and right parasitic separately at all IPs.
The bunch spacing can be given in nanosec and automatically creates
the beam-beam interaction points at the correct positions.
It is important to set the correct BEAM parameters, i.e. number
of particles, emittances, bunch length, energy.

The output file "footprint" can be viewed with gnuplot:

gnuplot
plot "footprint" w l

314

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

RPLOT

Introduction
RPLOT is a MAD-X plug-in that privides additional functionality using ROOT . It contains several tools

RVIEWER
plotting tool that handles the results in paramremtric form

What makes it different from the standard PLOT module of MAD-X is that it is also able to deal with
the parmateric results. RPLOT proviedes graphical user interface that allows to choose which
functions shall be drawn, set its ranges and adjust all the details of the plot formatting. Of course, the
result is immendiately visible on the screen, in contrary to the standard plot tool that is able to work
solely in the batch mode. The user can choose several formats to save his plot, including postscript,
gif, pdf, root macro and many others.

RVIEWER is able to draw the lattice functions
1. along the layout
2. at given position in function of one or two knobs

It provides a convienient way to set the knob values. As the value is set, the plotted functions are
immediately drawn for the new value.

In order to run RVIEWER simpy issue "rviewer;" command
RTRACKSTORE

enables storage of the tracking data in ROOT NTuple/Tree format

Ntuple and its modern extension called Tree are formats designed for storing particle tracking data. It
is proven to provide the fastest data writing and reading thanks to column wise I/O operations. It is
commonly used for data storage by HEP experiments. Additionally, ROOT provides automatical ZIP
data compression that is transparent for the user algorithms. Morover, ROOT provides wide set of
very comfortable tools for advanced analysis and plotting of the data stored in Trees.

Addtionally, we plan to extend RVIEWER functionality that would provide intuitive graphical user
interface to most commonly used features in particle tracking in accelerators. Thanks to that, the user
is not forced to learn how to use the ROOT package.

Currently the feature is enabled only for tracking using the ptc_trackline command, however, it will
be extended to other tracking modes.

315

http://root.cern.ch/

Download

The newest version is available here

Installation

Prerequisite: ROOT must be installed beforehand compilation and whenever the user wants to use the
plug-in. See explanations on ROOT webpage.

To install RPLOT
1. Unpack the archive, it will create directory rplot

 tar xvzf rplot-X.XX.tgz

2. Change to rplot directory

 cd rplot

3. Type

 make install

Examples

SYNOPSIS

RVIEWER;

PROGRAMMERS MANUAL

To be continued...

316

http://root.cern.ch/

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

References
1
The Graphical Kernel System (GKS). ISO, Geneva, July 1985. International Standard ISO 7942.

2
B. Autin and Y. Marti. Closed Orbit Correction of Alternating Gradient Machines using a small Number
of Magnets. CERN/ISR-MA/73-17, CERN, 1973.

3
D.P. Barber, K. Heinemann, H. Mais and G. Ripken, A Fokker--Planck Treatment of Stochastic Particle
Motion within the Framework of a Fully Coupled 6-dimensional Formalism for Electron-Positron Storage
Rings including Classical Spin Motion in Linear Approximation, DESY report 91-146, 1991.

4
R. Bartolini, A. Bazzani, M. Giovannozzi, W. Scandale and E. Todesco, Tune evaluation in simulations
and experiments, CERN SL/95-84 (AP) (1995).

5
J. D. Bjorken and S. K. Mtingwa. Particle Accelerators 13, pg. 115.

6
E. M. Bollt and J. D. Meiss, Targeting chaotic orbits to the Moon through recurrence, Phys. Lett. A
204,373 (1995).

7
P. Bramham and H. Henke. private communication and LEP Note LEP-70/107, CERN.

8
Karl L. Brown. A First-and Second-Order Matrix Theory for the Design of Beam Transport Systems and
Charged Particle Spectrometers. SLAC 75, Revision 3, SLAC, 1972.

9
Karl L. Brown, D. C. Carey, Ch. Iselin, and F. Rothacker. TRANSPORT - A Computer Program for
Designing Charged Particle Beam Transport Systems. CERN 73-16, revised as CERN 80-4, CERN, 1980.

10
A. Chao. Evaluation of beam distribution parameters in an electron storage ring. Journal of Applied
Physics, 50:595-598, 1979.

