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Chapter 1

Conventions

The accelerator and/or beam line to be studied is described as a sequence of beam elements placed sequentially along
a reference or design orbit. The global reference orbit, also known as the design orbit (see Figure 1.2) is the path of a
charged particle having the central design momentum of the accelerator through idealised magnets with no fringe fields.

1.1 Design or Reference Orbit

The reference orbit consists of a series of straight line segments and circular arcs. It is defined under the assumption that
all elements are perfectly aligned along the design orbit. The accompanying tripod of the reference orbit spans a local
curvilinear right handed coordinate system (x, y, s). The local s-axis is the tangent to the reference orbit. The two other
axes are perpendicular to the reference orbit and are labelled x (in the bend plane) and y (perpendicular to the bend plane).

1.2 Closed Orbit

Due to various errors like misalignment errors, field errors, fringe fields etc., the closed orbit does not coincide with the
design orbit. It also changes with the momentum error. The closed orbit is described with respect to the reference orbit,
using the local reference system (see Figure 1.1). It is evaluated including any nonlinear effects.

✻y

�x

✐

ρ

✻

ρ

✠

centre of
curvature

✲

❘

actual
orbit

✿
s

�
reference

orbit

Figure 1.1: Local Reference System
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MAD computes the betatron and synchrotron oscillations with respect to the closed orbit. Results are given in the
local (x, y, s)-system defined by the reference orbit.

1.3 Global Reference System

The global reference orbit (see Figure 1.2) of the accelerator is uniquely defined by the sequence of physical elements.
The local reference system (x, y, s) may thus be referred to a global Cartesian coordinate system (X,Y, Z). The posi-
tions between beam elements are numbered 0, . . . , i, . . . n. The local reference system (x i, yi, si) at position i, i.e. the
displacement and direction of the reference orbit with respect to the system (X,Y, Z) are defined by three displacements
(Xi, Yi, Zi) and three angles (Θi,Φi,Ψi).

❥ Z

✶
X

✻Y ✍
x


y

✯
s

projection of s
onto (Z,X)-plane

✻

�

intersection of
(x, y) and (Z,X) planes

reference
orbit

�
ψroll angle

❑φ
pitch angle

✻θ

azimuth

Figure 1.2: Global Reference System

The above quantities are defined more precisely as follows:

X Displacement of the local origin inX-direction.

Y Displacement of the local origin in Y -direction.

Z Displacement of the local origin in Z-direction.

THETA Angle of rotation (azimuth) about the global Y -axis, between the global Z-axis and the projection of the refer-
ence orbit onto the (Z,X)-plane. A positive angle THETA forms a right-hand screw with the Y -axis.

PHI Pitch angle, i.e. the angle between the reference orbit and its projection onto the (Z,X)-plane. A positive angle
PHI correspond to Y increasing with s. If only horizontal bends are present, the reference orbit remains in the (Z ,
X)-plane. In this case PHI is always zero.

PSI Roll angle about the local s-axis, i.e. the angle between the intersection (x, y)- and (Z,X)-planes and the local
x-axis. A positive angle PSI forms a right-hand screw with the s-axis.

The angles (THETA, PHI, PSI) are not the Euler angles. The reference orbit starts at the origin and points by default
in the direction of the positive Z-axis. The initial local axes (x, y, s) coincide with the global axes (X,Y, Z) in this order.
The six quantities (X0, Y0, Z0,Θ0,Φ0,Ψ0) thus all have zero initial values by default. The program user may however
specify different initial conditions.
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Internally the displacement is described by a vector V and the orientation by a unitary matrixW . The column vectors
ofW are the unit vectors spanning the local coordinate axes in the order (x, y, s). V andW have the values:

V =


 X
Y
Z


 , W = ΘΦΨ

where

Θ =


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 , Φ =


 1 0 0

0 cosφ sinφ
0 − sinφ cosφ


 , Ψ =


 cosψ − sinψ 0

sinψ cosψ 0
0 0 1


 .

The reference orbit should be closed and it should not be twisted. This means that the displacement of the local
reference system must be periodic with the revolution frequency of the accelerator, while the position angles must be
periodic (mod 2π) with the revolution frequency. If PSI is not periodic (mod 2π), coupling effects are introduced.
When advancing through a beam element, MAD computes V i andWi by the recurrence relations

Vi = Wi−1Ri + Vi−1, Wi = wi−1Si.

The vector Ri is the displacement and the matrix Si is the rotation of the local reference system at the exit of the
element i with respect to the entrance of the same element. The values of R i and Si are listed below for each physical
element type.

1.4 Local Reference Systems

1.4.1 Reference System for Straight Beam Elements

In straight elements the local reference system (see Figure 1.3) is simply translated by the length of the element along the
local s-axis. This is true for

• Drift spaces (see Section 4.6)

• Quadrupoles (see Section 4.8)

• Sextupoles (see Section 4.9)

• Octupoles (see Section 4.10)

• Multipoles (see Section 4.10)

• Solenoids (see Section 4.12)

• RF cavities (see Section 4.14)

• Electrostatic separators (see Section 4.15)

• Closed orbit correctors (see Section 4.13)

• Beam position monitors (see Section 4.16)

The correspondingR, S are

R =


 0

0
L


 , S =


 1 0 0

0 1 0
0 0 1


 .

A rotation of the element about the S-axis has no effect on R and S, since the rotations of the reference system before
and after the element cancel.
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y1 y2

✲
s

✻x1 ✻x2

✲✛ L

Figure 1.3: Reference System for Straight Beam Elements

1.4.2 Reference System for Bending Magnets

Both rectangular (see Figure 1.4) and sector (see Figure 1.5) bending magnets have a curved reference orbit. For both
types of magnets

R =


 ρ(cosα− 1)

0
ρ sinα


 , S =


 cosα 0 − sinα

0 1 0
sinα 0 cosα


 ,

where α is the bend angle. A positive bend angle represents a bend to the right, i.e. towards negative x values. For sector
bending magnets, the bend radius is given by ρ, and for rectangular bending magnets it has the value

ρ = L/2 sin(α/2).

If the magnet is rotated about the s-axis by an angle psi, R and S are transformed by

R∗ = TR, S∗ = TST−1.

where T is the orthogonal rotation matrix

T =


 cosψ − sinψ 0

sinψ cosψ 0
0 0 1


 .

The special value ψ = π/2 represents a bend down.

y1 y2
✶

s1
�
s2�

ρ

�
x1

✍

ρ

✍
x2

α

✻x

✛ ✲L


e1

✮
e2

Figure 1.4: Reference System for a Rectangular Bending Magnet; the signs of pole-face rotations are positive as shown.
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Figure 1.5: Reference System for a Sector Bending Magnet; the signs of pole-face rotations are positive as shown.

1.4.3 Rotation of the Reference System

For a rotation of the reference system by an angle ψ about the beam (s) axis (see Figure 1.6):

S =


 cosψ − sinψ 0

sinψ cosψ 0
0 0 1


 ,

while for a rotation of the reference system by an angle θ about the vertical (y) axis (see Figure 1.7):

S =


 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 .

In both cases the displacement R is zero.

s
✲
x1

✻

y1

✿
x2

❖y2

❖ψ

beam

Figure 1.6: Reference System for a Rotation Around the s-Axis
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✻x1

�
s2

✗ x2

✎θ
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beam

Figure 1.7: Reference System for a Rotation Around the y-Axis

1.4.4 Elements which do not Change the Local Reference

The following elements do not affect the reference orbit and are ignored for geometry calculations:

• Beam-beam interactions (see Section 4.19)

• Marker (see Section 4.5)

1.5 Sign Conventions for Magnetic Fields

The MAD program uses the following Taylor expansion for the normal and skewed field components respectively in the
mid-plane y=0, described in [1]:

By(x, 0) =
∞∑

k=0

Bknx
k

k!
, Bx(x, 0) =

∞∑
k=0

Bksx
k

k!
.

Note the factorial in the denominator. The field coefficients have the following meaning:

B0n Normal dipole field component. The component is positive, if the field points in positive y direction. A positive field
bends a positively charged particle travelling in positive s-direction to the right.

B0s Skew dipole field component. The component is positive, if the field points in negative y direction. A positive field
bends a positively charged particle travelling in positive s-direction down.

B1n Normal quadrupole field component B1n = ∂By/∂x. The component is positive, if By is positive on the positive
x-axis. A positive value corresponds to horizontal focussing of a positively charged particle.

B1s Skew quadrupole field component B1s = ∂Bx/∂x. The component is positive, if Bx is negative on the positive
x-axis.

B2n Normal sextupole field componentB2n = ∂2By/∂x
2. The component is positive, if By is positive on the x-axis.

B2s Skew sextupole field componentB2s = ∂2Bx/∂x
2. The component is negative, if Bx is positive on the x-axis.

B3n Normal octupole field component B3n = ∂3By/∂x
3. The component is positive, if By is positive on the positive

x-axis.

B3s Skew octupole field componentB3s = ∂3Bx/∂x
3. The component is negative, if Bx is positive on the x-axis.
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All derivatives are taken on the x-axis. Using this expansion and the curvature h of the reference orbit, the longitudinal
component of the vector potential for a magnet with mid-plane symmetry is to order 4:

As = + B0n

(
x− hx2

2(1+hx)

)
+ B1n

(
1
2 (x2 − y2) − h

6x
3 + h2

24 (4x4 − y4) + . . .
)

+ B2n

(
1
6 (x3 − 3xy2) − h

24 (x4 − y4) + . . .
)

+ B3n

(
1
24 (x4 − 6x2y2 + y4) + . . .

)
+ . . .

Taking curlA in curvilinear coordinates, the field components can be computed as

Bx(x, y) = + B1n

(
y + h2

6 y
3 + . . .

)

+ B2n

(
xy − h3

6 y
3 + . . .

)
+ B3n

(
1
6 (3x2y − y3) + . . .

)
+ . . .

By(x, y) = + B0n + B1n

(
x− h

2 y
2 + h2

2 xy
2 + . . .

)
+ B2n

(
1
2 (x2 − y2) − h

2xy
2 + . . .

)
+ B3n

(
1
6 (x3 − 3xy2) + . . .

)
+ . . .

One can easily verify that both curlB and divB are zero to the order of the B 3 term. Introducing the magnetic rigidity
Bρ, the multipole coefficients are computed as

Kkn = eBkn/p0 = Bkn/Bρ, Kks = eBks/p0 = Bks/Bρ.

Note that the Kk have the same signas the corresponding field components Bk. The signs will be changed due to the
sign of particle charges and the direction of travel of the beam.

1.6 Variables

For each variable the physical units are listed in square brackets.

1.6.1 Canonical Variables Describing Orbits

As from Version 9.01, MAD uses the following canonical variables to describe the motion of particles:

X Horizontal position x of the (closed) orbit, referred to the ideal orbit [m].

PX Horizontal canonical momentum of the (closed) orbit referred to the ideal orbit, divided by the reference momentum:
PX = px/p0.

Y Vertical position y of the (closed) orbit, referred to the ideal orbit [m].

PY Vertical canonical momentum of the (closed) orbit referred to the ideal orbit, divided by the reference momentum:
PY = py/p0.

T The negative time difference, multiplied by the instantaneous velocity of the particle [m]: T = −vδ(t). A positive T
means that the particle arrives ahead of the reference particle. T describes the deviation of the particle from the
orbit of a fictitious reference particle having the constant reference momentump s and the reference velocityvs.
vs defines the revolution frequency. The velocities have the values

v = cp/
√
p2 +m2c2, vs = cps/

√
p2s +m2c2,

where c is the velocity of light,m is the particle rest mass, and p is the instantaneous momentum of the particle.

PT Momentum error, divided by the reference momentum: PT = δp/p s. This value is only non-zero when synchrotron
motion is present. It describes the deviation of the particle from the orbit of a particle with the reference momentum
ps.

The independent variable is:

S Arc length s along the reference orbit, [m].

The longitudinal variables have been changed with respect to previous versions of MAD, so as to be in line with the
CLASSIC project. In the limit of fully relativistic particles (γ � 1, v = c, pc = E), the variables T, PT used here agree
with the longitudinal variables used in [2]. This means that T becomes the negative path length difference, while PT is
the fractional momentum error. The reference momentum must be constant in order to keep the system canonical.
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1.6.2 Normalised Variables and other Derived Quantities

XN The normalised horizontal displacement [m1/2]: XN = xn = �(ET
1 SZ).

PXN The normalised horizontal transverse momentum [m 1/2]: PXN = pxn = �(ET
1 SZ).

WX The horizontal Courant-Snyder invariant [m]: WX =
√
x2

n + p2xn.

PHIX The horizontal phase: PHIX = − arctan(pxn/xn)/2π.

YN The normalised vertical displacement [m1/2]: YN = yn = �(ET
2 SZ).

PYN The normalised vertical transverse momentum [m1/2]: PYN = pyn = �(ET
2 SZ).

WY The vertical Courant-Snyder invariant [m]: WY =
√
y2n + p2yn.

PHIY The vertical phase: PHIY = − arctan(pyn/yn)/2π.

TN The normalised longitudinal displacement [m1/2]: TN = tn = �(ET
3 SZ).

PTN The normalised longitudinal transverse momentum [m 1/2]: PTN = ptn = Im(ET
3 SZ).

WT The longitudinal invariant [m]: WT =
√
t2n + p2tn.

PHIT The longitudinal phase: PHIT = + arctan(ptn/tn)/2π.

in the above formulas Z is the phase space vector Z = (x, px, y, py, t, pt)T . The matrix S is the “symplectic unit matrix”

S =




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0



,

and the vectors Ei are the three complex eigenvectors. The superscript T denotes the transpose of a vector or matrix.

1.7 Physical Units

Throughout the computations MAD uses international units (see Table 1.1), as defined by SI (Système International).
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quantity dimension
Length m (metres)
Angle rad (radians)
Quadrupole coefficient m−2

Multipole coefficient, 2n poles m−n

Electric voltage MV (Megavolts)
Electric field strength MV/m
Frequency MHz (Megahertz)
Phase angles 2π
Particle energy GeV
Particle mass GeV/c2

Particle momentum GeV/c
Beam current A (Amperes)
Particle charge e (elementary charges)
Impedances MΩ (Megohms)
Emittances π m mrad
RF power MW (Megawatts)
Higher mode loss factor V/pc

Table 1.1: Physical Units
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Chapter 2

Command Format

2.1 Statements and Comments

Input to MAD is free format, and the line length is not limited. During reading, input lines are normally printed on the
echo file, but this feature can be turned off for long input files. The input is broken up into tokens (words, numbers,
delimiters etc.), which form a sequence of commands, also known as statements. Each statement must be terminated by a
semicolon (;), and long statements can be continued on any number of input lines. White space, like blank lines, spaces,
tabs, and newlines are ignored between tokens. Comments can be introduced with two slashes (//) and any characters
following the slashes on the same line are ignored.

The C convention for comments (/* ... */) is also accepted. The comment delimiters /* and */ can be nested;
thus whole section of input can be “commented out”.

In the following descriptions, words in lower case stand for syntactic units which are to be replaced by actual
text. UPPER CASE is used for keywords or names. These must be entered as shown. Ellipses (...) are used to indicate
repetition.

The general format for a command is

keyword,attribute,...,attribute;
label:keyword,attribute,...,attribute;

It has three parts:

1. The label is required for a definition statement. Its must be an identifier (see Section 2.2) and gives a name to
the stored command.

2. The keyword identifies the action desired. It must be an identifier (see Section 2.2).

3. Each attribute is entered in one of the forms

attribute-name
attribute-name=attribute-value
attribute-name:=attribute-value

and serves to define data for the command, where:

• The attribute-name selects the attribute, it must be an identifier (see Section 2.2).

• The attribute-value gives it a value (see Section 2.3). When the attribute value is a constant or an
expression preceded by the delimiter = it is evaluated immediately and the result is assigned to the attribute as
a constant. When the attribute value is an expression preceded by the delimiter := the expression is retained
and re-evaluated whenever one of its operands changes.

Each attribute has a fixed attribute type (see Section 2.3). The attribute-value can only be left out for logical
attributes, this implies a true value.

When a command has a label, MAD keeps the command in memory. This allows repeated execution of the same
command by entering its label only:
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label;

or to re-execute the command with modified attributes:

label,attribute,...,attribute;

If the label of such a command appears together with new attributes, MAD makes a copy of the stored command, replaces
the attributes entered, and then executes the copy:

QF:QUADRUPOLE,L=1,K1=0.01; // first definition of QF
QF,L=2; // redefinition of QF, new length

MATCH;
...
LMD:LMDIF,CALLS=10; // first execution of LMD
LMD; // re-execute LMD with the same attributes
LMD,CALLS=100,TOLERANCE=1E-5; // re-execute LMD with new attributes
ENDMATCH;

2.2 Identifiers or Labels

An identifier refers to a keyword, an element, a beam line, a variable, an array, etc.
A label begins with a letter, followed by an arbitrary number of letters, digits, periods (.), underscores ( ). Other

special characters can be used in a label, but the label must then be enclosed in single or double quotes. It makes no
difference which type of quotes is used, as long as the same are used at either end. The preferred form is double quotes.
The use of non-numeric characters is however strongly discouraged, since it makes it difficult to subsequently process a
MAD output with another program.

When a name is not quoted, it is converted to upper case; the resulting name must be unique. An identifier can also be
generated from a string expression (see Section 2.4). Abbreviations are no longer allowed as from Version 9.01.

2.3 Command Attribute Types

An object attribute is referred to by the syntax

object-name->attribute-name

If the attribute is an array (see Section 2.14), one of its components is found by the syntax

object-name->attribute-name[index]

The following types of command attributes are available in MAD-9:

• String (see Section 2.4),

• Logical (see Section 2.5),

• Real expression (see Section 2.6),

• Deferred expression (see Section 2.8.5),

• Place (see Section 2.9.1),

• Range (see Section 2.9.2),

• Constraint (see Section 2.10),

• Variable Reference (see Section 2.11)

• Regular expression (see Section 2.12),

• Token list (see Section 2.13).

• Array (see Section 2.14) of
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– Logical (see Section 2.14.1),

– Real (see Section 2.14.2),

– String (see Section 2.14.3),

– Token lists (see Section 2.14.4),

See also:

• Operators (see Table 2.4),

• Functions (see Table 2.5),

• Array functions (see Table 2.6),

• Real functions of arrays (see Table 2.8),

• Operand (see Section 2.8),

• Random generators (see Section 2.8.5).

2.4 String Attributes

A string attribute makes alphanumeric information available, e.g. a title, file name, element class name, or an option. It
can contain any characters, enclosed in single (’) or double (") quotes. However, if it contains a quote, this character
must be doubled. Strings can be concatenated using the & operator (see Table 2.1). An operand in a string can also use
the function STRING (see Table 2.2). String values can occur in string arrays (see Section 2.14).

Table 2.1: String Operator in MAD-9

Operator Meaning result type operand types
X & Y concatenate the strings X and Y. String concatenations are

always evaluated immediately when read.
string string,string

Table 2.2: String Function in MAD-9

Function Meaning result type argument type
STRING(X) return string representation of the value of the numeric ex-

pression X
string real

Examples:

TITLE,"This is a title for the program run ""test""";
CALL,FILE="save";

X=1;
TWISS,LINE=LEP&STRING(X+1);

The second example converts the value of the expression “X+1” to a string and appends it to “LEP”, giving the string
“LEP2”.

2.5 Logical Expressions

Many commands in MAD require the setting of logical values (flags) to represent the on/off state of an option. A logical
value is represented by one of the values TRUE or FALSE, or by a logical expression. A logical expression can occur in
logical arrays (see Section 2.14.1).

A logical expression has the same format and operator precedence as a logical expression in C. It is built from logical
operators (see Table 2.3) and logical operands:
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relation ::= "TRUE" |
"FALSE" |
real-expr rel-operator real-expr

rel-operator ::= "==" | "!=" | "<" | ">" | ">=" | "<="

and-expr ::= relation | and-expr "&&" relation

logical-expr ::= and-expr | logical-expr "||" and-expr

Table 2.3: Logical Operators in MAD-9

Operator Meaning result type operand type
X < Y true, if X is less than Y logical real,real
X <= Y true, if X is not greater than Y logical real,real
X > Y true, if X is greater than Y logical real,real
X >= Y true, if X is not less than Y logical real,real
X == Y true, if X is equal to Y logical real,real
X ! = Y true, if X is not equal to Y logical real,real
X && Y true, if both X and Y are true logical logical,logical
X || Y true, if at least one of X and Y is true logical logical,logical

Example:

OPTION,ECHO=TRUE; // output echo is desired

When a logical attribute is not entered, its default value is always false. When only its name is entered, the value is set
to TRUE:

OPTION,ECHO; // same as above

Example of a logical expression:

X>10 && Y<20 || Z==15

2.6 Real Expressions

To facilitate the definition of interdependent quantities, any real value can be entered as an arithmetic expression. When
a value used in an expression is redefined by the user or changed in a matching process, the expression is re-evaluated.
Expression definitions may be entered in any order. MAD evaluates them in the correct order before it performs any
computation. At evaluation time all operands used must have values assigned. A real expression can occur in real arrays
(see Section 2.14.2).

