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Abstract

In the following report we give a survey of linear machine theory. OQur investigations
are restricted to coasting beam betatron motion but coupling is taken into account in a
general way. The equations of motion for on- and off-momentum particles are derived
und written in canonical form. From the canonicity it follows, that all transfer matrices
are automatically symplectic. Eigenvector methods are introduced to study the stability
behaviour.To investigate the influence of coupling, generalised lattice functions are defined
and canonical perturbation techniques are applied.
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1 Introduction

The description of the motion of charged particles in a circular accelerator is a complex
physical problem. When approaching this kind of complicated system, physicists try first
to find a certain regime of the parameters for which the system behaviour is described by
a simple model. Once such a model has been established it may serve as a basis which
allows one to take into account the full complexity of the system by means of a perturbation
treatment.

This is the way one proceeds in describing the beam dynarmics in accelerators. The first
step in a series of simplifications is to assume that the particle density in a beam is low
enough so that the interaction of a single particle with all the other particles in the beam can
be neglected. The motion of a particle is then determined by “external” forces only. In fact
there are many operation modes of real accelerators for which this single particle model is
a rather satisfactory description of the beam behaviour. Moreover one can say that in high
energy accelerators the external forces acting on a particle are always much stronger than
the inner forces arising from the interaction among the particles. Thus collective effects are
approached later by a perturbation treatment.
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The single particle model describes the motion of a charged particle in an accelerator as
oscillations in three degrees of freedom around a particle trajectory which closes on itself,
the so called closed orbit. One distinguishes between the transverse motion and the variation
of the time with respect to a reference time at which the particle passes a certain point in
the accelerator. The independent variable of the motion is the path length along the closed
orbit. The transverse motion is called betatron oscillation. The variation of the particle
time associated with a change in the particle energy imposed by rf cavity resonators is called
synchrotron oscillation.

Though the single particle model is already a considerable simplification, the remaining
forces and interactions are still very complicated. That is because the forces acting on a par-
ticle are in general nonlinear. The motion of a particle under the influence of nonlinear forces
1s a problem which has never been completely solved. Therefore accelerators are designed
so that the forces acting on the particles are as linear as possible. Furthermore, most of the
particles are in the center of the beam performing small amplitude oscillations and therefore
are only slightly influenced by the weak nonlinearities. Therefore it is reasonable to develop
a model in which all the forces have been linearized, the linear accelerator theory.

In the linear model, one considers quasi harmonic oscillations in three degrees of freedom
under the influence of linear restoring forces. We call these synchro-betatron oscillations.
The coupling between the two transverse modes and the longitudinal mode is not very strong
in most real accelerators. This allows, as a further simplification, the neglect of these cou-
plings and the treatment of horizontal, vertical and longitudinal motion as three independent
oscillation modes. The result is the uncoupled linear machine theory which was subject of
the first two introductory lectures about transverse and longitudinal motion in this course.
Despite all the simplifications, the uncoupled linear machine theory provides a powerful tool
for describing, analysing and interpreting the beam behaviour in an accelerator. It is the
basis of machine design. Also the operation of the machine, measurement of beam proper-
ties. adjustments and optimization of parameters follow the concepts of the linear uncoupled
theory.

For certain operating conditions however. the description of beam behaviour in terms of
linear uncoupled theory is insufficient. However it is still an excellent starting point for the
treatment of more sophisticated effects like the impact of machine nonlinearities, interaction
among the particles in the beam and coupling between the oscillation modes. All of this is the
reason why the uncoupled linear machine theory is considered as the backbone of accelerator
physics.

Following this concept, it will be demonstrated how the theory of uncoupled betatron
motion can be extended to the case of coupled transverse betatron oscillations. For this
purpose we start with the equation of motion for a single particle in the accelerator. We
then specialize to a coasting beam with no accelerating fields. In this case the particles
have constant energy { we do not consider at this point the energy loss by the emission of
svnchrotron radiation in the arcs) and there is no coupling between the "frozen” longitudinal
motion and the transverse motion. But the transverse betatron oscillations are influenced by
a constant deviation from the ideal particle energy.

After linearization of the appropriate equations of motion, we arrive at the linear mode]
of transverse coupled machine theory. The coupling between the two transverse modes comes
from longitudinal magnetic fields or from fields which don’t have a midplane symmetry with
respect to the beam. These equations (for solenoids and skew quadrupoles) will be solved
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exactly. Furthermore, in order to study the influence of coupling, we introduce generalized
lattice functions. Besides the exact treatment of coupling, a very useful procedure 1s to
consider coupling effects as a perturbation of the uncoupled theory. In this form the results
are especially well suited for analysing machine measurements and for calculating adjustments
and corrections for machine operations.

In the second part of this course, the impact on the transverse oscillations of a deviation of
the particle energy from the ideal energy,-called chromaticity - will be examined. Taking into
account chromatic effects in the transverse motion is the lowest order step of acknowledging
that transverse and longitudinal motion are coupled. The concept of chromaticity has a great
practical significance for the operation of accelerators.

2 Derivation of the Equations of Motion

2.1 The Lagrangian for a Charged Particle

As a starting point we consider the relativistic Lagrangian of a charged particle of charge
e and mass mo in an electromagnetic field (see e.g. [1]) :

/ 2 .
Lzmmgcz- 1—?—2+6(F' )“5"905 (2-1)

(v =)

where 7 1s the position vector and A and ¢ are the vector and scalar potentials from which
the electric field € and the magnetic field B are derived as

dA
ot '
B = curl 4. {2.2b)

£ = —grad o —

As usual, the equations of motion are derived from the Euler-Lagrange equations and in
Cartesian coordinates we have

— - —==0. (2.3)

2.2 Introduction of the Natural Coordinates x, y, s

The position vector 7 in eqn. (2.1} refers to a fixed coordinate system. However, 1n
accelerator physics, it is useful to introduce the natural coordinates x, y, s 1n a suitable
curvilinear coordinate system. With this in mind we assume that an ideal closed design orbat
exists which describes the path of a particle of constant energy Eo, i.e. we neglect energy
variations due to cavities and to radiation loss. In addition we assume that there are no field
errors or correction magnets. We also assume that the design orbit comprises piecewise flat
curves which lie either in the horizontal or vertical plane so that it has no torsion. The design
orbit which will be used as the reference system will in the following be described by the

G. Ripken and F. Willeke
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vector ro(s) where s is the length along the design orbit. An arbitrary particle orbit r(s) is
then described by the deviation 67(s) of the particle orbit 7(s) from the design orbit 7o(s)

r{s) = To(s) + 7(s) . (2.4)

The vector &7 can as usual [2] be described using an orthogonal coordinate system
("dreibein”) accompanying the particles which travel along the design orbit and compris-
ing

a unit normal vector (s),
(s)

v
a unit tangent vector T
Bls} = 7(s) x v(s) .

and a unit binormal vector

We require that the vector (s} is directed outwards if the motion takes place in the horizontal
plane and upwards if the motion takes place in the vertical plane.

Choosing the direction of 7(s) in this way, implies that the curvature K(s) appearing in
the Fresnet formulae:

, d. .

T(s) = 57’0(3) =7g(s); (2.5)
%; = K(s)-i#(s) ; (2.6a)
;;17 = +K(s)-7(s) ; {2.6b)
&%-H = 0 (2.6¢)

is always positive in the horizontal plane and negative in the vertical plane if and only if the
centre of curvature lies above the reference trajectory.
In this natural coordinate system we can represent 67(s) as:

—

§7(s) = (&7 -0) -0+ (67-5) . 4

(since the "dreibein” accompanies the particle the 7- component of é7 i1s always zero by
definition).

However this representation has the disadvantage that the direction of the normal vector
v(s) changes discontinuously if the design orbit is going over from the vertical plane to the
horizontal plane and vice versa. Therefore, it 1s advantageous to introduce new unit vectors
T. € and €; which change their directions continuously. This is achieved by putting

() +v(s} if the orbit lies in the horizontal plane ;
e8] = = . g .

: —3(s) if the orbit lies in the vertical plane ;
€ils) = +3(s) if the orbit lies in the horizontal plane ;
viee +2/(8) if the orbit lies in the vertical plane .