317

11
A. W. Chao and M. J. Lee. SPEAR II Touschek lifetime. SPEAR-181, SLAC, October 1974.

12
M. Conte and M. Martini. Particle Accelerators 17, 1 (1985).

13
E. D. Courant and H. S. Snyder. Theory of the alternating gradient synchrotron. Annals of Physics,
3:1-48, 1958.

14
Ph. Defert, Ph. Hofmann, and R. Keyser. The Table File System, the C Interfaces. LAW Note 9, CERN,
1989.

15
M. Donald and D. Schofield. A User’s Guide to the HARMON Program. LEP Note 420, CERN, 1982.

16
A. Dragt. Lectures on Nonlinear Orbit Dynamics, 1981 Summer School on High Energy Particle
Accelerators, Fermi National Accelerator Laboratory, July 1981. American Institute of Physics, 1982.

17
D. A. Edwards and L. C. Teng. Parametrisation of linear coupled motion in periodic systems. IEEE Trans.
on Nucl. Sc., 20:885, 1973.

18
M. Giovannozzi, Analysis of the stability domain of planar symplectic maps using invariant manifolds,
CERN/PS 96-05 (PA) (1996).

19
H. Grote. GXPLOT User’s Guide and Reference Manual. LEP TH Note 57, CERN, 1988.

20
LEP Design Group. Design Study of a 22 to 130 GeV electron-positron Colliding Beam Machine (LEP).
CERN/ISR-LEP/79-33, CERN, 1979.

M. Hanney, J. M. Jowett, and E. Keil. BEAMPARAM - A program for computing beam dynamics and
performance of electron-positron storage rings. CERN/LEP-TH/88-2, CERN, 1988.

22
R. H. Helm, M. J. Lee, P. L. Morton, and M. Sands. Evaluation of synchrotron radiation integrals. IEEE
Trans. Nucl. Sc., NS-20, 1973.

23
F. James. MINUIT, A package of programs to minimise a function of n variables, compute the covariance
matrix, and find the true errors. program library code D507, CERN, 1978.

318

24
E. Keil. Synchrotron radiation from a large electron-positron storage ring. CERN/ISR-LTD/76-23,
CERN, 1976.

25
D. E. Knuth. The Art of Computer Programming. Volume 2, Addison-Wesley, second edition, 1981.
Semi-numerical Algorithms.

26
J. Laskar, C. Froeschle and A. Celletti, The measure of chaos by the numerical analysis of the fundamental
frequencies. Application to the standard mapping, Physica D 56, 253 (1992).

27
H. Mais and G. Ripken, Theory of Coupled Synchro-Betatron Oscillations. DESY internal Report, DESY
M-82-05, 1982.

28
M. Meddahi, Chromaticity correction for the 108/60 degree lattice, CERN SL/Note 96-19 (AP) (1996).

29
J. Milutinovic and S. Ruggiero. Comparison of Accelerator Codes for a RHIC Lattice. AD/AP/TN-9,
BNL, 1988.

30
B. W. Montague. Linear Optics for Improved Chromaticity Correction. LEP Note 165, CERN, 1979.

31
Gerhard Ripken, Untersuchungen zur Strahlführung und Stabilität der Teilchenbewegung in
Beschleunigern und Storage-Ringen unter strenger Berücksichtigung einer Kopplung der
Betatronschwingungen. DESY internal Report R1-70/4, 1970.

32
F. Ruggiero, Dynamic Aperture for LEP 2 with various optics and tunes, Proc. Sixth Workshop on LEP
Performance, Chamonix, 1996, ed. J. Poole (CERN SL/96-05 (DI),1996), pp. 132--136.

33
L. C. Teng. Concerning n-Dimensional Coupled Motion. FN 229, FNAL, 1971.

34
U. Völkel. Particle loss by Touschek effect in a storage ring. DESY 67-5, DESY, 1967.

35
R. P. Walker. Calculation of the Touschek lifetime in electron storage rings. 1987. Also SERC Daresbury
Laboratory preprint, DL/SCI/P542A.

36
P. B. Wilson. Proc. 8th Int. Conf. on High-Energy Accelerators. Stanford, 1974.

319

37
A. Wrulich and H. Meyer. Life time due to the beam-beam bremsstrahlung effect. PET-75-2, DESY, 1975.

38
H. Grote, J. Holt, N. Malitsky, F. Pilat, R. Talman, C.G. Trahern. SXF (Standard eXchange Format):
definition, syntax, examples. RHIC/AP/155, August, 1998.