A real expression is built from operators (see Table 2.4) and operands (see Section 2.8):

real-ref ::= real-variable |
real-array "[" index "]" |
object "->" real-attribute |
object "->" real-array-attribute "[" index "]" |

table-ref ::= table "@" place "->" column-name

primary ::= literal-constant |
symbolic-constant |
"#" |
real-ref |
table-ref |
function-name "(" arguments ")" |
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(real-expression)

factor ::= primary |
factor "ˆ" primary

term ::= factor |
term "*" factor |
term "/" factor

real-expr ::= term |
"+" term |
"-" term |
real-expr "+" term |
real-expr "-" term |

It may contain functions (see Table 2.5), Parentheses indicate operator precedence if required. Constant sub-expressions
are evaluated immediately, and the result is stored as a constant.

2.7 Operators

An expression can be formed using operators (see Table 2.4) and functions (see Table 2.5) acting on operands (see Sec-
tion 2.8).

Table 2.4: Real Operators in MAD-9

Operator Meaning result type operand type(s)
Real operators with one operand

+ X unary plus, returns X real real
- X unary minus, returns the negative of X real real

Real operators with two operands
X + Y add X to Y real real,real
X - Y subtract Y from X real real,real
X * Y multiply X by Y real real,real
X / Y divide X by Y real real,real
X ˆ Y power, return X raised to the power Y (Y > 0) real real,real

Care must be used when an ordinary expression contains a random generator. It may be re-evaluated at unpredictable
times, generating a new value. However, the use of a random generator in an assignment expression is safe. Examples:

D:DRIFT,L=0.01*RANF(); // a drift space with random length,
// may change during execution.

P=EVAL(0.001*TGAUSS(X)); // Evaluated once and stored as a constant.

2.8 Operands in Expressions

A real expression may contain the operands listed in the follolwing subsections.

2.8.1 Literal Constants

Numerical values are entered like FORTRAN constants. Real values are accepted in INTEGER or REAL format. The use
of a decimal exponent, marked by the letter D or E, is permitted.
Examples:

1, 10.35, 5E3, 314.1592E-2
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Table 2.5: Real Functions in MAD-9

Function Meaning result type argument type(s)
Real functions with no arguments

RANF() random number, uniform distribution in [0,1) real -
GAUSS() random number, Gaussian distribution with σ = 1 real -
USER0() random number, user-defined distribution real -
SI() arc length from start of ring to the entry of the current ele-

ment. This function is only available in the EALIGN com-
mand (see Section 10.3)

real -

SC() arc length from start of ring to the centre of the current ele-
ment. This function is only available in the EALIGN com-
mand (see Section 10.3)

real -

SO() arc length from start of ring to the exit of current the ele-
ment. This function is only available in the EALIGN com-
mand (see Section 10.3)

real -

Real functions with one argument
TRUNC(X) truncate X towards zero (discard fractional part) real real
ROUND(X) round X to nearest integer real real
FLOOR(X) return largest integer not greater than X real real
CEIL(X) return smallest integer not less than X real real
SIGN(X) return sign of X (+1 for X positive, -1 for X negative, 0 for X

zero)
real real

SQRT(X) return square root of X real real
LOG(X) return natural logarithm of X real real
EXP(X) return exponential to the base e of X real real
SIN(X) return trigonometric sine of X real real
COS(X) return trigonometric cosine of X real real
ABS(X) return absolute value of X real real
TAN(X) return trigonometric tangent of X real real
ASIN(X) return inverse trigonometric sine of X real real
ACOS(X) return inverse trigonometric cosine of X real real
ATAN(X) return inverse trigonometric tangent of X real real
TGAUSS(X) random number, Gaussian distribution with σ=1, truncated

at X
real real

USER1(X) random number, user-defined distribution with one parame-
ter

real real

EVAL(X) evaluate the argument immediately and transmit it as a con-
stant

real real

Real functions with two arguments
ATAN2(X,Y) return inverse trigonometric tangent of Y/X real real,real
MAX(X,Y) return the larger of X, Y real real,real
MIN(X,Y) return the smaller of X, Y real real,real
MOD(X,Y) return the largest value less than Y which differs from X by a

multiple of Y
real real,real

USER2(X,Y) random number, user-defined distribution with two parame-
ters

real real,real

2.8.2 Symbolic constants

MAD recognises a few build-in built-in mathematical and physical constants (see Table 2.7). Their names must not be
used for user-defined labels. Additional symbolic constants may be defined (see Section 3.4.2) to simplify their repeated
use in statements and expressions.
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Table 2.6: Real Functions of Arrays in MAD-9

Function Meaning result type operand type
VMAX(X,Y) return largest array component real real array
VMIN(X,Y) return smallest array component real real array
VRMS(X,Y) return rms value of an array real real array
VABSMAX(X,Y) return absolute largest array component real real array

Table 2.7: Predefined Symbolic Constants

MAD name Mathematical symbol Value Unit
PI π 3.1415926535898 1
TWOPI 2π 6.2831853071796 1
DEGRAD 180/π 57.295779513082 deg/rad
RADDEG π/180 .017453292519943 rad/deg
E e 2.7182818284590 1
EMASS m e .51099906e-3 GeV
PMASS m p .93827231 GeV
CLIGHT c 299792458 m/s

2.8.3 Variable labels

Often a set of numerical values depends on a common variable parameter. Such a variable must be defined as a global
variable (see Section 3.4.1) defined by one of

X=expression;
X:=expression;
VECTOR X=vector-expression;
VECTOR X:=vector-expression;

When such a variable is used in an expression, MAD uses the current value of the variable. When the value is a constant
or an expression preceded by the delimiter = it is evaluated immediately and the result is assigned to the variable as
a constant. When the value is an expression preceded by the delimiter := the expression is retained and re-evaluated
whenever one of its operands changes. Example:

L=1.0;
X:=L;
D1:DRIFT,L:=X;
D2:DRIFT,L:=2.0-X;

When the value of X is changed, the lengths of the drift spaces are recalculated as X and 2-X respectively.

2.8.4 Element or command attributes

In arithmetic expressions the attributes of physical elements or commands can occur as operands. They are named respec-
tively by

element-name->attribute-name
command-name->attribute-name

If they are arrays, they are denoted by

element-name->attribute-name[index]
command-name->attribute-name[index]

Values are assigned to attributes in element definitions or commands.
Example:
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D1:DRIFT,L=1.0;
D2:DRIFT,L=2.0-D1->L;

D1->L refers to the length L of the drift space D1.

2.8.5 Deferred Expressions and Random Values

Definition of random machine imperfections requires evaluation of expressions containing random functions. These are
not evaluated like other expressions before a command begins execution, but sampled as required from the distributions
indicated when errors are generated. Such an expression is known as a deferred expression. Its value cannot occur as an
operand in another expression.
Example:

ERROR:EALIGN,CLASS=QUADRUPOLE,DX=SIGMA*GAUSS();

All elements in range are assigned independent random displacements sampled from a Gaussian distribution with standard
deviation SIGMA. The quantity ERROR->DX must not occur as an operand in another expression.

2.8.6 Table References

Values can be extracted from a table with the syntax

table-name "@" place "->" column-name

Here table-name denotes a table (see Section 7), place denotes a table row (see Section 2.9.1), and column-name
denotes the name of a column in the table.
Example:

TWISS@#E->BETX

denotes the horizontal beta function at the end of table TWISS.

2.9 Element Selection

Many MAD commands allow for the possibility to process or display a subset of the elements occurring in a beam line or
sequence.

2.9.1 Element Selection

A place denotes a single element, or the position following that element. It can be specified by one of the choices

object-name[index] The name verb’object-name’ is the name of an element, line or sequence, and the integer index is
its occurrence count in the beam line. If the element is unique, [index] can be omitted.

#S denotes the position before the first physical element in the full beam line. This position can also be written #0.

#E denotes the position after the last physical element in the full beam line.

Either form may be qualified by one or more beam line names, as described by the formal syntax:

place ::= element-name |
element-name "[" integer "]" |
"#S" |
"#E" |
line-name "::" place

An omitted index defaults to one. Examples: assume the following definitions:

M: MARKER;
S: LINE=(C,M,D);
L: LINE=(A,M,B,2*S,A,M,B);

SURVEY,LINE=L

23



The line L is equivalent to the sequence of elements

A,M,B,C,M,D,C,M,D,A,M,B

Some possible place definitions are:

C[1] The first occurrence of element C.

#S The beginning of the line L.

M[2] The second marker M at top level of line L, i. e. the marker between second A and the second B.

#E The end of line L

S[1]::M[1] The marker M nested in the first occurrence of S.

2.9.2 Range Selection

A range in a beam line (see Section 5.1) is selected by the following syntax:

range ::= place |
place "/" place

This denotes the range of elements from the firstplace to the second place. Both positions are included. A few special
cases are worth noting:

• When place1 refers to a LINE (see Section 5.1). the range starts at the beginningof this line.

• When place2 refers to a LINE (see Section 5.1). the range ends at the endingof this line.

• When both place specifications refer to the same object, then the second can be omitted. In this case, and if
place refers to a LINE (see Section 5.1) the range contains the whole of the line.

Examples: Assume the following definitions:

M: MARKER;
S: LINE=(C,M,D);
L: LINE=(A,M,B,2*S,A,M,B);

The line L is equivalent to the sequence of elements

A,M,B,C,M,D,C,M,D,A,M,B

Examples for range selections:

#S/#E The full range or L.

A[1]/A[2] A[1] through A[2], both included.

S::M/S[2]::M From the marker M nested in the first occurrence of S, to the marker M nested in the second occurrence of
S.

S[1]/S[2] Entrance of first occurrence of S through exit of second occurrence of S.

2.10 Constraints

In matching it is desired to specify equality constraints, as well as lower and upper limits for a quantity. MAD accepts the
following form of constraints:

constraint ::= array-expr constraint-operator array-expr

constraint-operator ::= "==" | "<" | ">"
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2.11 Variable Names

A variable name can have one of the formats:

variable name ::= real variable |
object"->"real attribute

The first format refers to the value of the global variable (see Section 3.4.1), the second format refers to a named
attribute of the named object. object can refer to an element or a command

2.12 Regular Expressions

Some commands allow selection of items via a regular-expression. Such a pattern string must be enclosed in
single or double quotes; and the case of letters is significant. The meaning of special characters follows the standard
UNIX usage: utility:

. Stands for a single arbitrary character,

[letter...letter] Stands for a single character occurring in the bracketed string, Example: “[abc]” denotes the choice of
one of a,b,c.

[character-character] Stands for a single character from a range of characters, Example: “[a-zA-Z]” denotes the
choice of any letter.

* Allows zero or more repetitions of the preceding item, Example: “[A-Z]*” denotes a string of zero or more upper
case letters.

\character Removes the special meaning of character, Example: “\*” denotes a literal asterisk.

All other characters stand for themselves. The pattern

"[A-Za-z][A-Za-z0-9_’]*"

illustrates all possible unquoted identifier formats (see Section 2.2). Since identifiers are converted to lower case, after
reading they will match the pattern

"[a-z][a-z0-9_’]*"

Examples for pattern use:

SELECT,PATTERN="D.."
SAVE,PATTERN="K.*QD.*\.R1"

The first command selects all elements whose names have exactly three characters and begin with the letter D. The second
command saves definitions beginning with the letter K, containing the string QD, and ending with the string .R1. The two
occurrences of .* each stand for an arbitrary number (including zero) of any character, and the occurrence \. stands for
a literal period.

2.13 Token List

In some special commands LIST (see Section 7.9) an attribute cannot be parsed immediately, since some information
may not yet be available during parsing. Such an attribute is entered as a “token list”, and it is parsed again when the
information becomes available. Token lists can occur in token list arrays (see Section 2.14.4).
Example:

LIST,COLUMN={X:12:6,Y:12:6};

where X:12:6 and Y:12:6 are two token lists, and {X:12:6,Y:12:6} is a token list array.
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2.14 Arrays

An attribute array is a set of values of the same attribute type (see Section 2.3). Normally an array is entered as a
list in braces:

{value,...,value}

The list length is only limited by the available storage. If the array has only one value, the braces () can be omitted:

value

2.14.1 Logical Arrays

For the time being, logical arrays can only be given as a list. The formal syntax is:

logical-array ::= "{" logical-list "}"

logical-list ::= logical-expr |
logical-list "," logical-expr

Example:

{true,true,a==b,false,x>y && y>z,true,false}

2.14.2 Real Arrays

Real arrays have the following syntax:

array-ref ::= array-variable |
object "->" array-attribute |

table-ref ::= "ROW" "(" table "," place ")" |
"ROW" "(" table "," place "," column-list ")"
"COLUMN" "(" table "," column ")" |
"COLUMN" "(" table "," column "," range ")"

columns ::= column |
"{" column-list "}"

column-list ::= column |
column-list "," column

column ::= string

real-list ::= real-expr |
real-list "," real-expr

index-select ::= integer |
integer "," integer |
integer "," integer "," integer

array-primary ::= "{" real-list "}" |
"TABLE" "(" index-select "," real-expr ")" |
array-ref |
table-ref |
array-function-name "(" arguments ")" |
(array-expression)

array-factor ::= array-primary |
array-factor "ˆ" array-primary
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array-term ::= array-factor |
array-term "*" array-factor |
array-term "/" array-factor

array-expr ::= array-term |
"+" array-term |
"-" array-term |
array-expr "+" array-term |
array-expr "-" array-term |

Table 2.8: Real Array Functions in MAD-9 (acting component-wise)

Function Meaning result type argument type
TRUNC(X) truncate X towards zero (discard fractional part) real array real array
ROUND(X) round X to nearest integer real array real array
FLOOR(X) return largest integer not greater than X real array real array
CEIL(X) return smallest integer not less than X real array real array
SIGN(X) return sign of X (+1 for X positive, -1 for X negative, 0 for X

zero)
real array real array

SQRT(X) return square root of X real array real array
LOG(X) return natural logarithm of X real array real array
EXP(X) return exponential to the base e of X real array real array
SIN(X) return trigonometric sine of X real array real array
COS(X) return trigonometric cosine of X real array real array
ABS(X) return absolute value of X real array real array
TAN(X) return trigonometric tangent of X real array real array
ASIN(X) return inverse trigonometric sine of X real array real array
ACOS(X) return inverse trigonometric cosine of X real array real array
ATAN(X) return inverse trigonometric tangent of X real array real array
TGAUSS(X) random number, Gaussian distribution with σ=1, truncated

at X
real array real array

USER1(X) random number, user-defined distribution with one parame-
ter

real array real array

EVAL(X) evaluate the argument immediately and transmit it as a con-
stant

real array real array

Example:

{a,a+b,a+2*b}

There are also three functions allowing the generation of real arrays:

TABLE Generate an array of expressions:

TABLE(n2,expression) // implies TABLE(1:n2:1,expression)
TABLE(n1:n2,expression) // implies TABLE(n1:n2:1,expression)
TABLE(n1:n2:n3,expression)

These expressions all generate an array with n2 components. The components selected by n1:n2:n3 are filled
from the given expression; a C pseudo-code for filling is

int i;
for (i = n1; i <= n2; i += n3) a[i] = expression(i);

In each generated expression the special character hash sign (#) is replaced by the current value of the index i.

Example:
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// an array with 9 components, evaluates to {1,4,7,10,13}:
table(5:9:2,3*#+1) // equivalent to {0,0,0,0,16,0,22,0,28}

ROW Generate a table row:

ROW(table,place) // implies all columns
ROW(table,place,column list)

This generates an array containing the named (or all) columns in the selected place.

COLUMN Generate a table column:

COLUMN(table,column) // implies all rows
COLUMN(table,column,range)

This generates an array containing the selected (or all) rows of the named column.

2.14.3 String Arrays

String arrays can only be given as lists of single values. For permissible values String values (see Section 2.4).
Example:

{A, "xyz", A & STRING(X)}

2.14.4 Token List Arrays

Token list arrays are always lists of single token lists.
Example:

{X:12:8,Y:12:8}
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Chapter 3

Control Statements

3.1 Getting Help

3.1.1 HELP Command

A user who is uncertain about the attributes of a command should try the command HELP, which has three formats:

HELP; // Give help on the "HELP" command
HELP,NAME=label; // List function and attribute types of "label"
HELP,label; // Shortcut for the second format

label is an identifier (see Section 2.2). If it is non-blank, MAD prints the function of the object label and lists
its attribute types. Entering HELP alone displays help on the HELP command.
Examples:

HELP;
HELP,NAME=TWISS;
HELP,TWISS;

3.1.2 SHOW Command

The SHOW statement displays the current attribute values of an object. It has three formats:

SHOW; // Give help on the "SHOW" command
SHOW,NAME=pattern; // Show names matching of "pattern"
SHOW,pattern; // Shortcut for the second format

pattern is an regular expression (see Section 2.12). If it is non-blank, MAD displays all object names matching
the pattern. Entering SHOW alone displays help on the SHOW command. If the OPTION,MAD8 (see Section 3.3) is
active, the format is MAD-8 format, otherwise it is MAD-9 format. Examples:

SHOW;
SHOW,NAME="QD.*\.L*";
SHOW,"QD.*\.L*";

3.1.3 WHAT Command

The WHAT statement displays all object names matching a given regular expression. It has three formats:

WHAT; // Give help on the "WHAT" command
WHAT,NAME=label; // Show definition of "label"
WHAT,label; // Shortcut for the second format

label is an identifier (see Section 2.2). If it is non-blank, MAD displays the object label in a format similar to
the input statement that created the object. Entering WHAT alone displays help on the WHAT command. Examples:

WHAT;
WHAT,NAME=QD;
WHAT,QD;
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3.2 STOP Statement

The statement

STOP;

terminates execution of the MAD program, or, when the statement occurs in a CALL file (see Section 3.8.1), returns to
the calling file. Any statement following the STOP statement is ignored.

3.3 OPTION Statement

The OPTION command controls global command execution and sets a few global quantities:

OPTION,ECHO=logical,INFO=logical,TRACE=logical,VERIFY=logical,
WARN=logical,ADDERROR=logical,SEED=real,TELL=logical;

The first five logical flags activate or deactivate execution options:

ECHO Controls printing of an echo of input lines on the standard error file.

INFO If this option is turned off, MAD suppresses all information messages.

MAD8 When the MAD8 option is on, all output of the SHOW (see Section 3.1.2), SAVE (see Section 3.8.2), ESAVE
(see Section 10.6), and MAKESEQ (see Section 3.8.3) is written in MAD-8 format. MAD-9 can thus serve as a
translator from MAD-9 to MAD-8 format.

TRACE When the TRACE option is on, MAD writes additional trace information on the standard error file for each
executable command. This information includes the command name and elapsed CPU time before and after the
command.

VERIFY If this option is on, MAD gives a message for each undefined variable or element in a beam line.

WARN If this option is turned off, MAD suppresses all warning messages.

ADDERROR If this logical flag is set, an EALIGN, EFIELD, or EFCOMP, causes the errors to be added on top of
existing ones. If it is not set, new errors overwrite any previous definitions.

SEED Selects a particular sequence of random values. A SEED value is an integer in the range [0...999999999] (default:
123456789). SEED can be an expression. See also: random values (see Section 2.8.5).

The last attribute requests listing of the current settings:

TELL If true, the current settings are listed.

Examples:

OPTION,ECHO=FALSE,TELL;
OPTION,SEED=987456321

Table 3.1: Default Settings for Options

ECHO = true INFO = true TRACE = false VERIFY = false
WARN = true ADDERROR = false SEED = 123456789 TELL = false

3.4 Parameter Statements

3.4.1 Variable Definitions

MAD-9 recognises several types of variables.
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Real Scalar Variables

REAL variable-name=real-expression;

The keyword REAL is optional. For backward compatibility the program also accepts the form

variable-name:=real-expression;

This statement creates a new global variable variable-name and discards any old variable with the same name. Its
value depends on all quantities occurring in real-expression (see Section 2.6). Whenever an operand changes in
real-expression, a new value is calculated. The definition may be thought of as a mathematical equation. However,
MAD is not able to solve the equation for a quantity on the right-hand side.