Thus. the orbit-vector 7{s) can be written in the form

2,y,8) = Fo(s) + s} - €:(s) + yls) - &(s) (2.7)

-
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and the Fresnet formulae (2.6) now read as:

—;—Sé;(s) = +K.(s)-7(s); _ (2.8a)
Tals) = +Eys) 7o) (2.8b)
i) Kl ale) (o) &l (250)

where we assume that

Ku(s) - K,(s) = 0 (2.9)

and where K,(s),K,(s) designate the curvatures in the x-direction and in the y-direction

respectively.
From equs. (2.4), (2.6) and (2.7) one then has

dew dé,
[ y-ds
= 7-§-(1+z- K+y K)+& e +y-¢

}+$€z+z’€z

so that for the expressions
1-= and (F-4)

in eqn. (2.1} we have

vl 1 1/2
1-—= = {1_c—2 [:E?2+3}2—E—(1+Km-r—i—Ky-y)z-.éz]} ;
(7 A) = ¢-A+9 A, +$(1+ K. -x+ Kyry)- A
with
A=A, E+ Ay &+ AT
In the new coordinate system x, ¥, s, the Lagrangian in eqn. {2.1) then becomes

Liz,y,8,%,9,5,t) = —mgc? {1 — 21-2- [iﬁ +4 4+ (14 I{I-.:c—)—Ky.y)z .52]}1/2 (2.10)

' +e-{i:-Am+y-Ay+.é(1+Km-x-i—Ky-y)-A,}-—etp

and eqn. (2.2) leads to

8p  O0A.
_ 9% 98 2.11
€z 5z 6t (2.112)
dp  0A,
_ 9% 94y 2.11b
‘v 5y ot (2.11b)
3¢ JA,
= - . 2,
€, Be 5 (2.11c)



and

1 0 o
= 104y 4L 2.12
Bﬂ-‘ h {ay( ) 35 y} ( a‘)
1 5} el
= —-0—A,— —(h-4,)} ; 2.12b
d a
= —A, - — 2,12
B, Ba:Ay ayA"‘ (2.12¢)
with
h=14+K, 2+ K, -y. (2.13)
Finally the equations of motion
doL_ oL _ . (2.142)
dt 0t Or
ddL oL
—_—— - —— = 0: 2.14b
dt 0y Oy ' ( )
d 0L oL
—_—— T = 2.14¢
#os 85 0 (2-14c)
take the form
d
zilmey 2} = mey-h-& K,+e-{y-B,~é-h-B)+e E,; (2.15a)
%(mo'y-y) = mo’y-h-s'z-Ky+e-{—;&-B,+.§-h-Bm}+€-Ey : (2.15b)
d
—(mey-h-8) = —moY(K: -2+ Ky-9)-s+e-{¢-B,—~9-B.} +e-E,.{2.15¢)

dt

2.3 Specialization to Coasting Beam Betatron Motion

In eqn. (2.15) the first two equations describe the transverse motion {betatron oscillations)
and the last equation describes the longitudinal motion.

Now we assume that the electric field € vanishes (cavities turned off ) and that the magnetic
field B is time independent. Then v and v become constants and the field B depends only
on s and X, y.

In this case it is useful to introduce the arc length s of the design orbit as independent
variable. Then, using the relation

d d ds d 1 d (2.16)
T BT el T -
with
dl = |dr} (2.17)
we get from eqn. (2.15):
lﬂ
‘T”_F'x’ . Km-h—(l-6)'f—-lf'{h'By*y"Bs}; (2.18a)
Do
y"_l_.y' - Ky-h.—i—(lné)-iol'-{h-Br*;c'-B,}; (2.18b}

=1



l_li

1
o E{K;'$+K;'y+2(Km"T"!'Ky'y')}_

1
E-(lvfé)-fL-F-[m’aBy——y'uBm], (2.18¢)
: Po
where
p = moyv

is the momentum and where we have introduced the relative momentum deviation

— A
6___? PO___P

r p

(po is the momentum of the particle corresponding to the energy Ej).

Here the third equation (2.18c) which represents the longitudinal motion can in fact also
be obtained from eqns. (2.18a,b) by multiplying eqn. (2.18a) with ¢’ and eqn. (2.18b) with
y', by adding these two equations and by taking into account the relations

(" = @2+ W) +Q+EK.z+ K, -y);
A — 9:"33"-5»y'y"+h-(Kf-zc'—‘i—ﬁ'y-y'—f—K;-:n—&—K;-y)

oT

(:Cf)2 + (yl)Z — (lr)Z _ h'2 :
w'z:"+y'y" — Ii_lﬂ_h_ (Km'mf-i-ffy-y'—kﬁ';-m—I—K;-y) '

Thus eqn. {2.18¢) for the s motion is redundant and we can restrict our consideration to the
betatron motion {according to eqns. {2.18a.b}) alone.

2.4 The Canonical Form of the Equations of Motion

It is interesting that eqn. (2.18¢) can be used to eliminate the term (I'/1") appearing
in eqns. (2.18a,b). The equations of motion then obtained can be used in the theory of
transport systems.

In order to avoid the accidental introduction of dissipative terms (see Ref. [3]) when
making (inevitable) approximations it is useful to write the equations of motion in canomcal
form. This will ensure that the phase space density is conserved during tracking calculations.

For that purpose, we first remark that we can write the equations (2.18a,b) of betatron
oscillations in Lagrangian form

ey 9% . (2.19a)

dt dr' O
d oL &I _
4oL oL _ (2.19b)
dt oy’ Oy
with the Lagrangian
Liz,y, ',y s) =1+ (1-¢)- . {e' A, +y - A, +h- A} {2.20)
o
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where !' is given by

I-f _ +Vﬂ"(:rr)2 i (yl’)z + (‘l e I{:: v+ I{y - y)2 " (221)
Defining now the momentum variables

oL _ z €

g = — = — +(]1 =45 ‘*'A;,—, 2.22
p 50 = 7 T ) o (2.22)
8L y' L€
= m— = - 1—-46)-— . 4 : 2.2

we construct the Hamiltonian in the usual way :

~

H{z,p.,y.pyis) = po-2'~p,-y — 1L (2.24)

2 2y 1/2
S O S, o gaf)
Po Po

X(1+ K, -z+ K, y)

—(1—6)-5%(1+I1'm-:c+Ky-y)-A,.

The equations of motion now take the form:

d O8H d oH
T = o o pa=
ds Op, ds Ox
d +3f{ 4 BH
s ¥ 7 dp, ' ds Pu ay
or, 1 matrix form :
d oH
S 5.2 (2.25a)
ds z
with
0 1 0 0
-1 0 0 0
= 2
2 00 01 (2.25b)
0 0 -1 0
and
r
o= | P (2.25¢)
-



2.5 Description of the Magnetic Field

In order to utilize the Hamiltonian of (2.24), the magnetic field B and the corresponding
vector potential,

A= Az,y, ), (2.26)

(eqn. (2.12)) for commonly occurring types of accelerator magnet must be given.
The (time-independent) field B obeys the Maxwell equations

divB = 0; (2.27a}
curl B = 0. (2.27b)
In our natural coordinate system (x,y,s) these equations read as
9B, B,
= ; 2.28
Oy oz ' . ( 2)
0B, 0 _
= —(h-B,); 2.28b
s 5a h - Be) ( )
0B, 0
— = —(h-B 2.28
2 = 5(h-B), (225¢)

where h is given by eqn. (2.13).

Using the freedom to select a gauge, we can choose any vector potential which leads to
the correct form of the fields. Suitable vector potentials are as follows and have been chosen
for their simplicity.

2.5.1 Bending Magnet

If the curvatures A, and K, of the design orbit are given, the magnetic bending field on
the design orbit, B)s) and B["(s):

Bl%s) = B.(0,0,s); (2.29a)
BLO)(S) = B,(0,0,s) (2.2

can be easily calculated from eqn. (2.18) if we notice that the design orbit

P=DPo (2.31)
by definition. Thus we get:
L. B® = —K,: (2.32a)
Po

£ BY = +K,. (2.32b)

Pe

The corresponding vector potential can be wrtten as
1 . .

