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ABSTRACT. Presntly, there are two most frequently used parametiéoasaof linearx —y coupled
motion used in the accelerator physics. They are the Edwiedg and Mais-Ripken parameteri-
zations. The article is devoted to an analysis of closeioglship between the two representations,
thus adding a clarity to their physical meaning. It also déses the relationship between the eigen-
vectors, the beta-functions, second order moments andlthedn form representing the particle
ellipsoid in the 4D phase space. Then, it consideres a fudbeclopment of Mais-Ripken pa-
rameteresation where the particle motion is descrabed Ipaddimeters: four beta-functions, four
alpha-functions and two betatron phase advances. In cisoparith Edwards-Teng parameteriza-
tion the chosen parametrization has an advantage thathsvegually well for analysis of coupled
betatron motion in circular accelerators and in transfedi Considered relationship between sec-
ond order moments, eigen-vectors and beta-functions casddfal in interpreting tracking results
and experimental data. As an example, the developed famadi applied to the FNAL electron
cooler and Derbenev’s vertex-to-plane adapter.
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1 Introduction

In many applications analysis of coupled betatron motioarisimportant part of the machine
design. The development of accelerator technology hasiktied additional interest in the sub-
ject in recent years. Initially betatron coupling was anesiced effect and efforts were made to
suppress it. However, over recent two decades the betatugrlicg has become an intrinsic part
of many accelerator proposal$f]. Although many studies of the coupled motion have been
performed over the last 40 yeais-L4], in our opinion there is still no representation of coupled
betatron motion that would be as elegant as the CouranteBmatametrization1[s] for the one-
dimensional case. Presently, two different basic reptatens are most frequently used. The first
one was proposed by Edwards and Tebgd and the second one by Mais and Ripkéh §].
This article follows the steps of the second representatidrere we limit the number of inde-
pendent parameters to ten to parameterize<d dymplectic transfer matrix. They are the four
beta-functions, the four alpha-functions and the two betaphase advances. The beta-functions
have similar meaning to the Courant-Snyder parametrizatind the definition of alpha-functions
coincides with the standard one in regions with zero lomital magnetic field, where they are
equal to negative half-derivatives of the beta-functiofise article also reveals a close correspon-
dence between the proposed parametrization and the EdWandsparametrization, thus adding
more clarity to their physical meaning.



Section2 is mainly based on reference§],[[8] and [L6]. They describe the equations of
motion, the notation and the basics of the theory developatié 50's and the 60’s. Sectidh
sets relations between eigen-vectors, emittances andattiel@ 4D-ellipsoid in the phase space.
Sections4—6 develop the proposed representation and sedtishows its correspondence to the
Edwards-Teng parametrization.

2 Equations of motion and condition of symplecticity

The two-dimensional linear motion of a particle in a focgsiattice structure can be described by
the following set of equations:

X'+ (KZ 4 K) x+ <N—%R>y—Ry:O,

)/’+(K5_k)y+ <N+%R’>X+R)(:O. (2.1)

Herex andy are the horizontal and vertical particle displacementshftioe ideal orbit; the deriva-
tives are calculated along the longitudinal coordirsté, y = eB,y/Pc, k= eG/Pc, N = eGs/Pc,
R = eBs/Pc, By, By andBs are the corresponding components of the magnetic fi&ld;the nor-
mal component of the magnetic field gradient; &ds the skew component of the magnetic field
gradient (a quad tilted by +45 deg around #eis in the right-handed coordinate system).

The Hamiltoniaf corresponding to eg2(1) is

PR ) R2\ X2 5 R%\ y? R
H= > + Kx+k+4 2+ Ky—k+4 2qLnyqLZ(ypx—xpy), (2.2)
and the corresponding canonical momenta are
R
= X, _——
Px zy,

R

py=Y+ 5X- (2.3)

Rewriting eg. 2.3) in matrix form we obtain the relation between the canonicahnd the geomet-
ric coordinatesk,

X =RXx, (2.4)
where
X X 10 0 O
A Py 6 0 1-R/20
= = R = 25
X y | X e 00 1 ol (2.5)
Py 8 R/20 0 1

6, =x and8, =y. Here and below we put a cap above transfer matrices andrseetated to the
canonical variables.
Introducing matrixH,

KZ+k+% 0 N ~R/2
0 1 R/2 0
N R2 KZ-k+® 0
~R/2 0 0 1



one can rewrite eqs2(l) and @.2) in the matrix form:

dx

— = UHX 2.7
11,

H= EX HX, (2.8)

where the unit symplectic matrld is introduced as follows,

0100
-10 0 O
U= 2.9
0 001 29)
0 0-10
For any two solutions of eq2(7), X1(s) andXz(s), one can write that
d ot d)A(IAATde TUT T 0. L oT o
d—S(x1Ux2):EUx2+x1UE:X1H U'UR2 + % UUHR, =0, (2.10)
and, consequently,
X1 U, = const, (2.11)

where the following properties of the unit symplectic matsiere employedU™U = | andUU =
—I; andl is the identity matrix. The integral of motion of e@.11) is called the Lagrange invariant.

Let us introduce the transfer matrix from coordinate O tordowtes, x = M (0, )Xo, and the
corresponding transfer matrix for the canonical varialtes M (0,s)%o. Using eq. 2.4) one finds
that the matrices are bound up as following

M (0,s) = R(S)M(0,s)R(0) 2. (2.12)

Taking into account that the invariant of e@.11) does not change during motion, we can write
that
K1 Uy = %I M (0,5)TUM (0,5)% = const (2.13)

As the above equation is satisfied for anyandX; it yields
M (0,5)TUM(0,s) = U. (2.14)

Eq. .14 expresses the symplecticity condition for particle mtiti is equivalent16] to n* = 16
scalar equations, but taking into account that the mailr{ﬁ, s)TUI\7I (0,s) is antisymmetric, only
six ((n> —n)/2 = 6) of these equations are independent. Consequently, only 16 elements
of the transfer matrix are independent. Thus, the sympgigctcondition imposes more severe
limitations than the Liouville’s theorem, which imposedyoone condition, déM ) = 1, and leaves
15 independent parameters.