An assignment in the sense of the FORTRAN or C languages can be achieved by using the EVAL function (see Sec-
tion 3.4.4).

A reserved variable is the value P0 which is used as the global reference momentum for normalising all magnetic field
coefficients. Example:

REAL GEV=100;
P0=GEV;

Circular definitions are not allowed:

X=X+1; // X cannot be equal to X+1
A=B;
B=A; // A and B are equal, but of unknown value

However, redefinitions by assignment are allowed:

X=EVAL(X+1);

Real Vector Variables

REAL VECTOR variable-name=vector-expression;

The keyword REAL is optional. This statement creates a new global variable variable-name and discards any old
variable with the same name. Its value depends on all quantities occurring in vector-expression (see Section 2.14)
on the right-hand side. Whenever an operand changes in vector-expression, a new value is calculated. The
definition may be thought of as a mathematical equation. However, MAD is not able to solve the equation for a quantity
on the right-hand side.
Example:

REAL VECTOR A = TABLE(10, #);
REAL VECTOR B = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Circular definitions are not allowed, but redefinitions by assignment are allowed.

Logical Variables

BOOL variable-name=logical-expression;

This statement creates a new global variable variable-name and discards any old variable with the same name. Its
value depends on all quantities occurring in logical-expression (see Section 2.5). Whenever an operand changes
in logical-expression, a new value is calculated. The definition may be thought of as a mathematical equation.
However, MAD is not able to solve the equation for a quantity on the right-hand side.
Example:

BOOL FLAG = X != 0;

Circular definitions are not allowed, but redefinitions by assignment are allowed.
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3.4.2 Symbolic Constants

MAD recognises a few build-in built-in mathematical and physical constants. (see Table 2.7) Additional constants can be
defined by the command

REAL CONST label:CONSTANT=<real-expression>;

which defines a constant with the name label. The keyword REAL is optional, and label must be unique. An existing
symbolic constant can never be redefined. The real-expression is evaluated at the time the CONST definition is
read, and the result is stored as the value of the constant.
Example:

CONST IN=0.0254; // conversion of inches to metres

3.4.3 Vector Values

A vector of expressions is established by a statement

REAL VECTOR vector-name=vector-expression;

The keyword REAL is optional. It creates a new global vector vector-name and discards any old vector with the same
name. Its value depends on all quantities occurring in vector-expression (see Section 2.14). Whenever an operand
changes in vector-expression, a new value is calculated. The definition may be thought of as a mathematical
equation. However, MAD is not able to solve the equation for a quantity on the right-hand side.
Example:

VECTOR A_AMPL={2.5e-3,3.4e-2,0,4.5e-8};
VECTOR A_ON=TABLE(10,1);

Circular definitions are not allowed.

3.4.4 Assignment to Variables

A value is assigned to a variable or vector by using the function EVAL(real-expression). When seen, this function
is immediately evaluated and replaced by the result treated like a constant.

variable-name=EVAL(real-expression);

This statement acts like a FORTRAN or C assignment. The real-expression or vector-expression is eval-
uated, and the result is assigned as a constant to the variable or vector on the left-hand side. Finally the expression is
discarded. The EVAL function can also be used within an expression, e.g.,

vector-name=TABLE(range,EVAL(real-expression));
vector-name={...,EVAL(real-expression),...);

A sequence like the following is permitted:

... // some definitions
X=0; // create variable X with value zero
WHILE (X <= 0.10) {

TWISS,LINE=...; // uses X=0, 0.01, ..., 0.10
X=EVAL(X+.01); // increment variable X by 0.01

// CANNOT use: X=X+.01;
}

3.4.5 VALUE: Output of Expressions

The statement

VALUE,VALUE=expression-vector;

evaluates a set of expressions using the most recent values of any operands and prints the results on the standard error file.
Example:

32



A=4;
VALUE,VALUE=TABLE(5,#*A);
P1=5;
P2=7;
VALUE,VALUE={P1,P2,P1*P2-3};

These commands give the results:

value: {0*A,1*A,2*A,3*A,4*A} = {0,4,8,12,16}
value: {P1,P2,P1*P2-3} = {5,7,32}

This commands serves mainly for printing one or more quantities which depend on matched attributes. It also allows the
use of MAD as a programmable calculator. One may also tabulate functions.

3.5 DOOM: Interact with the DOOM Data Base

MAD can now be interfaced to the DOOM (MAD Object-Oriented Database) data base; this allows the user to transmit
most objects known by MAD to and from user-written programs. We assume that MAD-9 has been launched with:

mad9 -db data-base-name

It will then open the data base data-base-name and read all data stored therein. Whenever the user requests it, or when
a STOP statement is executed, MAD will write all modified objects to the data base and (temporarily) close it. Another
program can then access the data base and optionally modify it. MAD regains access to the data base by explicitely
re-opening it.

Interaction with the data base is done with the command

DOOM,OPEN=logical,CLOSE=logical,SHUT=logical,NOUPDATE=logical,
DEBUG=integer;

which has the following attributes:

CLOSE Close the database for good. Afterwards one may continue with MAD without affecting the database contents.
At the STOP; command a DOOM,CLOSE; is executed by default.

SHUT Close the database temporarily before a launching a user program by a SYSTEM call (see Section 3.6.2).

OPEN Reopen the database after DOOM,CLOSE; or DOOM,SHUT; and possible execution of a system call. The first
DOOM,OPEN; is performed automatically when MAD-9 is launched with a data base name and need not be re-
quested explicitly.

NOUPDATE After this command, the database is not updated any more, be it at a DOOM,SHUT;, DOOM,CLOSE;, or
at the STOP; command. This can come handy when you do not want to spoil the contents of the database. You can
revoke the effect (i.e. enable updating) with

DOOM,NOUPDATE=false;

DEBUG Enables debugging, if the <integer> is non-zero.

Example:

// Open the data base by default when launching MAD.
// Read some input.
...
DOOM,CLOSE; // Allow access to another program
// Do something which does not require access to the data base
...
SYSTEM,"..."; // Use the data base from outside MAD
// Do another thing which does not require access to the data base
...
DOOM,OPEN; // Re-gain access to the data base
// Modify something.
...
STOP; // Data base is closed by default.
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3.6 Miscellaneous Commands

3.6.1 ECHO Statement

The ECHO statement has two formats:

ECHO,MESSAGE=message;
ECHO,message; // shortcut

message is a string value (see Section 2.4). It is immediately transmitted to the ECHO stream.

3.6.2 SYSTEM: Execute System Command

During an interactive MAD session the command SYSTEM can be used to execute operating system commands. After
execution of the system command, successful or not, control returns to MAD. At present this command is only available
under UNIX or VM/CMS. It has two formats:

SYSTEM,CMD=string;
SYSTEM,string; // shortcut

The string (see Section 2.4) string must be a valid operating system command.

3.6.3 SYSTEM Command under UNIX

Most UNIX commands can be issued directly.
Example:

SYSTEM,"ls -l"

causes a listing of the current directory in long form on the terminal.

3.6.4 SYSTEM Command under VM/CMS

If the system command refers to an EXEC file the string must begin with the word EXEC. Synonyms or abbreviations are
not always accepted. It is recommended to use standard CMS command names and to spell them out in full.
Examples:

SYSTEM,"ERASE TESTDATA MAD A"
SYSTEM,"EXEC FILELIST * * D"
SYSTEM,"XEDIT TESTDATA MAD A"

3.7 TITLE Statement

The TITLE statement has three formats:

TITLE,STRING=page-header; // define new page header
TITLE,page-header; // shortcut for first format
TITLE,STRING=""; // clear page header

page-header is a string value (see Section 2.4). It defines the page header which will be used as a title for subsequent
output pages. Before the first TITLE statement is encountered, the page header is empty. It can be redefined at any time.

3.8 File Handling

3.8.1 CALL Statement

The CALL command has two formats:

CALL,FILE=file-name;
CALL,file-name;
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file-name is a string (see Section 2.4). The statement causes the input to switch to the named file. Input continues on
that file until a STOP or an end of file is encountered. Example:

CALL,FILE="structure";
CALL,"structure";

3.8.2 SAVE Statement

The SAVE command has two formats:

SAVE,FILE=file-name

file-name is a string (see Section 2.4). The command causes all beam element, beam line, and parameter definitions
to be written on the named file. If the OPTION,MAD8 (see Section 3.3) is active, the format is MAD-8 format, otherwise
it is MAD-9 format. The file may be read again in the same run. Examples:

SAVE,FILE="structure";
SAVE,"structure";

3.8.3 MAKESEQ Statement

A file containing a machine sequence can be generated in MAD-9 by the command

MAKESEQ,LINE=string,NAME=string,FILE=string;

The named beam line (see Section 5.1) or sequence (see Section 5.2) is written as a flat SEQUENCE (see Section 5.2)
with the given name on the named file. If the OPTION,MAD8 (see Section 3.3) is active, the format is MAD-8 format,
otherwise it is MAD-9 format. All required elements and parameters are also written. All expressions are evaluated and
only their values appear in the output. The command has the following attributes:

LINE The line for which a flat sequence is to be written.

NAME The name to be given to the sequence written.

FILE The name of the file to receive the output.

3.9 IF: Conditional Execution

Conditional execution can be requested by an IF statement. It allows usages similar to the C language if statement:

IF (logical) statement;
IF (logical) statement; ELSE statement;
IF (logical) { statement-group; }
IF (logical) { statement-group; } ELSE { statement-group; }

Note that all statements must be terminated with semicolons (;), but there is no semicolon after a closing brace. The
statement or group of statements following the IF is executed if the condition is satisfied. If the condition is false, and
there is an ELSE, the statement or group following the ELSE is executed.

3.10 WHILE: Repeated Execution

Repeated execution can be requested by a WHILE statement. It allows usages similar to the C language while statement:

WHILE (logical) statement;
WHILE (logical) { statement-group; }

Note that all statements must be terminated with semicolons (;), but there is no semicolon after a closing brace. The
condition is re-evaluated in each iteration. The statement or group of statements following the WHILE is repeated as long
as the condition is satisfied. Of course some variable(s) must be changed within the WHILE group to allow the loop to
terminate.

35



3.11 MACRO: Macro Statements (Subroutines)

Subroutine-like commands can be defined by a MACRO statement. It allows usages similar to C language function call
statements. A macro is defined by one of the following statements:

name(formals): MACRO { token-list }
name(): MACRO { token-list }

A macro may have formal arguments, which will be replaced by actual arguments at execution time. An empty formals
list is denoted by (). Otherwise the formals consist of one or more names, separated by commas. The token-list
consists of input tokens (strings, names, numbers, delimiters etc.) and is stored unchanged in the definition.

A macro is executed by one of the statements:

name(actuals);
name();

Each actual consists of a set of tokens which replaces all occurrences of the corresponding formal name. The actuals are
separated by commas. Example:

// macro definitions:
SHOWIT(X): MACRO {

SHOW, NAME = X;
}
DOIT(): MACRO {

DYNAMIC,LINE=RING,FILE="DYNAMIC.OUT";
}

// macro calls:
SHOWIT(PI);
DOIT();
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Chapter 4

Physical Elements and Markers

4.1 Element Input Format

All physical elements are defined by statements of the form

label:keyword,attribute,...,attribute

Example:

QF: QUADRUPOLE,L=1.8,K1=0.015832;

where

label Is the name to be given to the element (in the example QF), it is an identifier (see Section 2.2).

keyword Is a keyword (see Section 2.2), it is an element type keyword (in the example QUADRUPOLE),

attribute normally has the form

attribute-name=attribute-value

attribute-name selects the attribute from the list defined for the element type keyword (in the example L and K1). It
must be an identifier (see Section 2.2)

attribute-value gives it a value (see Section 2.3) (in the example 1.8 and 0.015832).

Omitted attributes are assigned a default value, normally zero.

4.2 Element Classes

The concept of element classes solves the problem of addressing instances of elements in the accelerator in a convenient
manner. It also helps defining portions of the machine which are shared physically between two or more beam lines.

This concept will first be illustrated by an example. All the quadrupoles in the accelerator form a class QUADRUPOLE.
Let us define three subclasses for the focussing quadrupoles, the defocussing quadrupoles, and the skewed quadrupoles:

MQF:QUADRUPOLE,L=LQM,K1=KQD; // Focusing quadrupoles
MQD:QUADRUPOLE,L=LQM,K1=KQF; // Defocusing quadrupoles
MQT:QUADRUPOLE,L=LQT; // Skewed quadrupoles

These classes can be thought of as new keywords which define elements with specified default attributes. We now use
them to define the real quadrupoles:

QD1:MQD; // Defocusing quadrupoles
QD2:MQD;
QD3:MQD;
...
QF1:MQF; // Focusing quadrupoles
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QF2:MQF;
QF3:MQF;
...
QT1:MQT,K1S=KQT1; // Skewed quadrupoles
QT2:MQT,K1S=KQT2;
...

These quadrupoles inherit all unspecified attributes from their class. In this way, the user can build up a hierarchy of
objects with a rather economic input structure.

The full power of the class concept is revealed when object classes are used to select (see Section 7.2) instances of
elements for printing. Example:

SELECT,CLASS=QUADRUPOLE; // Select all quadrupoles
PRINT,CLASS=MQT; // Select skewed quadrupoles

More formally, for each element keyword MAD maintains a class of elements with the same name. A defined element
becomes itself a class which can be used to define new objects, which will become members of this class. A new object
inherits all attributes from its class; but its definition may override some of those values by new ones. All class and object
names can be used in range selections, providing a powerful mechanism to specify positions for matching constraints and
printing.

When an object is used in a beam line, MAD automatically makes a copy of that element, unless the object is defined
as SHARED. The user can later attach imperfections to all copies individually. Example:

QF:QUADRUPOLE,...; // Define the class QF
L:LINE=(...,QF,...,QF,...) // Each QF is distinct
QF1:QF,...; // QF1 is derived from QF

On the contrary, if an object is defined as shared using the keyword SHARED, its use in more than one beam line
implies the same object occurs in all those beam lines. Example:

SHARED QF:QUADRUPOLE,...; // Define shared quadrupole QF
L1:LINE=(...,QF,...,QF,...) // All the QF’s are the same ...
L2:LINE=(...,QF,...) // ... also in this line.

4.3 Common Attributes for all Elements

The following attributes are allowed on all elements:

TYPE A string value (see Section 2.4). It specifies an “engineering type” and can be used for element selection.

APERTURE A real vector with an arbitrary length which describes the element aperture. It is ignored by MAD-9, but it
can be used in other programs.

other All elements can have arbitrary additional attributes which are not defined below. Such attributes must have a name
different from all defined attributes and single real values.

Only the TYPE attribute is used by MAD-9, but the SAVE command (see Section 3.8.2) saves all attributes unless OP-
TION,MAD8 (see Section 3.3) is active.

4.4 Thin Lenses

All multipole-like elements (RBEND, SBEND, QUADUPOLE, SEXTUPOLE, OCTUPOLE, MULTIPOLE) can have
a finite or a zero length. For finite length the multipole coefficients are the coefficients per unit length; for zero length
they are interpreted as the integrated strength. The SAVE command (see Section 3.8.2) converts thin elements to thin
multipoles in MAD-8 format, if OPTION,MAD8 (see Section 3.3) is active.
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4.5 Markers

label: MARKER,TYPE=string,APERTURE=vector;

The simplest element which can occur in a beam line is the MARKER. It has no effect on the beam, but it allows one to
identify a position in the beam line, for example to apply a matching constraint. A marker has no attributes:
Example:

M27:MARKER;

4.6 Drift Spaces

label:DRIFT,TYPE=string,APERTURE=real-vector,L=real;

A DRIFT space has one real attribute:

L The drift length (default: 0 m)

Examples:

DR1:DRIFT,L=1.5;
DR2:DRIFT,L=DR1->L,TYPE=DRF;

The length of DR2 will always be equal to the length of DR1. The reference system for a drift space is a Cartesian
coordinate system (see Figure 1.3).

4.7 Bending Magnets

Two different type keywords are recognised for bending magnets, they are distinguished only by the reference system
used:

RBEND is a rectangular bending magnet. It has parallel pole faces and is based on a Cartesian reference system (see Fig-
ure 1.4).

SBEND is a sector bending magnet. Its pole faces meet at the centre of curvature of the curved reference system (see Fig-
ure 1.5).

They are defined by the commands:

SBEND,TYPE=string,APERTURE=real-vector,L=real,ANGLE=real,
K0=real,K1=real,K2=real,K3=real,K0s=real,K1S=real,K2S=real,K3S=real
E1=real,E2=real,H1=real,H2=real,HGAP=real,FINT=real;

RBEND,TYPE=string,APERTURE=real-vector,L=real,ANGLE=real,
K0=real,K1=real,K2=real,K3=real,K0S=real,K1S=real,K2S=real,K3S=real,
E1=real,E2=real,H1=real,H2=real,HGAP=real,FINT=real;

For both types, the following attributes are permitted:

L The length of the magnet (default: 0 m). For a rectangular magnet the length is measured along a straight line, while
for a sector magnet it is the arc length of the reference orbit. A thin dipole (see Section 4.4) is described with length
zero. In this case all fields are the integrated fields.

ANGLE The geometricbend angle (default: 0 rad). It is this attribute only which determines the geometry of the magnet.
A positive bend angle bends the reference axis to the right, i.e. towards negative x values.

K0 The normal dipole componentK0 = 1
BρBy . If this value is not given, it is taken as ANGLE/L. A positive value bends

positive particles to the right (towards negative x).

K0S The skew dipole componentK0s = 1
BρBx. The default is 0m−2. The component is positive for a bend up.

K1 The normal quadrupole componentK 1 = 1
Bρ

∂By

∂x . The default is 0m−2. The component is positive, if By is positive
on the positive x-axis. This implies horizontal focusing of positively charged particles which travel in positive s
direction.
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K1S The skew quadrupole componentK1s = 1
Bρ

∂Bx

∂x . The default is 0m−2. The component is negative, ifBx is positive
on the positive x-axis.

K2 The normal sextupole componentK2 = 1
Bρ

∂2By

∂x2 . The default is 0m−3. The component is positive, if By is positive
on the positive x-axis.

K2S The skew sextupole componentK2s = 1
Bρ

∂2Bx

∂x2 . The default is 0m−3. The component is negative, if Bx is positive
on the positive x-axis.

K3 The normal sextupole componentK3 = 1
Bρ

∂3By

∂x3 . The default is 0m−4. The component is positive, if By is positive
on the positive x-axis.

K3S The skew sextupole componentK3s = 1
Bρ

∂3Bx

∂x3 . The default is 0m−4. The component is negative, if Bx is positive
on the positive x-axis.

E1 The rotation angle for the entrance pole face (default: 0 rad).

E2 The rotation angle for the exit pole face (default: 0 rad).

H1 The curvature of the entrance pole face (default: 0m−1).

H2 The curvature of the exit pole face (default: 0 m−1). A positive pole face curvature induces a negative sextupole
component; i.e. for positive H1 and H2 the centres of curvature of the pole faces are placed inside the magnet.

FINT The field integral (default =0).

HGAP The half gap of the magnet (default: 0 m).

The pole face rotation angles are referred to the magnet model for a RBEND (see Figure 1.4) and SBEND (see Figure 1.5)
respectively. The quantities FINT and HGAP specify the finite extent of the fringe fields as defined in [1] as follows:

FINT =
∫ ∞

0

By(s)(B0 −By(s))
B2

0g
ds, HGAP = 2g.

The default values of zero corresponds to the hard-edge approximation, i.e. a rectangular field distribution. For other
approximations, enter the correct value of the half gap, and one of the following values for FINT:

Typical values for FINT
Linear Field drop-off 1/6
Clamped ”Rogowski” fringing field 0.4
Unclamped ”Rogowski” fringing field 0.7
”Square-edged” non-saturating magnet 0.45

A reasonable average value for FINT is 0.5. All thes dipole examples have the same bend angle:

BR:RBEND,L=5.5,ANGLE=+0.001; // Deflection to the right
BR:RBEND,L=5.5,K0=+0.001/5.5; // Deflection to the right

// This magnet has a straight reference
BL:SBEND,L=5.5,ANGLE=-0.001; // Deflection to the left
BL:SBEND,L=5.5,K0=-0.001/5.5; // Deflection to the left

// This magnet has a straight reference

4.8 Quadrupoles

label:QUADRUPOLE,TYPE=string,APERTURE=real-vector,L=real,K1=real,K1S=real;

A QUADRUPOLE has three real attributes:

L The quadrupole length (default: 0 m). A thin quadrupole (see Section 4.4) is defined by setting the length to zero.