£ A = -2(1+K,c+ K,y (2.33a)

Do 2
4. = A4, =0. G. Ripken and F. Willeke| ~ (2-33b)

"Methods of Beam Optics]
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2.5.2 Quadrupole

The quadrupole fields are

so that we may use the vector potential

0B 1
‘43 - ( amy)m:y::() - 5 (y2 - $2) ;

A = A4,=0.
In the following we rewrite the term (¢/po) - 4. in (2.24) as
1
= A, = cke(yP-ah)
Pa 2
Eo= 2 (63 y) :
Po 3:(' xzy=f
2.5.3 Skew Quadrupole
The fields are
1 /o 0
B.T — 7“; ( By -— BJ’) & .
2 dy or eyt
1 (8B 0B,
2 y or 0
Thus we may use
A 1 (BBy BBQ.)
A, = —= - Ty :
2\ Oy Ox I
A = A, =0,
and we write
"6__45 = ~-N-zy:
Do
. 1 ¢ (GBU 831,)
N = .- =¥ _ =z zy
2 p() ay 837 —y=0
2.5.4 Sextupole
0B
B, = ==
Ty ( S22 )1.:y:0
1, ., & B
B, = 5z “y)'(—ggf
for.ay=0

(2.34a)

(2.34b)

{2.36a)

(2.36b)

(2.38a)

(2.38b)

{2.39%a)

{2.39h |

(2.40a)

{2.40h)



so that

with

2.5.5 Solencid Fields

The field components in the current free region are given by[11;:
Br(:’[‘:yvs) = Zbﬂv-‘d ’ ('Tz - yE)u :
w=0

Bz, y,8) = =z Zbﬂu+l ST

=0

B-’(mvya‘s) = ZbEv ) {'TZ +y2);l
v=0

{2.41a)

(2.41b)

where for consistency with Maxwell’s equations the coefficients b, obey the recursion equa-

tions:
1
qu-i—l(‘S) = _m ) b;V(S)
. 1 , .
bgu_;.g(S) = +m)' : bzyﬂ(s} :

and where
bo(s) = By0.0.5) .

The vector potential leading to the solenoid field of eqn. (2.25) is then:

[+ o]
1 ; 2ur
Afw,y.8) = —y- Z 51 2 “beayls) o
fpo=0 =" '~
] 1 ‘ -
Al y.8) = +r- Z e *T) “bizals) St
p=0 1= =
Afz,y.8) = 0.
Thus we can write :
€ 1 1 ., N
p_:lr = —5R0(5) Sy - RRBISJ N Tal I TS
0 L
¢ 1 1 L
—'—“19 = _;RQ(.\' Pero— RRH[H L T IR
Po =
with
Ris\ = p*-bor.s)
0
[
= BL0.0. s
Po

12

(2.43a)

(2.43b)

(2.462)

(2.46D)

[
s
=1



2.6 Series Expansion of the Hamiltonian
The eqns. (2.33), (2.36), (2.39), (2.41) and (2.46) can now be combined as

1 . ; 1 . 1
4, = ~{(1+R, z2+K, - y)+ -k-(y°—2") - N.zy— =2-(z® - 3z¢®). (2.48)
Po 2 2 6
Together with eqns.(2.46a.b) all the components of the vector potential A appearing in the
Hamiltonian (2.24) are now known.
Furthermore, since

!

€ T
\Pm*(l*é)‘gx‘lxi = |F|<<1§

e y'
‘py“(l""é)'p_oAy| = |?‘<<1

the square root

, 2y 1/2
{1— [pm—(l—é)-iflm] - [py*(lﬁé)-ifly] }
Po Po

m (2.24) cah be expanded in a series :

. 2 2y1/2
{lm[pw—(lmé)-i/lm} —[py—(l—é)-—e—Ay]} =
Po Po

2
: [pn “* (1 - 6) ' i-Am:‘ -
Po

1 —

L2

2
-[prtlé)-;f;Ay] -

2] k=

so that in practice the particle motion can be conveniently calculated to varies orders of
approximation.

In the following we shall use a series expansion of the Hamiltonian up to third order in
the variables x, p,, y. p, and é . Then we obtain, using eqns. (2.46) and (2.48) :

.ﬁ:—5'(Km'$+A*y'y)+Ho+H11+H12 (2.49)
with
1 1 | 1 ?
Hy = 5 [pT - ER-U] + 5 [py - ER r (2.50a}
-|--;— (Kﬁ—‘rk) r* -+ % (K.S'—k) cyt 4+ N.zy
1 1, , 1. . 2 .
¢ Hno = —E(AJ+A) 2 WE(AFAL*)-y ~ N2y (2.50b)
1 r 1 1 r 1
“SRulpe R+ R s R ]
1 - . - [ K 1 3 2" "
H,, = é(f\y -r + K, -y} ez + pu} - EA- (:r — 3xy ) (2.50¢)
{a constant term, —(1 — &), in the Hamiltonian. which has no influence on the motion has

been dropped).
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2.7 Introduction of Dispersion

G. Ripken and F. Willeke
The presence of the linear term "Methods of Beam Optics'
DESY 88-114, 1988

—¢-(B:-x+ Ky y)
means that the design orbit

0

r =1y

is no longer a solution of the equations of motion (2.25).
In order to eliminate this term we now write

i‘zi!

F= g+

(2.51)

by introducing a new reference orbit Z; which is a periodic solution of the equations of motion
(2.25) :

d _ a .. .
3; Zp = §'"é"}g‘ H(;g.S) : (252&)
(s + L) = zZ(s). {2.52b)

If we take into account only the first two terms on the right hand side of (2.49) (neglecting
third order terms in z,p,,y,p, and §) we can write

5=6-D (2.53a)
with
D,
D = gi . (2.53h)
D,

1
D, = Dy+ SR Dy (2.54a)
1 1 . ]
D, = +.R {DN;R DJ—(K;*A) D, N.-D;+ R, (2.54b)
1
D; = D4*;R‘D1 (2!)4(‘}
, R O S NI P - - |
Dy = —3R-|Dy= R-Dy| - (K] k) -Da~N-Di~Fk,. (2.54d)
= L - 4 .

2.8 The Free Betatron Oscillations Around the Dispersion Orbit

In egn. (2.51) we have decomposed the whole orbit vector Zinto two components. where
by construction. the first component 3 designates the “dispersion-orhit” so that the second
component > describes the free betatron oscillations around this new reference orbit.

14


Kapin
G. Ripken and F. Willeke, "Methods of Beam Optics", DESY 88–114, 1988


The differential equations for =:

d

= _ d = d
ds = ds~ ds *°
g - 0 -
= S.— H(z,s)— 8§ -—Hl(z,
S gz H5e) -8 g Hlz,s)
0 - - 8 . -
= S5 — H(z+z,s)—-5- H(z°,
L 85 ( 0 ’5) = az—é ( S)
can again be written in canonical form
d - i, -
— 7 = S.— H(Z 2.55
ds = 85’ ( ,5) ( a’)
with the Hamiltonian H
- - - I3}

H(Zs) = H(Z+359) - Hz@s) - 2 5= H(z,s) . (2.55b)

Taking into account only second order terms in z, ps, ¥, py so that the theory is linear, the
Hamiltonian H becomes :

{Qll

H(Z,s) = Ho(%,s) + Ha(Z,s) (2.56)

where Hy is given by eqn. (2.50a) and where for H; one gets:

- 1 . 1 . -
- -Hi(Z,s) = ——(K2+k)-:1:2-§( 5— } - N-zgy (2.57)
1 Te 1 '|
-3R- y[pm+ “R- y}+5 [T-’u_"R z|
1 . 2, -
E(h - Dy + Ky Da)-{pﬁpﬁ]
{

+

E‘”'

&+ Ky-§)-[D2-pe + Dy by

b ] >
™

~ Dy -3 — 225Dy .

-

Putting (2.56) into (2.55a} and using (2.50a) and {2.57) one has:

d - -
— 7 = Als) = (2.58a)
ds
A(s) = Agls) + 6 - B(s) (2.58b)
with
4, = (4N
4 = 1
1
Ay = -5 R
AN = fi-Rz-(th) :
A% = N



and

Remark:
From eqn. (2.58} we get:

~!
T

- 1 N
= p:.'A:)RU‘

il
+
oo

SN SR

!

=

1

- R R

4

0 otherwise

((6Bu)) 5

K, Dy s
K, -Dy+ K, D,
1 -
-5 R+ K, D,
-2 1 2
~K, D,
+N+X-D,

1 .
-5 R E..D,
1 -
+§-R—.—Ixx D,
_Ay'Dq;
A:t Dl“%flu .D3
+~N+ XDy

1

B 1
(B2 k)= -
-K, D, :

0 otherwise .

((‘ ' {IX}DQ d E - {’}-X-‘,AD] -- I\.‘UD:(_] . ff -

1
L

16

s

(- R+ K,D.}-al :

1

-

J

(2.61a}



R i+ J (2.61b)
§.[K,Dy-§+(K.Dy + K,Ds) p, + (+§R+ K$D4> m]

Therefore, if p.,p, are known, z' and 2’ can be calculated and vice versa..

The variation of the magnetic fields with s is in good approximation represented by a
"box'-like shape, i.e. we assume that the fields have sharp edges.

