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1 Introduction

In many applications analysis of coupled betatron motion isan important part of the machine
design. The development of accelerator technology has stimulated additional interest in the sub-
ject in recent years. Initially betatron coupling was an undesired effect and efforts were made to
suppress it. However, over recent two decades the betatron coupling has become an intrinsic part
of many accelerator proposals [1–4]. Although many studies of the coupled motion have been
performed over the last 40 years [5–14], in our opinion there is still no representation of coupled
betatron motion that would be as elegant as the Courant-Snyder parametrization [15] for the one-
dimensional case. Presently, two different basic representations are most frequently used. The first
one was proposed by Edwards and Teng [5, 6] and the second one by Mais and Ripken [7, 8].
This article follows the steps of the second representation, where we limit the number of inde-
pendent parameters to ten to parameterize a 4×4 symplectic transfer matrix. They are the four
beta-functions, the four alpha-functions and the two betatron phase advances. The beta-functions
have similar meaning to the Courant-Snyder parametrization, and the definition of alpha-functions
coincides with the standard one in regions with zero longitudinal magnetic field, where they are
equal to negative half-derivatives of the beta-functions.The article also reveals a close correspon-
dence between the proposed parametrization and the Edwards-Teng parametrization, thus adding
more clarity to their physical meaning.
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Section2 is mainly based on references [6], [8] and [16]. They describe the equations of
motion, the notation and the basics of the theory developed in the 50’s and the 60’s. Section3
sets relations between eigen-vectors, emittances and the particle 4D-ellipsoid in the phase space.
Sections4–6 develop the proposed representation and section7 shows its correspondence to the
Edwards-Teng parametrization.

2 Equations of motion and condition of symplecticity

The two-dimensional linear motion of a particle in a focusing lattice structure can be described by
the following set of equations:

x′′ +
(

K2
x +k

)

x+

(

N− 1
2

R′
)

y−Ry′ = 0,

y′′ +
(

K2
y −k

)

y+

(

N+
1
2

R′
)

x+Rx′ = 0. (2.1)

Herex andy are the horizontal and vertical particle displacements from the ideal orbit; the deriva-
tives are calculated along the longitudinal coordinates; Kx,y = eBy,x/Pc; k = eG/Pc; N = eGs/Pc;
R= eBs/Pc; Bx , By andBs are the corresponding components of the magnetic field;G is the nor-
mal component of the magnetic field gradient; andGs is the skew component of the magnetic field
gradient (a quad tilted by +45 deg around thesaxis in the right-handed coordinate system).

The Hamiltonian8 corresponding to eq. (2.1) is

H =
p2

x + p2
y

2
+

(

K2
x +k+

R2

4

)

x2

2
+

(

K2
y −k+

R2

4

)

y2

2
+Nxy+

R
2

(ypx−xpy) , (2.2)

and the corresponding canonical momenta are

px = x′− R
2

y,

py = y′ +
R
2

x. (2.3)

Rewriting eq. (2.3) in matrix form we obtain the relation between the canonical, x̂, and the geomet-
ric coordinates,x,

x̂ = Rx , (2.4)

where

x̂ ≡











x
px

y
py











, x ≡











x
θx

y
θy











, R =











1 0 0 0
0 1 −R/2 0
0 0 1 0

R/2 0 0 1











, (2.5)

θx = x′ andθy = y′. Here and below we put a cap above transfer matrices and vectors related to the
canonical variables.

Introducing matrixH,

H =











K2
x +k+ R2

4 0 N −R/2
0 1 R/2 0

N R/2 K2
y −k+ R2

4 0
−R/2 0 0 1











, (2.6)
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one can rewrite eqs. (2.1) and (2.2) in the matrix form:

dx̂
ds

= UHx̂ , (2.7)

H =
1
2

x̂THx̂ , (2.8)

where the unit symplectic matrixU is introduced as follows,

U =











0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0











. (2.9)

For any two solutions of eq. (2.7), x̂1(s) andx̂2(s), one can write that

d
ds

(

x̂T
1 Ux̂2

)

=
dx̂T

1

ds
Ux̂2 + x̂T

1 U
dx̂2

ds
= x̂T

1 HTUTUx̂2 + x̂T
1 UUHx̂2 = 0, (2.10)

and, consequently,

x̂T
1 Ux̂2 = const, (2.11)

where the following properties of the unit symplectic matrix were employed:UTU = I andUU =

−I ; andI is the identity matrix. The integral of motion of eq. (2.11) is called the Lagrange invariant.
Let us introduce the transfer matrix from coordinate 0 to coordinates, x = M(0,s)x0, and the

corresponding transfer matrix for the canonical variables, x̂ = M̂(0,s)x̂0. Using eq. (2.4) one finds
that the matrices are bound up as following

M̂(0,s) = R(s)M(0,s)R(0)−1 . (2.12)

Taking into account that the invariant of eq. (2.11) does not change during motion, we can write
that

x̂T
1 Ux̂2 = x̂T

1 M̂(0,s)TUM̂(0,s)x̂2 = const. (2.13)

As the above equation is satisfied for anyx̂1 andx̂2 it yields

M̂(0,s)TUM̂(0,s) = U . (2.14)

Eq. (2.14) expresses the symplecticity condition for particle motion. It is equivalent [16] to n2 = 16
scalar equations, but taking into account that the matrixM̂(0,s)TUM̂(0,s) is antisymmetric, only
six ((n2 − n)/2 = 6) of these equations are independent. Consequently, only 10 of 16 elements
of the transfer matrix are independent. Thus, the symplecticity condition imposes more severe
limitations than the Liouville’s theorem, which imposes only one condition, det(M) = 1, and leaves
15 independent parameters.

Consider a circular accelerator with the total transfer matrix M̂ . The transfer matrix has four
eigen-values,λ i , and four corresponding eigen-vectors,v̂i(i = 1, 2, 3, 4),

M̂ v̂i = λ i v̂i . (2.15)

– 3 –
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Below, we will consider the case of a stable betatron motion,meaning all four eigen-values are con-
fined to a unit circle and none of them is equal to±1. For any two eigen-vectors the symplecticity
condition of eq. (2.14) yields the identity

0 = λ j v̂T
j U
(

M̂ v̂i −λ i v̂i
)

=
(

M̂ v̂ j
)T

UM̂v̂i −λ j v̂T
j Uλ i v̂i = (1−λ jλ i) v̂T

j Uv̂i , (2.16)

which determines that the eigen-values always appear in tworeciprocal pairs [8, 16], and, con-
sequently, the four eigen-values split into two complex conjugate pairs. We will denote them as
λ 1, λ ∗

1 , λ 2 andλ ∗
2 , and the corresponding eigen-vectors asv̂1, v̂∗1, v̂2 and v̂∗2, where∗ denotes the

complex conjugate value.
From eq. (2.16) we obtain the following set of orthogonality conditions:

v̂+
1 Uv̂1 6= 0,

v̂+
2 Uv̂2 6= 0,

v̂+
i Uv̂ j = 0 if i 6= j ,

v̂T
i Uv̂ j = 0, (2.17)

wherev̂+ = v̂∗T . The values in the two top lines of eq. (2.17) are purely imaginary, indeed:

(

v̂+Uv̂
)∗

=
(

v̂+Uv̂
)+

= v̂+U+v̂ = −v̂+Uv̂ . (2.18)

Therefore we normalize the eigen-vectors as follows:

v̂+
1 Uv̂1 = −2i , v̂+

2 Uv̂2 = −2i ,

v̂T
1 Uv̂1 = 0, v̂T

2 Uv̂2 = 0,

v̂T
2 Uv̂1 = 0, v̂+

2 Uv̂1 = 0. (2.19)

Other combinations can be obtained by applying the transposition and/or the complex conjugation
to eqs. (2.19). Similarly as for the transfer matrix elements, there are only six independent real
scalar equations among eqs (2.19).