K1 The normal quadrupole componentK 1 = 1
Bρ

∂By

∂x . The default is 0m−2. The component is positive, if By is positive
on the positive x-axis. This implies horizontal focusing of positively charged particles which travel in positive s
direction.
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K1S The skew quadrupole componentK1s = 1
Bρ

∂Bx

∂x . The default is 0m−2. The component is negative, ifBx is positive
on the positive x-axis.

Example:

QF:QUADRUPOLE,L=1.5,K1=0.001;

The reference system for a quadrupole is a Cartesian coordinate system (see Figure 1.3).

4.9 Sextupoles

label: SEXTUPOLE,TYPE=string,APERTURE=real-vector,L=real,K2=real,K2S=real;

A SEXTUPOLE has three real attributes:

L The sextupole length (default: 0 m). A thin sextupole (see Section 4.4) is defined by setting the length to zero.

K2 The normal sextupole componentK2 = 1
Bρ

∂2By

∂x2 . The default is 0m−3. The component is positive, if By is positive
on the positive x-axis.

K2S The skew sextupole componentK2s = 1
Bρ

∂2Bx

∂x2 . The default is 0m−3. The component is negative, if Bx is positive
on the positive x-axis.

Example:

S:SEXTUPOLE,L=0.4,K2=0.00134;

The reference system for a sextupole is a Cartesian coordinate system (see Figure 1.3).

4.10 Octupoles

label:OCTUPOLE,TYPE=string,APERTURE=real-vector,L=real,K3=real,K3S=real;

An OCTUPOLE has three real attributes:

L The octupole length (default: 0 m). A thin octupole (see Section 4.4) is defined by setting the length to zero.

K3 The normal sextupole componentK3 = 1
Bρ

∂3By

∂x3 . The default is 0m−4. The component is positive, if By is positive
on the positive x-axis.

K3S The skew sextupole componentK3s = 1
Bρ

∂3Bx

∂x3 . The default is 0m−4. The component is negative, if Bx is positive
on the positive x-axis.

Example:

O3:OCTUPOLE,L=0.3,K3=0.543;

The reference system for an octupole is a Cartesian coordinate system (see Figure 1.3).

4.11 General Multipoles

A MULTIPOLE is thin lens of arbitrary order, including a dipole:

label:MULTIPOLE,TYPE=string,APERTURE=real-vector,L=real,
KNORMAL=real-vector,KSKEW=real-vector;

L The multipole length (default: 0 m). A thin multipole (see Section 4.4) is defined by setting the length to zero.

KN A real vector (see Section 2.14), containing the normal multipole coefficients. A component is positive, if B y is
positive on the positive x-axis.
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KS A real vector (see Section 2.14), containing the skew multipole coefficients. A component is negative, if B x is
positive on the positive x-axis.

The multipole coefficients are defined as Kn = 1
Bρ

∂nBy

∂xn . (default: 0m−n). The order n is unlimited, but all components
up to the maximum must be given, even if zero. The number of poles of each component is (2n+ 2). The most important
error components of fully symmetric quadrupoles are: KNORMAL[5], the 12-pole, and KNORMAL[9], the twenty-pole.
Superposition of many multipole components is permitted. The reference system for a multipole is a Cartesian coordinate
system (see Figure 1.3).
Example:

M27:MULTIPOLE,L=1,KNORMAL[3]=0.0001,KSKEW[2]=0.0001;

A multipole with no dipole component has no effect on the reference orbit, i.e. the reference system at its exit is the same
as at its entrance. If it includes a dipole component, it has the same effect on the reference orbit as a SBENDwith the same
length and deflection angle KNORMAL[0]*L.

4.12 Solenoids

label:SOLENOID,TYPE=string,APERTURE=real-vector,L=real,KS=real;

A SOLENOID has two real attributes:

L The length of the solenoid (default: 0 m)

KS The solenoid strengthKs (default: 0 rad/m). For positive KS and positive particle charge, the solenoid field points in
the direction of increasing s.

Example:

SOLO:SOLENOID,L=2.,K=0.001;

The reference system for a solenoid is a Cartesian coordinate system (see Figure 1.3).

4.13 Orbit Correctors

Three types of closed orbit correctors are available:

HKICKER A corrector for the horizontal plane,

VKICKER A corrector for the vertical plane,

KICKER A corrector for both planes.

label:HKICKER,TYPE=string,APERTURE=real-vector,L=real,KICK=real;
label:VKICKER,TYPE=string,APERTURE=real-vector,L=real,KICK=real;
label:KICKER, TYPE=string,APERTURE=real-vector,L=real,HKICK=real,VKICK=real;

They have the following attributes:

L The length of the closed orbit corrector (default: 0 m).

KICK The kick angle for either horizontal or vertical correctors. (default: 0 rad).

HKICK The horizontal kick angle for a corrector in both planes (default: 0 rad).

VKICK The vertical kick angle for a corrector in both planes (default: 0 rad).

A positive kick increases px or py respectively.
Examples:

HK1:HKICKER,KICK=0.001;
VK3:VKICKER,KICK=0.0005;
KHV:KICKER, HKICK=0.001,VKICK=0.0005;

The first kicker is rotated about the longitudinal axis by 10 degrees. The reference system for an orbit corrector is a
Cartesian coordinate system (see Figure 1.3).
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4.14 RF Cavities

An RFCAVITY has seven real attributes and one integer attribute:

label:RFCAVITY,TYPE=string,APERTURE=real-vector,L=real,VOLT=real,LAG=real,
HARMON=integer,BETRF=real,PG=real,SHUNT=real,TFILL=real;

L The length of the cavity (default: 0 m)

VOLT The peak RF voltage (default: 0 MV). The effect of the cavity is δE = VOLT sin(2π(LAG− HARMON · f 0t)).

LAG The phase lag [2π] (default: 0).

HARMON The harmonic number h (no default). Note that the RF frequency is computed from the harmonic number
and the revolution frequency f0. The frequency attribute FREQ must no longer be used.

BETRF RF coupling factor (default: 0).

PG The RF power per cavity (default: 0 mW).

SHUNT The relative shunt impedance (default: 0MΩ/m).

TFILL The filling time of the cavity Tfill (default: 0µs).

Use of a cavity requires the particle momentumP and the particle chargeCHARGE to be set on the relevant optics command
before any calculations is performed.
Example:

CAVITY:RFCAVITY,L=10.0,VOLT=150.0,LAG=0.0,HARMON=31320;
STATIC,P=50.0,PARTICLE=ELECTRON;

The reference system for a cavity is a Cartesian coordinate system (see Figure 1.3).

4.15 Electrostatic Separators

An ELSEPARATOR (electrostatic separator) has three real attributes:

label:ELSEPARATOR,TYPE=string,APERTURE=real-vector,L=real,EX=real,EY=real;

L The length of the separator (default: 0 m).

EX The horizontal electric field strength (default: 0 MV/m). A positive field increases p x for positive particles.

EY The vertical electric field strength (default: 0 MV/m). A positive field increases py for positive particles.

A ELSEPARATOR requires the particle momentum P and its charge CHARGE to be set in the relevant BEAM command
(see Section 6.2) before any calculations are performed.
Example:

BEAM,PARTICLE=POSITRON,PC=46.0;
SEP:ELSEPARATOR,L=5.0,E=0.5;

The reference system for a separator is a Cartesian coordinate system (see Figure 1.3).

4.16 Beam Position Monitors

A beam monitor acts on the beam like a drift space. In addition it serve records the beam position for closed orbit
corrections. Four different types of beam position monitors are recognised:

HMONITOR Monitor for the horizontal beam position,

VMONITOR Monitor for the vertical beam position,

MONITOR Monitor for both horizontal and vertical beam position.
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INSTRUMENT A place holder for any other type of beam instrumentation. Optically it behaves like a drift space; it
returns no beam observation. It represents a class of elements which is completely independent from drifts and
monitors.

label:HMONITOR, TYPE=string,APERTURE=real-vecto,L=real;
label:VMONITOR, TYPE=string,APERTURE=real-vecto,L=real;
label:MONITOR, TYPE=string,APERTURE=real-vecto,L=real;
label:INSTRUMENT,TYPE=string,APERTURE=real-vector,L=real;

A beam position monitor has one real attribute:

L The length of the monitor (default: 0 m). If the length is different from zero, the beam position is recorded in the centre
of the monitor (except for the INSTRUMENT element).

Examples:

MH:HMONITOR,L=1;
MV:VMONITOR;

The reference system for a monitor is a Cartesian coordinate system (see Figure 1.3).

4.17 Collimators

Two types of collimators are defined:

ECOLLIMATOR Elliptic aperture,

RCOLLIMATOR Rectangular aperture.

label:ECOLLIMATOR,TYPE=string,APERTURE=real-vector,L=real,
XSIZE=real,YSIZE=real;

label:RCOLLIMATOR,TYPE=string,APERTURE=real-vector,L=real,
XSIZE=real,YSIZE=real;

Either type has three real attributes:

L The collimator length (default: 0 m).

XSIZE The horizontal half-aperture (default: unlimited).

YSIZE The vertical half-aperture (default: unlimited).

For elliptic apertures, XSIZE and YSIZE denote the half-axes respectively, for rectangular apertures they denote the
half-width of the rectangle. Optically a collimator behaves like a drift space, but during tracking, it also introduces an
aperture limit. The aperture is checked at the entrance. If the length is not zero, the aperture is also checked at the exit.
Example:

COLLIM:ECOLLIMATOR,L=0.5,XSIZE=0.01,YSIZE=0.005;

The reference system for a collimator is a Cartesian coordinate system (see Figure 1.3).

4.18 Coordinate Transformations

4.18.1 Rotations About the Vertical Axis

label:YROT,TYPE=string,APERTURE=real-vector,ANGLE=real;

The element YROT rotates reference system about the vertical (y) axis (see Figure 1.7). YROT has no effect on the beam,
but it causes the beam to be referred to the new coordinate system

x2 = x1 cos θ − s1 sin θ,
y2 = x1 sin θ + s1 cos θ,

It has one real attribute:
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ANGLE The rotation angle theta (default: 0 rad). It must be a small angle, i.e. an angle comparable to the transverse
angles of the orbit.

A positive angle means that the new reference system is rotated clockwise about the local y-axis with respect to the old
system.
Example:

KINK:YROT,ANGLE=0.0001;

4.18.2 Rotations Around the Longitudinal Axis

label:SROT,TYPE=string,APERTURE=real-vector,ANGLE=real;

The element SROT rotates the reference system about the longitudinal (s) axis (see Figure 1.6). SROT has no effect on
the beam, but it causes the beam to be referred to the new coordinate system

x2 = x1 cosψ − y1 sinψ,
y2 = x1 sinψ + y1 cosψ,

It has one real attribute:

ANGLE The rotation angle psi (default: 0 rad)

A positive angle means that the new reference system is rotated clockwise about the s-axis with respect to the old system.
Example:

ROLL1:SROT,ANGLE=PI/2.;
ROLL2:SROT,ANGLE=-PI/2.;
HBEND:SBEND,L=6.0,ANGLE=0.01;
VBEND:LINE=(ROLL1,HBEND,ROLL2);

The above is a way to represent a bend down in the vertical plane, it could be defined more simply by

VBEND:SBEND,L=6.0,K0S=-0.01/6.0;

4.18.3 General Change of Reference

label:PATCH,TYPE=string,APERTURE=real-vector,DX=real,DY=real,DZ=real,
DTHETA=real,DPHI=real,DPSI=real;

The element PATCH applies a general change to the reference system. PATCH has no effect on the beam, but it causes the
beam to be referred to the new coordinate system. It has six real attributes:

DX The displacement in x-direction of the new system with respect to the old one.

DY The displacement in y-direction of the new system with respect to the old one.

DS The displacement in s-direction of the new system with respect to the old one.

VX The rotation around the x-axis of the new system with respect to the old one.

VY The rotation around the y-axis of the new system with respect to the old one.

VZ The rotation around the s-axis of the new system with respect to the old one.

As an example consider a simplified model of the separation of the two beams (see Figure 4.1) near the interaction region
of LHC:

ALPHA=...; // The bend angle in the separator magnets.
DISTANCE=...; // The longitudinal distance between the separator magnets.
D1:HKICKER,L=0,KICK=ALPHA;
D2:HKICKER,L=0,KICK=-ALPHA;
DIST:DRIFT,L=DISTANCE;
PATCH1:PATCH,DX=DISTANCE*TAN(ALPHA);
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PATCH2:PATCH,DX=-DISTANCE*TAN(ALPHA);
SHARED SEPARATION:LINE=(D1,DIST,D2);
RING1:SEQUENCE,...; // beam goes clockwise.
...
SEPARATION;
PATCH1; // change reference to
...
ENDSEQUENCE;
RING2:SEQUENCE,...; // beam goes anticlockwise.
...
SEPARATION;
PATCH2;
...
ENDSEQUENCE;

The direction of travel of each beam determines the signs of the deflections, the patches change the reference. Note that the
common reference between the two separator magnets allows a correct handling of long-distance beam-beam interactions
in that area.

✲
reference beam 1

common reference

✛ reference beam 2

D1 D2+patches

Figure 4.1: Separation of two beams

4.19 Beam-Beam Interactions

The command BEAMBEAM may be inserted in a beam line to simulate a beam-beam interaction point:

label:BEAMBEAM,TYPE=string,APERTURE=real-vector,
SIGX=real,SIGY=real,XMA=real,YMA=real,CHARGE=real;

The code for this element has been contributed by J.M. Veuillen (1987), and has been adapted to C++ in 1997. It has six
real attributes:

SIGX The horizontal extent (standard deviation) of the opposite beam (default: 0 m).

SIGY The vertical extent (standard deviation) of the opposite beam (default: 0 m).

XMA The horizontal displacement of the opposite beam with respect to the ideal orbit (default: 0 m).

YMA The vertical displacement of the opposite beam with respect to the ideal orbit (default: 0 m).

CHARGE The charge of particles in the opposite beam in proton charges (default: 0).

NPART The number of particles in the opposite beam. (default: 0).

A beam-beam element requires the particle momentum P and its charge CHARGE to be defined on the relevant optics
command before any calculations are performed.
Example:

BEAM,MOMENTUM=46.0,MASS=PMASS,CHARGE=1.0;
BB:BEAMBEAM,SIGX=1.E-3,SIGY=5.E-4,CHARGE=1.0,NPART=1.0E12;

A three-dimensional representation of a beam-beam interaction is available with the command
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label:BEAMINT,TYPE=string,APERTURE=real-vector,
PHI=real,NSLI=integer,FAST=bool,XIYN=real,DX=real,DY=real,DZ=real,
BETXS=real,BETYS=real,ALFXS=real,ALFYS=real,
DXS=real,DPXS=real,DYS=real,DPYS=real,
EXS=real,EYS=real,SIGTS=real,SIGES=real;

Its parameters are:

PHI Horizontal crossing angle.

NSLI Number of slices to be taken in strong beam.

FAST If true, use tables for computing the error function.

XIYN Beam-beam parameter.

DX Horizontal displacement of the interaction point in [m].

DY Vertical displacement of the interaction point in [m].

DZ Longitudinal displacement of the interaction point in [m].

The following parameters describe the strong beam:

BETXS Horizontal β∗ in [m].

BETYS Vertical β∗ in [m].

ALFXS Horizontal α∗* in [1].

ALFYS Vertical α∗ in [1].

DXS Horizontal dispersion in [m].

DPXS Horizontal dispersion slope in [m].

DYS Vertical dispersion in [m].

DPYS Vertical dispersion slope in [m].

EXS Horizontal emittance in [m rad].

EYS Vertical emittance in [m rad].

SIGTS Bunch length in [m].

SIGES Energy spread in [1].

4.20 Editing Element Definitions

An element definition can be changed in two ways:

Entering a new definition The element definition will be replaced. A beam element, LINE (see Section 5.1), or SE-
QUENCE (see Section 5.2) can be replaced by another beam element, beam line, or sequence; if the replaced item
occurs in another beam line or sequence, all references in that line or sequence are replaced.

Entering the element name together with new attributesThe element will be updated in place, and the new attribute
values will replace the old ones. When the type of the element should not change, replacement of an attribute is the
more efficient way.

Element definitions can be changed freely. The changes do not affect already defined objects which belong to its class
(see Section 4.2). This example shows two ways to change the strength of a quadrupole:

QF:QUADRUPOLE,L=1,K1=0.01; // Original definition of QF
QF:QUADRUPOLE,L=1,K1=0.02; // Replace whole definition of QF
QF,K1=0.02; // Replace value of K1
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Chapter 5

Beam Lines, Sequences, and Ranges

5.1 Beam Lines

The accelerator to be studied is known to MAD as a sequence of physical elements called a beam line. A beam line is
built from simpler beam lines whose definitions can be nested to any level. The syntax is powerful enough to repeat or to
reflect pieces of beam lines. Formally a beam line is defined by a LINE command:

label:LINE=(member,...,member);

label (see Section 2.2) gives a name to the beam line for later reference.
Each member may be one of the following:

• An element label,

• A beam line label,

• A SEQUENCE (see Section 5.2) label,

• A sub-line, enclosed in parentheses,

Beam lines can be nested to any level.

5.1.1 Simple Beam Lines

The simplest beam line consists of single elements:

label:LINE=(member,...,member);

Example:

L:LINE=(A,B,C,D,A,D);
TWISS,LINE=L;

The TWISS command (see Section 7.7) tells MAD to perform lattice calculations on the sequence

A,B,C,D,A,D

5.1.2 Sub-lines

Instead of referring to an element, a beam line member can refer to another beam line defined in a separate command.
This provides a shorthand notation for sub-lines which occur several times in a beam line. Lines and sub-lines can be
entered in any order, but when a line is used, all its sub-lines must be known.

Example:

L:LINE=(A,B,S,B,A,S,A,B);
S:LINE=(C,D,E);
TWISS,LINE=printL;
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This example produces the following expansion steps:

1. Replace sub-line S:

(A,B,(C,D,E),B,A,(C,D,E),A,B)

2. Omit parentheses:

A,B,C,D,E,B,A,C,D,E,A,B

5.1.3 Reflection and Repetition

An unsigned repetition count and an asterisk indicate repetition of a beam line member. An optional minus sign (-)
prefix causes reflection, i.e. all elements in the subsequence are taken in reverse order. Sub-lines of reflected lines are
also reflected, but on physical elements the reflection flag is ignored. The minus sign must precede any repetition count.
Repetitions are expanded immediately when a line is read, so are reflections of anonymous beam lines. The result is a flat
line referring to a sequence of named elements and/or beam lines. When the line is output, it has the form resulting from
this expansion.

Example:

R:LINE=(G,H);
S:LINE=(C,R,D);
T:LINE=(2*S,2*(E,F),-S,-(A,B));
TWISS,LINE=T;

The three lines are stored as follows:

R:LINE=(G,H);
S:LINE=(C,R,D);
T:LINE=(S,S,E,F,E,F,-S,B,A);

When T is expanded, substitution is recursive:

1. Replace sub-line S:

(C,R,D,C,R,D,E,F,E,F,D,-R,C,B,A)

2. Replace sub-line R:

(C,G,H,D,C,G,H,D,E,F,E,F,D,H,G,C,B,A)

Note that the inner sub-line R is reflected together with the outer sub-line S.

5.2 Beam Line Sequences

A sequence of elements can easily be generated from a data base using a command looking like

label:SEQUENCE,REFER=keyword,L=expression,REFPOS=name;
object-definition;
...;
object-definition;

ENDSEQUENCE;

It reads a sequence of element definitions, compiles an object which resembles a beam line definition, and gives it the
name ”label”. The resulting sequence can be used like a beam line. The attributes of the sequence are:

REFER The reference points for the elements are specified by the REFER attribute:

REFER=CENTRE The reference points are at the element centres (default).

REFER=ENTRY The reference points are at element entrances.
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REFER=EXIT The reference points are at element exits.

L The length of the SEQUENCE can be given on the SEQUENCE command, or it may be entered with the ENDSEQUENCE
command.

REFPOS Normally, the reference position for a nested sequence is defined by the REFER attribute of the enclosing
sequence, but, if REFPOS is given, it specifies a unique element in the sequence whose AT attribute becomes the
reference point for the sequence.