Since p.(s) and p,(s) are continuous functions of s, it follows then from eqns. (2.61a,b)
that z' and 2’ make a jump at the ends of a solenoid and a bending magnet (the step due to
bends vanishes for on-energy particles with § = 0).

Note, that the terms K -z and K, - y appearing in the Lagrange equations (2.18) and
which are discontinous at the ends of a bending magnet do not appear in (2.58) and have
been absorbed in p. and p,. The same happens with the terms R -z and R; -y which arise
from eqn. (2.42) and which are discontinous at the ends of “sharp edged” solenocid fields.

2.9 Definition of the Transfer Matrix

Because the equations of motion (2.58) are linear, the solution can be written in the form:

Z(s) = M(s, s0) Z(s0) (2.62)

which defines the transfer matrix M(s, sg).
With respect to (2.58), M(s,s0) is determined by the differential equations

d
= M(s.s0) = Als)-Mls,s0) (2.63a)
s
M(sp.50) = 1. (2.63b)
Since the variables &, p,, Y, p, are canonical. the transfer matrix is symplectic:
M7 (s,50)-S-M(s,s0) = S (2.64)

as is shown in Appendix A.

An approximate way to solve equs. {2.63) is described in Appendix B (thin lens approx-
mation) .

The symplecticity condition (2.64) ensures that the transfer matrix , M(s, so) , contains
complete information about the stability of the betatron motion. We shall discuss this in
chapter 3.3 .

Finally, we mention for later considerations that the coefficient matrix A(s) of eqn. (2.58)

satisfies the condition
AT(s)-S+S-A(s)=0. (2.65)

This can be obtained by differentiating eqn (2.64) with respect to s and using eqn. (2.63b).

Eqns. {2.58) and (2.63) together with (2.59) and (2.60) are now the defining equations of
coupled betatron oscillations around the dispersion orbit and they will serve as the starting
point for the developments to follow.
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3 On-Momentum Betatron Oscillations

The equations of motion (2.58) or (2.63) are valid for arbitrary momentum deviations. In
the following we investigate in more detail only the case of on-momentum betatron oscillations
(6 = 0). The influence of momentum deviations shall then be discussed in chapt. 4.

3.1 The Equations of Motion for On-Momentum Particles

The equations of motion for on-momentum particles read as {eqn.(2.58) with § = 0):

d - =
5 ° = Ag{s) 2 (3.1)
(from now on we write 2 and x,p,, z, p, instead of 7 and T,Pz.2,p- ) Oor , written in compo-
nents :
, 1
r o= pt ER Y (3.2a)
. 1 - C1
P, = -{(Iii—%k)-{-aRz]-a:—A‘-y-:—ER-py; (3.2b)
1
y = p, -~ SRz (3.2¢)
1
py = -N.z—-R Pz — [(Kj - k) + ZRz] Y. (32d)
In detail, one has
a) k # 0; N=RKR=FK,=HKk, =0: quadrupole:
b) N =+ 0; k=R=K,=Hk, =0: skew quadrupole;
¢) K? +R2# 0; k=N =R=0: bending magnet:
d) R = 0: k=N=HR,=FHk,=0: solenoid.
Eliminating p, and p, we obtain from egn.{3.2):
"o -2 1 1 '
.T+[R$+kJ-a‘+(N—;R)-y—R-y = 0. (3.32)
L -2 N , T 1 ! ; v
yT[Ry—LJ'yT(‘?\W‘iR)'T‘FR‘I' = 0. {3.3h)

The connection between p,. p, and 2. ¢’ is given by eqn. (3.2a,c).

3.2 Coupled Betatron Motion

3.2.1 The Sources of Coupling in Circular Accelerators

G. Ripken and F. Willeke
"Methods of Beam Optics]
DESY 88-114, 1988

There are two kinds of magnetic fields which produce a coupling between the two transverse
oscillation modes: the field of a solenoid magnet and the field of a rotated quadrupole magnet.
Usually. coupling is an undesired effect in high energy accelerators. Firstly, it tends
to make the behaviour of the beam more difficult to understand and the operation of the
machine becomes more complicated. In electron accelerators where, because of radiation

1
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Figure 1: Cross Section of a Skew Quadrupole

damping, the beams are flat, coupling causes the beam to become rounder. For these reasons
coupling generating elements are avoided in the design of accelerators.

Unfortunately they are not completely unavoidable. There are sources of coupling which
are installed deliberately in an accelerator: The most important example is the detector
field of a colliding beam detector which is usually solenoidal. Sometimes a round electron
beam is more desirable than the naturally flat one. Then skew quadrupole - quadrupole
magnets which are rotated by 45 degrees about the beam axis - may be installed. In nonplanar
machines the occurrance of rotated dipole magnets can introduce a coupling too. Coupling
is also introduced by the weak focussing magnets which bend at the same time in horizontal
and vertical direction. There is also the possibility that the periodic solution of the beam
coordinate system in a nonplanar machine differs from the plane to which the quadrupole
magnets are aligned.

Besides such systematic sources of coupling, coupling occurs in every real machine as the
result of distortions and imperfections. The dominating effect comes from small tilts of the
quadrupole magnets due to alignment tolerances, longtime drifts of the supports or thermal
effects. A vertical deviation of the closed orbit in a sextupole field also gives rise to a skew
quadrupole component and causes coupling. There are numerous smaller effects, for example
a vertical angle between the longitudinal axis of a dipole magnet and the beam axs.

Systematically and accidently generated coupling require different treatment by the model
describing the beam behaviour. Strong systematic coupling fields can only be treated by
the exact formalism developed in the following sections. Nonsystematic sources of coupling
can be much better taken into account by perturbation theory which will be demonstrated
in chapter 6.

3.2.2 Skew Quadrupole

The first beam transport element which causes coupling which we will consider is the skew
guadrupole. This is a normal quadrupole rotated about its longitudinal axis by 45 degrees.
Fig. 1 shows the cross section of a skew quadrupole. The magnetlc field lines are hyperbolas
with the z and y-axis as asymptotes. The magnetic field vector B is given by eqn. (2.37}.

With respect to (3.3) the equations of motion for a skew quadrupole read as

mrl+l\T.y — O;
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Figure 2: Effect of a skew quadrupole on a flat beam. The arrows indicate
the slope of the particles behind the skew quadrupole (left]. The beam is
observed after some downstream drift behind the skew quadrupole. It is
transformed into a parallelogram (right).

¥+ N-2 = 0.
They are easily integrated if one writes :

fr +~y)"+ Nz +y) =
(r — )"~ N-(z~y) = 0.

ot

The solution expressed by a transport matrix M is given by :

cos N swcosh ' Ne sin v Nsoginhv N cos vV Ne—cosh v Ns $ip Y inh 4 A Y
- Sty £ = B D L
P o IV AN T ) 20N B
__ v Nisin VINe~sinh+'Ns)  cos+/ Netcosh/INs _ VN{siny/Narsinh v Ne)  coso'™ scosh VN
2 3 _ 3 ) _ (3 4]
cos v/ N s—cosh VN s sinv Ns—sinhv N5 cos /N s+cosh v N sin v Ne—sinh v/ N e N 3.4 ]
oy ,,—?- R N
< i 2N 2 2470 _
_ ¥ NisinvNe+sinhvNs)  cos VN s—cosh /N« _ V' Nisin /N e--sinh '\,Ws) cos v N s—cash ' N
2 2 2 2 4

Fig. 3 shows schematically the effect of a skew quadrupole on a flat beam. The particles
at the right and left side of the beam get kicked upwards and downwards respectively. The
particles in the center of the beam don't get kicked but ther have a horizontal slope and
are moving away from the centre. Particles at intermediate positions in the beam leave the
skew quadrupole with a horizontal and vertical slope. After some drift space the flar bean
is transformed into a parallelogram in the » — y-plane.

3.2.3 Solenoid Fields

The other coupling element is the solenoid. This is & somewhat special beam trapsport
device. That iz because the endfields have a strong transverse component perpendicular
! s by i
to the major beam direction while the central field is parallel 1o the hewmmn. Therefore the
endfields in a solenoid are an essential contribution 1o the total eFect of thiis eleinent.

o0



The linearized equation of motion read as (see eqn. (3.3)) :
11 ! 1 /
' — Ry —;R -y =0
1
y"+R-x'+;R’-m:0,

where R is given by egn. (2.47) .