3 Relation between eigen-vectors and emittance ellipsoid in 4D phase space

The turn-by-turn particle positions and angles (at the beginning of a lattice) can be represented as
a linear combination of four independent solutions,

x̂ = Re
(

A1e−iψ1v̂1 +A2e
−iψ2v̂2

)

= A1
(

v̂′1 cosψ1 + v̂′′1 sinψ1
)

+A2
(

v̂′2 cosψ2 + v̂′′1 sinψ2
)

, (3.1)

where four real parameters,A1, A2, ψ1 and ψ2, represent the betatron amplitudes and phases.
The amplitudes remain constant in the course of betatron motion, while the phases change after
each turn.

Let us introduce the following real matrix

V̂ =
[

v̂′1,−v̂′′1, v̂
′
2,−v̂′′2

]

. (3.2)
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This allows one to rewrite eq. (3.1) in the compact form

x̂ = V̂Aξ A , (3.3)

where the amplitude matrixA is

A =











A1 0 0 0
0 A1 0 0
0 0 A2 0
0 0 0 A2











, (3.4)

and

ξA =











cosψ1

−sinψ1

cosψ2

−sinψ2











. (3.5)

Applying the orthogonality conditions given by eqs. (2.19), one can prove that matrix̂V is a sym-
plectic matrix. It can be seen explicitly as follows:

V̂TUV̂ =

[

v̂1 + v̂∗1
2

,− v̂1− v̂∗1
2i

,
v̂2 + v̂∗2

2
,− v̂2− v̂∗2

2i

]T

U
[

v̂1 + v̂∗1
2

,− v̂1− v̂∗1
2i

,
v̂2 + v̂∗2

2
,− v̂2− v̂∗2

2i

]

= U . (3.6)

Here we took into account that every matrix element in matrixV̂TUV̂ can be calculated using vector
multiplication of eqs. (2.19). Furthermore, the symplecticity of matrix̂V yields the following useful
expression for the inverse matrix,V̂−1:

V̂−1 = −UV̂
T
U , (3.7)

where we took into account thatUTU = I andUT = −U.
Let us consider an ensemble of particles, whose motion (at the beginning of lattice) is con-

tained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with extreme
betatron amplitudes. For any of these particles, eq. (3.3) describes the 2D-subspace of single-
particle motion, which is a subspace of the 3D surface of the ellipsoid, described by the bilinear
form

x̂T Ξ̂x̂ = 1. (3.8)

This ellipsoid confines the motion of all particles. To describe a 3D surface, in addition to parame-
tersψ1 andψ2 of eq. (3.5), we introduce the third parameterψ3 so that the vectorξ would describe
a 3D sphere with a unit radius, according to the equation

(ξ ,ξ ) = 1, (3.9)

where

ξ =











cosψ1cosψ3

−sinψ1 cosψ3

cosψ2 sinψ3

−sinψ2 sinψ3











. (3.10)
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Then, we can rewrite eq. (3.3) in the following form,

x̂ = V̂Aξ , (3.11)

which describes a 3D subspace confining all particles of the beam. In other words we can con-
sider that the amplitudes of the boundary particles are parameterized byψ3(A1 → A1cosψ3, A2 →
A2cosψ3.), so that we would obtain a 4D ellipsoid.

Expressingξ from eq. (3.11) and substituting it into eq. (3.9), one obtains the quadratic form
describing a 4D ellipsoid containing all particles:

x̂T
(

(

V̂A
)−1
)T
(

V̂A
)−1

x̂ = 1. (3.12)

Comparing eqs. (3.8) and (3.12) and using eq. (3.7), one can express the bilinear form,Ξ̂, as
follows:

Ξ̂ = UV̂Ξ̂′V̂
T
UT , (3.13)

whereΞ̂′ = A−1A−1 is a diagonal matrix depending on two amplitudesA1 andA2, and we took
into account that matricesA−1 andU commute.

To determine the beam emittance (volume of the occupied 4D phase-space) described by
eq. (3.8) we invert eq. (3.13). That yields,

Ξ̂′ = V̂TΞ̂V̂ . (3.14)

As can be seen, a symplectic transformV̂ reduces matrix̂Ξ to its diagonal form. Then, in the new
coordinate frame the 3D ellipsoid enclosing the total 4D phase-space of the beam can be described
by the following equation:

Ξ̂′
11x

′2 + Ξ̂′
22p′2x + Ξ̂′

33y
′2 + Ξ̂′

44p′2y = 1. (3.15)

It is natural to define the beam emittance as a product of the ellipsoid semi-axes (omitting the factor
π2/2 correcting for the real 4D volume of the ellipsoid) so that

ε4D =
1

√

Ξ̂′
11Ξ̂′

22Ξ̂′
33Ξ̂′

44

=
1

√

det(Ξ̂′)
. (3.16)

Calculation of the determinant using eq. (3.14) yields,

ε4D =
1

√

det(Ξ̂′)
=

(A1A2)
2

∣

∣det(V̂)
∣

∣

= (A1A2)
2 . (3.17)

Here we took into account that det(V̂) = 1, which is a direct consequence of matrixV̂ symplec-
ticity. Thus, the squares of amplitudesA1 andA2 can be considered as 2D emittancesε1 andε2

corresponding to the eigen-vectorsv̂1 andv̂2. They coincide with the horizontal and vertical emit-
tances of the uncoupled motion, and their product is equal tothe total 4D emittance:ε1ε2 = ε4D.
Consequently, one can write matrix̂Ξ′ as

Ξ̂′ =











1/ε1 0 0 0
0 1/ε1 0 0
0 0 1/ε2 0
0 0 0 1/ε2











. (3.18)
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Similarly to the one-dimensional case the particle ellipsoid shape, described by matrix̂Ξ,
determines the emittancesε1 and ε2 , and the eigen-vectorŝv1 and v̂2. In this case the beam
emittances are reciprocal to the roots of the following characteristic equation,

det
(

Ξ̂− iλ U
)

= 0. (3.19)

One can prove the above using eqs. (3.13) as follows:

det
(

Ξ̂− iλ U
)

= det
(

UV̂Ξ̂′V̂
T
UT − iλ U

)

= det
(

Ξ̂′− iλ UTV̂TUV̂U
)

=

det
(

Ξ̂′− iλ U
)

=

(

1

ε2
1

−λ 2
)(

1

ε2
2

−λ 2
)

= 0. (3.20)

Knowing the beam emittances and consequentlyΞ̂′, one can obtain from eq. (3.13) a system of
linear equations for matrix̂V,

Ξ̂V̂U = UV̂Ξ̂′ . (3.21)

Multiplying the above equation byul , one obtains two equations for the eigen-vectors:
(

Ξ̂− i
εl

U
)

v̂l = 0, (3.22)

wherel= 1, 2, and

u1 =











1
−i
0
0











, u2 =











0
0
1
−i











. (3.23)

We also took into account thatV̂u l = v̂l , Uul = −iul andΞ′ul = 1
εl

ul .
Taking into account eq. (3.8) a Gaussian distribution function for coupled beam motion can be

written in the following form:

f (x̂) =
1

4π2ε1ε2
exp

(

−1
2

x̂T Ξ̂x̂

)

. (3.24)

Then, the second-order moments of the distribution function are

Σ̂ij ≡ x̂i x̂ j =

∫

x̂i x̂ j f (x̂)dx̂4 =
1

4π2ε1ε2

∫

x̂i x̂ j exp

(

−1
2

x̂T Ξ̂x̂

)

dx̂4 . (3.25)

To carry out the integration one can perform a coordinate transform, ŷ = V̂−1x̂, which reduces
matrix Ξ̂ to its diagonal form. After simple calculation one obtains the matrix of the second-order
moments

Σ̂ = V̂











ε1 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε2











V̂T . (3.26)

One can easily prove by direct substitution that matrixΣ̂ is the inverse of matrix̂Ξ. Consequently,
a symplectic transform̂VU reduces matrix̂Σ to its diagonal form. Applying a similar scheme as

– 7 –
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above for obtaining emittances and eigen-vectors from matrix Ξ̂, one finds that the beam emittances
ε1 andε2 can be computed from matrix̂Σ as roots of its characteristic equation,

det
(

Σ̂U+ iλ I
)

= 0, εl = λl , (3.27)

while the equations for the eigen-vectors are

(

Σ̂U+ iεl I
)

v̂l = 0. (3.28)

It also follows from eq. (3.26) that the total beam emittance is equal to

ε4D = ε1ε2 =
√

det
(

Σ̂
)

. (3.29)

Taking into account that the beam motion from points to points′ results in the matrixΞ trans-
formation so thatΞ(s′) = M(s,s′)TΞ(s)M(s,s′), and using eq. (3.19) and the motion simplicity one
can easily prove that the emittancesε1 andε2 are the motion invariants; i.e. there is no configura-
tion of linear electric and magnetic fields which can change them. Taking into account that each
emittance is bound to the corresponding betatron mode we will call them the mode emittances.
If the beam line is build so that the motion is decoupled at some point then the mode emittances
coincide with usual horizontal and vertical emittances.