39
F. Schmidt. SixTrack, User’s Reference Manual. CERN SL/94-56 (AP).

40
M. Hayes and F. Schmidt. Run Environment for SixTrack. Physics Note 53 (unpublished) & LHC Project
Note 300.

41
F. Schmidt. SODD: A computer code to calculate detuning and distortion function terms in first and
second order. CERN SL/Note 99-009 (AP).

42
R.Talman and L.Schachinger. TEAPOT. A Thin Element Accelerator Program for Optics and Tracking.
SSC-52.

43
J.D. Bjorken and S.K. Mtingwa, Intrabeam Scattering, FERMILAB-Pub-82/47-THY, July 1982.

frs, May 01, 2003

320

http://www.cern.ch/Frank.Schmidt/frs_sign.html

	
	USER'S GUIDE

	
	Standard CERN Copyright Notice:

	
	Conventions

	
	Closed Orbit

	
	Global Reference System

	
	Local Reference Systems
	Reference System for Straight Beam Elements
	Reference System for Bending Magnets
	Elements which do not Change the Local Reference

	
	Drift Space

	
	Quadrupole

	
	Sextupole

	
	Octupole

	
	Solenoid

	
	CRAB Cavity

	
	BEAM: Set Beam Parameters

	
	RF Cavity

	
	ELSEPARATOR: Electrostatic Separator

	
	Closed Orbit Correctors

	
	Beam Position Monitors

	
	Bending Magnets

	
	Marker.

	
	Sign Conventions for Magnetic Fields

	
	Variables
	
	
	For each variable the physical units are listed in square brackets.

	Canonical Variables Describing Orbits
	Normalised Variables and other Derived Quantities
	Linear Lattice Functions (Optical Functions)
	Chromatic Functions
	Variables in the SUMM Table
	Variables in the TRACK Table

	
	Physical Units

	
	Command Format

	
	Statements
	Comments

	
	Identifiers or Labels

	
	String Attributes

	
	Real Attributes

	
	Selection Statements

	
	Range and Class Selection Format

	
	Sectormap output

	
	Variable Declarations

	
	Identifiers or Labels

	
	Command Attributes

	
	Name or String Attributes

	
	Logical Attributes

	
	Integer Attributes

	
	 Real Expressions
	 Operators in Arithmetic Expressions
	Arithmetic operators
	Ordinary functions
	random number generators
	table access functions
	Features as of Version 3_03_50

	 Operands in Arithmetic Expressions
	Literal constants
	Symbolic constants
	Parameter labels
	Element or command attributes

	Expressions and Random Values

	EOPTION: Set Error Options
	
	Program Flow Statements
	
	IF
	ELSEIF
	ELSE
	WHILE
	MACRO

	
	
	
	Real life example for IF statements, and MACRO usage
	Real life example of MACRO definitions

	
	Parameter Statements
	Relations between Variable Parameters
	VALUE: Output of Parameters

	
	Constraints

	
	Variable Names

	
	Regular Expressions

	
	Control Statements
	Program flow control
	General control
	Beam specification
	PLOT
	Sequence editing

	
	General Control Statements
	
	ASSIGN
	CALL
	COGUESS
	CREATE
	DELETE
	DUMPSEQU
	EXEC
	EXIT
	FILL
	HELP
	OPTION
	PRINT
	QUIT
	READTABLE
	READMYTABLE
	RESBEAM
	RETURN
	SAVE
	SAVEBETA
	SELECT
	SHOW
	STOP
	SYSTEM
	TABSTRING
	TITLE
	USE
	VALUE
	WRITE

	
	Set Statements
	1) Format
	2) Sequence

	
	RESBEAM: reset beam defaults

	
	Edit a Beam Line Sequence
	
	SEQEDIT
	EXTRACT
	FLATTEN
	INSTALL
	MOVE
	REMOVE
	CYCLE
	REFLECT
	REPLACE
	ENDEDIT

	
	Elements and Markers

	
	Element Input Format

	
	Dipedge Element

	
	MULTIPOLE: General Thin Multipole

	
	Transverse Kicker

	
	Collimators

	
	Coordinate Transformations
	
	YROTATION: Rotation About the Vertical Axis
	SROTATION: Rotation Around the Longitudinal Axis