Solution is conveniently obtained by introducing complex variables ¢ and % [4] :

£ = z24+1-y;
n = Pati-py
in which we get from (3.5) and (3.2a,¢) :
€"+iR- €'+ R - £=0;

n=€+%£-
Transforming into a rotating system
=F4+i-§ = (-9
Peti-p, = n-e’

[t
I

N
we obtain:

_ _ - o 1 .
6”-—9,2'é+R'6"E+1"(R“20’)'€'+‘i'( R’—~5")-§=0;

2
=g i 0(s) - SR £
We see that that system is decoupled in x and y by choosing
#(s) = % -/O’ds'R(s')

which yields

_ 1 _
§IJ+ZR2_§ — 0’
7 = €
or
--r‘l"l 2 = — =1
;t'—;—ZR‘$:0; =1 ;
_n 1 2 = — =1
y+ZR-y==0; Py =17 -

(3.5a)

(3.5b)

(3.6a)
(3.6b)

(3.9a)

(3.9b)

(3.10)

(3.11a)
(3.11b)

(3.12)

(3.13)

So in this coordinate svstem a solenoid looks just like a focussing quadrupole for each
plane. For an hard edge solenoid with § = 1R -1 (I being the solenocid length} the solution

can be expressed using the following transport matrix AM:

7 cos f % sinf 0 0 Ig
Pz { —2}? sinf cos# 0 0 Pzo
i 10 0 cos f }% sin # Fo

Py 0 0 —?;—%sinb‘ cos ¢ Pyo

21
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Now from (3.8) we have

T Hify)
Peo | _ | Peo (3.15)
Yo Yo '
Pyo ; DPyo
and
F o brig
Pel .| P (3.16)
y Y
Py Py
with the rotation matrix
cos @ 0 —siné 0
0 cos @ 0 —sin 6
= . ; 3.17
L +snf 0 cos @ 0 (3.17)
0 +sinf 0 cos @

Therefore the transport matrix for the coordinates in the machine coordinate system is
obtained by multiplying eqn. {3.14) with the matrix 77! from the the left side :
M=I"M

(3.18)

Here the first matrix T~' describes a rotation in the z — y-plane and the second one. Af
describes the focussing in the rotating coordinate system.
Thus the transport matrix of a solenoid is given by

2 0 . . . a4 -2
cost # % sin fcosf sinfcosb % sin #
R - " ) C 2o .
~Ssinflcosé costéd ~fsin® g siné cos # o a
M = =, 2 . e < 2 . (-.».19}
—sinfcos# — & sin fd cos* 8 % sin fcosé
? sin® # —sinfcos® —Lsinfcoshd cos’d

3.2.4 Description of the Motion in Terms of the Transfer Matrix

As in the uncoupled case. we can combine beam transport matrices by multiplving them
and we obtain the transport matrix for the whole lattice or the revolution matrix A in this

way:

M = H A
iz

At this point we might say that we have solved our problemi. We are able to calculate
particle trajectories in a lattice with coupling eleiments. But siugle trajectories don't tell us in
an obvious way about the optical properties of a lartice hecause thev depend hoth on initial
conditions and the lattice properties. The transport matrices whicl: are free from initial
conditions don't give us a clear picture either. But in the uncoupled case vou have seen how
a beta or envelope function gives us an immediate overview of the heaw optics properties of
the whole lattice. It is therefore desirable 1o Liuve an extension of suel lattice functions to

the coupled case.
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3.3 Eigenvectors for the Particle Motion; Flogquet-Theorem.

In order to obtain more information about the focussing properties of a lens system with
coupling elements we first investigate the eigenmotion of the particles.

To begin, we note that from the symplecticity condition of eqn. (2.64) and with the aid
of arbitrary solution vectors z; and z; of eqn. {3.1) one can construct a constant of motion
for the betatron oscillation, the so called Lagrange invariant

Wis(s), 5(s) = 57(s) - S Zils) .
Indeed :
W(z(s), %H(s)] = [M(s,s0) #(s0))7 - S - [M(s,50) #i(s0)] (3.20)
57 (s0) - MT(s,80) 8 M(s,30) - 5(s0)
77 (s0) - S 7 (s0)
= W[Z_i(so), 2_5(30)]
= const.

With the help of this invariant we are in a position to study the eigenvalue spectrum of
the one turn transfer matrix M(so + L, sp):

Misg+ L,so) Uulse) = A, 0u(s0); (3.21)
(0 = 1,2,3,4).

The spectrum of eigenvalues A, (p = 1,2, 3,4) will then allow us to study the stability of the
betatron motion.

We carry out this investigation in several steps|5]:

1)We construct the Lagrange invariant with arbitrary eigenvectors v,(s¢) and ©,(s9) of
M= M(sq+ L,sg). This gives :
Wiwu(so), vulsol] = WIMuL(so), Mui(so)] (3.22)
= W[ - vu(so)s A - 00(s0)]
Audy - WL(so), vo(s0)]

from which it follows that

Mo d#E1 = W[, =687, =0; (3.23a)

G180, 40 = A, A =1, (3.23b)
so that the eigenvectors of M can be separated into two groups
(Vh, T x)s k=1, 11
with the properties

M ?7;\; = )\;.. -f;k . M ‘1?_;, = )\_;.. -'L_."__;,‘ ; )\k : )\_k =1; ('3.2421‘}

iv,)f - 5.7, =0 otherwise :

(k=1.1IT).



In the following we put :

)\k = Ei ’ QTFQ;\. .
(3.25)
;\-—k — 61‘- . ZTFQ_,l; :
{(k=1.1I).
Then according to eqn. (3.24a) :
Qi = Qi . {3.26)

where (i can be either real or complex.

2) Eqn.(3.24a) shows that the eigenvalues of M(sy = L.so) always appear in reciprocal

pairs

w2
L2
-1

(Aky Aok = 1/2) ; {
(k=1I1.1II).
Since M(sg = L.sg} 1s real, then A* as well as A is an eigenvalue.
For the eigenvalue spectrum of M(sq + L, s} there are then the following possibilities :

a) All 4 eigenvalues are complex with unit absolute value and therefore lie on a unit circle
in the complex plane :

Akl = A= 105
(k= I,II) .

Then :

(8}
L3
0

Q. real : {

M= N = ()
b) Oune reciprocal pair is real and the others lie on a unit circle :

Ar = A} : AAI = }‘t] oAl = 1/’;)\1 :
A=A A= Agpi=1.

¢) Both reciprocal pairs are real :
}\] = )\} . )\_1 = )\:; ' )\_1 = 1/)\] .
- » k)
AI} = AIJ’ : A_If = A-If : a\__{] = lf!/‘\lj .
d) Oune etgenvaiue e.g. A; i~ complex and does not lie on the umit arcle :
Ap =1 Ap =A%

Then we must have



and

Arr = A7
)\HH = 1,/)‘}
or
Arr =1/2%
Aopp = A} .

In the following it will become clear that only case a) leads to stable particle motion.
3) We define :
5u(s) = M(s,50) Ful(s0) - (3.29)
Then the vector v,(s) is an eigenvector of the matrix M(s + L, s) with the eigenvalue ),

M(s+ L,s) v,(s) = A, -0.(s). (3.30)

Proof:

M{s+ L,s) vu(s) = M(s+ L.s) - M(s,80)7,(50)
= M(s+ L,sg+ L) M{so+ L,so) uls0)
M(s.sq)- M(sg+ L,sg) Tpu(so)
= Au '_M__(S-:SO) fu(sﬂ)
= A, Tu{s): g.e.d.

The eigenvector 7, (s) thus has the same eigenvalue as 7,(sq): The eigenvalue is therefore
independent of s.

4) We put
F,(5) = i,(s) - e 2™Qu(s/L) (3.31a)
Then :
Tu(s+ L) = iiu(s) . (3.31b)
Proof:

We put eqn. (3.31a) into (3.30). Using eqn. {3.25) we obtain :

Gyl Dyt 2mQu s = LVL _ iv27Qu g () i+ 2nQu-s/L

2
(61



One now gets eqn. (3.31b) when one cancels the factor

40 2mQu (s + L)/L _ 0-27Q, 1-27Q, -8/ L
on each side.