Consider a circular accelerator with the total transferrinafl. The transfer matrix has four
eigen-valuesj;, and four corresponding eigen-vectorgj = 1, 2, 3, 4),

MU = A (2.15)



Below, we will consider the case of a stable betatron motiweaning all four eigen-values are con-
fined to a unit circle and none of them is equattid. For any two eigen-vectors the symplecticity
condition of eq. 2.14) yields the identity

0=A{9TU (MU =A%) = (M) UNMG — A ;9TUAG; = (1= A A1) 9T UG, (2.16)

which determines that the eigen-values always appear irrégiprocal pairs§, 16], and, con-
sequently, the four eigen-values split into two complexjegate pairs. We will denote them as
A1, A{, Az andA;, and the corresponding eigen-vectorsigsv;, Vo andVs;, where* denotes the
complex conjugate value.

From eq. .16 we obtain the following set of orthogonality conditions:

Uy U¥1 £ 0,
V3 Ul £ 0,
Uiruv; =0 if i,
9 UY; =0, (2.17)
whereVt = ¥*T. The values in the two top lines of e@.17) are purely imaginary, indeed:
(UFU0)" = (UTU0) " =0TUTo = —0TUY. (2.18)

Therefore we normalize the eigen-vectors as follows:

WU =2, U3U0=-2,
9]U0; =0, WU, =0,
03U0; =0, U0 = 0. (2.19)

Other combinations can be obtained by applying the tranm$mosnd/or the complex conjugation
to egs. 2.19. Similarly as for the transfer matrix elements, there anly gix independent real
scalar equations among e@X9.

3 Relation between eigen-vectors and emittance ellipsoid 4D phase space

The turn-by-turn particle positions and angles (at therr@gp of a lattice) can be represented as
a linear combination of four independent solutions,

X = Re(Ale‘“"l\“/l + Aze_iwz\’;z)
= Aq (V) cosyn + Vf sing ) + Ag (Vo cost, + V7 siny) | (3.1)

where four real parametersy, Az, Yy and yn, represent the betatron amplitudes and phases.
The amplitudes remain constant in the course of betatromomotvhile the phases change after
each turn.

Let us introduce the following real matrix

~



This allows one to rewrite eg3(1) in the compact form
X =VAE,, (3.3)

where the amplitude matrik is

(3.4)

and

{a= - (3.5)

Applying the orthogonality conditions given by egg.19, one can prove that matri is a sym-
plectic matrix. It can be seen explicitly as follows:

" {7k Y 7k 7 Vil \/ 1T
A~ Ui+ U=V UV U —V
vTuv = L =1 2 _ 22\ U
[ 2 7 2 27 2i
\71—|—\7>]k_ \71—\7?[ \72—|—\7§ \72—\75
RN 22l _y. 3.6
[ 2 7 2i 2 2i (36)

Here we took into account that every matrix element in matfixJVV can be calculated using vector
multiplication of egs.2.19. Furthermore, the symplecticity of matikyields the following useful
expression for the inverse matri; %:

v1l=_uv'u, (3.7)

where we took into account thet"U = | andUT = —U.

Let us consider an ensemble of particles, whose motion ébdginning of lattice) is con-
tained in a 4D ellipsoid. A 3D surface of this ellipsoid is @®hined by particles with extreme
betatron amplitudes. For any of these particles, 8) (describes the 2D-subspace of single-
particle motion, which is a subspace of the 3D surface of tligseid, described by the bilinear

form
5‘(T

[

%=1. (3.8)

This ellipsoid confines the motion of all particles. To désema 3D surface, in addition to parame-
tersyy andy; of eq. 3.5), we introduce the third parametgyg so that the vectof would describe
a 3D sphere with a unit radius, according to the equation

(&,8)=1, (3.9)
where
COSY1 COSYs3
£ —Sinl‘U]_C-:OSLIJg . (3.10)
cosyp sinys
—sinynsinys



Then, we can rewrite eq3(3) in the following form,
%X =VAE, (3.11)

which describes a 3D subspace confining all particles of garb In other words we can con-
sider that the amplitudes of the boundary particles arenpeterized byys (A1 — Agcosys, Ay —
Az cosys.), so that we would obtain a 4D ellipsoid.

Expressingg from eq. 8.11) and substituting it into eq3(9), one obtains the quadratic form
describing a 4D ellipsoid containing all particles:

K7 ((\7A)‘1)T(\7A)‘1>“<:1. (3.12)

Comparing egs.3.8) and .12 and using eq.3.7), one can express the bilinear for, as
follows:
2_UVEVUT, (3.13)
where=’ = A~1A~1 s a diagonal matrix depending on two amplitudesand A, and we took
into account that matrices~! andU commute.
To determine the beam emittance (volume of the occupied 4&sgsBpace) described by
eg. 3.8) we invert eq. 8.13. That yields,

2 =VT2V. (3.14)
As can be seen, a symplectic transfovhmeduces matrix to its diagonal form. Then, in the new

coordinate frame the 3D ellipsoid enclosing the total 4Dsghspace of the beam can be described
by the following equation:

EA/11X/2 + 2/22 p;z + 2’33)/2 + 2’44[3;,2 =1. (3.15)

It is natural to define the beam emittance as a product of lips@ld semi-axes (omitting the factor
/2 correcting for the real 4D volume of the ellipsoid) so that

1 1
€ap =z, Z, = = ~ (316)
='11="20="337" a4 \/ det(Z)
Calculation of the determinant using e8.14) yields,
2
SR oo ) T WCY (3.17)

T JdetZ)  |detV)]

Here we took into account that cak?t) — 1, which is a direct consequence of matxsymplec-
ticity. Thus, the squares of amplitud@s and A, can be considered as 2D emittanegsand &
corresponding to the eigen-vectdrsandV,. They coincide with the horizontal and vertical emit-
tances of the uncoupled motion, and their product is equedddotal 4D emittances;1&, = &4p.
Consequently, one can write matex as

/e 0 0 O
z_| 0 Ya O 01 (3.18)
0 0 s O

0 0 0 Vs



Similarly to the one-dimensional case the particle ellipsshape, described by matri,
determines the emittances and €, , and the eigen-vectorg andV,. In this case the beam
emittances are reciprocal to the roots of the following abtaristic equation,

det(=-iAU) =0. (3.19)
One can prove the above using e@1 as follows:

det(Z—iAU) = det(UVZVTUT —iAU) = det(Z' ~iA UTVTUTU) =
1 1

det(Z' —iAU) = <? —)\2> <? —)\2> =0. (3.20)

1 2

Knowing the beam emittances and consequestlyone can obtain from eq3(13 a system of
linear equations for matri)?,
ZVU = UVZ'. (3.21)

Multiplying the above equation hy;, one obtains two equations for the eigen-vectors:

(é—lu> % =0, (3.22)
&
wherel=1, 2, and
1 0
—i 0
u = Uy = 3.23
1 0 ) 2 1 ( )
0 —i
We also took into account th&tu; = ¥;, Uu; = —iu; and="u, = gllu|.