Although the above analysis was carried out for thex− y coupled motion it can be directly
applied to the coupling of any two degrees of freedom. If necessary it can be trivially extended to 3
or more degrees of freedom; so that the only change to be taking into account in eqs. (3.12)–(3.29)
is a larger dimension of the matrices and vectors.

4 Beta-functions for coupled motion

Employing the previously introduced notation, one can describe a single-particle phase-space tra-
jectory along the beam orbit as

x̂(s) = M̂(0,s)Re
(√

ε1v̂1e−iψ1 +
√

ε2v̂2e−iψ2
)

= Re
(√

ε1v̂1(s)e
−i(ψ1+µ1(s)) +

√
ε2v̂2(s)e

−i(ψ2+µ2(s))
)

, (4.1)

where the vectorŝv1(s) ≡ eiµ1(s)M̂(0,s)v̂1 andv̂2(s) ≡ eiµ2(s)M̂(0,s)v̂2 are the eigen-vectors of the
matrix M̂(0,s)M̂ M̂(0,s)−1, ψ1 andψ2 are the initial phases of betatron motion andM̂ = M̂(0,L)

is the transfer matrix for the entire ring. The termse−iµ1(s)ande−iµ2(s) are introduced to bring the
eigen-vectors to the following standard form:

v̂1(s) =

















√

β1x(s)

− iu1(s)+α1x(s)√
β1x(s)

√

β1y(s)eiν1(s)

− iu2(s)+α1y(s)√
β1y(s)

eiν1(s)

















, v̂2(s) =

















√

β2x(s)eiν2(s)

− iu3(s)+α2x(s)√
β2x(s)

eiν2(s)

√

β2y(s)

− iu4(s)+α2y(s)√
β2y(s)

















, (4.2)

so thatµ1(s) and µ2(s) would be the phase advances of betatron motion. Hereβ 1x(s), β 1y(s),
β 2x(s) andβ 2y(s) are the beta-functions;α1x(s), α1y(s), α2x(s) andα2y(s) are the alpha-functions
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which, as will be shown in the next section, coincide with thebeta-functions’ negative half-
derivatives at regions with zero longitudinal magnetic field; and six real functionsu1(s), u2(s),
u3(s), u4(s), ν1(s) andν2(s) are determined by the orthogonality conditions of eq. (2.19). Below
we will be omitting their dependence onswhere it does not cause an ambiguity. Two eigen-vectors
v̂1 andv̂2 were chosen out of two pairs of complex conjugate eigen-vectors by selectingu1 andu4

to be positive.

The first orthogonality condition of eqs. (2.19),

(

v̂+
1 Uv̂1

)

= −2i (u1 +u2) = −2i , (4.3)

yieldsu1 = 1−u2, and similarly for the second eigen-vector,u4 = 1−u3. The next two equations,
v̂T

1 Uv̂1 = 0 andv̂T
2 Uv̂2 = 0, are identities.

Taking into account the above relations foru1 andu4, the remaining two non-trivial orthogo-
nality conditions can be written as follows,

(

v̂+
2 Uv̂1

)

=−
(
√

β2x

β1x
[i(1−u2)+ α1x]+

√

β1x

β2x
[iu3−α2x]

)

e−iν2

−
(
√

β1y

β2y
[i(1−u3)−α2y]+

√

β2y

β1y
[iu2 + α1y]

)

eiν1 = 0, (4.4)

(

v̂T
2 Uv̂1

)

=−
(
√

β2x

β1x
[i(1−u2)+ α1x]−

√

β1x

β2x
[iu3 + α2x]

)

eiν2

−
(
√

β1y

β2y
[i(u3−1)−α2y]+

√

β2y

β1y
[iu2 + α1y]

)

eiν1 = 0. (4.5)

Multiplying both terms in eq. (4.4) and eq. (4.5) by their complex conjugate values one obtains

A2
x +
(

κx(1−u2)+ κ−1
x u3)

)2
= A2

y +
(

κy(1−u3)+ κ−1
y u2

)2
,

A2
x +
(

κx(1−u2)−κ−1
x u3)

)2
= A2

y +
(

κy(1−u3)−κ−1
y u2

)2
, (4.6)

where

Ax = κxα1x−κ−1
x α2x ,

Ay = κyα2y−κ−1
y α1y ,

κx =

√

β2x

β1x
, κy =

√

β1y

β2y
. (4.7)

Subtracting eqs. (4.6) yieldsu2 = u3. Substitutingu2 = u3 = u into the first equation of eqs. (4.6)
one obtains the following expression foru:

u =

−κ2
x κ2

y ±
√

κ2
x κ2

y

(

1+
A2

x−A2
y

κ2
x−κ2

y

(

1−κ2
x κ2

y

)

)

1−κ2
x κ2

y
. (4.8)
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By definition uk(k = 1, . . .4) are real functions1 andu1 andu4 are positive. That sets a constraint
for possible values of beta- and alpha-functions,

A2
x −A2

y

κ2
x −κ2

y

(

1−κ2
x κ2

y

)

≥−1, (4.9)

and a constraint on a value ofu, u≤ 1.

Knowing u makes it easy to findν1+ν2 andν1−ν2 from eqs. (4.4) and (4.5):

eiν+ ≡ ei(ν1+ν2) =
Ax + i

(

κx(1−u)+ κ−1
x u
)

Ay− i
(

κy(1−u)+ κ−1
y u
) ,

eiν− ≡ ei(ν1−ν2) =
Ax + i

(

κx(1−u)−κ−1
x u
)

Ay + i
(

κy(1−u)−κ−1
y u
) , (4.10)

and, consequentlyν1 andν2:

ν1 =
1
2

(ν+ + ν−)+ π (n+m) ,

ν2 =
1
2

(ν+ −ν−)+ π (n−m) . (4.11)

Heren andm are arbitrary integers. Eq. (4.10) results in thatν− andν+ are determined modulo
2π, which, consequently, yields thatν1 andν2 are determined moduloπ (see eq. (4.11)) resulting
in additional solutions. Actually there are only two independent solutions forν1 and ν2. The
first one corresponds to the case when bothn andm have the same parity, which is equivalent to
m+n = m−n = 0. The second one corresponds to different parity ofmandn, which is equivalent
to m+n = m−n = 1. Thus, in a general case, one has four independent solutions for u, ν1 andν2

set by symplecticity conditions: two solutions foru and two solutions forν1 andν2 for eachu.

Below we will call thirteen functions,β 1x, β 1y, β 2x, β 2y, α1x, α1y, α2x, α2y, u, ν1, ν2, µ1 and
µ2 the generalized Twiss functions. Only 10 of them are independent. Other three can be deter-
mined from the symplecticity conditions. Although for known eigen-vectors the Twiss parameters
can be determined uniquely it is not the case if we know only beta-functions. In this case an appli-
cation of symplecticity conditions leaves four independent solutions for the eigen-vectors. Two of
them are related to the sign choice foru in eq. (4.8), and other two (for each choice ofu) are related
to uncertainty ofν1 andν2 in eq. (4.11). The later is related to the fact that the mirror reflection
with respect to thex or y axis does not changeβ ’s andα ’s but changes the relative signs for thex
andy components of the eigen-vectors,2 with subsequent change ofν1 andν2 by π. It is opposite
to the case Edwards-Teng parameterization (see section7), where knowing eigen-vectors does not
yield unique solution for the Twiss parameters but knowing Twiss parameters uniquely determines
eigen-vectors.