Eqgn.(3.31) is a statement of the Floquet theorem : Vectors ¢,(s) are special solutions of
the equations of motion {2.58) which can be expressed as the product of a periodic function
i,{s) and a harmonic function

(i2mQ, - (s/L)

5) The general solution of the equation of motion (2.58) is a linear combination of the
special solutions {3.31a) and can be therefore written in the form

Hs)= ¥ {Ak A R i L CTE 2 U S SN (S SR L

s

k=I.11

-
b=
p—
e —

—
3%}
[N
[

We now see that the amplitude of the betatron oscillations only remain limited and the
particle motion under control if the Q) are real, i.e. if all eigenvalues. as already predicted,
lie on the unit circle :

At=1Aki=1y (h=1,II): (3.33)

(Stability criterion)

On the contrary, if at least one of the exponents Q4 is complex. according to (3.26) either
(r or Q_; has a positive imaginary part. In this case the components of 3 s} grow exponen-
tially and the motion is unstable,

6) In the following. we always assume that the stability condition (3.33) 1s satisfied.
Then from eqn. (3.28):

top ={tx)": (h=1I, I}, (3.34;
and (3.5b} simplifies to (17"'” = (v T,)*‘):

T (s0) - S+ Fulso) =~ lsg) - S - Fplsg) £ 0 :
(3.35)

= {} otherwise .

®
-
n
le=]
Itn
il
b
=
!

(b=1.11%.

Thus the terms 7?':'(30) -5 -v,(800in eqn. (3.34) are pure imaginary :



(since §7 = —9), so that in future the vectors Ti(s¢) and @_x(sp) (k = I, II} can be
normalised as:

T (s0) - 8- Ur(s0) = —0Lp(s0) - S - T_p(s0) =1 ; (3.36)
(k = I,II) .

From the validity of the symplecticity condition (2.63) it then follows that the vectors
v{s), und v_z(s) (k=I, II} satisfy the conditions (3.35), (3.36) also at position s :

ﬁ‘Ji:»("*‘) -5 - thl(s) = **’Ed_'_k(-s) ST h(s)=1;

—

v, (s)- S v,(s) =0 otherwise .

Remark:

In order to prove the statement that if A is an an eigenvalue of the symplectic matrix M
then A~! is also an eigenvalue we have used the Lagrange invariant W.
We now show that this statement can also be obtained from the characteristic polynomial

P(\) = det/M — X - 1]

in a direct manner.

For that purpose we first recognise that from the symplectic condition (2.64) it follows
that:

Then we have (for A s 0} :

M-X-1 = M-1-X-M7]
M-8+ )-SM7S]
MS-x-iMT-X71-8

= A-MS- M-Xx'-17.8

But from the last equation we can see that:
P(AM)=0 « PANH=0
so that
X = eigenvalue of M <= 27! = eigenvalue of M
(note that A # 0 for all eigenva@ues of M, since M is nonsingular as can be seen from equ.

(2.64)).
We also recognise that A and A™! have the same multiplicity.

2
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3.4 Optics Calculation in the Presence of Coupling
3.4.1 Optics Calculation in the Uncoupled Case

Now we are ready to introduce lattice functions in the coupled case. But let us first
remember how we introduced lattice functions in the uncoupled case. Assume that we have |
a number of particles which at the same point s = 0 in the lattice occupy an area in two
dimensional phase space. We then can draw an ellipse around them (fig 5a). This ellipse may
be generated by two vectors in phase space 71, Z2. Any point on this curve can be represented
by a vector z{0): ' | '

Z(0) = /e - [72(0) cos ¢ — Z3(0} sin ¢] 7 | _ (338) |

with
=(5)- ()
2= = ' y
D z
(z = z,y) and

- Za
zy =
z

as shown in Fig. 5b. The factor /¢ is introduced to characterize the size of the ellipse. We
normalize the generating vectors z1,; as:

o 0 1Y\
(31)T(F1 0)22:1

or

Zyozp—2prz2=1. (3.39)
The area of the ellipse is then me. This expression however is just the Lagrange invariant
W. Thus while the ellipse moves through the lattice still enclosing all the particles, and 1s in
general parametrised as.

Z(s) = Ve - [#i(s) cos & — Z(s)sin ] , (3.40}

its area is preserved and therefore the particle density is also preserved. We see that the
existence of the invariant W is a manifestation of Liouville’s theorem. o

We now introduce lattice functions by writing the first components z;, z; of the generating
phase space vectors Zy,; as the product of an envelope function /3 and phase functions cos @

and sin $:
zi(s) = y/B(s}cos ®(s): (3.41a)
z2(s) = y/Bls)sind(s) . O (3.41b)
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One does the same for the second components zj and zj introducing an angle envelope ~ and
an angle phase function &:

21(8) = y/v(s)cos B(s) : (3.42a)
zp(s) = a/v(s)sin®(s) . (3.42b)

Our point, 7. representing the phase ellipse can be written as

- Ve(v/Beos(® + ¢)
oo : (3.43)
Ve( /7 cos(® + ¢)
The normalisation condition expressed in lattice functions gives
VBeos® (\/Bsind) — /Bsin® - (\/Beos®) = 33 — 1 | (3.44)
That means that the envelope and the phase function are related by
*d
B(s) = B(so) + [ 2 (3.45)
Using the abreviation
1
a=— -8 (3.46)
we find that v is related to 3 by
B2 @7+ a0 1402 3 47
. =5 (3.47)
and the two different phase functions are related by
$ = & — arctana’ . (3.48)

Fig. 5¢ shows how the lattice functions characterize the shape of the phase ellipse and
thus the focussing propert:es of the lattice. The ellipse is defined bv the three functions

E—\.fff.A*V/E’},G_ —\€ /- The area T enclosed by the ellipse is
vV
I = rEVAT = G = ey, L
=nEvVAZ - = e }B\fT:ﬂ—fl (3.49})

(An alternative way of introducing the lattice functions o, 83,7, % (also called ”Twiss-
parameters” ) can be found in Ref. |2 .)

3.4.2 The Coupled Case

This procedure can be generalized to the case of coupled motion (see also (511,
Let us consider the motion of a single particle in a lattice with coupling elements. We
expect that there are still two distinct oscillation modes denoted by I.17. But thev are no
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Figure 3:

a) Particles occupying some area in phase space observed at some point
in the lattice may be enclosed by an ellipse b) This ellipse is generated by
two phase space vectors z; and 7. The motions of these generating vectors
characterize the motion of all of these particles through the lattice. ¢) The
resulting generating trajectories in turn can be expressed in terms of lattice
functions which describe the shape of the phase ellipse everywhere in the
lattice.

longer expected to correspond to pure horizontal and vertical motion. The motion starts at
some point z(0) in the four dimensional z — ' — z — 2’ space at position s=0:

x r

" !

s=| T zpr| P (3.50)
Yy y : '
Yy’ Py

with the matrix

1 00 O
0 1 iR 0 _

- 2 3.

U 0 01 0 (3.51)
2R 00 1

—

which connects the vector = with the phase space vector 7. It will be confined to a toroidal
surface in this space. Every point on this torus is generated by four independent vectors Z;:

T;
z;
Yz
Y]

2
|

~

In analogy to the uncoupled case we consider them as two pairs Z39 and Z34. The first pair
we assign to mode 'I' (instead of 'z') and the second one to mode 'II' {instead of 'y'}). Our
starting point z{0) is then expressed in terms of these vectors by two amplitudes and two
phases:

50} = /&7 - (71(0) cos &r — £3(0)sin ¢4] + Verr [25(0) cos &py — S{0)singp| . (3.52)
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With the help of the transfer matrix
M(s,0) = U™ (s)M(s,0)L(0)
the vector = at position s 1s:
Sle) = g - [;:'](s)cos @y — é’z(s)sin d)]] + €1 - [:}3(3) cos ¢y; — é.‘,;(s)sin c;an (3.53)
with

Tils) = M(s,0) 5(0) ; (k=1,2,3,4) . (3.54)

In contrast to the uncoupled case, the vectors 71,2 have y, y'-components and the vectors I3
have r, r’-components. In close analogy to the uncoupled case we define lattice functions by

1 = fBercos®r; zp = 1/Bursin . (3.55a)
;r;[ =  4/7VzI COS q-)xl ; 3’2 = v/ YazI sin é>::'I (355b)
belonging to 21, and there is a second set of horizontal lattice functions
23 = \/Barrcos ®upr 3 x4 = /Borrsin ®yy; (3.56a)
23'3 = +/YxII COS émH 3 :E; = VeIl sin ‘i’x_(] (3.56b)
belonging to 34, We do the same for the vertical plane:
¥ = \/,6‘91 cos®yr i y2 = /Byrsin®,; ; {3.57a)
¥y = \Awicos®u oy = VA sin®, {3.57b)
and
Yz = \/,Byff cos®yrr 3 ye = \/Bursind,y; (3.58a})
yé = 1/")‘yn COs ‘i’yn N y:1 = \/msin ‘i’y” - (3.58b
The trajectory .A?(s) 1s expressed in terms of these lattice functions as:
Verv/Ber cos(®ar + 1} + \Serr/Barr cos(®orr + ¢11)
- Ve el 08(Rag + 1) + \Serr/Tarr cos( Doy + Gry) (3.59)
= e , .5
V€I Byt cos(®yr + 67) + Ve Byrr cos(@yr + ¢rr)
VeIt cos(@yr + é1) + \ferr\ Arr cos(Ry11 + d11)