	
	BEAMBEAM: Beam-beam Interaction

	MATRIX: Arbitrary Element
	Editing Element Definitions
	Element Classes
	
	Beam Line Sequences

	
	Beam Lines
	Simple Beam Lines
	Sub-lines
	Reflection and Repetition
	Replaceable Arguments
	Warning: Line Depreciation
	 Limits of Construction of Lines

	
	Defining aperture in MAD-X
	Defining tolerances in MAD-X
	APERTURE MODULE
	
	Aperture,

	Not simply connex beam pipes
	Trueprofile file syntax
	
	Layout of file:
	Example of file:

	Offsetelem file syntax
	
	Layout of file: --- FOR MADX VERSION 3.XX AND OLDER ONLY---
	Example of file:
	Layout of file: --- FOR MADX VERSION 4.XX ONWARDS : now TFS format ---

	Aperture command example

	
	SixTrack: Produce input files for tracking in SixTrack

	
	MAKETHIN: Slice a sequence into thin lenses

	
	DYNAP: Tunes, Tune Footprints, Smear and Lyapunov Exponent

	Fully Coupled Motion and Radiation
	EMIT: Equilibrium Emittances

	Error Definitions
	EALIGN: Define Misalignments
	Field Errors
	EPRINT: List Machine Imperfections
	ESAVE: Save Machine Imperfections and read back from file
	The Intra-Beam Scattering Module (IBS)
	Input of the beam parameters
	Type of particle
	The energy
	The number of particles
	Beam sizes - Emittances

	File Attribute
	Examples
	
	Matching Module

	
	Enter and Leave Matching Mode
	Initiating the Matching Module
	Further attributes of the TWISS statements are:
	Leave Matching Mode

	
	References

	
	Define Variable Parameter
	VARY: Define Variable Parameter

	
	Constraints
	CONSTRAINT: Simple Constraint
	User Defined Matching Constraints
	Matching Weights
	Default Matching Weights

	GLOBAL: Global Matching Constraints

	
	Matching Methods
	LMDIF: Fast Gradient Minimisation
	MIGRAD: Gradient Minimisation
	SIMPLEX: Simplex Minimisation
	JACOBIAN: Newton Minimisation

	
	Introduction
	Initiating the Matching Module with USE_MACRO
	VARY statements
	Macro definitions
	Examples

	
	Matching Examples
	Simple Periodic Cell
	Simple Periodic Cell
	Transfer line with initial conditions
	Global tune matching in a sequence of 5 periodic cells
	Global tune matching for the LHC
	Global chromaticity matching for the LHC
	Global chromaticity matching for both beams of the LHC
	IR8 insertion matching for beam1 of the LHC
	IR8 insertion matching for beam1 of the LHC with upper limits on the optics functions
	Simultaneous orbit matching at IP8 for beam1 and beam2 of the LHC
	IR8 beta squeeze for beam1 using JACOBIAN matching routine
	Mathching first and second order chromaticity of the LHC using USE_MACRO option.
	Mathching s position using VLENGTH flag.
	Mathching s position using USE_MACRO.

	Orbit Correction
	CORRECT: Orbit Correction
	Activate/Deactivate Correctors or Monitors
	
	CSAVE: Write orbit correctior settings to file
	SETCORR: Set orbit correctior settings

	COPTION: Set Orbit Correction Options
	
	PLOT
	
	PLOT
	SETPLOT
	RESPLOT

	
	SODD
	
	Subroutine detune (launched by the attribute detune)
	Subroutine distort1 (launched by the attribute distort1)
	Subroutine distort2 (launched by the attribute distort2)
	SODD

	GEOMETRIC LAYOUT
	Example : average LHC ring with CERN coordinates.