For each non-drift element in the sequence one element definition appears following the SEQUENCE command and
preceding the ENDSEQUENCE command. These look similar to ordinary element definitions (see Section 4), but they
may contain an optional specification to place the element:

class-name,AT=expression;
class-name,AT=expression,FROM=name;
class-name,DRIFT=expression;

object-name,class-name,AT=expression,attribute,...,attribute;
object-name,class-name,AT=expression,FROM=name,attribute,...,attribute;
object-name,class-name,DRIFT=expression,attribute,...,attribute;

The meaning of the AT specifications is:

AT=expression Place the element’s entrance, centre, or exit at the specifiet position.

FROM=name Interpret the AT specification as relative to the unique element name.

FROM=#S Like omitting the FROM specification, AT is relative to the beginning of the sequence.

FROM=#E The AT specification is relative to the end of the sequence.

FROM=PREVIOUS The AT specification is relative to the previous element.

FROM=NEXT The AT specification is relative to the following element.

DRIFT=expression The element is preceded by a drift of the given length.

One should consider the following:

1. The name class-name must be an element class name (see Section 4.2), it may optionally be preceded by a
minus sign (-). This inverts the order of the elements in the inserted object. This makes sense only for a beam line
or sequence.

2. If the name object-name is not given, MAD inserts the element specified by class-name. In this case no
further attributes are allowed.

3. If there is a non-blank object-name, this name should not be defined earlier in the data. MAD then first makes
a copy of class-name and gives it the new name object-name. Any further attributes override the attributes
inherited from class-name.b

4. The elements must be entered in order of increasing position, and they must not overlap. Their positions are
evaluated while reading the SEQUENCE definition, and become constantvalues.

5. A LINE (see Section 5.1) or SEQUENCE (see Section 5.2) can be nested in another SEQUENCE or LINE.

Within the SEQUENCE, MAD generates the drift spaces for proper positioning.
Example:

// Define element classes for a simple cell:
B: SBEND,L=35.09,ANGLE = 0.011306116;
QF: QUADRUPOLE,L=1.6,K1=-0.02268553;
QD: QUADRUPOLE,L=1.6,K1=0.022683642;
SF: SEXTUPOLE,L=0.4,K2=-0.13129;
SD: SEXTUPOLE,L=0.76,K2=0.26328;

50



// Define the cell as a sequence:
CELL:SEQUENCE,L=79.0;

B1: B, AT=19.115;
SF1:SF,AT=37.42;
QF1:QF,AT=38.70;
B2: B, AT=58.255,ANGLE=-B1->ANGLE;
SD1:SD,AT=76.74;
QD1:QD,AT=78.20;

ENDSEQUENCE;

In this example all members of the sequence have a new name, and MAD generates copies of the corresponding classes.
The bending magnet B1 is wrapped to change sign, but its definition is still equal to B. Thus B2, which has the negative
field of B1, has the same effect as the wrapped element B1.

5.3 Lines and Sequences with arguments

A line or sequence definition can also have parameters like a MACRO (see Section 3.11). Such a line or sequence can be
nested (and instantiated) in another line or sequence, but it must have a unique namewhen instantiated in a sequence.

Examples:

CELL(X,Y):SEQUENCE,L=79;
QF&X: QF,AT=...;
Y&X: Y,L=1,AT=...;
QD&X: QD,AT=...;

ENDSEQUENCE;

When used as

CELL12: CELL(12,SF);

this expands to

CELL12:SEQUENCE,L=79;
QF12: QF,AT=...;
SF12: SF,L=1,AT=...;
QD12: QD,AT=...;

ENDSEQUENCE;

A second example:

CELL(X,Y):LINE=(D1,QF&X,D2,Y&X,D3,QD&X,D4);

If the proper drifts are used, this example is equivalent to the sequence example above.

5.4 Shared Lines

Normally, when a beam line or sequence is referred to in another line, each reference refers to a distinct copy of the line.

L:LINE=(A,B,C);
S:SEQUENCE,L=real;

...
ENDSEQUENCE;

Such a line or sequence is cloned when it is inserted in another line or sequence, thus permitting assignment of errors to
its elements without affecting other occurrences of the same line.

A beam line or sequence can be shared by using the keyword SHARED, then the line or sequence is unique, and all
references in other lines refer to the sameinstance. Example:
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// Define the interaction region common to both rings:
SHARED IR2:SEQUENCE,L=...;

...
ENDSEQUENCE;
RING1:LINE=(...,IR2,...);
RING2:LINE=(...,IR2,...);
// Now assign imperfections to IR2 wich will be seen by both rings:
EALIGN,LINE=IR2,DX=...,DY=...;

Counterexample:

// Define one superperiod of the machine:
SUPER:SEQUENCE,L=...;

...
ENDSEQUENCE;
// Each occurrence of SUPER is distinct:
RING:LINE=(8*SUPER);
// Assign different imperfections to each SUPER:
EALIGN,LINE=RING,DX=...,DY=...;

5.5 Sequence Editor

During editing of a sequence, all element positions are evaluated immediately when defined and stored as constantvalues.
To modify a sequence it must be selected for editing by the command

SEQEDIT,SEQUENCE=old-name;

MAD enters editing mode during which it only recognises the sequence editor commands (see Table 5.1), and makes the
sequence old-name the current sequence being edited. Editing mode is switched off by the command

ENDEDIT,NAME=new-name;

If new-name is non-blank, it becomes the name of the edited sequence, otherwise the modified sequence is stored under
its old name.

Command Purpose
SELECT (5.5.1) Select elements to be affected
CYCLE (5.5.2) Change starting point (cyclic interchange)
FLATTEN (5.5.3) Flatten the sequence
INSTALL (5.5.4) Install new elements
MOVE (5.5.5) Move elements
REFLECT (5.5.6) Reflect the sequence
REMOVE (5.5.7) Remove elements
REPLACE (5.5.8) Replace elements
ENDEDIT (5.5) Leave sequence edit mode

Table 5.1: Commands accepted in editor mode

5.5.1 Selecting Element(s)

Elements are selected by a command

SELECT,RANGE=range,CLASS=name,PATTERN=regex,FULL=logical,CLEAR=logical;

When the clause SELECTED is used in an editor command, that command acts on all elements currently selected. A
selection remains active until it is explicitly turned off by

SELECT,CLEAR=TRUE;
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or by an ENDEDIT command

ENDEDIT;

See also details on element selection (see Section 7.2).

5.5.2 Change Start Point

The command

CYCLE,START=place;

makes a cyclic interchange of all elements in the current edit sequence so as to start at the specified place (see Sec-
tion 2.9.1). This element should preferrably be a zero-length element like a MARKER. All further edit commands refer to
the newpositions.

5.5.3 Flatten the Sequence being Edited

The sequence loaded into the editor can be flattened by the command

FLATTEN;

This creates a copy of the sequence with all sub-lines and sub-sequences expanded, thus allowing changes also to elements
within those nested parts.

5.5.4 Install an Element

New element(s) can be installed in the edited sequence by the commands

object-name:class-name,AT=at-expression,SELECTED,attributes;
object-name:class-name,AT=at-expression,FROM=place,attributes;
object-name:class-name,AT=at-expression,attributes;
class-name,AT=at-expression,SELECTED;
class-name,AT=at-expression,FROM=place;
class-name,AT=at-expression;

It has the following attributes:

object name The name of the element to be installed. If the object name is given, attributes may also be specified to
override the attributes of the class.

classname The name of the class from which the element is to be defined.

AT The position where to install the element.

FROM Three cases are possible:

SELECTED New elements are inserted at AT=at-expression from each currently selected element.

FROM=place A new element is installed at position AT=at-expression relative to the (unique) element at
place (see Section 2.9.1).

FROM omitted or blank A new element is installed at the absolute position AT=at-expression.

Relative positions may be negative.

The two names object-name and class-name interact in the same way as for a sequence definition (see Section 5.2).
The reference points for elements is defined by the REFER attribute of the SEQUENCE.
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5.5.5 Move an Element

The commands

MOVE,SELECTED,BY=by-expression;
MOVE,ELEMENT=place,BY=by-expression;
MOVE,ELEMENT=place,TO=to-expression;
MOVE,ELEMENT=place,TO=to-expression,FROM=from-name;

move element(s) to new location(s). Three cases are possible:

SELECTED,BY=by-expression All currently selected elements are moved by by-expression.

ELEMENT=place,BY=by-expression The (unique) element at place is moved by by-expression.

ELEMENT=place,TO=to-expression The (unique) element at place is moved to the absolute positionto-expression.

ELEMENT=place,TO=to-expression,FROM=from-name The (unique) element at place (see Section 2.9.1) is moved
to position to-expression relative to element from-name. A relative position may be negative.

Except in the first case, it is an error to move more than one element with one MOVE command. The MOVE command
must not attempt to change the order of elements in the sequence; elements can not “hop” over each other.

5.5.6 Reflect a Sequence

The command

REFLECT;

reverses the order of all elements in the sequence currently being edited. All further editing commands must refer to the
new positions. The sequence members are not reflected.

5.5.7 Remove an Element

One or more element(s) can be removed by the commands

REMOVE,SELECTED;
REMOVE,ELEMENT=place;

Two cases are possible:

SELECTED Removes all currently selected elements,

ELEMENT=place Removes the single element at place (see Section 2.9.1). It is an error of name occurs more than
once in the sequence.

5.5.8 Replace an Element

The commands

REPLACE,SELECTED,BY=new-name;
REPLACE,ELEMENT=place,BY=new-name;

replace one or more element(s) in the sequence. Two cases are possible:

SELECTED All currently selected elements are replaced by an occurrence of the element new-name.

ELEMENT=old-name The (unique) element at place (see Section 2.9.1) is replaced by new-name. It is an error if
old-name is not unique.

Example:

REPLACE,ELEMENT=QF15,BY=QF17; // replace one element

54



5.5.9 Example for the Sequence Editor

SEQ:SEQUENCE,L=79.00;
B1: B, AT=19.115;
SF1: SF,AT=37.42;
QF1: QF,AT=38.70;
B2: B, AT=58.255;
SD1: SD,AT=76.74;
QD1: QD,AT=78.20;

END;

B2W:B2,ANGLE=0.1*B2->ANGLE;

EDIT,SEQUENCE=SEQ;
MOVE,ELEMENT=SF1,TO=-1.27,FROM=QF1;
MOVE,ELEMENT=SD1,BY=0.01;
REPLACE,ELEMENT=B2,BY=BS2;

END,NAME=NEWSEQ;

This example moves the two sextupoles and replaces the element B2 by the element B2W. The effect of the above RE-
PLACE command is equivalent to

INSTALL,ELEMENT=B2W,AT=0,FROM=B2;
REMOVE,CLASS=B2;

In this example a new element B2W is installed at the position of B2 and the the latter is removed. This works, since all
positions are evaluated to constants immediately.

5.6 Examples for Beam Lines

5.6.1 CERN SPS Lattice

The CERN SPS lattice may be represented using the following beam elements:

QF:QUADRUPOLE,...; // focusing quadrupole
QD:QUADRUPOLE,...; // defocusing quadrupole
B1:RBEND,...; // bending magnet of type 1
B2:RBEND,...; // bending magnet of type 2
DS:DRIFT,...; // short drift space
DM:DRIFT,...; // drift space replacing two bends
DL:DRIFT,...; // long drift space

The SPS machine is represented by the lines

SPS: LINE=(6*SUPER);
SUPER: LINE=(7*P44,INSERT,7*P44);
INSERT:LINE=(P24,2*P00,P42);
P00: LINE=(QF,DL,QD,DL);
P24: LINE=(QF,DM,2*B2,DS,PD);
P42: LINE=(PF,QD,2*B2,DM,DS);
P44: LINE=(PF,PD);
PD: LINE=(QD,2*B2,2*B1,DS);
PF: LINE=(QF,2*B1,2*B2,DS);

In order not to overload the example, small gaps between magnetic elements have been omitted.

5.6.2 LEP Lattice

A preliminary description of LEP has been given in the [7]. Translation of those element sequences to the MAD input
format gives:
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LEP: LINE=(4*SUP);
SUP: LINE=(OCT,-OCT);
OCT: LINE=(LOBS,RFS,DISS,ARC,DISL,RFL,LOBL);
LOBS:LINE=(L1,QS1,L2,QS2,L3,QS3,L4,QS4);
RFS: LINE=(L5,QS5,L5,QS6,L5,2*(QS7,L5,QS8,L5));
DISS:LINE=(QS11,L25,BW,L22,QS12,L25,B4,L22,QS13,L25,B4,

L22,QS14,L25,B4,L31,QS15,L25,B4,L32,SF,L23,QS16);
ARC: LINE=(L21,B6,L22,SD,L23,QD,

7*(CELL(SF1,SD1),CELL(SF,SD)),CELL(SF1,SD1),
L24,B6,L41,QF,L21,B6,L22,SD4,L23,QD,
7*(CELL(SF4,SD3),CELL(SF3,SD4)),CELL(SF4,SD3),
L24,B6,L22,SF3,L23);

DISL:LINE=(QL16,L34,B4,L22,QL15,L33,B4,L22,QL14,L25,B4,
L22,QL13,L25,B4,L22,QL12,L25,BW,L22,QL11);

RFL: LINE=(2*(L5,QL8,L5,QL7),L5,QL6,L5,QL5,L5);
LOBL:LINE=(QL4,L14,QL3,L13,QL2,L12,QL1,L11);
BW: LINE=(W,L26,W);
B4: LINE=(B,L26,B);
B6: LINE=(B,L26,B,L26,B);
CELL(SF,SD):LINE=(L24,B6,L22,SF,L23,QF,L21,B6,L22,SD,L23,QD);

Here the element definitions have been left out to save space.
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Chapter 6

Physics Commands

6.1 Global Reference Momentum

Before any physics computations are attempted the following command should be entered:

P0=real;

This command sets the global reference momentum in GeV/c, which is used to compute the magnetic fields from the
normalised multipole coefficients. The BEAM command (see Section 6.2) then renormalises the multipole coefficients.
This mechanism allows sending a beam with a momentum different from the design momentum through a beam line.

6.2 BEAM Command

All MAD commands working on a beam require the setting of various quantities related to this beam. These are entered
by a BEAM command:

label:BEAM,PARTICLE=name,MASS=real,CHARGE=real,
ENERGY=real,PC=real,GAMMA=real,BCURRENT=real,
EX=real,EXN=real,EY=real,EYN=real,ET=real,
KBUNCH=integer,NPART=real,BUNCHED=logical,
RADIATE=logical,DAMP=logical,QUANTUM=logical;

The label is opional, it defaults to UNNAMED BEAM. The particle mass and charge are defined by:

PARTICLE The name of particles in the machine. MAD knows the mass and the charge for the following particles:

POSITRON The particles are positrons (MASS=me, CHARGE=1),

ELECTRON The particles are electrons (MASS=me, CHARGE=-1),

PROTON The particles are protons (default, MASS=mp, CHARGE=1),

ANTIPROTON The particles are anti-protons (MASS=mp, CHARGE=-1).

For other particle names one may enter:

MASS The particle mass in GeV.

CHARGE The particle charge expressed in elementary charges.

By default the particle momentum is P0 (see Section 6.1). A different value can be defined by one of the following:

ENERGY The total energy per particle in GeV. If given, it must be greater then the particle mass.

PC The momentum per particle in GeV/c. If given, it must be greater than zero.

GAMMA The ratio between total energy and rest energy of the particles γ = E/m 0. If given, it must be greater than
one. If the mass is changed a new value for the energy should be entered. Otherwise the energy remains unchanged,
and the momentum and γ are recalculated.
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The emittances are defined by:

EX The horizontal emittance Ex = σ2
x/βx (default: 1 m).

EY The vertical emittance Ey = σ2
y/βy (default: 1 m).

ET The longitudinal emittance Et = σe/(p0c) · cσt (default: 1 m). The emittances can be replaced by the normalised
emittances and the energy spread:

EXN The normalised horizontal emittance [m]: Exn = 4βγEx (ignored if Ex is given).

EYN The normalised vertical emittance [m]: Eyn = 4βγEy (ignored if Ey is given).

SIGT The bunch length cσt [m].

SIGE The relative energy spread σe/p0c [1].

For the time being, only the particle definition (PARTICLE,MASS,CHARGE,PC,ENERGY,GAMMA) is used. The other
parameters will be implemented as needed when new commands become available.
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Chapter 7

Tables

7.1 Introduction

A typical computation in MAD Version 9 follows these steps (see Figure 7.1):

1. Define a beam line using a LINE (see Section 5.1) or SEQUENCE (see Section 5.2) command.

2. Define a beam with using BEAM (see Section 6.2) command.

3. If desired, define imperfections on the defined beam line, using one of the error commands (see Section 10).

4. If desired, attach special integrators to selected elements of the defined beam line, using SETINTEGRATOR
(see Section 7.3) commands.

5. If desired, perform an orbit correction on the defined beam line, using THREADBPM (see Section 7.5) or MICADO
(see Section 7.6) command.

6. Define a “Table Object” using one of the table (see Section 7) commands. This selects a RANGE (see Section 2.9.2)
of a beam line, and defines an algorithm to fill the table, e. g. with the lattice functions, the accumulated transfer map
from the beginning of the range to the current position, or the SURVEY data (see Section 7.4). A table remains in
memory and is recomputed as required. It is erased only if one of the contained elements or beam lines is changed.

7. If desired, apply the match module (see Section 9) to adjust parameters in the machine. The match module can
work on any number of tables simultaneously.

8. Use a LIST (see Section 7.9) command to print the contents of any table.

7.2 Element Selection

Many MAD commands allow for the possibility to process a subset of the elements occurring in a beam line (see Sec-
tion 5). For this purpose each beam line (see Section 5) and table (see Section 7) has a selection flag for each element.
The SELECT command may be used to manipulate these flags. It affects the following commands:

• EALIGN (see Section 10.3),

• EFIELD (see Section 10.4),

• EFCOM (see Section 10.4),

• EPRINT (see Section 10.5),

• ESAVE (see Section 10.6),

• SURVEY (see Section 7.4),

• TWISS (see Section 7.7),
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Figure 7.1: Schematic view of the Interaction between Objects in MAD

• ATTLIST (see Section 7.8),

• LIST (see Section 7.9),

• EIGEN (see Section 7.9.2),

• ENVELOPE (see Section 7.9.2),

• MATRIX (see Section 7.9.2),

• TWISS3 (see Section 7.9.2).

Three formats are recognised for the command:

SELECT,LINE=name,FULL;
SELECT,LINE=name,CLEAR;
SELECT,LINE=name,RANGE=range,CLASS=name,TYPE=name,PATTERN=regular_expression;

All three forms require the parameter

LINE The label of a previously defined beam line (see Section 5) or table (see Section 7) on which the selection is to be
done (no default).
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The first format sets the selection flag for all elements in the beam line and the second format clears the selection flags for
all elements.

The third format keeps all existing selections and additionally marks those elements as selected which belong to the
intersection of the following four sets:

RANGE If RANGE is omitted, the first set contains all elements; if it is given, the first set is limited to the named range
in the line. The default is equivalent to RANGE=#S/#E.

CLASS The label (see Section 2.2) of an element class (default: blank). If CLASS is omitted, the second set contains
all elements; if it is given, the set contains only the elements derived directly or indirectly from the named class.

TYPE If TYPE is omitted, the third set contains all elements; if it is given, the set contains only the elements whose
TYPE attribute is equal to the given name.

PATTERN If PATTERN is omitted, the fourth set contains all elements; if it is given, the regular expression
(see Section 2.12) is applied to all element names, and the set contains only the matching elements.

The effect of subsequent SELECT commands produces the union of all selections. If a fresh selection is desired, precede
the new SELECT command with the command

SELECT,LINE=name,CLEAR;

Example:

SELECT,LINE=X,RANGE=IP1/IP2; // (1)
SELECT,LINE=X,CLASS=BB; // (2)
SELECT,LINE=X,PATTERN=".*\.L1"; // (3)
SELECT,LINE=X,RANGE=IP1/IP2,CLASS=BB,PATTERN=".*\.L1"; // (4)
SELECT,LINE=LHC,CLASS=IP; // (5)
T:TWISS,LINE=LHC; // (6)
SELECT,LINE=T,CLASS=QUADRUPOLE; // (7)
TWISS3,TABLE=T,FILE=name,TFS; // (8)
U:TWISS,LINE=LHC; // (9)

Command (1) selects all elements from IP1 to IP2, both included. Command (2) selects all elements in the ring which
belong to or are derived from class BB. Command (3) selects all elements in the ring whose names end .L1. Command
(4) is the most restrictive, it selects all elements between IP1 and IP2 which are derived from class BB and whose names
end in .L1.