We wish to normalize the generating vectors so that. as for the uncoupled case, the factors
€7 and ¢;; again characterize the size of the torus. But now we have to distinguish between
the irajectory slopes z',3’ contained in the vector = and the canonical momenta p,. p, used
in the phase space vector . Thus the normalization condition in the coupled case is more
complicated:

th

(Z1)

( S[:'::-E =1: ({3.60a}
(Za)

52 = (.::—1 ]Tt-
=7 (3.60)

Ts
Ts
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Figure 4: Two sets of lattice functions for each plane describe the projec-
tion of a four dimensional torus on the z — ' and ¥ — y'-planes.

or
5.8, + 5,8, — R- /BB, sin(®. — &,) = 1. (3.61)
Outside of a solenoid field the normalization condition is simpler with
B.%, + 5,8, =1 (3.62)
for mode I and IT respectively. Again v is related to 3 by

3. 9"7 + a?
¥ = 5 (3.63)
for z,y and for modes I, I respectively.

What is the meaning of these four sets of lattice functions? If the four dimensional torus
on which our particle, represented by the vector 7, is moving is projected onto the ¢ —z’-plane
or on the y — y'-plane we get an area filled with possible coordinates z,z’ or y,y’. This area 1s
obtained by the superposition of the two ellipses defined by the two sets of lattice functions:

Qg
Eor=eifer i Au = VaTi: Ger=—yVag=: (3.64a)
=l
2 54

E.ir = VerBerr 3 Aerr = errvzir i Gaar = —\/fum . (3.64b)

The same thing happens for the projection onto the y —y'-plane. This is shown in Fig. 6. We
see from eqn. (3.59) that as in the uncoupled case, the lattice functions describe the focussing
properties of the lattice: Mode I and mode IT lattice functions tell us where the the particle
oscillation amplitudes or the trajectory slopes are large or small just in the same way as for
the uncoupled case.

The areas of the two ellipses

Fep = 7 EmII\/AiII — G%yy = mertBerr - | gy | (3.650]

32



rotated & 2 5 g ® o ;S
quadrupole

YP/MR e i DE-C0 PR . 1. 0E+00
——— L

XM= 5.0E+00+ - Z/kM

- .
Figure b

Coupled Lattice functions for a FODO-cell witl: » ~orated
inadrupole.

33



are not preserved during the motion through the lattice but the sum or difference (due to the
sign of ') of the horizontal and vertical ellipse areas of mode I and IT respectively :

mer + (Ber®hy + Bur®yy) = er; (3.66a)
merr - (Ber1®or + Byrr®y) = Ten (3.66b)

is a constant of motion because of the normalization of the generating vectors. {This expres-
sion is only valid outside a solenoid.) Thus in the coupled case the invariants €, 11 replace
the horizontal and vertical invariants which we obtain in the uncoupled case.

3.4.3 Periodic Lattice Functions

In a circular machine the lattice functions are only useful if they are periodic in the
machine circumference. This is the case if the generating vectors %1,__4 differ from their initial
values by only a phase factor after we have transformed thein once around the machine. In
order to find the correct initial values of these generating vectors we first write the phase
space vector 7 from eq (3.52) in complex form defining

o s 1

171=—2-(51+i-5'2);1’;’”:75-("3+i-2'4). (3.67)
We obtain

. €7 - €er s

= ;I et + ,/w-ii - 7y1e*®7 + conj.compl. (3.68)

If the vectors ¥;j; are eigenvectors of the revolution matrix

M(s+L,s)=Uls)-M(s + L,s)-U™(s) (3.69)

with eigenvalues Ay = €*™911, (note, that M(s + L,s) and M(s + L,s) have the same
eigenvalues because they are connected by a similarity transformation; according to the nor-
malization conditions (3.56) one has vy = U - %, k = I, I} our initial point Z transforms after

one revolution into

;7 — E . ,;—?*Iei{¢;+21rQr) + & . T?I;e£(¢fr+2"qr") + c.c. (3_70')
Vo V 2
or
F=  Ja{fcos(¢r+2mQr) + Zsin(¢r + 27Q1)} (3.71)

+ e {;73 cos( b1 + 2mQyr) + Zysin(orr + ZWQII)} .

We see that the generating vectors satisfy the periodicity condition if they are obtained from
the eigenvectors of the revolution matrix. From the periodic generating vectors we then
obtain the periodic lattice functions.

For the calculation of coupled beam optics in a circular machine we now have the following
scheme:

e Find the eigenvectors and the eigenvalues of the revolution matrix at so. The eigenvalues
must be complex and must have the absolute value 1.
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) - . . i
¢ Form the generating vectors by 23 = T (v; 1+ T ”) ;224 = — = (v; i~ T H)

Vi

* Normalize those vectors according to (2;3)7 5%, 4 = 1 with %, = Uz,

o Calculate the initial lattice functions at sg:

[ S =i+l g = e - 2} agr = (z12) +~ w2y} @.7 = arctan(z,/z)
R T I N e R T (2325 + 242y) .17 = arctan(zy/z3) (3.72)
By =al+zi A= yr = —(2127 + 227;) @, = arctan{zy/z) T

Byrr = 23 + 22 v = sE 2R oy = (2325 + 2424) P17 = arctan(zy/z3)

The lattice functions elsewhere in the ring are obtained the same way after transporting
the generating vectors through the lattice.

We also identify the exponent Q;; of the eigenvalues of M {revolution matrix for the
vector ) as the total machine tune because after one revolution, the phases ¢; ;7 of a particle

are changed by 27Q;.;; and we interpret this as the total phase advance of the four oscillation
modes:

Por(s = L)+ Pup(s) = @y(s+ L)+ &y0(s) = 27Q; {3.73a)
$orr(s + L) = Porr(s) = @yr(s+ L)+ &,11(s) = 27Q; (3.73b)

3.4.4 The Four Dimensional Phase Ellipsoid

50 far we have considered the motion of just one particle characterized by the values of
the two invariants €; and €;; and two initial values of the phases @7, @77. Let us now consider
a bunch of particles which are distributed on the €r-€r7-plane inside an elliptical boundary
as shown in Fig. 8. An arbitrary particle on the surface of the bunch is described by the
maximum values of the two invariants €;, ¢57, an angle y and the initial values of the phases

@iar; 3, 6
2= cosx+/Es " (51 COs @y — 75 8in c;ﬁ»;) + siny+/err - (53 COS Pr — Za sinq')”) (3.74)

or. using the lattice functions:

N Pep €08 m cos

by + @r

( ) (Rorr + é11)
Va1 cos(®,p + o5) Vo11 c08(@orr + ) -
I = cosyNer s1n)U/sI , . 3.75)
A \/Bur cos(®yr + 01) \/Byrr cos(® 11 + @) (
VA cos(B,; + o) Vit cos(Pyr1 = @)
If we project this ellipsoid onto the » — 2/ for » — =/} plane we obtain an ellipse defined
byv:
a} the maximum value of r:
Tyioe = E, = \:’IEI “Ber =21 Barr {3.76a)
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Figure 6: Distribution of particles characterized by the two invariants €, s

for
cos x Ef* P2l .
Ver Bar + el - Berr
sny = €11 * Parr
Ver-Ber + €l - Borr
and
drar = —P®ori1 ;

b) the maximum value of z":

Topazr = 1o = ‘\/‘EI Yol F E11 - Yall

for

AET” VeI .
\/EI * Yzl + EII *YeIF ,
VEI * Yell

VEI Yor + €1 - Yarr

cosy =

siny =
and

101 = —®arnn

and
¢) the value of the slope z’ at (z = Zmaz):

2(2 = Trmae) = G __ £1rQar FEN 0l
e Ver Bat €11 Forr

(3.76b)

(3.77)

This ellipse is shown in Fig. 9. Its area may be considered as the horizontal emittance (as it

would be obtained by a measurement).

] P I . t
te=E. /A2 = G} =1 - Bur®ly + c1r - Boti¥onr
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.