Taking into account eq3(8) a Gaussian distribution function for coupled beam motiam loe
written in the following form:

1 1.--
f(X) = ——— —=8T=x) . 3.24
) 412€1 6 exp< 7 X) (3.24)
Then, the second-order moments of the distribution funcie
i =%% = [ %% f(R)d&? = _t Kk exp _Leree)ag (3.25)
1= J J 47'[28152 J 27 ' .

To carry out the integration one can perform a coordinatesfram, § = V1%, which reduces
matrix = to its diagonal form. After simple calculation one obtaihe matrix of the second-order

moments

£ 000

e |08 00|

5=V VT 3.26
000 (3.26)

00 Oe&

One can easily prove by direct substitution that mafris the inverse of matri€. Consequently,
a symplectic transfornvU reduces matrixt to its diagonal form. Applying a similar scheme as



above for obtaining emittances and eigen-vectors fromiriatrone finds that the beam emittances
€1 ande, can be computed from matrias roots of its characteristic equation,

det(SU+iAl) =0, &g=A, (3.27)
while the equations for the eigen-vectors are
(SU+igl)% =0. (3.28)
It also follows from eq. 8.26) that the total beam emittance is equal to
eap = £162 = \/det(%). (3.29)

Taking into account that the beam motion from pait points' results in the matri trans-
formation so thaE(s) = M(s,s)T=(s)M(s,s), and using eq.3.19 and the motion simplicity one
can easily prove that the emittanagsande, are the motion invariants; i.e. there is no configura-
tion of linear electric and magnetic fields which can chargat. Taking into account that each
emittance is bound to the corresponding betatron mode wecalllthem the mode emittances.
If the beam line is build so that the motion is decoupled ates@wint then the mode emittances
coincide with usual horizontal and vertical emittances.

Although the above analysis was carried out for xkrey coupled motion it can be directly
applied to the coupling of any two degrees of freedom. If Bsagy it can be trivially extended to 3
or more degrees of freedom; so that the only change to begtakio account in eqs3(12—(3.29
is a larger dimension of the matrices and vectors.

4 Beta-functions for coupled motion

Employing the previously introduced notation, one can desa single-particle phase-space tra-
jectory along the beam orbit as

),Z(S) = M (0, S)Re(\/g_l\'}le*“ﬂl + \/8_2\7287“'“2)
Re(\/g_l\’}l(s)e—i(wl-‘rﬂl(S)) +\/5\72(S)e—i(w2+“2(5))> 7 (4.1)

where the vectors; (s) = (9N (0,s)¥; andiy(s) = €H2(9M (0,s)0, are the eigen-vectors of the
matrix M (0,s)MM (0,s) "%, (1 and s, are the initial phases of betatron motion avid= M (O, L)

is the transfer matrix for the entire ring. The tere“2(9ande #2(9 are introduced to bring the
eigen-vectors to the following standard form:

B(S) | [ V/Bx(9)€"

_iu(s)+au(s) _iuz(s)+axx(s) gva(s)
g _ Bux(s) G _ Bax(s)
_u2(9)+01y(S) Gwa(s) _lug(s)+az(s)
L Bay(s) | L v/ Bay(s) ]

so thatu(s) and p(s) would be the phase advances of betatron motion. Ieés), B1y(s),
Bax(s) andB2y(s) are the beta-functionsrix(s), a1y(s), aa(s) andayy(s) are the alpha-functions



which, as will be shown in the next section, coincide with tieta-functions’ negative half-
derivatives at regions with zero longitudinal magneticdiiednd six real functionsi;(s), Ux(s),
us(s), us(s), vi(s) andvy(s) are determined by the orthogonality conditions of éj19). Below
we will be omitting their dependence snvhere it does not cause an ambiguity. Two eigen-vectors
V1 andv, were chosen out of two pairs of complex conjugate eigenevediy selectingi; andug
to be positive.

The first orthogonality condition of eq<2.(L9),

(v;uol) =-2i(u+u)=-2, (4.3)
yieldsu; = 1—uy, and similarly for the second eigen-vectof,= 1 — uz. The next two equations,
V] U¥; = 0 and¥] U¥, = 0, are identities.

Taking into account the above relations tqranduy, the remaining two non-trivial orthogo-
nality conditions can be written as follows,
|u3 _ ) —iVo

(V3 U0) =- (\/ﬁ[(l Up) + Oy +\/7

Q/g[ (1—u3) —agyl+ \/7 liug + ay ) gVt — (4.4)
(\7-2|-U\71) =— (\/ﬁ[ (1 U2 —|—C¥1X \/; IU3—|—azx>elvz

(\/@[(u -1- +\/7

Multiplying both terms in eq.4.4) and eq. 4.5) by their complex conjugate values one obtains

liug + aay ) gVt = (4.5)

Us) + Ky U2)2 ,
*1u2)2 , (4.6)

A2+ (Ke(1—u )+K lug))?
AL+ (Ky(1—tp) — )

=A+
=A+

/\/\

where

-1
Ay = KyO1x — Ky ~Q2x,

_ -1

_ B _ [Py
KX—\/B:, Ky—\/;. 4.7)

Subtracting eqs4(6) yields u, = uz. Substitutingu, = uz = u into the first equation of eqs4.©)
one obtains the following expression far

2__ N2
— Kk + \/KZK)? <1+ A (1- KZK)?))