1Eq. (4.8) also demonstrates that if beta- and alpha-functions are not correctly chosen, so that the value of the
discriminant is negative,u becomes imaginary, thus redetermining the alpha-functions.

2It can also be achieved by change of the coupling sign (simultaneous sign change for gradients of all skew quads
and magnetic fields of all solenoids), which does not change the beta-functions but does change theν-functions byπ.
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Finally, we can express the eigen-vectorsv̂1 andv̂2 in the following form:

v̂1 =

















√

β1x

− i(1−u)+α1x√
β1x

√

β1yeiν1

− iu+α1y√
β1y

eiν1

















, v̂2 =

















√

β2xeiν2

− iu+α2x√
β2x

eiν2

√

β2y

− i(1−u)+α2y√
β2y

















. (4.12)

That yields the following expression for matrix̂V (see eq. (3.2))

V̂ =

















√

β1x 0
√

β2xcosν2 −
√

β2xsinν2

− α1x√
β1x

1−u√
β1x

usinν2−α2x cosν2√
β2x

ucosν2+α2x sinν2√
β2x

√

β1ycosν1 −
√

β1ysinν1
√

β2y 0
usinν1−α1y cosν1√

β1y

ucosν1+α1y sinν1√
β1y

− α2y√
β2y

1−u√
β2y

















. (4.13)

In the case of weak coupling one should normally choosev̂1 as the eigen-vector, which mainly
relates to the horizontal motion, andv̂2 to the vertical motion. In the case of strong coupling
the choice is arbitrary. As can be seen from eq. (4.12), in determining beta- and alpha-functions,
swapping two eigen-vectors causes the following redefinitions: β1x ↔ β2x, β1y ↔ β2y, α1x ↔ α2x,
α1y ↔ α2y, u→ 1−u, ν1 →−ν2 andν2 →−ν1. One can verify that eqs. (4.8) and (4.10) satisfy
the above transformations foru, ν1 andν2.

To find the beam sizes one needs to remember that the amplitudes of beam motion related to
the corresponding eigen-vectors are governed by eqs. (3.10) and (3.11). Applying eqs. (3.11), (4.1)
and (4.12) one can parametrize the coordinates of the 4D ellipsoid interior:

x̂(ψ1,ψ2,ψ3) = Re
(√

ε1v̂1 cosψ3e−iψ1 +
√

ε2v̂2 sinψ3e−iψ2
)

. (4.14)

The beam sizes (projections of 4D ellipsoid to the horizontal and vertical directions) are determined
by the maximum ofx andy variations in eq. (4.14) and are equal to

ax =
√

ε1β1x + ε2β2x ,

ay =
√

ε1β1y + ε2β2y . (4.15)

Let us to write the equation describing the beam ellipsoid inthex− y plane (the projection of the
4D-ellipsiod to thex−y plane) in the following form,

x2

a2
x
− 2α̃xy

axay
+

y2

a2
y

= 1− α̃2 , (4.16)

one can find the parameterα̃ by determining at whichx coordinate they coordinate in eq. (4.14)
reaches the maximum. Comparing this result with the result following from eq. (4.16) one ob-
tains [8]:

α̃ =

√

β1xβ1yε1 cosν1 +
√

β2xβ2yε2 cosν2
√

ε1β1x + ε2β2x
√

ε1β1y + ε2β2y
. (4.17)

Comparing eqs. (4.15) and (4.17) to the second order moments presented in appendixA one can
see that the above beam sizes coincide with the rms beam sizesof the Gaussian distribution, and
the parameter̃α can be also expressed as followingα̃ = 〈xy〉/

√

〈x2〉〈y2〉.
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5 Derivatives of the tunes and beta-functions

Let us consider the relations between the beta- and alpha-functions. A differential trajectory dis-
placement related to the first eigen-vector can be expressedas follows:

x(s+ds) =x(s)+x′(s)ds= x(s)+

(

px(s)+
R
2

y

)

ds=

√
ε1Re

((

√

β1x(s)+

[

− i (1−u(s))+α1x(s)
√

β1x(s)
+

R
2

√

β1y(s) eiν1(s)

]

ds

)

e−i(µ1(s)+ψ1)

)

.

(5.1)

Alternatively, one can express particle position through the beta-functions at the new coordinate
s+ds:

x(s+ds) =Re
(

√

ε1βx(s+ds)e−i(µ1(s+ds)+ψ)
)

=

√
ε1Re

([

√

β1x(s)+
dβ1x

2
√

β1x(s)
− i
√

β1x(s)dµ

]

e−i(µ1(s)+ψ)

)

. (5.2)

Comparing both the imaginary and real parts of eqs. (5.1) and (5.2) one obtains:

dβ1x

ds
= −2α1x +R

√

β1xβ1ycosν1 ,

dµ1

ds
=

1−u
β1x

− R
2

√

β1y

β1x
sinν1 . (5.3)

Similarly, one can write down equivalent expressions for the vertical displacement,

y(s+ds) =y(s)+y′(s)ds= y(s)+

(

py(s)−
R
2

x

)

ds=

√
ε1Re

((

√

β1y(s)eiν1(s)−
[

iu(s)+ α1y(s)
√

β1y(s)
eiν1(s) +

R
2

√

β1x(s)

]

ds

)

e−i(µ1(s)+ψ1)

)

,

(5.4)

and

y(s+ds) =
√

ε1Re

([

√

β1y(s)+
dβ1y

2
√

β1y(s)
+ i
√

β1y(s) (dν1−dµ1)

]

e−i(µ1(s)+ψ−ν1(s))

)

, (5.5)

which yields:

dβ1y

ds
= −2α1y−R

√

β1xβ1ycosν1 ,

dµ1

ds
− dν1

ds
=

u
β1y

+
R
2

√

β1x

β1y
sinν1 . (5.6)
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Similar calculations carried out for the second eigen-vector yield,

dβ2y

ds
= −2α2y−R

√

β2xβ2ycosν2 ,

dµ2

ds
=

1−u
β2y

+
R
2

√

β2x

β2y
sinν2 ,

dβ2x

ds
= −2α2x +R

√

β2xβ2ycosν2 ,

dµ2

ds
− dν2

ds
=

u
β2x

− R
2

√

β2y

β2x
sinν2 . (5.7)

One can see that in the absence of longitudinal magnetic fieldthe derivatives of the phase advances
dµ1/ds anddµ2ds are proportional to (1− u) and are positive. That explains the selection rule
for the eigen-vectors formulated at the beginning of section 4 which requiresu1 and u4 being
positive (u1 = u4 = 1−u≥ 0). Note that there is no a formal requirement ford(µ1 + ν1)/dsand
d(µ2 + ν2)/dsbeing also positive and thereforeu can be negative,3 while in the most of practical
cases it belongs to the [0,1] interval.

The relative contributions ofx andy parts in the eigen-vector normalization equation,v̂+
l Uv̂l =

−2i, l = 1,2, are proportional tou or 1− u. Therefore parameteru can be considered as a cou-
pling strength. In the absence of coupling the parameteru is equal to 0 (or 1 ifx andy vectors
are swapped). Nevertheless, in the general case, an equality u = 0 does not mean an absence of
coupling. As one can see from eqs. (4.6) and (4.10) the conditionu= 0 requiresA2

x +κ2
x = A2

y +κ2
y ,

and yieldseiν+ = (Ax + iκx)/(Ay− iκy) andeiν− = (Ax + iκx)/(Ay + iκy). These equations do not
require auxiliary beta-functionsβ 1y and β 2x to be equal to zero, and, consequently, the condi-
tion u = 0 does not automatically mean absence of coupling. Although strictly speakingu cannot
be considered as a coupling parameter it reflects strength ofthe coupling and is a good value to
characterize it in practice. In particularu = 1

2 corresponds to 100% coupling when the motion
for both eigen-vectors is equally distributed in both planes (see an example in appendixB). It is
also useful to note thatu does not change in an uncoupled transfer line. Actually, in the absence
of coupling thex andy parts of the eigen-vector,̂vx and v̂y, are independent and their normaliza-
tion, v̂+

x,yU2v̂x,y = {u, 1−u}, does not change because the determinants of the corresponding 2×2
transfer matrices are equal to 1. HereU2 is the 2D unit symplectic matrix.