Command (5) sets the selections flags on all interaction points in line LHC. The selection is transmitted to command
(6), which generates the TWISS table T lists the default columns for the interaction points. Command (7) sets additional
selection flags on the table T for all quadrupoles, and command (8) lists the Mais-Ripken functions for all interaction
points and all quadrupoles. Command (9) gets the selection from line LHC, i. e. the selection concerns only the interaction
points.

7.3 Attach Special Integrators

By default the algorithm applied to each element in the machine is defined by the table command. It may be overridden
for selected elements by applying a SETINTEGRATOR command to attach a special integrator. It has the form

SETINTEGRATOR,LINE=name,TYPE=name,SLICES=integer;

with the meaning

LINE The name of the beam line to be affected.

TYPE The integrator type name. For the time being, only the name MPSPLITINTEGRATOR is known. This integrator
type replaces any multipole-like element (dipole, quadrupole, sextupole, octupole, general multipole) by one or
several thin lenses.

SLICES The number of thin lenses to be used. For one to four slices, the TEAPOT method of thin multipole slicing is
used, for more slices, the thin lenses are placed in equidistant places.

The command runs through all elements in the beam line, and attaches an integrator as specified by TYPE to all selected
elements.
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Table 7.1: Global read-only values in a SURVEY table

Variable Unit Name
Total arc length m L
Final X coordinate m X
Final Y coordinate m Y
Final Z coordinate m Z
Final angle theta rad THETA
Final angle phi rad PHI
Final angle psi rad PSI

7.4 Compute Geometric Layout

The SURVEY command builds a table containing the geometric layout of the machine. The table can be referred to by its
label for later manipulation. It has the following read/write attributes:

label:SURVEY,LINE=name,RANGE=range,REVERSE=logical,STATIC=logical,
X0=real,Y0=real,Z0=real,THETA0=real,PHI0=real,PSI0=real;

label:SURVEY,LINE=name,RANGE=range,REVERSE=logical,STATIC=logical,
INIT=table-row;

Its parameter list specifies the initial position and orientation of the reference orbit in the global coordinate system (see Fig-
ure 1.2) (X,Y, Z). Omitted attributes assume zero values. Valid attributes are:

LINE The label of a previously defined beam line (no default).

RANGE If this attribute is given, the table is restricted to the range given.

STATIC If this attribute is true, the table is filled at definition time, and it is then treated as frozen, even if parameters of
the machine change.

INIT If this attribute is given, the initial position and direction is taken from the specified row of another SURVEY table.
If this attribute is omitted, the initial position and direction is constructed from the attributes listed below.

X0 The initial X coordinate [m].

Y0 The initial Y coordinate [m].

Z0 The initial Z coordinate [m].

THETA0 The initial angle theta [rad].

PHI0 The initial angle phi [rad].

PSI0 The initial angle psi [rad].

Example:

GEOMETRY:SURVEY,LINE=RING;

This example computes the machine layout for the line RING with zero initial conditions and saves the result under the
name GEOMETRY.

The SURVEY table has some read-only attributes (see Table 7.1):
In each position there are table values (see Table 7.2), each of which is accessible with the syntax (see Section 2.8.6)

table-name "@" place "->" column-name

The azimuth, elevation angle, and roll angle are defined as the components of a vector. This vector points in the direction
of the rotation axis and has the rotation angle as its length. The direction cosines are the components of the unit vectors
along the local coordinate axes, expressed in the global coordinate system.

The default column set for the command LIST,ALL (see Section 7.9) contains the element name, the arc length, the
global positions and the three angles.
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Table 7.2: Column values available in a SURVEY table

Variable Unit Name
Arc length from beginning m S
Global X coordinate m X
Global Y coordinate m Y
Global Z coordinate m Z
Azimuth rad THETA
Elevation angle rad PHI
Roll angle rad PSI

Direction cosines for local axes Local axis
Global direction x y s
X W11 W12 W13
Y W21 W22 W23
Z W31 W32 W33

7.5 Orbit Threader

When the closed orbit search in a MICADO (see Section 7.6) or TWISS (see Section 7.7) command fails due to machine
imperfections, it may be possible to thread the orbit through the machine using the command

THREADBPM,LINE=name,BEAM=name,RANGE=range,TOL=real,LISTC=logical,LISTM=logical;

This command has the attributes:

LINE The label of a previously defined beam line (no default).

BEAM The label of a previously defined beam (default UNNAMED BEAM). This is used to define the type and reference
momentum for the particles to be sent through the line.

RANGE If this attribute is given, the table is restricted to the range given.

TOL The orbit is observed at all beam position monitors (BPM). When the orbit deviation exceeds TOL, a correction
is attempted. MAD backtracks to find another monitor and two correctors and tunes the latter so as to adjust the
readings of the two monitors to zero.

LISTC If true, list the corrector settings after correction.

LISTM If true, list the monitor readings after correction.

7.6 Closed Orbit Correction

Closed orbit correction with the MICADO algorithm is initiated by the command

MICADO,LINE=name,BEAM=name,RANGE=range,METHOD=name,TOL=real,
ITERATIONS=integer,CORRECTORS=integer,PLANE=name,
LISTC1=logical,LISTM1=logical,LISTC2=logical,LISTM2=logical;

This command has the attributes:

LINE The label of a previously defined beam line (no default).

BEAM The label of a previously defined beam (default UNNAMED BEAM). This is used to define the type and reference
momentum for the particles to be sent through the line.

RANGE If this attribute is given, the table is restricted to the range given.

METHOD This attribute specifies the method to be used for tracking the orbit. Known names are:

THIN Use thin lens approximations.
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LINEAR Use linear map approximation (around the closed orbit). This is the default.

THICK Use finite-length lenses.

CORRECTORS The maximum number of correctors to be used in each iteration.

TOL The tolerance for the r.m.s. closed orbit.

ITERATIONS The number of iterations desired. When this number is zero, the orbit is only checked but not corrected.
Each iteration is terminated when the imposed number of correctors has been used or when the tolerance is reached.

PLANE The plane to be corrected. Known names are:

X Correct the horizontal plane only.

Y Correct the vertical plane only.

BOTH Correct both planes (default).

LISTC1 If true, list the corrector settings before each iteration.

LISTM1 If true, list the monitor readings after each iteration.

LISTC2 If true, list the corrector settings after correction.

LISTM2 If true, list the monitor readings after correction.

7.7 Lattice Function Tables

Two commands are available to generate tables of lattice functions:

TWISS,LINE=name,BEAM=name,RANGE=range,STATIC=logical,METHOD= name,
REVBEAM=logical,REVTRACK=logical;

TWISSTRACK,BEAM=name,RANGE=range,STATIC=logical,METHOD= name,
INIT=table-row,REVBEAM=logical,REVTRACK=logical;

Either command builds a “twiss” table containing the lattice functions for a range of a previously defined beam line
(see Section 5). The first command, TWISS, uses the periodic solution for that range, while the second command,
TWISSTRACK a selected line of another twiss table. The table can be referred to by its label for later manipulation. Both
commands have the following read/write attributes:

LINE The label of a previously defined beam line (no default).

BEAM The label of a previously defined beam (default UNNAMED BEAM). This is used to define the type and reference
momentum for the particles to be sent through the line.

RANGE If this attribute is given, the table is restricted to the range given.

STATIC If this attribute is true, the table is filled at definition time, and it is then treated as frozen, even if parameters of
the machine change.

METHOD This attribute specifies the method to be used for filling the table. Known names are:

THIN Use thin lens approximations.

LINEAR Use linear map approximation (around the closed orbit). This is the default.

THICK Use finite-length lenses.

REVBEAM If true, the beam is assumed to run backwards through the beam line (from s = C to s = 0).

REVTRACK If true, the calculation proceeds in the direction opposite to the beam direction. This attribute may be
used in matching, when tracking lattice functions from a known position back to a position to be used to adjust an
insertion.

The TWISS command has the following read-only attributes:

L The total arc length [m].
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Table 7.3: Global read-only values in a TWISS table

Variable Unit Name
Revolution frequency Hz FREQ
Tune for mode 1 1 QX
Tune for mode 2 1 QY
Tune for mode 3 1 QS
Energy loss per turn MeV U0
Damping partition number for mode 1 1 JX
Damping partition number for mode 2 1 JY
Damping partition number for mode 3 1 JE

FREQ0 The computed revolution frequency in MHz.

QX The computed tune for mode 1.

QY The computed tune for mode 2.

QS The computed tune for mode 3.

U0 The computed energy loss per turn [MeV].

JX The computed damping partition number for mode 1.

JY The computed damping partition number for mode 2.

JE The computed damping partition number for mode 3.

The values related to damping exist only when the flag DAMP has been set.
The TWISSTRACK can be initialised by the following attribute:

INIT If this attribute is given, the initial position and direction is taken from the specified row of another TWISS table.

Example:

LATFUN:TWISS,LINE=CELL;

This example computes the lattice functions for CELL with zero initial conditions and saves the result under the name
LATFUN.

A table generated by TWISS (not TWISSTRACK) also has some read-only attributes (see Table 7.3):
In each the TWISS table stores the closed orbit and the transfer map from the beginning to this position. Several

column values (see Table 7.5), as well as the eigenvectors (see Table 7.6), second moments (see Table 7.7), and transfer
matrices (see Table 7.8) can be derived from this information These quantities are accessible with the syntax (see Sec-
tion 2.8.6)

table-name "@" place "->" column-name

The Courant-Snyder lattice functions are calculated in a way analogous to the lattice functions given by [6]. After
partitioning the eigenvector matrix into two by two blocks it can be factored as

E =


 E11 E12 E13

E21 E22 E23

E31 E32 E33


 = RW =


 r1I R12 R13

R21 r2I R23

R31 R32 r3I





 W1 0 0

0 W2 0
0 0 W3


 ,

where the ri are scalars and R andW are symplectic matrices. This implies

ri =
√
|Rii|, Wi = Rii/ri → |Wi| = 1, Rik = EikW

−1
i .

The lattice functions are calculated from the diagonal blocks W i. Note that the matrix R which defines the coupling
between planes is not available for output, and that the formalism breaks down when r i = 0. The default column set
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Table 7.4: Column values in a TWISS table

Variable Unit Name
Arc length from beginning m S
Horizontal position for closed orbit m XC
Horizontal momentum for closed orbit 1 PXC
Vertical position for closed orbit m YC
Vertical momentum for closed orbit 1 PYC
Longitudinal position for closed orbit m TC
Longitudinal momentum for closed orbit 1 PTC
Dispersion for horizontal position m DX
Dispersion for horizontal momentum 1 DPX
Dispersion for vertical position m DY
Dispersion for vertical momentum 1 DPY
Dispersion for longitudinal position m DT
Dispersion for longitudinal momentum 1 DPT

Plane
Courant-Snyder Functions Unit X Y T
Beta-function m BETX BETY BETT
Alpha-function 1 ALFX ALFY ALFT
Phase 1 MUX MUY MUT

Table 7.5: Some of the column values in a TWISS3 table

Plane
Mais-Ripken Functions Unit Mode X Y T

1 BETX1 BETY1 BETT1
Beta-function m 2 BETX2 BETY2 BETT2

3 BETX3 BETY3 BETT3
1 ALFX1 ALFY1 ALFT1

Alpha-function 1 2 ALFX2 ALFY2 ALFT2
3 ALFX3 ALFY3 ALFT3
1 GAMX1 GAMY1 GAMT1

Gamma-function 1/m 2 GAMX2 GAMY2 GAMT2
3 GAMX3 GAMY3 GAMT3

contains the element name, the arc length, the beta, alpha and mu functions for the transverse planes, the closed orbit
position, and the horizontal dispersion.

The Mais-Ripken functions have been introduced by [10].
The second moments (beam envelope) are defined in the sense of [2]:

Σik = Ex(Ei1Ek1 + Ei2Ek2) + Ey(Ei3Ek3 + Ei4Ek4) + Et(Ei5Ek5 + Ei6Ek6).

7.8 Listing Element Attributes

Most element attributes can be listed for a beam line or table. The elements for which the attributes should be listed are
selected by a SELECT command (see Section 7.2). The attributes are specified by the command

ATTLIST,LINE=name,FILE=name,COLUMN={string,string,...,string};

Most element attributes can be listed as columns. At present, MAD-9 does not recognize ATTRIBUTES or attributes of
a BEAMBEAM element. Example:
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Table 7.6: Eigenvector components in a EIGEN table

Eigenvector Mode 1 Mode 2 Mode 3
Component Unit real imag real imag real imag
X-component m E11 E12 E13 E14 E15 E16
PX-component 1 E21 E22 E23 E24 E25 E26
Y-component m E31 E32 E33 E34 E35 E36
PY-component 1 E41 E42 E43 E44 E45 E46
T-component m E51 E52 E53 E54 E55 E56
PT-component 1 E61 E62 E63 E64 E65 E66

Table 7.7: Second moments <X1,X2> in a ENVELOPE table

Second moment Second variable X2
First variable X1 X PX Y PY T PT
X S11 S12 S13 S14 S15 S16
PX S21 S22 S23 S24 S25 S26
Y S31 S32 S33 S34 S35 S36
PY S41 S42 S43 S44 S45 S46
T S51 S52 S53 S54 S55 S56
PT S61 S62 S63 S64 S65 S66

SELECT, LINE=LIN1, FULL;
ATTLIST, LINE=LIN1, FILE=TERM,

COLUMN={NAME,CLASS,KEYWORD,TYPE,LENGTH,K0L,UNKNOWN};

This may produce the following output:

@ TYPE %s ATTRIBUTE
@ LINE %s LIN1
@ DATE %s 11/10/1999
@ TIME %s 14.08.14
@ ORIGIN %s MAD_9.3
@ COMMENT %s ""
* NAME CLASS KEYWORD TYPE L K0L UNKNOWN
$ %s %s %s %s %le %le %le

#S MARKER MARKER Null 0 0 0
L4 DRIFT DRIFT Null 1.57 0 0
B1 RBEND RBEND Null 35.09 0.0113061 0
L2 DRIFT DRIFT Null 0.56 0 0
SF SEXT SEXTUPOLE Null 0.4 0 0
L3 DRIFT DRIFT Null 0.28 0 0
QF QUAD QUADRUPOLE MQ 1.6 0 0
L1 DRIFT DRIFT Null 1.21 0 7
B1 RBEND RBEND Null 35.09 0.0113061 0
L2 DRIFT DRIFT Null 0.56 0 0
SD SEXT SEXTUPOLE Null 0.76 0 0
L3 DRIFT DRIFT Null 0.28 0 0
QD QUAD QUADRUPOLE MQ 1.6 0 0
#E MARKER MARKER Null 0 0 0

As it can be seen, empty strings are printed as the word “Null”.
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Table 7.8: Transfer matrix elements (X2,X1) in a MATRIX table

Matrix Element Second variable X2
First variable X1 X PX Y PY T PT
X R11 R12 R13 R14 R15 R16
PX R21 R22 R23 R24 R25 R26
Y R31 R32 R33 R34 R35 R36
PY R41 R42 R43 R44 R45 R46
T R51 R52 R53 R54 R55 R56
PT R61 R62 R63 R64 R65 R66

7.9 Listing a Table

Five commands exist which permit listing of a previously generated table. All of these have the option of printing on a
file or on the terminal, and using a human-readable or a TFS format.

7.9.1 LIST Command

The most general of these commans is

LIST,TABLE=name,FILE=name,ALL=logical,COLUMN={expression,...,expression};

The attributes of this command are:

TABLE The name of the table to be listed (no default). The rows to be listed can be selected by a SELECT (see Sec-
tion 7.2) command.

FILE The name of the file to be written (default LIST). The table is written in the TFS format (see Section ??) known
from MAD Version 8. If the file name is TERM, output goes to the terminal.

TFS If true, the format is in TFS format, otherwise in a format meant for viewing with a fixed-width fount (“line-printer”
style).

ALL If true, the column selection is by default, and the column width and precision is selected by MAD. In this case
COLUMN is ignored.

COLUMN A list of column descriptors. Each column descriptor consists of a real expression (see Section 2.6), which
may also contain one or more names of columns as operands. If a name refers both to a column and to a global
parameter, the column takes precedence. The expression may optionally be followed by a format indication of the
form:

:width
:width:precision

Both width and precision are unsigned integers. width denotes the column width in characters (default 12),
and precision controls the number of digits in the column (default width-4).

Example:

list,table=su1,file=term,column={x,y,z,s*z:16:12};

7.9.2 “Canned” List Commands

Certain predefined column sets are obtainable with the commands

EIGEN,TABLE=name,FILE=name,TFS=logical;
ENVELOPE,TABLE=name,FILE=name,TFS=logical;
MATRIX,TABLE=name,FILE=name,TFS=logical;
TWISS3,TABLE=name,FILE=name,TFS=logical;
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These commands provide the following output:

EIGEN The name of the element, the arc length, the closed orbit, and the eigenvectors (see Table 7.6). The choice is
simalar to the MAD-8 command of the same name.

ENVELOPE The name of the element, the arc length, the closed orbit, and the beam envelope (see Table 7.7). The
choice is simalar to the MAD-8 command of the same name.

MATRIX The name of the element, the arc length, the closed orbit, and the accumulated matrix (see Table 7.8). There
is no MAD-8 equivalent.

TWISS3 The name of the element, the arc length, the closed orbit, and the Mais-Ripken functions (see Table 7.5). The
choice is simalar to the MAD-8 command of the same name.

The attributes of these commands are:

TABLE The name of the table to be listed (no default). The rows to be listed can be selected by a SELECT (see Sec-
tion 7.2) command.

FILE The name of the file to be written (default LIST). The table is written in the TFS format (see Section ??) known
from MAD Version 8. If the file name is TERM, output goes to the terminal.

TFS If true, the format is in TFS format, otherwise in human-readable format.
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Chapter 8

Action Commands

8.1 Normal-Form Analysis

The two commands

DYNAMIC,LINE=name,BEAM=name,FILE=string,ORDER=integer;
STATIC, LINE=name,BEAM=name,FILE=string,ORDER=integer;

both evaluate the truncated Taylor series map for one turn up to order ORDER and perform normal-form analysis on the
result. Both have the following attributes:

LINE The label of a beam line or sequence(see Section 5) defined previously (no default). Its transfer map will be
evaluated and analysed to the desired order.

BEAM The label of a BEAM command (see Section 6.2) defined previously (default = UNNAMED BEAM). It defines the
charge, kinetic energy, rest mass, and reference velocity for the reference particle.

FILE The name of the file to be written (default = ”dynamic” or ”static” respectively).

ORDER The maximum order for the map.

8.1.1 Normal-Form Analysis for Dynamic Map

The command interprets the transfer map as dynamic, i.e. there is synchrotron motion with an average momentum p s.

8.1.2 Normal-Form Analysis for Static Map

The command assumes that there are no cavities, and interprets the transfer map as static, i.e. the particles have constant
momentum. The STATIC command also finds the fixed point of the map, that is the variation of the closed orbit with
momentum.
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Chapter 9

Matching Module

Command Purpose
MATCH (9.1) Enter matching mode
name=expression (3.4.1) Parameter relation
CONSTRAINT (9.3) Impose matching constraint
VARY (9.2) Vary parameter
OPTION (9.4) Set print level
LMDIF (9.5) Minimisation by gradient method
MIGRAD (9.5) Minimisation by gradient method
SIMPLEX (9.5) Minimisation by simplex method
ENDMATCH (9.1) Leave matching mode
SURVEY (7.4) Define a survey table
TWISS (7.7) Define a periodic lattice function table
TWISSTRACK (7.7) Define a lattice function table

Table 9.1: Commands accepted in Matching Mode

9.1 Matching Mode

To initiate a matching operation, the command

MATCH;

is entered. MAD then enters “matching mode”, in which it accepts only the matching commands (see Table 9.1). Most of
the procedures have originated in the [8] program.

This command must be followed by commands to

• Define one or more tables (see Section 7) to be matched. The tables can also be defined before the MATCH command.

• Define matching constraints (see Section 9.3) on these tables.

• Define the variables (see Section 9.2) to be adjusted.

• Select the verbosity (see Section 9.4) of output.

• Initiate matching (see Section 9.5).

The ENDMATCH command terminates matching mode and deletes all tables related to a matching run:

ENDMATCH;
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9.2 Variable Parameters

A parameter to be varied is specified by the command:

VARY,NAME=variable,STEP=real,LOWER=real,UPPER=real;

It has four attributes:

NAME: The name of the parameter (see Section 3.4.1) or attribute (see Section 2.6) to be varied.

STEP: The approximate initial step size for varying the parameter. If the step is not entered, MAD tries to find a
reasonable step, but this may not always work.