	
	SXF file input and output

	
	TFS File Format

	
	Descriptor Lines

	
	Twiss TFS file header

	
	Column Formats

	
	TOUSCHEK: Touschek Lifetime and Scattering Rates

	
	Twiss Module
	Twiss Parameters for a Period
	Initial Values from a Periodic Line
	Given Initial Values
	Tolerance
	SAVEBETA: Save Lattice Parameters

	PTC Set-up Parameters
	Overview of MAD-X Tracking Modules
	Thin-Lens Tracking Module (thintrack)
	Thick-Lens Tracking Module (PTC-TRACK Module)
	PTC_TRACKLINE
	PERFORMS A PARTICLE TRAJECTORY TRACKING WITH ACCELERATION USING PTC
	USER MANUAL
	SYNOPSIS
	Description
	Command parameters and switches

	PROGRAMMERS MANUAL

	PTC_SETSWITCH
	routine that sets the internal PTC switches
	USER MANUAL
	SYNOPSIS
	Description
	Command parameters and switches

	PROGRAMMERS MANUAL

	PTC_SetCavities
	f90 routine that adjusts cavities and sets appropriate reference momenta for a layout containing traveling wave cavities
	PROGRAMMERS MANUAL
	Description

	PTC_TWISS Module (Ripken Optics Parameters)
	PTC_NORMAL Module (Non-Linear Machine Parameters)
	MAD-X-PTC interface documentation - Auxiliaries
	
	Available documents

	PTC_KNOB
	
	USER MANUAL
	SYNOPSIS
	Description
	Example
	Command parameters and switches
	_

	PTC_SETKNOBVALUE
	
	USER MANUAL
	SYNOPSIS
	Description
	Example
	Command parameters and switches

	PTC_KNOB
	
	USER MANUAL
	SYNOPSIS
	Description
	Example
	Command parameters and switches
	_

	PTC_PRINTFRAMES
	
	USER MANUAL
	SYNOPSIS
	Description
	Example
	Command parameters and switches

	PTC_SELECT
	
	USER MANUAL
	SYNOPSIS
	Description
	Examples
	Command parameters and switches
	PROGRAMMERS MANUAL

	PTC_SELECT_MOMENT
	
	USER MANUAL
	SYNOPSIS
	Description
	Examples
	Command parameters and switches
	

	PTC_DUMPMAPS
	
	USER MANUAL
	SYNOPSIS
	Description
	Command parameters and switches

	PROGRAMMERS MANUAL

	PTC_EPLACEMENT
	
	USER MANUAL
	SYNOPSIS
	Description
	Example
	Command parameters and switches
	_

	PROGRAMMERS MANUAL

	Matching with PTC knobs
	
	USER MANUAL
	SYNOPSIS
	Description
	Example

	PTC_MOMENTS
	
	USER MANUAL
	SYNOPSIS
	Description
	Examples
	Command parameters and switches
	

	
	Known Differences to Other Programs
	Definitions
	Treatment of Energy Error in TWISS

	
	Index
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	w
	y

	
	Effect of the bv flag in MAD-X
	
	 When reversing the direction ("V") of a particle in a magnetic field ("B") while keeping its charge constant, the resulting force V * B changes sign. This is equivalent to flipping the field, but not the direction. For practical reasons the properties of

	
	MAD-X News
	MAD-X News
	First MAD-X LHC commissioning version 3.04: 09.07.2007
	All changes for each file:

	MAD-X production version 3.03: 04.05.2006
	All changes for each file:

	MAD-X version 3.02.14: 12.04.2006
	All changes for each file:

	MAD-X version 3.02.05: 22.03.2006
	All changes for each file:

	MAD-X version 3.02.01: 08.02.2006
	All changes for each file:

	MAD-X version 3.00.01: 07.09.2005
	Overview:
	All changes for each file:

	MAD-X version 2.13.09: 09.03.2005
	Overview:
	All changes for each file:

	MAD-X version 2.13: Update-I WH 09.12.2004
	MAD-X version 2.13: FS 23.11.2004
	MAD-X version 2.12: FS 29.09.2004
	MAD-X version 2.11: FS 02.06.2004
	MAD-X version 2.10: FS 27.03.2004
	MAD-X version 2.00: FS 24.11.2003
	MAD-X version 1.12: FS 04.07.2003
	MAD-X version 1.11: FS 26.04.2003
	MAD-X version 1.10: HG & FS 20.01.2003
	MAD-X version 1.09: FS 09.12.2002
	MAD-X version 1.08: FS 18.11.2002
	MAD-X version 1.06: FS 16.10.2002
	MAD-X version 1.05: HG 25.9.2002
	New sample job to create footprints for LHC: HG 18.9.2002

	RPLOT
	Introduction
	
	Download
	Installation
	Examples
	SYNOPSIS
	PROGRAMMERS MANUAL

	
	References