6 Representation of transfer matrix in terms of generalizedtwiss functions

One can derive a useful representation of the transfer matrix M̂1,2 ≡ M̂(s1,s2) between two points
of a transfer line in terms of the generalized Twiss functions. Using the definitions of eigen-vector
and matrixV̂ (see eq. (4.1) and eq. (3.2)) one can derive the following identity

V̂2S= M̂12V̂1 . (6.1)

3The Tevatron lattice is based on the detailed optics measurement and takes into account large coupling terms coming
mainly from the skew-quadrupole components of the SC dipoles. If the coupling corrections are adjusted to minimize
the tune split and, consequently, coupling the value of coupling parameteru is normally varies in the range of about
[-0.002, 0.04].
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HereV̂1 andV̂2 are theV̂ matrices given by eq. (4.13) for the initial and final points. The matrixS
is

S=











cos∆µ1 sin∆µ1 0 0
−sin∆µ1 cos∆µ1 0 0

0 0 cos∆µ2 sin∆µ2

0 0 −sin∆µ2 cos∆µ2











, (6.2)

where∆µ1,2 are the betatron phase advances between points 1 and 2. Multiplying both sides of

eq. (6.1) by the inverse matrix,̂V−1
1 = −UV̂

T
1 U, as given by eq. (3.7), allows one to express the

transfer matrix,M̂12, in the form

M̂12 = −V̂2SUV̂
T
1 U . (6.3)

In the case of the one-turn transfer matrixM̂ the matriceŝV1 andV̂2 are equal and eq. (6.3) simpli-
fies. Explicit expressions of matrix̂M as well as matriceŝΞ andΣ̂ are presented in appendixA.

7 Edwards-Teng parametrization

The Edwards-Teng parametrization [6] is based on a canonical transform̃R which reduces a 4×4
transfer matrix,

M̂ =

[

P p
q Q

]

, (7.1)

to its normal modes form

M̃ = R̃M̂ R̃
−1

, (7.2)

where

M̃ =

[

A 0
0 B

]

, (7.3)

andP, p, Q, q, A andB are 2×2 matrices. Teng suggested parametrizing a symplectic matrix R̃ as
follows:

R̃ =

[

Ecosφ −D−1sinφ
Dsinφ Ecosφ

]

, (7.4)

whereE is the unit 2×2 matrix, andD is a 2×2 symplectic matrix,

D =

[

a b
c d

]

, (7.5)

so thatad− bc = 1. Thus, matrixR̃ is parametrized by four parameters:a, b, c andφ . Matrix
M̃ describes the particle motion in new coordinates and can be parametrized by six Twiss param-
eters. Finally, one obtains ten parameters to fully describe the transfer matrix̂M . The six Twiss
parametersβ 1, α1, µ1, β 2, α2, andµ2 are so called the Twiss parameters of the decoupled motion.
Edwards and Teng expressed them through the transfer matrixelements.

In the course of this section we will express them through theeigen-vectors. As will be seen
below, this procedure reveals the close relation of the two representations and sheds additional light
on the physical meaning of both parameter sets.
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Expressing matrixM̂ throughM̃ in eq. (7.2) and substituting the result into eq. (2.15), one
obtains

R̃−1M̃R̃v̂i = λi v̂i . (7.6)

Eq. (7.6) can be rewritten as

M̃ ṽi = λi ṽi , (7.7)

where the vector

ṽi = R̃v̂i (7.8)

is the eigen-vector of matrix̃M . To determine matrix̃R ≡ R̃(s) we take into account that vectors
ṽi represent decoupled motion;i.e., the vector elements corresponding to another plane are equal
to zero. Using the definitions of̃R, v̂i and expressing̃vi through the Twiss parameters of the
decoupled motion, one can rewrite eqs. (7.8) in the form:















√

β1

− i+α1√
β1

0

0















=















cosφ 0 −dsinφ bsinφ
0 cosφ csinφ −asinφ

asinφ bsinφ cosφ 0

csinφ dsinφ 0 cosφ































√

β1x

− i(1−u)+α1x√
β1x

√

β1yeiν1

− iu+α1y√
β1y

eiν1

















, (7.9a)















0

0
√

β2

− i+α2√
β2















=











cosφ 0 −dsinφ bsinφ
0 cosφ csinφ −asinφ

asinφ bsinφ cosφ 0
csinφ dsinφ 0 cosφ



























√

β2xeiν2

− iu+α2x√
β2x

eiν2

√

β2y

− i(1−u)+α2y√
β2y

















. (7.9b)

Eqs. (7.9) represent eight scalar equations and they allow one to determine the parameters of matrix
R̃ as well as the beta- and alpha-functions of the decoupled motion. Using the last two equations
in eq. (7.9a) and the first two equations in eq. (7.9b), we obtain the following equations for matrix
R̃ parameters:

√

β1xat −
i (1−u)+ α1x

√

β1x
bt +

√

β1ye
iν1 = 0,

√

β1xct −
i (1−u)+ α1x

√

β1x
dt −

iu+ α1y
√

β1y
eiν1 = 0,

√

β2xe
iν2 −

√

β2ydt −
i (1−u)+ α2y

√

β2y
bt = 0,

− iu+ α2x
√

β2x
eiν2 +

√

β2yct +
i (1−u)+ α2y

√

β2y
at = 0. (7.10)

Here the following notation was introduced:at = atanφ , bt = btanφ , ct = ctanφ anddt = d tanφ .
Taking into account thatat , bt , ct anddt are real parameters, one can separate the real and imagi-
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nary parts in eq. (7.10). That yields the following four solutions:

at =

√

β2y

β2x

α2x sinν2 +ucosν2

1−u
,

bt =
√

β1xβ1y
sinν1

1−u
,

ct =
cosν2 [α2x (1−u)−α2yu]−sinν2 [u(1−u)+ α2xα2y]

(1−u)
√

β2xβ2y
,

dt = −
√

β1x

β1y

ucosν1 + α1ysinν1

1−u
, (7.11)

and four useful identities
√

β1xβ1ysinν1 =
√

β2xβ2ysinν2 ,
√

β1xβ2y (α2xsinν2 +ucosν2) =
√

β2xβ1y [α1xsinν1− (1−u)cosν1] ,
√

β1xβ2y (α1ysinν1 +ucosν1) =
√

β2xβ1y [α2ysinν2− (1−u)cosν2] ,

(α2x cosν2−usinν2)(1−u)− (α2xsinν2 +ucosν2)α2y
√

β2xβ2y
=

(α1ycosν1−usinν1) (1−u)− (α1ysinν1 +ucosν1)α1x
√

β1xβ1y
. (7.12)

The identities can be directly derived from the symplecticity of matrix V̂. Using eq. (3.6) one
immediately obtains that̂VUV̂

T
U = −I . Using the explicit definition of the matrix̂Vof eq. (4.13)

and performing matrix multiplication, after some algebra,one obtains these identities in the off-
diagonal 2×2 block of the resulting matrix.