LOWER: Lower limit for the parameter (optional),

UPPER: Upper limit for the parameter (optional).

Upper and/or lower limits can also be imposed via the CONSTRAINT command (see Section 9.3), which is usually faster
than entering limits on the VARY command. Examples:

VARY,PAR1,STEP=1.0E-4 // vary global parameter PAR1
VARY,QL11->K1,STEP=1.0E-6 // vary attribute K1 of the QL11
VARY,Q15->K1,STEP=0.0001,LOWER=0.0,UPPER=0.08 // vary with limits

If the upper limit is smaller than the lower limit, the two limits are interchanged. If the current value is outside the range
defined by the limits, it is brought back to range. After a matching operation all varied attributes retain their last value.
They are never reset to an old value. If a matching variable depends on another variable, this dependency is broken by the
VARY command. Example:

P1:=10.0-P2

Both P1 and P2 may be varied. If P1 is varied however, its dependence on P2 is broken.

9.3 Constraints

All constraints are imposed by the CONSTRAINT command:

CONSTRAINT,left relation right,WGT=weight;

In this command relation is one of the relational operator ==, <, or >. All of left, right, and weight are
vector expressions (see Section 3.4.3). All three must evaluate to the same number n of components. The command is
interpreted as n matching constraints like left[i] relation right[i] with a weight of weight[i], where i
runs from one to n. A wide spectrum of vector expressions are possible.

Examples. Single constraint:

CONSTRAINT,T1@M[3]->BETX==120;WGT=1;

Two constraints in the same point:

CONSTRAINT,ROW(T1,M[3],{BETX,BETY})=={120,120},WGT=TABLE(2,1);

Maximum over a range:

CONSTRAINT,COLUMN(T1,BETX,#S/#E)<200,WGT=1;

Coupling between two points:

CONSTRAINT,ROW(T1,M1,{BETX,BETY})==ROW(T1,M2,{BETX,BETY}),WGT=TABLE(2,1);

Interchange of BETX and BETY:

CONSTRAINT,ROW(T1,M1,{BETX,BETY})==ROW(T1,M2,{BETY,BETX}),WGT=TABLE(2,1);

For complex matching conditions in Version 8 of MAD one had to introduce ancillary variables. Several quantities
could then be tied to such a variable, resulting in coupling between these quantities. This is no longer needed in Version 9,
as can be seen from these examples.
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9.4 Matching Output Level

The OPTION command sets the output level for matching:

OPTION,LEVEL=integer;

Recognised level numbers are:

0 Minimum printout: Messages and final values only,

1 Normal printout: Messages, initial and final values,

2 Like LEVEL=1, plus every tenth new minimum found,

3 Like LEVEL=2, plus every new minimum found,

4 Like LEVEL=3, plus eigenvalues of covariance matrix (MIGRAD method only).

Example:

OPTION,LEVEL=2;

9.5 Matching Methods

9.5.1 LMDIF, Gradient Minimisation

The LMDIF command minimises the sum of squares of the constraint functions using their numerical derivatives:

LMDIF,CALLS=integer,TOLERANCE=real;

It is the fastest minimisation method available in MAD. The command has two attributes:

CALLS The maximum number of calls to the penalty function (default: 1000).

TOLERANCE The desired tolerance for the minimum (default: 10−6).

Example:

LMDIF,CALLS=2000,TOLERANCE=1.0E-8;

9.5.2 MIGRAD, Gradient Minimisation

The MIGRAD command minimises the penalty function using its numerical derivatives of the sum of squares:

MIGRAD,CALLS=integer,TOLERANCE=real,STRATEGY=1;

The command has three attributes:

CALLS The maximum number of calls to the penalty function (default: 1000).

TOLERANCE The desired tolerance for the minimum (default: 10−6).

STRATEGY A code for the strategy to be used (default: 1). The user is referred to the MINUIT manual for [8].

Example:

MIGRAD,CALLS=2000,TOLERANCE=1.0E-8;

9.5.3 SIMPLEX, Minimisation by Simplex Method

The SIMPLEX command minimises the penalty function by the simplex method:

SIMPLEX,CALLS=integer,TOLERANCE=real;

The user is referred to the MINUIT manual for [8]. The command has two attributes:

CALLS The maximum number of calls to the penalty function (default: 1000).

TOLERANCE The desired tolerance for the minimum (default: 10−6).

Example:

SIMPLEX,CALLS=2000,TOLERANCE=1.0E-8;
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9.6 Matching Examples

9.6.1 Simple Periodic Beam Line

Match a simple cell with given phase advances:

// Some definitions:
QF: QUADRUPOLE,...;
QD: QUADRUPOLE,...;
EM: MARKER;
CELL1: LINE=(...,QF,...,QD,...,EM);
P0 = ...;
BEAM1: BEAM,PC=P0;
TW1: TWISS,LINE=CELL1,BEAM=BEAM1,METHOD=LINEAR;

// Match CELL1:
MATCH;

VARY,NAME=QD->K1,STEP=0.01;
VARY,NAME=QF->K1,STEP=0.01;
CONSTRAINT,ROW(TW1,EM,{MUX,MUY})=={0.25,1/6};
LMDIF,CALLS=200;

ENDMATCH;

9.6.2 Insertion Matching

Match an insertion INSERT to go between two different cells CELL1 and CELL2:

// Some definitions:
BI: MARKER;
EI: MARKER;
BM: MARKER;
EM: MARKER;
CELL1: LINE=(...);
CELL2: LINE=(...);
INSERT: LINE=(...);
MAIN: LINE=(BM,CELL1,BI,INSERT,EI,CELL2,EM);
P0 = ...;
BEAM1: BEAM,PC=P0;
C1: TWISS,LINE=CELL1,BEAM=BEAM1,METHOD=LINEAR,RANGE=BM/BI,STATIC;
C1: TWISS,LINE=CELL2,BEAM=BEAM1,METHOD=LINEAR,RANGE=EI/EM,STATIC;
MATCH;

INS: TWISS,LINE=INSERT,BEAM=BEAM1,METHOD=LINEAR,RANGE=BI/EI;
VARY,...;
CONSTRAINT,

ROW(C1,BI,{BETX,ALFX,BETY,ALFY})==ROW(INS,BI,{BETX,ALFX,BETY,ALFY}),
WGT={10,1,10,1};

CONSTRAINT,
ROW(C2,EI,{BETX,ALFX,BETY,ALFY})==ROW(INS,EI,{BETX,ALFX,BETY,ALFY}),
WGT={10,1,10,1};

CONSTRAINT,ROW(INS,EI,{MUX,MUX})={...,...},WGT={10,10};
SIMPLEX;
MIGRAD;

ENDMATCH;

This matches the optical functions BETX,ALFX,BETY,ALFY to fit together at the markers BI,EI, and the phase ad-
vances over the insertion.
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9.6.3 A Matching Example for LHC

In this case we impose constraints on maximum values of BETX. This is done by means of the vector to scalar function
VMAX (see Section 3.4.3) with the vector-valued function COLUMN (see Section 3.4.3).

MATCH;
BIR2:TWISS,LINE=LHC,RANGE=CELL23;
IR2:TWISSTRACK,LINE=LHC,RANGE=S.DS.L2/E.DS.R2,INIT=BIR2@S.DS.L2,

METHOD=LINEAR;

// Some constraints
...;

// (Part of the ) beta limitation in the dispersion suppressor
CONSTRAINT,VMAX(COLUMN(IR2,BETX,S.DS.L2/Q7.L2)) < BETMAX,WGT=10;
CONSTRAINT,VMAX(COLUMN(IR2,BETX,Q7.L2/Q5A.L2)) < 350.0, WGT=10;
CONSTRAINT,VMAX(COLUMN(IR2,BETX,Q5A.R2/Q7.R2)) < 350.0, WGT=10;
CONSTRAINT,VMAX(COLUMN(IR2,BETX,Q7.R2/E.DS.R2)) < BETMAX,WGT=10;

// Some strength limits
CONSTRAINT,KQ4.L2 > -9.6E-3,WGT=1;
CONSTRAINT,KQ5.L2 < 9.6E-3,WGT=1;
CONSTRAINT,KQ6.L2 > -9.6E-3,WGT=1;
CONSTRAINT,KQ7.L2 < 9.6E-3,WGT=1;

// Vary commands
...;

// Matching method
OPTION,LEVEL=3;
LMDIF,CALLS=200,TOLERANCE=1.E-16;

ENDMATCH;
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Chapter 10

Error Definitions

10.1 Error Commands

Command Purpose
name=expression (3.4.1) Parameter relation
ERROR (10.2) Start error mode
SELECT (7.2) Select elements to be affected
EALIGN (10.3) Define misalignment errors
EFIELD (10.4) Define multipole field errors (by amplitude and rotation)
EFCOMP (10.4) Define multipole field errors (by components)
EPRINT (10.5) Print error definitions
ESAVE (10.6) Save error definitions to file
ENDERROR (10.2) End error mode

Table 10.1: Error Commands

10.2 Error Mode

For all error-defining commands (see Table 10.1), the beam line (see Section 5.1) or sequence (see Section 5.2) to be
affected must be specified with the command

ERROR,LINE=name,SEED=real,ADD=logical,CLEAR=logical;

It has the following attributes:

LINE The line to be affected.

SEED Selects a particular sequence of random values. A SEED value is an integer in the range [0...999999999] (default:
123456789). SEED can be an expression. See also: random values (see Section 2.8.5).

ADD If this value is entered as true, the subsequent error definitions are added to any existing ones. Otherwise, the
subsequent error definitions overwrite any existing ones.

CLEAR If this value is true, all errors are erased from the given line.

After this command MAD enters “error mode”, in which it accepts only the error defining commands (see Table 10.1).
Normal mode is resumed by entering the command

ENDERROR;

It is possible to assign alignment errors and field errors to single beam elements or to ranges of beam elements. Errors can
be entered both with given or with random values.
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10.3 Define Misalignments

Alignment errors are defined by the EALIGN command. The misalignments refer to a local reference system (see Fig-
ure 1.1) for a perfectly aligned machine, placed half-way through the element on the design orbit. Possible misalignments
are displacements along the three coordinate axes, and rotations about the coordinate axes. Alignment errors can be
assigned to all beam elements except drift spaces. The effect of misalignments is treated in a linear approximation.

Beam position monitors (see Section 4.16) can be given read errors in both horizontal and vertical planes. Monitor
read errors are ignored for all other elements. Each new EALIGN statement replaces the misalignment errors for all
elements in its range, unless ERROR,ADD has been entered.

The elements to be misaligned must first be selected by the SELECT command (see Section 7.2). Alignment errors
can then be defined by the statement

EALIGN,DX=real,DY=real,DS=real,DPHI=real,DTHETA=real,DPSI=real,
MREX=real,MREY=real;

Its attributes are:

DX The misalignment in the x-direction for the entry of the beam element (default: 0 m). A positive value displaces the
element in the positive x-direction (see Figure 10.1).

DY The misalignment in the y-direction for the entry of the beam element (default: 0 m). A positive value displaces the
element in the positive y-direction (see Figure 10.2).

DS The misalignment in the s-direction for the entry of the beam element (default: 0 m). A positive value displaces the
element in the positive s-direction (see Figure 10.1).

DPHI The rotation around the x-axis, (default: 0 rad). A positive angle (see Figure 10.1) gives a greater x-coordinate for
the exit than for the entry.

DTHETA The rotation around the y-axis (default: 0 rad) according to the right hand rule (see Figure 10.1).

DPSI The rotation around the s-axis (default: 0 rad) according to the right hand rule (see Figure 10.3).

MREX The horizontal read error for a beam position monitor (default: 0 m). This is ignored if the element is not a
monitor For a positive value (see Figure 10.4) the reading for x is too high.

MREY The vertical read error for a beam position monitor (default: 0 m). This is ignored if the element is not a monitor.
For a positive value (see Figure 10.4) the reading for y is too high.

Example:

EALIGN,QF[2],DX=0.002,DY=0.0004*RANF(),DPHI=0.0002*GAUSS();

See also:

• Deferred Expressions (see Section 2.8.5),

• Random Generators (see Section 2.8.5).

10.4 Define Field Errors

Field errors can be entered as relative or absolute errors. Different multipole components can be specified with different
kinds of errors (relative or absolute). If an attempt is made to assign both a relative and an absolute error to the same
multipole component, the absolute error is used and a warning is given. Relations between absolute and relative field
errors are listed below.

All field errors are specified as the integrated value
∫
Kkds of the field components along the magnet axis in m−k. At

present field errors may only affect field components allowed as normal components in a magnet. This means for example
that a dipole may have errors of the type dipole, quadrupole, sextupole, and octupole; but not of the type decapole. There
is no provision to specify a global relative excitation error affecting all field components in a combined function magnet.
Such an error may only be entered by defining the same relative error for all field components.

First the elements to be affected must be selected by the SELECT command (see Section 7.2). Field errors can then
be specified for magnetic elements by one of the statements
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Figure 10.2: Example of Misplacement in the (y, s)-plane.

EFIELD,ORDER=integer,RADIUS=real,ROT=deferred-vector,
DKR=deferred-vector,DK=deferred-vector;

EFCOMP,ORDER=integer,RADIUS=real,
DKN=deferred-vector,DKS=deferred-vector,
DKNR=deferred-vector,DKSR=deferred-vector;

Each new EFIELD or EFCOMP statement replaces the field errors for all selected elements. Any old field errors present
in the range are discarded or incremented depending on the setting of ERROR,ADD. EFIELD defines the error in terms
of relative or absolute amplitude and rotation; while EFCOMP defines them in terms of relative or absolute components.

Both commands have the attributes:

ORDER If relative errors are entered for multipoles, this defines the order of the base component to which the relative
errors refer. The default is zero.

RADIUS Radius R were the relative components are specified (default 1 m). This attribute is required if any relative
component is used.

The command EFIELD has the following additional attributes:

DK A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the absolute error
amplitude for the multipole strength with (2k + 2)-poles (default: 0mk).

DKR A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the relative error
amplitude for the multipole strength with (2k + 2)-poles (default: 0mk).

ROT A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the rotation angle
(see Figure 10.3) for the multipole strength with (2k + 2)-poles (default: 0 rad).

The command EFCOMP has the following additional attributes:
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DKN A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the absolute error
for the normal multipole strength with (2k + 2)-poles (default: 0mk).

DKS A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the absolute error for
the skew multipole strength with (2k + 2)-poles (default: 0mk).

DKNR A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the relative error
for the normal multipole strength with (2k + 2)-poles (default: 0mk).

DKSR A vector (see Section 3.4.3) of deferred expressions (see Section 2.8.5). Its component k is the relative error
for the skew multipole strength with (2k + 2)-poles (default: 0mk).

All random vectors have an unlimited length.
Examples:

EFIELD,DK={0,0.0025*RANF(),0,0,0,DK(5)=0.0092*GAUSS()};
EFIELD,DKR={0,0,0,0.0025*RANF(),0,DKR(5)=0.0092*GAUSS()};

See also:

• Multipole Field Errors (see Section 10.4),

• Sign Conventions for magnetic fields (see Section 1.5),

• Attribute Vectors (see Section 3.4.3)

• Deferred Expressions (see Section 2.8.5),

• Random Generators (see Section 2.8.5).

79



10.4.1 Multipole Field Errors

Multipole field errors can be assigned to all multipole-like elements:

• RBEND (see Section 4.7),

• SBEND (see Section 4.7),

• QUADRUPOLE (see Section 4.8),

• SEXTUPOLE (see Section 4.9),

• OCTUPOLE (see Section 4.10),

• MULTIPOLE (see Section 4.11),

The main field and the error field are evaluated separately and then added. Error field components can be absolute or
relative values. Relative errors are referred to the amplitude of the nominal component of order ORDER = n (default = 0),
taken at the radius RADIUS = R (default = 1).

Given the factors

ψk = (k + 1) ∗ ROT[k], ck = cosψk, sk = − sinψk, fk = RADIUS[k](k − n) ∗ n!/k!.

the field components δKkn (normal) and δKks (skew) are computed as follows from the input data:

δKkn = ckDK[k] = fkckDKR[k] = DKN[k] = fkDKNR[k]
δKks = skDK[k] = fkskDKR[k] = DKS[k] = fkDKSR[k]

The first line gives the normal components, the second line the skew components.

10.5 Print Machine Imperfections

Before imperfections can be listed, the elements to be printed must be selected by a SELECT command (see Section 7.2).
Then a table of errors assigned to these elements can be printed by the command

EPRINT,FILE=string,ALIGN=logical,FIELD=logical,ORDER=integer,RADIUS=real;

The command has the following attributes:

FILE The file to receive the output.

ALIGN If true, the alignment errors are printed.

FIELD If true, the field errors are printed.

ORDER The order used for normalizing, like on EFIELD and EFCOMP.

RADIUS The radius used for normalizing, like on EFIELD and EFCOMP.

10.6 Save Machine Imperfections

Before imperfections can be saved, the elements to be saved must be selected by a SELECT command (see Section 7.2).
The element imperfections can then be saved to a file with the command

ESAVE,FILE=string,ALIGN=logical,FIELD=logical,ORDER=integer,RADIUS=real;

This command saves a table of errors assigned to elements on a file, using a format which can be read again by MAD
to obtain the same results. This allows dumping the errors and reloading them for the same line. Field errors are saved
as relative errors, and the RADIUS and ORDER must be entered as used on the EFIELD (see Section 10.4) or EFCOMP
(see Section 10.4) commands. If OPTION,MAD8 (see Section 3.3) is active, the output is given in MAD-8 format. The
command has the following attributes:

FILE The file to receive the output.
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ALIGN If true, the alignment errors are saved.

FIELD If true, the field errors are saved.

ORDER The order used for normalizing, like on EFIELD and EFCOMP.

RADIUS The radius used for normalizing, like on EFIELD and EFCOMP.
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Chapter 11

Tracking

Command Purpose
TRACK (11.1) Enter tracking mode
name=expression (3.4.1) Parameter relation
START (11.2) Define initial conditions
RUN (11.3) Run particles for specified number of turns
TSAVE (11.4) Save end conditions
ENDTRACK (11.1) Leave tracking mode

Table 11.1: Commands accepted in Tracking Mode

11.1 Track Mode

Before starting to track, a working beam line (see Section 5.1) or sequence (see Section 5.2) and a beam (see Section 6.2)
must be selected by the command

TRACK,LINE=name,BEAM=name;

This command causes MAD to enter “tracking mode”, in which it accepts only the track commands (see Table 11.1). The
attributes of the command are:

LINE The label of a preceding LINE (see Section 5.1) or SEQUENCE (see Section 5.2) (no default).

BEAM The namedBEAM command defines the particle mass, charge and reference momentum (default: UNNAMED BEAM).

Particles are tracked in parallel i.e. the coordinates of all particles are transformed at each beam element as it is reached.
MAD leaves track mode when it sees the command

ENDTRACK;

11.2 Define Initial Conditions

The START command defines the initial coordinates of the particles to be tracked. There may be many START statements,
one for each particle. Particles are always started with coordinates relative to the computed closed orbit for the defined
energy error. The command format is:

START,X=real,PX=real,Y=real,PY=real,T=real,DELTAP=real;
START,FX=real,PHIX=real,FY=real,PHIY=real,FT=real,PHIT=real;

START statements must be entered after the TRACK command (see Section 11.1), but before the RUN command (see Sec-
tion 11.3).
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11.2.1 Absolute Particle Positions

The first form of the START command (see Section 11.2) defines absolute particle positions (see Section 1.6):

X Horizontal position x, referred to the ideal orbit [m].

PX Horizontal canonical momentum, divided by the reference momentum [1].

Y Vertical position y, referred to the ideal orbit [m].

PY Vertical canonical momentum, divided by the reference momentum [1].

T The negative time difference, multiplied by the instantaneous velocity of the particle [m].

PT Momentum error, divided by the reference momentum [1].

11.2.2 Normalised Particle Positions

The second form of the START command defines normalised particle positions (see Section 1.6.2):

FX The normalised amplitude for mode 1 [1]:

PHIX The phase for mode 1 [1]: φx = − arctan(pxn/xn)/2π,

FY The normalised amplitude for mode 2 [1]:

PHIY The phase for mode 2 [1]: φy = − arctan(pyn/yn)/2π,

FT The normalised amplitude for mode 3 [1]:

PHIT The phase for mode 3 [1]: φt = + arctan(ptn/tn)/2π,

11.2.3 Initial Conditions

Mixing absolute and normalised positions is possible, in this case the results are added. Initial conditions Z in unnor-
malised phase space are related to the closed orbit and the absolute and normalised coordinates as follows:

Z = Zco +
√
ExFX(�Vk cosPHIX+ �Vk sinPHIX)

+
√
EyFY(�Vk cosPHIY+ �Vk sinPHIY)

+
√
EtFT(�Vk cosPHIT+ �Vk sinPHIT)

where Zco is the closed orbit vector, and Z is the vector

Z = (X,PX,Y,PY,T,PT)T ,

and �Vk and �Vk are the real and imaginary parts of the k th eigenvector, which are computed in the TRACK command
(see Section 11.1).