2 g2
KZ—Kg
u=

4.8
1—KZK? (4.8)



By definitionuy(k = 1,...4) are real functionsandu; andu, are positive. That sets a constraint
for possible values of beta- and alpha-functions,

A>2<_A$ 2,2
P (1—kygky) > —1, (4.9)

and a constraint on a value ofu < 1.
Knowing u makes it easy to fingd;1+v, andv; — v, from eqgs. 4.4) and @.5):

Ve — glvitva) _ Ac+i (Kx (1 —u) + Ky tu)
Ay—i (Ky(1—u)+ Ky tu)’
gv- = gnv _ At (L= — K ) (4.10)
Ay +i (Ky(1—u) — ky 'u)
and, consequently; andvs:
1
vi = (Vi +vo)+m(nm),
szé(v+—v,)+n(n—m). (4.11)

Heren andm are arbitrary integers. Eg4.(10 results in thatv_ andv, are determined modulo
2T, which, consequently, yields that and v, are determined modula (see eq.4.11)) resulting
in additional solutions. Actually there are only two indagent solutions fov; andv,. The
first one corresponds to the case when bo#ndm have the same parity, which is equivalent to
m+n=m-—n=0. The second one corresponds to different paritsnahdn, which is equivalent
tom+n=m-—n=1. Thus, in a general case, one has four independent saudtion, v; andv,
set by symplecticity conditions: two solutions foand two solutions for, andv, for eachu.

Below we will call thirteen functions1x, By, Bax, B2y, O 1x, A1y, A2x, A2y, U, V1, V2, U1 and
U2 the generalized Twiss functions. Only 10 of them are inddpah Other three can be deter-
mined from the symplecticity conditions. Although for knowigen-vectors the Twiss parameters
can be determined uniquely it is not the case if we know ontgfenctions. In this case an appli-
cation of symplecticity conditions leaves four indepertdsiutions for the eigen-vectors. Two of
them are related to the sign choice ton eq. @.8), and other two (for each choice of are related
to uncertainty ofv; andv; in eq. @.11). The later is related to the fact that the mirror reflection
with respect to thex or y axis does not chang®'s anda’s but changes the relative signs for the
andy components of the eigen-vectdrsyith subsequent change of andv, by . It is opposite
to the case Edwards-Teng parameterization (see seftiovhere knowing eigen-vectors does not
yield unique solution for the Twiss parameters but knowiags$ parameters uniquely determines
eigen-vectors.

1Eq. (4.8) also demonstrates that if beta- and alpha-functions areemwectly chosen, so that the value of the
discriminant is negativaj becomes imaginary, thus redetermining the alpha-funstion

2|t can also be achieved by change of the coupling sign (simatius sign change for gradients of all skew quads
and magnetic fields of all solenoids), which does not chahgdéta-functions but does change thkinctions byr.

—10 -



Finally, we can express the eigen-vectorsandV, in the following form:

B ]

VBix

o i(1—u)+o1x _ iU‘H]erin
n=| Vg | VE (4.12)
vV Blyelvl vV BZy
_iutayy v _i-utay
Bly L \/E m
That yields the following expression for matik(see eq.3.2))
v Bix 0 V/ BaxCOsVy  —+/BoxSinva
__ai 1-u uSiNV2—Qap, COSV2  UCOSVo+dpx SiNVo
go| Ve VB Ve ke @13
w/B]_yCOSV]_ —\/B]_ySinV]_ \/Bzy 0
usinvi —agyCOSV;  UCOSV1+-O1ySiNvy oy 1—u
i By By V/Pay VB

In the case of weak coupling one should normally chobsas the eigen-vector, which mainly
relates to the horizontal motion, ang to the vertical motion. In the case of strong coupling
the choice is arbitrary. As can be seen from €ql2, in determining beta- and alpha-functions,
swapping two eigen-vectors causes the following rededimsti B1x < Box, B1y < Bay, O1x < 2,
O1y < Oz, U— 1—Uu, v; — —Vp andv, — —vy. One can verify that eqs4(8) and @.10 satisfy
the above transformations far v, andvs.

To find the beam sizes one needs to remember that the amplitfideeam motion related to
the corresponding eigen-vectors are governed by 8d)(@nd @.11). Applying egs. 8.11), (4.1
and @.12 one can parametrize the coordinates of the 4D ellipsoatimt

(Y, Yo, P3) = Re(y/E10; cosyze ¥ + /g0, singze ¥2) .

The beam sizes (projections of 4D ellipsoid to the horizicema vertical directions) are determined
by the maximum ok andy variations in €q.4.14) and are equal to

ax = \/ &1Bix + &2,
ay = 1/ €181y + €22y .

Let us to write the equation describing the beam ellipsoithéx — y plane (the projection of the
4D-ellipsiod to thex—y plane) in the following form,

X2

—_— — —|— pu—
& agy &

one can find the parametérby determining at whick coordinate they coordinate in eq.4.14)

reaches the maximum. Comparing this result with the reslithviing from eq. ¢.16) one ob-

tains B]:
\/ BixPBry€1COSV1 + / BoxBoy€2 COSV,
VEBix+ &Boy/E1By + &Py
Comparing egs.4.15 and @.17) to the second order moments presented in appefdixe can
see that the above beam sizes coincide with the rms beamafites Gaussian distribution, and
the parametedi can be also expressed as followiig= (xy) /+/(X2) (y2).

(4.14)

(4.15)

2axy |y <o

1- G2, (4.16)

& = (4.17)

—-11 -



5 Derivatives of the tunes and beta-functions

Let us consider the relations between the beta- and alptaidns. A differential trajectory dis-
placement related to the first eigen-vector can be expresstallows:

X(s+ds) =x(s) + X (s)ds= x(s) + (px(s) + §y> ds=

Re((x/ﬁlx—(S)Jr _ —u(s))+orlx() Buy(s) €” ]d5>e (e <>+w1>>_

Bix(s)

(5.1)

Alternatively, one can express particle position through beta-functions at the new coordinate
s+ds

X(s+ds) :Re< &1Bx(s+ ds)e*i(lll(s—kds)ﬂﬂ)) _

mReq Bix() + ;gllxx— iv/Bu(s du] >>. (5.2)

Comparing both the imaginary and real parts of efd) @nd 6.2) one obtains:
d
% = —201x+ R/ BixPry COSV1 ,

%_ﬁ__ |By
ds ~ P lesmv (5.3)

Similarly, one can write down equivalent expressions fervartical displacement,
R
V(509 ~y(5)+Y (95— ) + (P9 — 5x) ds—

\/8_1R6<< Bly(s)eiV1(S) _ Mévl(s) +§ le(s)] dS) ei(ul(S)Jrl,Ul)) 7

Bay(s)
(5.4)
and

y(s+ds) = @Re([ Biy(s) + 5 dgll;’ +iy/Bay(s) (dvy —dpy ] pa(S)+—Vvi(s ) (5.5)

which yields:

% = —2a1y — Ry / BixBrycosvy,
du_dvi  u R By

45 ds Bly + By sinvy. (5.6)
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Similar calculations carried out for the second eigenweyield,
d
% = —202y — Ry/ BoxBoy COSV2,

d[,lz_l—u R ’BZX .
E——Bzy +§ l3—2yS|nV27

d
gz" = —202¢ + R/ BoxfB2y COSV2,

duz dvz  u R [Byy .
ds ~ds B 2”32x sinvy. (5.7)

One can see that in the absence of longitudinal magnetictfielderivatives of the phase advances
dui/dsanddppds are proportional to (+ u) and are positive. That explains the selection rule
for the eigen-vectors formulated at the beginning of sactiovhich requiresu; and uy being
positive (3 = us = 1—u > 0). Note that there is no a formal requirement ddg;, + v1)/dsand
d(u2 + v2) /dsbeing also positive and therefoecan be negativé while in the most of practical
cases it belongs to the [0,1] interval.

The relative contributions ofandy parts in the eigen-vector normalization equatighi¥, =
—2i, | =12, are proportional ta or 1— u. Therefore parametar can be considered as a cou-
pling strength. In the absence of coupling the parametsrequal to O (or 1 ifx andy vectors
are swapped). Nevertheless, in the general case, an gquali0 does not mean an absence of
coupling. As one can see from egé.g) and @.10) the conditionu = 0 requiresA? + kZ = A7+ K2,
and yieldse+ = (Ax+iky)/(Ay—iky) ande¥- = (Ax+ikx)/(Ay+iky). These equations do not
require auxiliary beta-functionfi, and B2« to be equal to zero, and, consequently, the condi-
tion u = 0 does not automatically mean absence of coupling. Althaidgctly speakings cannot
be considered as a coupling parameter it reflects strengtieafoupling and is a good value to
characterize it in practice. In particular= % corresponds to 100% coupling when the motion
for both eigen-vectors is equally distributed in both pR(gee an example in appendsy. It is
also useful to note that does not change in an uncoupled transfer line. Actuallyhénabsence
of coupling thex andy parts of the eigen-vectoiy andVy, are independent and their normaliza-
tion, v;fyuzvx,y = {u, 1— u}, does not change because the determinants of the corrésgdhd?
transfer matrices are equal to 1. Héfgis the 2D unit symplectic matrix.

6 Representation of transfer matrix in terms of generalizedwiss functions

One can derive a useful representation of the transferxriﬁt{jz =M (s1,%2) between two points
of a transfer line in terms of the generalized Twiss fundiddsing the definitions of eigen-vector
and matrixV (see eq.4.1) and eq. 8.2)) one can derive the following identity

V2S=M1,Vs. (6.1)

3The Tevatron lattice is based on the detailed optics meammeand takes into account large coupling terms coming
mainly from the skew-quadrupole components of the SC dpdlethe coupling corrections are adjusted to minimize
the tune split and, consequently, coupling the value of egmparameten is normally varies in the range of about
[-0.002, 0.04].
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HereV; andV,, are theV matrices given by eq4(13 for the initial and final points. The matrig
is

COSALL  SinApy 0 0
S_ —sSinApy cosAp 0 _ 0 7 (6.2)
0 0 CoOALr SinAp
0 0 —sinAu, cosALp

whereAp » are the betatron phase advances between points 1 and 2 plylafii both sides of
eq. 6.1 by the inverse matrixf/;l = —U\71U, as given by eq.3.7), allows one to express the
transfer matrixM 15, in the form

M1z = —VoSW/; U. (6.3)

In the case of the one-turn transfer matvixthe matriced/, andv» are equal and eg6(3) simpli-
fies. Explicit expressions of matrM as well as matriceS ands are presented in appendix

7 Edwards-Teng parametrization

The Edwards-Teng parametrizatios] [s based on a canonical transfolwhich reduces a %44
transfer matrix,

M= |PPl. (7.1)
qQ
to its normal modes form
M=RMR (7.2)
where
~ AO
M = 7.3
ol (7.3)

andP, p, Q, g, A andB are 2<2 matrices. Teng suggested parametrizing a symplectidxratas
follows:

~ | E —D s
o S'”"’] : (7.4)
Dsing Ecosp
whereE is the unit 2<2 matrix, andD is a 2x2 symplectic matrix,
ab
D= 7.5
B o

so thatad— bc = 1. Thus, matrixR is parametrized by four parameters;: b, ¢ and ¢. Matrix
M describes the particle motion in new coordinates and caratEetrized by six Twiss param-
eters. Finally, one obtains ten parameters to fully deedtfie transfer matri?. The six Twiss
parameter$1, a1, U1, B2, 02, andy; are so called the Twiss parameters of the decoupled motion.
Edwards and Teng expressed them through the transfer negments.

In the course of this section we will express them througheifgen-vectors. As will be seen
below, this procedure reveals the close relation of the epoasentations and sheds additional light
on the physical meaning of both parameter sets.
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Expressing matridM throughM in eq. (7.2) and substituting the result into e®.{5), one
obtains

RIMRY; = A¥; . (7.6)
Eqg. (7.6) can be rewritten as
MT; = Ai¥; , (7.7)
where the vector
Ui = RY; (7.8)

is the eigen-vector of matrik. To determine matriR = R(s) we take into account that vectors
Vi represent decoupled motione., the vector elements corresponding to another plane aiad eq
to zero. Using the definitions dR, ¥; and expressing; through the Twiss parameters of the
decoupled motion, one can rewrite eg&8 in the form:

[ VBi| [cosp 0 —dsing bsing || VP
a . . iutan
~ B | _ 0 cosp csing —asing VB (7.92)
0 asing bsing cose 0 VBye” |’ '
0 csing dsing 0 cosp _iu‘*‘%eiw
B N B - L 1y J
] _ i ]
0 cosp 0 —dsing bsing ”iufi’; ,
O | | 0 cosp csing —asing _W;é ? 7.9b)
VB2 | |asing bsing cosp 0 VB | :
_ita csing dsing 0O Ccosp Ci(1-u)tay
SR LT e

Egs. (7.9 represent eight scalar equations and they allow one tordigte the parameters of matrix
R as well as the beta- and alpha-functions of the decoupleébmatsing the last two equations
in eq. (7.99 and the first two equations in eq..9b), we obtain the following equations for matrix
R parameters:

@a—%bw\/ﬁjyéwzo

_i(l—u)+or1X —iu+alyei"1:0
V BixC 75 ok . :

y (1-u)+ayy
VB€" — dt_—/—bt 0,
By By

iu+ax i(1— u)+orzyat

_ e'V2_|_
N> AN

Here the following notation was introduced: = atang, by = btang, ¢; = ctang andd; = dtang.
Taking into account thad;, by, ¢ andd; are real parameters, one can separate the real and imagi-

—0. (7.10)
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nary parts in eq.4.10. That yields the following four solutions:

a — @ Q2 SiNV, -+ UCOSV,
Box 1-u ’

sinv;
by = 4/ BBy e

 COSVz [0y (1—u) — azyu] —sinvz [U(1—u) + a0y

(1—u) \/BoxBay ’

G
Bix UCOSVy + ary Sinvy

G =—4 /= , 7.11
Bly 1-u ( )

and four useful identities

\/ BixBaysinvi = |/ BoxBay Sinva,
\/ BixBay (02 SiNV2 +UCc0osV2) = 4/ BayxPBry [a1xSiNVy — (1 — U) cosvy] ,
\/ BixBzy (a1ySinv +ucosvi) = 1/ BaxPiy [02y Sinvz — (1 —u) cosvy] ,

(ar2xCOSVo — usinv,) (1 —u) — (a2 SinVz 4 UCoSVy) dpy _

vV BZXBZy

(aycosvy —usinvy) (1—u) — (a1 SiNVy +UCOSVy) 1y
V leBly

The identities can be directly derived from the sympletticif matrix V. Using eq. 8.6) one
immediately obtains thaflUV ' U = —1. Using the explicit definition of the matriof eq. @.13
and performing matrix multiplication, after some algebvag obtains these identities in the off-
diagonal Z 2 block of the resulting matrix.
Using matrixD symplecticity and eqs7(11), after simple algebra one obtains
u

tanz(p:atdt—btct:ru. (7.13)

(7.12)

That finally yields:

sing = +4/u. (7.14)
Now using the two first equations in €d.9g and the two last equations in ed.9b), one obtains
equations for the beta- and alpha-functions of the decdupletion:

vy iu-+ oy vy
VB = (\/@—\/BT),G' Q—Wyye‘ bt>cos<p,
iu+aly

_w eiVl eiVl

o Ut T2y w) cos. (7.15)
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After lengthy calculation employing identitieg.(2), one finally reduces the above equations to
the simple form:

Bax 01
= a, =
Bl 1_u7 1 1_u7
Bzy Oy
Pe=1—"1 2=71, (7.16)

As can be seen, although e@.14) yields four different values for angle, other elements of
matrix R and the beta- and alpha-functions of the decoupled motieruaiquely related to the
eigen-vectors and, consequently, to the generalized Tpdssmeters. A problem appears if a
value ofu is negative somewhere in the lattice. That resultspibeing pure imaginary. The
solution considered in ref5] suggests a replacement of gi@nd cos@) by sinh{p) and coshg)
with appropriate sign changes in the symplectic transfooimsgs. 7.9). It formally addresses
the issue but still requires a redefinition of eg& 9| symplectic transforms every timechanges
its sign.

The betatron motion in the normal modes representation eawritten in the following form

%(s) = M(0,9)%(0), (7.17)

where
M(0,s) = R(s)M (0,5)R~1(0). (7.18)

Edwards and Teng determined the phase advance of the Inetabtin using a standard recipe for
the decoupled motion:

¥i(s)e (S = M (0,5)¥;(0). (7.19)
Using the definition of matri>M( s) of eq. (7.18, we can rewrite eq.7(19 as
¥Ui(s)e H(S) = R(s) "M (0,5)R(0)¥; (0) = M (0,5)¥;(0). (7.20)

As can be seen, the obtained equation coincides with theitiefirof betatron phase advance
of section5 (see eg. 4.1) and below), thus proving that the betatron phase advarareloth
parametrizations are the same.

8 Discussion

This article introduces further development of the cougdethtron motion representation intro-
duced in refs. §] and [7]. Our approach is based on a parametrization of tkd 4éymplectic
transfer matrix by introducing ten functions: four betadtions, four alpha-functions and two be-
tatron phase advances, which we call the generalized Twisgibns. The beta-functions have
similar meaning to the Courant-Snyder parametrizatiod, the definition of alpha-functions co-
incides with the definition for uncoupled motion at regionighweero longitudinal magnetic field,
where they are equal to negative half-derivatives of tha-hatctions. The approach is based on
the parametrization of normalized eigen-vectors. Knowirggeigen-vectors, one can easily obtain
the generalized betatron functions employing ddL3. Egs. .8) and @.10) allow one to perform
the inverse operation of finding eigen-vectors from the gaized Twiss parameters. A useful
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representation of a transfer matrix in terms of the genegdliTwiss functions is also introduced
in section6.

A definition of 4D emittance is introduced for an ensemble aftiples, whose motion is
contained in a 4D ellipsoid. A 3D surface of this ellipsoidietermined by particles with extreme
betatron amplitudes. Eqgs3.8) and @A.2) determine the bilinear fornt describing this beam
boundary. Consequently, the beam density distributioetfan can be written as

f(X> Px, Y, p)/) = Aé(),ZTé)A( - l) )
in the case of KV-distribution, and as

X' =X

,\T%A
f(X, pX>y> py) :Aexp<_ 2 ) )

in the case of Gaussian distribution. The chosen normalizatf the eigen-vectors, eq.19,
yields a simple relation between the beam emittances celatine eigen-vectors and total 4D emit-
tance,esp = €162. Knowing the bilinear fornt or the matrix of second-order momeis = >?._>“<J
one can compute corresponding beam emittances, eigeoryentd, consequently, generalized
Twiss functions using eqs3(19), (3.22 or egs. 8.27), (3.28. The mode emittancesy ande; are
invariants of the motion.

A comparison of the developed parametrization with the Ededeng parametrization pro-
vided additional insight for both parametrizations. Fiisproved that the betatron motion phase
advances for both parametrizations are equal; i.e. thérbetghase advance for the Edwards-Teng
representation is directly related to particle oscillasion thex or y plane, depending on which
plane a particular eigen-vector is referenced to. Secoddakls-Teng beta- and alpha-functions
are simply related to the corresponding generalized beid-aépha-functions;; = fBix/(1—u),

a; = aix/(1—u), whereu is the coupling parameter directly related to the angle ofjEerotation,
Sirf g =u.