Using matrixD symplecticity and eqs. (7.11), after simple algebra one obtains

tan2 φ = atdt −btct =
u

1−u
. (7.13)

That finally yields:
sinφ = ±

√
u. (7.14)

Now using the two first equations in eq. (7.9a) and the two last equations in eq. (7.9b), one obtains
equations for the beta- and alpha-functions of the decoupled motion:

√

β1 =

(

√

β1x −
√

β1ye
iν1dt −

iu+ α1y
√

β1y
eiν1bt

)

cosφ ,

− i + α1
√

β1
=

(

− i (1−u)+ α1x
√

β1x
+
√

β1ye
iν1ct +

iu+ α1y
√

β1y
eiν1at

)

cosφ ,

√

β2 =

(

√

β2xe
iν2at −

iu+ α2x
√

β2x
eiν2bt +

√

β2y

)

cosφ ,

− i + α2
√

β2
=

(

√

β2xe
iν2ct −

iu+ α2x
√

β2x
eiν2dt −

i (1−u)+ α2y
√

β2y

)

cosφ . (7.15)
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After lengthy calculation employing identities (7.12), one finally reduces the above equations to
the simple form:

β1 =
β1x

1−u
, α1 =

α1x

1−u
,

β2 =
β2y

1−u
, α2 =

α2y

1−u
. (7.16)

As can be seen, although eq. (7.14) yields four different values for angleφ , other elements of
matrix R̃ and the beta- and alpha-functions of the decoupled motion are uniquely related to the
eigen-vectors and, consequently, to the generalized Twissparameters. A problem appears if a
value of u is negative somewhere in the lattice. That results inφ being pure imaginary. The
solution considered in ref. [5] suggests a replacement of sin(φ ) and cos(φ ) by sinh(φ ) and cosh(φ )
with appropriate sign changes in the symplectic transformsof eqs. (7.9). It formally addresses
the issue but still requires a redefinition of eqs. (7.9) symplectic transforms every timeu changes
its sign.

The betatron motion in the normal modes representation can be written in the following form

x̃(s) = M̃(0,s)x̃(0) , (7.17)

where
M̃(0,s) = R̃(s)M̂ (0,s)R̃−1(0). (7.18)

Edwards and Teng determined the phase advance of the betatron motion using a standard recipe for
the decoupled motion:

ṽi(s)e
−iµi (s) = M̃(0,s)ṽi(0) . (7.19)

Using the definition of matrixM̃(0,s) of eq. (7.18), we can rewrite eq. (7.19) as

v̂i(s)e
−iµi (s) = R̃(s)−1M̃(0,s)R̃(0)v̂i(0) = M̂(0,s)v̂i(0) . (7.20)

As can be seen, the obtained equation coincides with the definition of betatron phase advance
of section5 (see eq. (4.1) and below), thus proving that the betatron phase advances for both
parametrizations are the same.

8 Discussion

This article introduces further development of the coupledbetatron motion representation intro-
duced in refs. [6] and [7]. Our approach is based on a parametrization of the 4×4 symplectic
transfer matrix by introducing ten functions: four beta-functions, four alpha-functions and two be-
tatron phase advances, which we call the generalized Twiss functions. The beta-functions have
similar meaning to the Courant-Snyder parametrization, and the definition of alpha-functions co-
incides with the definition for uncoupled motion at regions with zero longitudinal magnetic field,
where they are equal to negative half-derivatives of the beta-functions. The approach is based on
the parametrization of normalized eigen-vectors. Knowingthe eigen-vectors, one can easily obtain
the generalized betatron functions employing eq. (4.12). Eqs. (4.8) and (4.10) allow one to perform
the inverse operation of finding eigen-vectors from the generalized Twiss parameters. A useful
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representation of a transfer matrix in terms of the generalized Twiss functions is also introduced
in section6.

A definition of 4D emittance is introduced for an ensemble of particles, whose motion is
contained in a 4D ellipsoid. A 3D surface of this ellipsoid isdetermined by particles with extreme
betatron amplitudes. Eqs. (3.8) and (A.2) determine the bilinear form̂Ξ describing this beam
boundary. Consequently, the beam density distribution function can be written as

f (x, px,y, py) = Aδ (x̂T Ξ̂x̂−1) ,

in the case of KV-distribution, and as

f (x, px,y, py) = Aexp

(

− x̂T Ξ̂x̂
2

)

,

in the case of Gaussian distribution. The chosen normalization of the eigen-vectors, eqs. (2.19),
yields a simple relation between the beam emittances related to the eigen-vectors and total 4D emit-
tance,ε4D = ε1ε2. Knowing the bilinear formΞ̂ or the matrix of second-order momentsΣij ≡ x̂i x̂ j ,
one can compute corresponding beam emittances, eigen-vectors and, consequently, generalized
Twiss functions using eqs. (3.19), (3.22) or eqs. (3.27), (3.28). The mode emittancesε1 andε2 are
invariants of the motion.

A comparison of the developed parametrization with the Edwards-Teng parametrization pro-
vided additional insight for both parametrizations. First, it proved that the betatron motion phase
advances for both parametrizations are equal; i.e. the betatron phase advance for the Edwards-Teng
representation is directly related to particle oscillations in thex or y plane, depending on which
plane a particular eigen-vector is referenced to. Second, Edwards-Teng beta- and alpha-functions
are simply related to the corresponding generalized beta- and alpha-functions:βi = βix/(1−u) ,
αi = αix/(1−u), whereu is the coupling parameter directly related to the angle of Teng’s rotation,
sin2φ = u.

Unlike the Edwards-Teng parameterization the Mais-Ripkenparameterization (as well as the
parameterization developed in this article) allows one to obtain the unique solution for the gener-
alized Twiss parameters from the known ring transfer matrixor the eigen-vectors. There are two
linearly independent solutions in the case of Edwards-Tengparameterization. On the contrary, if
one needs to determine the transfer matrix from the 10 Twiss parameters the Edwards-Teng param-
eterization yields the unique solution, while the parameterization developed in this article yields
four solutions. To choose a unique solution one additionally needs to know which of two choices
for u andν1 (or ν2) needs to be taken (see discussion after eq. (4.11)).

The presented parametrization has been proven useful for both analytic and numerical analysis
of coupled betatron motion in circular machines and transfer lines. Although we considered only
xy-coupled motion in the article we would like to note that all results obtained in section3 are also
applicable to three-dimensional particle motion. It is important to note that although the canonical
coordinates were used throughout the article, this issue usually does not create complications in
practical applications of the developed formalism becausethe canonical and geometric coordinates
coincide at regions with zero longitudinal magnetic field. For example, the software developed by
one of the authors for coupled-motion analysis always uses transfer matrices which start and end
at points with zero longitudinal magnetic field, and thus, the canonical and geometric coordinates
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always coincide. AppendixB shows an example of analysis of how the strongly coupled motion
for the Fermilab electron cooling project has been analyzedwith the developed formalism.
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A Explicit expressions for transfer matrix, bilinear form a nd matrix of second or-
der moments

Assuming one turn transformation and performing matrix multiplication in eq. (6.3) one obtains
the transfer matrix elements expressed through the generalized Twiss functions:

M̂11 = (1−u)cosµ1+α1xsinµ1+ucosµ2+α2xsinµ2 , (A.1a)

M̂12 =β1xsinµ1+β2xsinµ2 , (A.1b)

M̂13 =

√

β1x

β1y
[α1ysin(µ1+ν1)+ucos(µ1+ν1)]+

√

β2x

β2y
[α2ysin (µ2−ν2)+(1−u)cos (µ2−ν2)] ,

(A.1c)

M̂14 =
√

β1xβ1ysin (µ1+ν1)+
√

β2xβ2ysin (µ2−ν2) , (A.1d)

M̂21 =− (1−u)2+α2
1x

β1x
sinµ1−

u2+α2
2x

β2x
sinµ2 , (A.1e)

M̂22 = (1−u)cosµ1+ucosµ2−α1xsinµ1−α2xsinµ2 , (A.1f)

M̂23 =
[(1−u)α1y−uα1x]cos (µ1+ν1)−[α1xα1y+u(1−u)]sin (µ1+ν1)

√

β1xβ1y
+

[uα2y−(1−u)α2x]cos (µ2−ν2)−[α2xα2y+u(1−u)]sin (µ2−ν2)
√

β2xβ2y
, (A.1g)

M̂24 =

√

β1y

β1x
[(1−u)cos(µ1+ν1)−α1xsin (µ1+ν1)]+

√

β2y

β2x
[ucos (µ2−ν2)−α2xsin (µ2−ν2)] ,

(A.1h)