11.3 Track Particles for a Specified Number of Turns

This command starts or continues the actual tracking:

RUN,METHOD=name,FILE=string,TURNS=integer;

The RUN command initialises tracking and uses the most recent particle bunch for initial conditions. The particle positions
may be the result of previous tracking, or they may have been generated by START commands (see Section 11.2). The
command writes a file of particle positions. Its attributes are:

METHOD The name of the tracking method to be used. For the time being only one method is known:

THIN All elements are treated a s thin lenses. This is the fastest of the known method which do not lump elements.

FILE The name of the file to be writen (default=”track”).

TURNS The number of turns (integer) to be tracked (default: 1).

Example:

RUN,TURNS=1000,FILE="table";

This command tracks 1000 turns and writes the results on file table.
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11.4 Save Particle Positions

The command

TSAVE,FILE=string;

saves the most recent particle bunch positions on the file named by string. These will normally be the positions of
surviving particles after the most recent RUN command (see Section 11.3). If no RUN command has been seen yet, the
positions are the result of any START commands (see Section 11.2) seen. The positions are written as START commands,
and the file may be read by a subsequent tracking run.

11.5 Tracking Example

L: LINE=(OCT,-OCT);
// Misalignments and closed orbit correction may be done here.
P0=60.0;
B:BEAM,ENERGY=60.0;
TRACK,LINE=L,BEAM=B;

START,X=0.001,Y=0.001,PT=0.001;
RUN,TURNS=1024;

ENDTRACK;
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Appendix A

MAD-9 Language Syntax

Words in italic font are syntactic entities, and characters in monospaced font must be entered as shown. Comments
are given in bold font.

Statements:
comment : // anything-except-newline

| /* anything-except-*/ */
identifier : [a-zA-Z][a-zA-Z0-9-]
integer : [0-9]+
string : ’anything-except-single-quote’

| "anything-except-double-quote"
command : keyword attribute-list

| label : keyword attribute-list
keyword : identifier
label : identifier
attribute-list : empty

| attribute-list , attribute
attribute : attribute-name // only for logical attribute

| attribute-name = attribute-value // expression evaluated
| attribute-name := attribute-value // expression retained

attribute-name : identifier
attribute-value : string-expression

| logical-expression
| real-expression
| array-expression
| constraint
| variable-reference
| place
| range
| token-list
| token-list-array
| regular-expression
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Real expressions:

real-expression : real-term
| + real-term
| - real-term
| real-expression + real-term
| real-expression - real-term

real-term : real-factor
| real-term * real-factor
| real-term / real-factor

real-factor : real-primary
| real-factor ˆ real-primary

real-primary : real-literal
| symbolic-constant
| #
| real-name
| array [ index ]
| object-name -> real-attribute
| object-name -> array-attribute [ index ]
| table-reference
| real-function ()
| real-function ( real-expression )
| real-function ( real-expression , real-expression )
| function-of-array ( array-expression )
| ( real-expression )

real-function : RANF
| GAUSS
| USER0
| SI
| SC
| SO
| ABS
| TRUNC
| ROUND
| FLOOR
| CEIL
| SIGN
| SQRT
| LOG
| EXP
| SIN
| COS
| ABS
| TAN
| ASIN
| ACOS
| ATAN
| TGAUSS
| USER1
| ATAN2
| MAX
| MIN
| MOD
| POW
| USER2
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function-of-array : VMIN
| VMAX
| VRMS
| VABSMAX

Real variables and constants:
real-prefix : empty

| REAL
| REAL CONST
| CONST

real-definition : real-prefix real-name = real-expression // expression evaluated
| real-prefix real-name := real-expression // expression ratained

symbolic-constant : PI
| TWOPI
| DEGRAD
| RADDEG
| E
| EMASS
| PMASS
| CLIGHT
| real-name

real-name : identifier
object-name : identifier
table-reference : table-name @ place -> column-name
table-name : identifier
column-name : identifier

Logical expressions:

logical-expression : and-expression
| logical-expression || and-expression

and-expression : relation
| and-expression && relation

relation : logical-name
| TRUE
| FALSE
| real-expression relation-operator real-expression

logical-name : identifier
relation-operator : ==

| !=
| <
| >
| >=
| <=

Logical variables:

logical-prefix : BOOL
| BOOL CONST

logical-definition : logical-prefix logical-name = logical-expression // expression evaluated
| logical-prefix logical-name := logical-expression // expression retained
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String expressions:

string-expression : string
| identifier // taken as a string
| string-expression & string

String constants:

string-prefix : STRING
string-definition : string-prefix string-name = string-expression // expression evaluated

| string-prefix string-name := string-expression // expression retained

Real array expressions:

array-expression : array-term
| + array-term
| - array-term
| array-expression + array-term
| array-expression - array-term

array-term : array-factor
| array-term * array-factor
| array-term / array-factor

array-factor : array-primary
| array-factor ˆ array-primary

array-primary : { array-literal }
| array-reference
| table-generator
| row-reference
| column-reference
| real-function ( array-expression )
| ( array-expression )

table-generator | TABLE ( last , real-expression )
: TABLE ( first : last , real-expression )
: TABLE ( first : last : step , real-expression )

first : integer
last : integer
step : integer
table-row : table-name @ place
row-reference : ROW ( table-name , place ) |

| ROW ( table-name , place , { column-list })
column-reference : COLUMN ( table-name , column-name )

| COLUMN ( table-name , column-name , range )
column-list : column-name

| column-list , column-name
array-literal : real-expression

| array-literal , real expression
array-reference : array-name

| object-name -> array-attribute
array-name : identifier

Real array definitions:

array-prefix : REAL VECTOR
array-definition : array-prefix array-name = array-expression

| array-prefix array-name := array-expression

88



Constraints:

constraint : array-expression constraint-operator array-expression
constraint-operator : ==

| <
| >

Variable references:
variable-reference : real-name

| object-name -> attribute-name

Places:
place : element-name

| element-name [ integer ]
| #S
| #E
| #integer
| line-name :: place

Ranges:

range : place
| place / place

Token lists:

token-list : anything-except-comma
token-list-array : token-list

| token-list-array , token-list

Regular expressions:

regular-expression : "UNIX-regular-expression"

89



Bibliography

[1] Karl L. Brown. A First-and Second-Order Matrix Theory for the Design of Beam Transport Systems and Charged
Particle Spectrometers. SLAC 75, Revision 3, SLAC, 1972.

[2] Karl L. Brown, D. C. Carey, Ch. Iselin, and F. Rothacker. TRANSPORT — A Computer Program for Designing
Charged Particle Beam Transport Systems. CERN 73-16, revised as CERN 80-4, CERN, 1980.

[3] E. D. Courant and H. S. Snyder. Theory of the alternating gradient synchrotron. Annals of Physics, 3:1–48, 1958.

[4] Ph. Defert, Ph. Hofmann, and R. Keyser. The Table File System, the C Interfaces. LAW Note 9, CERN, 1989.

[5] A. Dragt. Lectures on Nonlinear Orbit Dynamics, 1981 Summer School on High Energy Particle Accelerators, Fermi
National Accelerator Laboratory, July 1981. American Institute of Physics, 1982.

[6] D. A. Edwards and L. C. Teng. Parametrisation of linear coupled motion in periodic systems. IEEE Trans. on Nucl.
Sc., 20:885, 1973.

[7] LEP Design Group. Design Study of a 22 to 130 GeV e+e− Colliding Beam Machine (LEP). CERN/ISR-LEP/79-33,
CERN, 1979.

[8] F. James. MINUIT, A package of programs to minimise a function of n variables, compute the covariance matrix,
and find the true errors. program library code D507, CERN, 1978.

[9] D. E. Knuth. The Art of Computer Programming. Volume 2, Addison-Wesley, second edition, 1981. Semi-numerical
Algorithms.

[10] H. Mais and G. Ripken, Theory of Coupled Synchro-Betatron Oscillations. DESY internal Report, DESY M-82-05,
1982.
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ALFX2, 66
ALFX3, 66
ALFXS, 47
ALFY, 66
ALFY1, 66
ALFY2, 66
ALFY3, 66
ALFYS, 47
ALIGN, 80, 81
ALL, 68
ANGLE, 39, 45
angle, 8
ANTIPROTON, 57
APERTURE, 38
argument

line, 51
sequence, 51

array
logical, 26
real, 26
string, 28
token list, 28

assignment, 32
AT, 50, 53
ATTLIST, 66
attribute

element, 37
name, 16, 37
unknown, 38
valu, 37
value, 16, 17

azimuth angle, 8

BEAM, 57, 63, 64, 82
beam envelope, 66
BEAMBEAM, 46
BEAMINT, 46

betatron motion, 8
BETRF, 43
BETT, 66
BETT1, 66
BETT2, 66
BETT3, 66
BETX, 66
BETX1, 66
BETX2, 66
BETX3, 66
BETXS, 47
BETY, 66
BETY1, 66
BETY2, 66
BETY3, 66
BETYS, 47
BOTH, 64
bunch

length, 58
BY, 54

CALL, 34
CALLS, 73
canonical variables, 13
cavity, 43
CENTRE, 49
CHARGE, 46, 57
charge, 57
CLASS, 61
class

of elements, 37
CLEAR, 53, 76
CLOSE, 33
closed

orbit, 7
closed orbit, 63
collimator, 44
COLUMN, 28, 68
command

format, 16–28
keyword, 16
label, 16

comment, 16
constant, 21

real, 32
CONSTRAINT, 72
constraint, 24
control statements, 29–36
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conventions, 7–14
coordinate

change, 44, 45
CORRECTORS, 64
Courant-Snyder, 65
CYCLE, 53

data base, 33
DEBUG, 33
design

orbit, 7
displacement, 8
DK, 78
DKN, 79
DKNR, 79
DKR, 78
DKS, 79
DKSR, 79
DOOM, 33

command, 33
DPHI, 77
DPSI, 77
DPT, 66
DPX, 66
DPXS, 47
DPY, 66
DPYS, 47
DRIFT, 39, 50
DS, 45, 77
DT, 66
DTHETA, 77
DX, 45, 47, 66, 77
DXS, 47
DY, 45, 47, 66, 77
DYNAMIC, 70
dynamic

normal form, 70
DYS, 47
DZ, 47

E1, 40
E11, 67
E12, 67
E13, 67
E14, 67
E15, 67
E16, 67
E2, 40
E21, 67
E22, 67
E23, 67
E24, 67
E25, 67
E26, 67
E31, 67
E32, 67
E33, 67
E34, 67

E35, 67
E36, 67
E41, 67
E42, 67
E43, 67
E44, 67
E45, 67
E46, 67
E51, 67
E52, 67
E53, 67
E54, 67
E55, 67
E56, 67
E61, 67
E62, 67
E63, 67
E64, 67
E65, 67
E66, 67
EALIGN, 77
ECHO, 30, 34
echo of commands, 34
ECOLLIMATOR, 44
edit

element, 47
sequence, 52

editor examples, 55
Edwards-Teng, 65
EFCOMP, 77
EFIELD, 77
EIGEN, 69
ELECTRON, 57
ELEMENT, 54
element, 37–47

attribute, 37
class, 37
editing, 47
format, 37
keyword, 37
label, 37
range, 24
selection, 23, 59
shared, 38

ELSEPARATOR, 43
emittance

horizontal, 58
longitudinal, 58
normalised, 58
vertical, 58

ENDEDIT, 52
ENDERROR, 76
ENDMATCH, 71
ENDTRACK, 82
ENERGY, 57
energy, 57

spread, 58
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ENTRY, 49
ENVELOPE, 69
EPRINT, 80
ERROR, 76
error

alignment, 77
field, 7, 77
misalignment, 7
print, 80
save, 80

error mode, 76
errors, 76–81
ESAVE, 80
ET, 58
EX, 43, 58
examples

matching, 74–75
EXIT, 50
EXN, 58
expression

constant, 21
operand, 20
operator, 20

EXS, 47
EY, 43, 58
EYN, 58
EYS, 47

FAST, 47
FIELD, 80, 81
field

components, 13
error, 7, 77
fringe, 7
signs, 12
vector potential, 13

FILE, 68–70, 80, 83, 84
FINT, 40
format

commands, 16
element, 37

FREQ, 65
FREQ0, 65
fringe field, 7
FROM, 50, 53, 54
FT, 83
FX, 83
FY, 83

GAMMA, 57
GAMT1, 66
GAMT2, 66
GAMT3, 66
GAMX1, 66
GAMX2, 66
GAMX3, 66
GAMY1, 66
GAMY2, 66

GAMY3, 66
global

reference, 7, 8
gradient minimisation, 73

H1, 40
H2, 40
HARMON, 43
HELP, 29
HGAP, 40
HKICK, 42
HKICKER, 42
HMONITOR, 43
horizontal displacement, 8

identifier, 17
IF, 35
imperfections, 76
INFO, 30
INIT, 62, 65
INSTALL, 53
integrator, 61
interaction

beam-beam, 46
ITERATIONS, 64

JE, 65
JX, 65
JY, 65

K0, 39
K0S, 39
K1, 39, 40
K1S, 40, 41
K2, 40, 41
K2S, 40, 41
K3, 40, 41
K3S, 40, 41
keyword, 17

command, 16
element, 37

KICK, 42
KICKER, 42
KN, 41
KS, 42

L, 39–44, 50, 62, 64
label, 17

command, 16
element, 37

LAG, 43
lattice functions, 64
LEP, 55
limits

matching, 72
LINE, 48, 60–64, 70, 76, 82
line, 48–49

argument, 51
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shared, 51
LINEAR, 64
LIST, 68
list, 66–69
LISTC, 63
LISTC1, 64
LISTC2, 64
LISTM, 63
LISTM1, 64
LISTM2, 64
LMDIF, 73
local

reference, 9
logical, 18

variable, 31
logical array, 26
longitudinal displacement, 8
LOWER, 72

MACRO, 36
MAD8, 30
Mais-Ripken, 66
MAKESEQ, 35
MARKER, 39
MASS, 57
mass, 57
MATCH, 71
matching, 71–75

limits, 72
methods, 73
output, 73

MATRIX, 69
METHOD, 63, 64, 83
MICADO, 63
MIGRAD, 73
misalignment, 7, 77
mode

error, 76
momentum, 57
MONITOR, 43
MOVE, 54
MPSPLITINTEGRATOR, 61
MREX, 77
MREY, 77
MULTIPOLE, 41
MUT, 66
MUX, 66
MUY, 66

NAME, 72
name, 17

attribute, 16, 37
NEXT, 50
normal form

dynamic, 70
static, 70

normalised emittance, 58
normalised variables, 14

NOUPDATE, 33
NPART, 46
NSLI, 47

OCTUPOLE, 41
OPEN, 33
operand, 20
operator, 20
OPTION, 30, 73
orbit

closed, 7
design, 7
reference, 7

orbit correction, 63
orbit corrector, 42
orbit threader, 63
ORDER, 70, 78, 80, 81

P0, 57
page title, 34
parameter, 30
PARTICLE, 57
particle

charge, 57
energy, 57
mass, 57
momentum, 57

PATCH, 45
PATTERN, 61
PC, 57
PG, 43
PHI, 47, 62, 63
PHI0, 62
PHIT, 83
PHIX, 83
PHIY, 83
physical

element, 37
physical units, 14
pitch angle, 8
place, 23
PLANE, 64
POSITRON, 57
PREVIOUS, 50
print

errors, 80
program control, 29
PROTON, 57
PSI, 62, 63
PSI0, 62
PT, 83
PTC, 66
PX, 83
PXC, 66
PY, 83
PYC, 66

QS, 65
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QUADRUPOLE, 40
QX, 65
QY, 65

R11, 68
R12, 68
R13, 68
R14, 68
R15, 68
R16, 68
R21, 68
R22, 68
R23, 68
R24, 68
R25, 68
R26, 68
R31, 68
R32, 68
R33, 68
R34, 68
R35, 68
R36, 68
R41, 68
R42, 68
R43, 68
R44, 68
R45, 68
R46, 68
R51, 68
R52, 68
R53, 68
R54, 68
R55, 68
R56, 68
R61, 68
R62, 68
R63, 68
R64, 68
R65, 68
R66, 68
RADIUS, 80, 81
RANGE, 61–64
range, 24
RBEND, 39
RCOLLIMATOR, 44
real, 19

array, 26
variable, 31

real array, 26
real constant, 32
real vector, 31, 32
REFER, 49
reference

change, 45
global, 7, 8
local, 9
orbit, 7

REFLECT, 54
REFPOS, 50
regular expression, 25
REMOVE, 54
REPLACE, 54
REVBEAM, 64
REVTRACK, 64
RFCAVITY, 43
roll angle, 8
ROT, 78
rotation, 44, 45
ROW, 28
RUN, 83

S, 63, 66
S11, 67
S12, 67
S13, 67
S14, 67
S15, 67
S16, 67
S21, 67
S22, 67
S23, 67
S24, 67
S25, 67
S26, 67
S31, 67
S32, 67
S33, 67
S34, 67
S35, 67
S36, 67
S41, 67
S42, 67
S43, 67
S44, 67
S45, 67
S46, 67
S51, 67
S52, 67
S53, 67
S54, 67
S55, 67
S56, 67
S61, 67
S62, 67
S63, 67
S64, 67
S65, 67
S66, 67
SAVE, 35
saving

errors, 80
SBEND, 39
second moments, 66
SEED, 30, 76
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SELECT, 52, 60
select

element, 59
SELECTED, 53, 54
selection of elements, 23
separator, 43
SEQEDIT, 52
SEQUENCE, 49
sequence, 49–51

argument, 51
shared, 51

sequence editor, 52–54
SETINTEGRATOR, 61
SEXTUPOLE, 41
share lines, 51
SHARED, 38, 51
shared element, 38
shared sequences, 51
SHOW, 29
SHUNT, 43
SHUT, 33
SIGE, 58
SIGES, 47
sign conventions for fields, 12
SIGT, 58
SIGTS, 47
SIGX, 46
SIGY, 46
SIMPLEX, 73
simplex minimisation, 73
SLICES, 61
SOLENOID, 42
SPS, 55
SROT, 45
START, 53, 82
statement, 16
STATIC, 62, 64, 70
static

normal form, 70
STEP, 72
step size, 72
STOP, 30
STRATEGY, 73
string, 18
string array, 28
SURVEY, 62
synchrotron motion, 8
syntax, 85–89
SYSTEM, 34
system command, 34

T, 83
TABLE, 27, 68, 69
tables, 59–69
TC, 66
TEAPOT, 61
TELL, 30

TFILL, 43
TFS, 68, 69
THETA, 62, 63
THETA0, 62
THICK, 64
THIN, 63, 64, 83
thin lens, 38
THREADBPM, 63
threader, 63
TITLE, 34
TO, 54
token list, 25
token list array, 28
TOL, 63, 64
TOLERANCE, 73
total energy, 57
TRACE, 30
TRACK, 82
tracking, 82–84
TSAVE, 84
TURNS, 83
TWISS, 64
TWISS3, 69
TWISSTRACK, 64
TYPE, 38, 61

U0, 65
units, 14
unknown attribute, 38
UNNAMED BEAM, 57, 70, 82
UPPER, 72

VALUE, 32
value

attribute, 16, 17, 37
value of variable, 32
variable, 22, 25, 30

assignment, 32
logical, 31
real, 31
value, 32
vector, 31

variables, 13
canonical, 13
normalised, 14

VARY, 72
vector

real, 31, 32
vector potential, 13
VERIFY, 30
vertical displacement, 8
VKICK, 42
VKICKER, 42
VMONITOR, 43
VOLT, 43
VX, 45
VY, 45
VZ, 45
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W11, 63
W12, 63
W13, 63
W21, 63
W22, 63
W23, 63
W31, 63
W32, 63
W33, 63
WARN, 30
WHAT, 29
WHILE, 35
wildcard, 25

X, 62–64, 83
X0, 62
XC, 66
XIYN, 47
XMA, 46
XSIZE, 44

Y, 62–64, 83
Y0, 62
YC, 66
YMA, 46
YROT, 44
YSIZE, 44

Z, 62, 63
Z0, 62
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