Unlike the Edwards-Teng parameterization the Mais-Ripg@rameterization (as well as the
parameterization developed in this article) allows oneltaim the unique solution for the gener-
alized Twiss parameters from the known ring transfer matrithe eigen-vectors. There are two
linearly independent solutions in the case of Edwards-Tergmeterization. On the contrary, if
one needs to determine the transfer matrix from the 10 Tvasspeters the Edwards-Teng param-
eterization yields the unique solution, while the paramzddon developed in this article yields
four solutions. To choose a unique solution one additignadleds to know which of two choices
for uandv; (or v2) needs to be taken (see discussion after44.)).

The presented parametrization has been proven usefulttoabalytic and numerical analysis
of coupled betatron motion in circular machines and trarigies. Although we considered only
xy-coupled motion in the article we would like to note that akults obtained in sectidhare also
applicable to three-dimensional particle maotion. It is @rtpnt to note that although the canonical
coordinates were used throughout the article, this issuallysdoes not create complications in
practical applications of the developed formalism bec#liseanonical and geometric coordinates
coincide at regions with zero longitudinal magnetic fieldr Example, the software developed by
one of the authors for coupled-motion analysis always usessfier matrices which start and end
at points with zero longitudinal magnetic field, and thug, ¢nonical and geometric coordinates
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always coincide. AppendiB shows an example of analysis of how the strongly coupledanoti
for the Fermilab electron cooling project has been analyvitidthe developed formalism.
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A Explicit expressions for transfer matrix, bilinear form a nd matrix of second or-
der moments

Assuming one turn transformation and performing matrixtiplitation in eq. 6.3) one obtains
the transfer matrix elements expressed through the geresialwiss functions:

M11 = (1—U) COSL1 4 Q1 SiN i +UCOSHo+ A2y SNz , (A.1a)
M12 = BuxSiNp1+ Bax Sinpiz, (A.1b)
5 | B , Box :
Mz = By [y Sin (H1+Vv1)+ucos (Up+vi)]+ By [agysin (tp—V2)+(1—u)cos (Ha—Vy)]
y
(A.1lc)
M1s = |/ BixBrySin (1 +V1)+ 1/ BoxBaySin (L2—V2) | (A.1d)
22 2. 2
M21:—wsinul—u 0 sinpy, (A.1le)
Bax Box
Moo = (1—u) cospy+UCOSH2— A1y SINLUL — Oy SiNz (A.1)
Ny — [(1—u) o1y —Ua €0S (U1 + V1) —[0ax0ry+u(1-u)]sin (Ha+Vvi) |
vV leBly
[uasy— (1—u) azy] €OS (U2 — V2) — [a2xO2y+U(1—u)|sin (U — Vo) (Alg)

vV BZXBZy 7

Moy = \/% [(1—u)cos (U1+Vv1)—aicsSin (p1+Vv1)]+ \/EX [ucos (Lp— V) — o Sin (L—V2)] ,

(A.1h)
~ o B]_y . BZy .
M3z = B_lx [C!]_XSIn ([.11—V1)+(1—U) cos ([.11—V1)]—|— E [azxsm ([.12—{—V2)—|—UCOS([.12—|—V2)] ,

X

(A.10)
Ma2 = 1/ BixBuySin (t1—V1)-+1/ BoxBoy Sin (Ho+V2) (A.1)
M33 = UCOSH; +(1—U) COSHz 4Oy SN+ a1y SNy, (A.1K)
Mas = By Sinpi1+ Bay Sinpz, (A.11)
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N [a1xu—(1—u) a1y] €OS (1 — V1) — [01x01y+U(1—U)] sin (U —vy)

" vV leBly

[(1—u) axx—Uuazy] €OS (Ho+V2) — [a2x02y+U(1—u)|sin (Ux+V2)

vV BZXBZy ,

|\7|42 = \/gg [UCOS (ul—vl)—alysin ([.11—V1)]—|—\/E[(1—U) cos ([.12—|— Vz)—azySin ([.12—|— Vz)] R
1y BZY

(A.1m)

(A.1n)
2, 2 2, 42
- u+a 1-u)+a
Mgz = — Ly sinul—()izysinuz, (A.10)
By Bay
Mas = UCOSp; +(1—U) COSHz — a1y SNy — Aoy SN . (A.lp)

Similarly, using eq. .13, one can express elements of the bilinear form descrilkiegotrticle
ellipsoid in 4D space:

-~ (1—uP+add WB¥+ad

=11 = =+ R A.2a
H €1B1x €282« (A.2)

o le BZX

S == = A.2b
22 & + & ( )

. W@+rad (1-uw’+a3

3= : (A.2c)

1By €28y

e Bly BZy

=2+ = A.2d
44 & + & ( )

S o A 1x a2x

S =—py = 2 2 A.2e
12 21 &1 + &’ ( )

2 =2 Oy Oy

Say == 4 Y A.2f
3e==s3= + ot (A.2f)

2 A [a1x0ry +u(1—u)]cosvy + [ayy (1 —u) — au]sinvy

Z13==31= +

& leBly

[a2x 02y + U(1—u)]cosvy + [axx (1 —u) — azyu] sinvy

A.2
&2/ BoxBay (A29)

- - 01y COSV 1—u)sinv 05y COSVo — USINV
2, -2, By a1xcosvy + (1 —-u) L Bay az2xCOsV, 2. (A.2h)
Bax & Box &

aqy COSV, — USinv Q>5, COSV 1—u)sinv .
Bix Oy 1 L Box 2y 2+ ( ) 2 (A.2i)
By & Boy &

=3==32

N N v/ BixP1yCOSV1  +/Box B2y COSV2 _
EPYESIPES Y + e : (A.2))
& &
Finally, using eg. $.26), one can express elements of the second-order moments:
$11= () = &P+ 2B, (A.3a)
212 = <XQ(> = 221 = —&101x — E2002, (A3b)
o 1-u’+af P tas
Soo=(p?) = sl( ) .y Zad (A.3c)
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S33= (V) = €1Biy + 2By, (A.3d)
S34=(yp) = 243 = —&101y — £202y, (A.3e)
w+ai  (1-uP+a3

244 = <p32/> =& B]_y + & BZy )