M̂31 =

√

β1y

β1x
[α1xsin (µ1−ν1)+(1−u)cos (µ1−ν1)]+

√

β2y

β2x
[α2xsin (µ2+ν2)+ucos(µ2+ν2)] ,

(A.1i)

M̂32 =
√

β1xβ1ysin (µ1−ν1)+
√

β2xβ2ysin (µ2+ν2) , (A.1j)

M̂33 =ucosµ1+(1−u)cosµ2+α2ysinµ2+α1ysinµ1 , (A.1k)

M̂34 =β1ysinµ1+β2ysinµ2 , (A.1l)
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M̂41 =
[α1xu−(1−u)α1y]cos (µ1−ν1)−[α1xα1y+u(1−u)]sin (µ1−ν1)

√

β1xβ1y
+

[(1−u)α2x−uα2y]cos (µ2+ν2)−[α2xα2y+u(1−u)]sin (µ2+ν2)
√

β2xβ2y
, (A.1m)

M̂42 =

√

β1x

β1y
[ucos (µ1−ν1)−α1ysin(µ1−ν1)]+

√

β2x

β2y
[(1−u)cos (µ2+ν2)−α2ysin (µ2+ν2)] ,

(A.1n)

M̂43 = −
u2+α2

1y

β1y
sinµ1−

(1−u)2+α2
2y

β2y
sinµ2 , (A.1o)

M̂44 =ucosµ1+(1−u)cosµ2−α1ysinµ1−α2ysinµ2 . (A.1p)

Similarly, using eq. (3.13), one can express elements of the bilinear form describing the particle
ellipsoid in 4D space:

Ξ̂11 =
(1−u)2 + α2

1x

ε1β1x
+

u2 + α2
2x

ε2β2x
, (A.2a)

Ξ̂22 =
β1x

ε1
+

β2x

ε2
, (A.2b)

Ξ̂33 =
u2 + α2

1y

ε1β1y
+

(1−u)2 + α2
2y

ε2β2y
, (A.2c)

Ξ̂44 =
β1y

ε1
+

β2y

ε2
, (A.2d)

Ξ̂12 = Ξ̂21 =
α1x

ε1
+

α2x

ε2
, (A.2e)

Ξ̂34 = Ξ̂43 =
α1y

ε1
+

α2y

ε2
, (A.2f)

Ξ̂13 = Ξ̂31 =
[α1xα1y +u(1−u)]cosν1 +[α1y (1−u)−α1xu]sinν1

ε1
√

β1xβ1y
+

[α2xα2y +u(1−u)]cosν2 +[α2x (1−u)−α2yu]sinν2

ε2
√

β2xβ2y
(A.2g)

Ξ̂14 = Ξ̂41 =

√

β1y

β1x

α1xcosν1 +(1−u)sinν1

ε1
+

√

β2y

β2x

α2xcosν2−usinν2

ε2
, (A.2h)

Ξ̂23 = Ξ̂32 =

√

β1x

β1y

α1ycosν1−usinν1

ε1
+

√

β2x

β2y

α2ycosν2 +(1−u)sinν2

ε2
, (A.2i)

Ξ̂24 = Ξ̂42 =

√

β1xβ1ycosν1

ε1
+

√

β2xβ2ycosν2

ε2
. (A.2j)

Finally, using eq. (3.26), one can express elements of the second-order moments:

Σ̂11 ≡
〈

x2〉= ε1β1x + ε2β2x , (A.3a)

Σ̂12 ≡ 〈xpx〉 = Σ̂21 = −ε1α1x− ε2α2x , (A.3b)

Σ̂22 ≡
〈

p2
x

〉

= ε1
(1−u)2 + α2

1x

β1x
+ ε2

u2 + α2
2x

β2x
, (A.3c)
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Σ̂33 ≡
〈

y2〉= ε1β1y + ε2β2y , (A.3d)

Σ̂34 ≡ 〈ypy〉 = Σ̂43 = −ε1α1y− ε2α2y , (A.3e)

Σ̂44 ≡
〈

p2
y

〉

= ε1
u2 + α2

1y

β1y
+ ε2

(1−u)2 + α2
2y

β2y
, (A.3f)

Σ̂13 ≡ 〈xy〉 = Σ̂31 = ε1

√

β1xβ1ycosν1 + ε2

√

β2xβ2ycosν2 , (A.3g)

Σ̂14 ≡ 〈xpy〉 = Σ̂41 = ε1

√

β1x

β1y
(usinν1−α1ycosν1)− ε2

√

β2x

β2y
((1−u)sinν2 + α2ycosν2) ,

(A.3h)

Σ̂23 ≡ 〈ypx〉 = Σ̂32 = −ε1

√

β1y

β1x
((1−u)sinν1 + α1xcosν1)+ ε2

√

β2y

β2x
(usinν2−α2xcosν2) ,

(A.3i)

Σ̂24 ≡ 〈pxpy〉 = Σ̂42 = ε1
(α1y (1−u)−α1xu)sinν1 +(u(1−u)+ α1xα1y)cosν1

√

β1xβ1y
+

ε2
(α2x (1−u)−α2yu)sinν2 +(u(1−u)+ α2xα2y)cosν2

√

β2xβ2y
. (A.3j)

B Generalized twiss functions for axisymmetric distribution function

To increase Tevatron luminosity, Fermilab developed a high-energy electron cooling device for
the cooling of antiprotons [2]. Because of the high energy of the electron beam (∼4 MeV), it is
impractical to use the standard beam transport used in electron cooling devices where the beam
moves in the longitudinal magnetic field the entire way from the electron gun to the collector.
Nevertheless the longitudinal magnetic field is still used for beam focusing in the cooling section
to cancel the beam defocusing due to the electron beam space charge, and more importantly to
prevent collective instability in the electron beam. To neutralize the rotational motion of particles
in the cooling section, the beam is produced in the electron gun immersed in the longitudinal
magnetic field. Consequently, the beam transport is quite sophisticated, with a large number of
bends and focusing elements. Taking into account that the space-charge effects are comparatively
small everywhere except the gun and the collector, the developed formalism has been used for
analysis of the main part of beam transport. In this section we consider how to find the generalized
Twiss parameters and the mode emittances at the beginning oftransport line.

At the exit of the electrostatic accelerator the electron beam distribution is axially symmetric,
and before the beam leaves the magnetic field its distribution function is uncoupled and can be
described by the bilinear form

ΞB =
1
εT











γ0 α0 0 0
α0 β0 0 0
0 0 γ0 α0

0 0 α0 β0











, (B.1)

where εT = rc
√

mkTc/P0 is the thermal emittance of the beam,rc is the cathode radius,Tc is
the cathode temperature,P0 and m are the particle momentum and mass,β0 = a2/εT , α0 =
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−
√

β0/εT (da/ds) andγ0 =
(

1+ α2
0

)

/β0 are the initial Twiss functions, anda is the beam radius
at the electrostatic accelerator exit. We imply here thata andrc can be different due to adiabatic
beam expansion in the solenoid. Consequently, magnetic fields at the cathode and the solenoid
exit are related:Bcr2

c = Ba2. After exiting from the magnetic field an electron acquires the angular
momentum proportional to its radius, and the distribution can be characterized by the bilinear form:

Ξin = ΦT ΞBΦ =
1
εT











γ0 + Φ2β0 α0 0 −Φβ0

α0 β0 Φβ0 0
0 Φβ0 γ0 + Φ2β0 α0

−Φβ0 0 α0 β0











, (B.2)

where

Φ =











1 0 0 0
0 1 Φ 0
0 0 1 0

−Φ 0 0 1











, (B.3)

Φ = eB/2P0c is the rotational focusing strength of the solenoid edge, and B is the magnetic field at
solenoid exit.