$13= (Xy) = 231 = €1/ BixBiy COSV1 + €21/ BaxBay COSV2, (A.390)

(A.3f)

il4z<xg,>:i41:sl B—lx(usinvl—alycosvl)—sz B—ZX((l—u)sinv2+a2ycosv2),
Bay Bzy
(A.3h)
Soa=(yp) =32 = —¢&1 @((l—u)sinv1+alxcosv1)+52 B—zy(usinvz—GZXcosvz),
Bux Bax
(A.3i)
- - 01y (1—u) — au)sinvy + (U(1—u) + aixay) COSV
Zz4z<pxpy>=242:£1( 1y (1—U) — ap)sinva + (U(1— u) + anay) COSVy
vV leBly
& (ar2x (1 —u) — azyu) sinva + (U(1—u) + azc0zy) COSV2 . (A30)
BxBay

B Generalized twiss functions for axisymmetric distribution function

To increase Tevatron luminosity, Fermilab developed a-eigérgy electron cooling device for
the cooling of antiprotons2]. Because of the high energy of the electron beam eV), it is
impractical to use the standard beam transport used inr@tecboling devices where the beam
moves in the longitudinal magnetic field the entire way frdm tlectron gun to the collector.
Nevertheless the longitudinal magnetic field is still usedidfeam focusing in the cooling section
to cancel the beam defocusing due to the electron beam spacge¢ and more importantly to
prevent collective instability in the electron beam. Totnalize the rotational motion of particles
in the cooling section, the beam is produced in the electnom igimersed in the longitudinal
magnetic field. Consequently, the beam transport is quiphisticated, with a large number of
bends and focusing elements. Taking into account that theespharge effects are comparatively
small everywhere except the gun and the collector, the dpedl formalism has been used for
analysis of the main part of beam transport. In this sectiercensider how to find the generalized
Twiss parameters and the mode emittances at the beginntransport line.

At the exit of the electrostatic accelerator the electroanbelistribution is axially symmetric,
and before the beam leaves the magnetic field its distributiaction is uncoupled and can be
described by the bilinear form

Yo ap 0 O

_ 1|appB 0O
—B=— B.1
B 1 00 Yo 0o ’ ( )

0 0 ap o

where er = r¢/mkT,/Py is the thermal emittance of the beam, is the cathode radiusl; is
the cathode temperatur® and m are the particle momentum and mags, = a?/er, ap =
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—+/Bo/€r (da/ds) andyp = (1+ ad)/Bo are the initial Twiss functions, analis the beam radius
at the electrostatic accelerator exit. We imply here thahdr. can be different due to adiabatic
beam expansion in the solenoid. Consequently, magnetisfal the cathode and the solenoid
exit are relatedB.r2 = B&?. After exiting from the magnetic field an electron acquites angular
momentum proportional to its radius, and the distributian be characterized by the bilinear form:

W+ DBy o 0 —®fy
_ _ 1 ao Bo DBy 0
S,=0" S = — B.2
" B T g 0 B yw+PB ap |’ (B.2)
—CDBO 0 ap B()
where
1 000
0 1d0
D= B.3
0 010’ (B.3)
— 001

® = eB/2Pyc is the rotational focusing strength of the solenoid edgd Bais the magnetic field at
solenoid exit.

To choose initial values for generalized Twiss functibwe use the axial symmetry of the elec-
tron distribution function. This implies that the horizahtand vertical alpha- and beta-functions
are equal and=1/2. Thus, we obtain for the eigen-vectors:

VB /B

5 2\/B 5 2\/B
U1 = ; . U= : B.4
1 \/Ee'vl 2 \/L_; ( )
_ i+2a ejvl _ i+2a
2\/B 2\/B

In this case the coefficients of ed..7) are

which creates uncertainty in eqd.8) and @.10) for u, v; andv,. To avoid this uncertainty we will
use primarily egs.4.4) and @.5). Substituting eqs.R.4) into eq. @.4) yields

e Vipev2=0, (B.6)

while for eq. @.5) it yields an identity. The solution of eqB(6) is v1 = —v, + 2m(n+ 1/2). As
one can see there are an unlimited number of solutiong;fand v,. We will choose a solution
reflecting the eigen-vectors symmetmy: = v, = 11/2. Then, the matri¥/ is equal to:

VE 0 0 -\
g_| VB 2/B 2/B VB
V= ? B B ? . (B.7)

2F VB VB 3B

4We could use eqgs3(19 and @.22) for computing the emittances and eigen-vectors and, cumesely, the gen-
eralized Twiss functions, but it would require significgnthore complicated calculations than for the procedure de-
scribed below.




Using eq. 8.13 (compare also with eqsA(2) we obtain the bilinear form,
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Comparing egs.R.2) and B.8), one can express generalized Twiss functions through whesT
parameters of the beam distribution function in the magrfesid:

Bo

Qo

B=——7—, o= —F—, (B.9)
2,/14 ®2B2 2,/14 ®2BZ
ET ET
&= , &= . (B.10)
1+ ®2B2 — dpy \/ 1+ P?B5+ PPy

One can see thage, = e%, which verifies the conclusions of secti@n The last two equations
demonstrate that after exiting the magnetic field the bearilolition is characterized by two quite
different emittances. In the case of FNAL cooler whéx@, > 1 it results in one emittance to be
much larger another one. The first emittance is determinetthdoyangular momentum excited by
the solenoid edge field; = eB.r2/(Poc) and grows with the field. While the second emittance is
determined by the cathode temperatuie= mkT.c/(eB:Py), and decreases with field increase.

The developed formalism presents also a simple way to destre vertex-to-plane transform
suggested by Derbenet][ As it was presented above, the eigen-vectors of Bdl) (represent
the vertex distribution function fov; = v, = 11/2, while for v; = 0 andv, = mrthey correspond
to the uncoupled motion, in whickandy coordinates were rotated by/4. The transform from
one to another set of the eigen-vectors can be performedanitiatrix representing a decoupled
motion with betatron phase advances forxtandy planes different byt/2. In the case of unequal
emittancese; and &, the initially axial-symmetric beam is transformed to anpdic beam tilted
by rr/4. If the focusing system is rotated boy/4, the final elliptical beam is also rotated by the
same angle due to the axial symmetry of the initial distidout The final beam has an uncoupled
distribution function with the emittances and &, corresponding to the vertical and horizontal
emittances.
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