To choose initial values for generalized Twiss functions4 we use the axial symmetry of the elec-
tron distribution function. This implies that the horizontal and vertical alpha- and beta-functions
are equal andu=1/2. Thus, we obtain for the eigen-vectors:

v̂1 =













√

β
− i+2α

2
√

β
√

β eiν1

− i+2α
2
√

β
eiν1













, v̂2 =













√

βeiν2

− i+2α
2
√

β
eiν2

√

β
− i+2α

2
√

β













. (B.4)

In this case the coefficients of eq. (4.7) are

κx = κy = 1 and Ax = Ay = 0, (B.5)

which creates uncertainty in eqs. (4.8) and (4.10) for u, ν1 andν2. To avoid this uncertainty we will
use primarily eqs. (4.4) and (4.5). Substituting eqs. (B.4) into eq. (4.4) yields

e−iν1 +eiν2 = 0, (B.6)

while for eq. (4.5) it yields an identity. The solution of eq. (B.6) is ν1 = −ν2 + 2π(n+ 1/2). As
one can see there are an unlimited number of solutions forν1 andν2. We will choose a solution
reflecting the eigen-vectors symmetry:ν1 = ν2 = π/2. Then, the matrix̂V is equal to:

V̂ =













√

β 0 0 −
√

β
− α√

β
1

2
√

β
1

2
√

β
α√

β

0 −
√

β
√

β 0
1

2
√

β
α√

β
− α√

β
1

2
√

β













. (B.7)

4We could use eqs. (3.19) and (3.22) for computing the emittances and eigen-vectors and, consequently, the gen-
eralized Twiss functions, but it would require significantly more complicated calculations than for the procedure de-
scribed below.
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Using eq. (3.13) (compare also with eqs. (A.2) we obtain the bilinear form,

Ξ =



















1+4α2

4β

(

1
ε1

+ 1
ε2

)

α
(

1
ε1

+ 1
ε2

)

0 1
2

(

1
ε1
− 1

ε2

)

α
(

1
ε1

+ 1
ε2

)

β
(

1
ε1

+ 1
ε2

)

−1
2

(

1
ε1
− 1

ε2

)

0

0 −1
2

(

1
ε1
− 1

ε2

)

1+4α2

4β

(

1
ε1

+ 1
ε2

)

α
(

1
ε1

+ 1
ε2

)

1
2

(

1
ε1
− 1

ε2

)

0 α
(

1
ε1

+ 1
ε2

)

β
(

1
ε1

+ 1
ε2

)



















. (B.8)

Comparing eqs. (B.2) and (B.8), one can express generalized Twiss functions through the Twiss
parameters of the beam distribution function in the magnetic field:

β =
β0

2
√

1+ Φ2β 2
0

, α =
α0

2
√

1+ Φ2β 2
0

, (B.9)

ε1 =
εT

√

1+ Φ2β 2
0 −Φβ0

, ε2 =
εT

√

1+ Φ2β 2
0 + Φβ0

. (B.10)

One can see thatε1ε2 = ε2
T , which verifies the conclusions of section3. The last two equations

demonstrate that after exiting the magnetic field the beam distribution is characterized by two quite
different emittances. In the case of FNAL cooler whereΦβ0 ≫ 1 it results in one emittance to be
much larger another one. The first emittance is determined bythe angular momentum excited by
the solenoid edge field,ε1 = eBcr2

c/(P0c) and grows with the field. While the second emittance is
determined by the cathode temperature,ε1 = mkTcc/(eBcP0), and decreases with field increase.

The developed formalism presents also a simple way to describe the vertex-to-plane transform
suggested by Derbenev [1]. As it was presented above, the eigen-vectors of eq. (B.4) represent
the vertex distribution function forν1 = ν2 = π/2, while for ν1 = 0 andν2 = π they correspond
to the uncoupled motion, in whichx andy coordinates were rotated byπ/4. The transform from
one to another set of the eigen-vectors can be performed witha matrix representing a decoupled
motion with betatron phase advances for thex andy planes different byπ/2. In the case of unequal
emittancesε1 andε2 the initially axial-symmetric beam is transformed to an elliptic beam tilted
by π/4. If the focusing system is rotated byπ/4, the final elliptical beam is also rotated by the
same angle due to the axial symmetry of the initial distribution. The final beam has an uncoupled
distribution function with the emittancesε1 and ε2 corresponding to the vertical and horizontal
emittances.

References

[1] Y.S. Derbenev,Invariant Colliding Beams: 3. Revised Concept: Sum Resonance Regime, UM HE
93-20 (1993);
Ya. Derbenev,Adapting Optics for High Energy Electron Cooling, UM HE 98-04 (1998).

[2] S. Nagaitsev et al.,FNAL R&D in medium energy electron cooling,
Nucl. Instrum. Meth.A 441 (2000) 241.

[3] R. Talman,The Mobius accelerator, Phys. Rev. Lett.74 (1995) 1590.

– 23 –

http://dx.doi.org/10.1016/S0168-9002(99)01139-0
http://dx.doi.org/10.1103/PhysRevLett.74.1590


2
0
1
0
 
J
I
N
S
T
 
5
 
P
1
0
0
1
0

[4] R.C. Fernow et al.,Possible demonstration of ionization cooling using absorbers in a solenoidal field,
in Proceedings ofBeam Dynamics and Technology Issues for Muon Collider, Montauk New York
U.S.A.,October 15–20 1995,AIP Conf. Proc.372(1996) 146.

[5] L.C. Teng,Concerning n-Dimensional Coupled Motions, Fermilab, FN-229 0100 (1971).

[6] D.A. Edwards and L.C. Teng,Parametrization of linear coupled motion in periodic systems. (talk),
IEEE Trans. Nucl. Sci.20 (1973) 885.

[7] I. Borchardt, E. Karantzoulis, H. Mais and G. Ripken,Calculation of Beam Envelopes in Storage
Rings and Transport Systems in the Presence of Transverse Space Charge Effects and Coupling,
DESY 87-161 [Z. Phys.C 39 (1988) 339].

[8] F. Willeke and G. Ripken,Methods of Beam Optics, in Proceedings ofUS Particle Accelerator School
(1987 and 1988), AIP Conf. Proc.184(1989) 758.

[9] K.L. Brown and R. Servranckx,Cross plane coupling and its effect on projected emittance, Part.
Accel.36 (1991) 121.

[10] T.L. Barklow et al.,Commissioning experience with the SLC arcs, SLAC-PUB-5056(1989);
T.L. Barklow, P. Emma, P. Krejcik and N.J. Walker,Review of lattice measurement techniques at the
SLC, SLAC-PUB-5695 (1991).

[11] G. Parzen,Linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional
phase space, accphys/9510006.

[12] M. Billing, The Theory of Weakly, Coupled Transverse Motion in Storage Rings, CBN 85-2 (1985).

[13] D. Sagan and D. Rubin,Linear analysis of coupled lattices,
Phys. Rev. ST Accel. Beams2 (1999) 074001.

[14] J.A. Holt, M.A. Martens, L.P. Michelotti and G. Goderre, Calculating luminosity for a coupled
Tevatron lattice, in the Proceedings of 16th IEEE Particle Accelerator Conference (PAC 95) and
International Conference on High-energy Accelerators (IUPAP), Dallas Texas, May 1–5 1995,
pg. 455.

[15] E.D. Courant and H.S. Snyder,Theory of the alternating-gradient synchrotron,
Annals Phys.3 (1958) 1[Annals Phys.281(2000) 360].

[16] A.A. Kolomensky and A.N. Lebedev,Theory of Circular Accelerators, Moscow Russia (1962).

– 24 –

http://dx.doi.org/10.1063/1.50899
http://dx.doi.org/10.1063/1.38050
http://cdsweb.cern.ch/record/201965
http://arxiv.org/abs/accphys/9510006
file:10.1103/PhysRevSTAB.2.074001y
http://dx.doi.org/10.1016/0003-4916(58)90012-5

	Introduction
	Equations of motion and condition of symplecticity
	Relation between eigen-vectors and emittance ellipsoid in 4D phase space
	Beta-functions for coupled motion
	Derivatives of the tunes and beta-functions
	Representation of transfer matrix in terms of generalized twiss  functions
	Edwards-Teng parametrization
	Discussion
	Explicit expressions for transfer matrix, bilinear form and matrix of second order moments
	Generalized twiss functions for axisymmetric distribution function