Figure 7: Projection of the four dimensional phase ellipsoid onto the

z — z'-plane

which is not a constant of motion. In the same way we can define a vertical emittance.
Another interesting projection is the projection onto the z — z-plane (see Fig. 10). This
projection yields also an ellipse which is | besides E., E,, determined by the value of z for

T = FE.
_ ery/Be1Byr cos(®o — $,1) + 11/ BertByrr cos(®,1r — &,1) . (3.79)

NEIBer + €113211

ity

We can express the angle that the major axis of the ellipse makes with the r-axis in terms of
these three parameters:

tag 24 2E.G.. (3.80)
&Il ) = I O,

h E? - E?
€11/ B21Byr cos(Bar — &,7) + 611\/59311[33,11 cos( oz — 1)

er(Ber — Byr) + e11(Berr ~ Burr)

= s

3.5 Perturbation Treatment of Coupling
3.5.1 Introductory Remark

Again. at this point we might say that we have solved our problem. We know how to
transform single trajectories through a lattice with coupling elements, furthermore we have
lattice functions which describe the optical properties of this lattice and we know how te
calculate these lattice functions. Suppose however, we have designed a linear machine with
no coupling at all. In reality the machine will have slightly nusaligned quadrupole magnets.
vertical closed orbit deviations in the sextupole magnets and field errors. All produce cou-
pling. These sources of coupling are distributed randomly over the lattice. In most cases
these coupling effects will distort the beam behaviour only very little because the random
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Figure 8: Projection of the four dimensional phase ellipsoid onto the
x — z-plane

errors are small. But if the errors oscillate around the machine with the same frequency as
the beam does when it performs betatron oscillations, these small distortions can act coher-
ently on the beam and we get a resonant enhancement of the coupling. Because the random
distortions are ring periodic, such resonances occur only if the the sum or the difference of the
undistorted machine tunes is an integer multiple of the revolution frequency. So far we have
not developed a formalism which can handle this situation. But perturbation theory offers
an adequate procedure to handle small random distortions. That is what we will consider
next.

3.5.2 Variation of Constants

Consider a linear lattice with small skew quadrupole distortions distributed in some way
over the lattice. The equation of motion is derived from the Hamilton function we already
know:

1 1
H= P +pl+5k " -y ]+ N-ay. (3.81)

(for simplicity we only investigate the case where coupling is produced by skew quadrupoles}.
We separate this into an undistorted Hamiltonian Hy:

BT NS B N .

and a perturbation H,; containing the skew quadrupole factor NV:
H, =N .zy. (3.83)
Suppose we have already solved the uncoupled problem described by Ho with the solution

expressed in terms of the uncoupled lattice functions (z = z,y )
2Oy = V2I,/B(s) cos[(s) + 6. ; (3.84a]
0 021 . S

V) = _\/[3(3) {acos|{®(s) + & + sin{®(s) + &]} . {3.84b)
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I. o are constants of motion. We now want to express the solution for the full problem z({s)
in terms of the same lattice functions 4.®. Therefore we must allow the constants I. 6 to
become dependent of s:

z{s) = \/I2I(s}¥/mcos[®(s)+¢(s)]; {3.85a)
2I{s)
pils) = — | B(;) {acos|®(s) + @(s)] 4 sin[B(s) - ¢(s)]} . (3.85b)

This 1s the concept of variation of constants as introduced into accelerator physics by [7.8].
Inserting this ansatz into the Hamilton equations of motion we obtain differential equa-
tions for the varying constants:

z Oz : dl 0z d¢ OH _ OH, N OH,

o — - P _,\_ —_— _ + ; 3.86
s ds "8I ds 8¢ ds  bp. p.,  op. (3.862)
dp.  Op.  Op. dI | i?ii d¢ _ oH _ OH, 0H, (3.86b)]
ds  8s B8I ds 98¢ ds 8- s dz ‘
Then, taking into account the relations
) H
(__ ;) = +3 °. (3.87a)
05 /1 Op:
9 OH,
(—p:) = -2 (3.87b)
ds 77 I oz

which result from the unperturbed equations of motion with the Hamiltonian Hy we get

+8H,/8p. \ ( 8z/81 8:/8¢ ( I ) (3.86)
~0H,/8: ) ~ \ 0p./01 8p.j0o¢ |\ o ”
With
0z 0p., Op. Oz
860 g ol l (3.89)
we obtain
I ) B ( ~0p./8¢ +0:/8¢ \ [ +0H,/8p. \ [ —0H,/8¢ (3.90
&) T\ +8p./01 —8:/61 |\ —8H,/8: ) T\ +8H, 61 -9

Thus by the variation of constants we have transformed away the unperturbed part of the
Hamiltonian. The equations of motion for J ;© have a Hamilton form with H; as the new
Hanultonian. The variable 7 plavs the role of the canonical momentum and ¢ is the new
coordinate.

Note. that the left side of (3.89) is just the Poisson bracket (z,p:).1. Therefore equn.
(3.89) represents a necessary and sufficient condition for . I to be {new) canomnical variables

1.
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3.5.3 The Slowly Varying Part of H,
We now express the Hamiltonian in terms of the new variables:
Hy = N-a(Ldsrs) 9L, by:9) (3.91)
= 2Nm\/ﬁ; cos(®y + @) cos(By + ¢y )

For the present it will be convenient to work with complex numbers. Therefore we write
1 . ‘
cos ¢ = E(e""5 +e7%) (3.92)

and obtain

1 e
H = > ;No\/ﬁmﬂy\/Irfyel(g’ﬂ%}e’w*“é”} + c.c. (3.93)

j=1,—-1°

Furthermore, replacing the independent variable s by § = 27s /L we may write:

I 9H, d¢  OH;

d6 ~  9é ' dé a1 (3.94)

with
- L
H=— H. 3.95
YT oor ! ( )
Following our initial idea we look for certain dangerous frequencies in the distortion rep-
resented by H;. Therefore we separate H; into a periodic and a nonperiodic factor:
Hl — £ Z }‘ATO fﬁzﬂyei[wr*’jq’y_(Qz*‘jQy)g] Imeeiwx‘*quy"‘(Qr"#jQy)g} 4+ e.c. (396)

9
2r T 2

The periodic part is represented by its Fourier coeflicients xg;:
; q7

L o . . ,
e No /ﬁxﬁyet{sz+,?<I>y-(Q=c+JQy}9] - Z fﬁqjew‘” e~498 . (3.97a)
27
g
: L A Bt 5y —(Qo+5Qy+q)2ms/L] s
f{qjew“ = 5—/ dsk,\ ﬁzﬁye’[ ++38y—(Qz+iQy+q)-2ms/L] (3.97b)
M s

The k,; are called "driving terms”. The Hamiltonian then has the form:

Hy =Y ko /LI coslo, + jéy +(Qc +7Qy — )6 + basl - (3.98)

Jq

We see that H, has an explicit dependence on the independent variable ¢. This dependence
is oscillatory with frequencies Q. + Q, — ¢. Since N assumed to be small. the driving terms
are a small perturbation only. Thus they can induce only a slow change in the variables I, o.
Therefore terms with a quickly oscillating #-dependence cannot have much influence on I. @
because they average away before they can make a significant change. Only terms with small
Q. = Q, — q can act for long enough coherently on the variables and cause serious effects.
Note that such terms are only present if the tunes satisfy a resonant condition

Q. + Q, > p = integer . (3.99)
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As & consequence we only consider resonant cases. With the plus sign we have a sum
resonance and with the negative sign it is called a difference resonance. Then we can omit
all terms of the sum over g except the resonance driving term K

Hy = s}y LIcoslo, = ¢y + 6(Q. = Q, — p) — o) (3.100)

With onlyv one term remaining in the Hamiltonian we can eliminate the explicit dependence
of H; on the independent variable 8 by introducing a new phase variable

Ve = Gyt %A 0+ @ (3.101a)
G, = Gy =+ %A-G (3.101b)

with
A=Q.2Q,-p. (3.102)

Then the new Hamilton function has the form:

1 Y | ,
K, = (A LEA L)+ Koo/ Loy cos(w, = 1ty) (3.103)

and the equations of motions are :

dI, 0K, . o

- = - 8:[': =K \/I—_.,Esm(wm + g, ) (3.104a)
df R L/ S

T; = ou. = iy LI sin(v, £ y) (3.104b)
dyy OK, 1 1, /1, ._

! — + - - . + KT . — ‘Jﬂ —yl -"_U 3104

o or, ~2 B ytyg ol s ) e
dli.y B 8A.1 L 1 A ; 1 i ,"‘IT ‘. N ‘. 104({\
d6 T eI, T T2 0T My coslya vl S

From these equations we see immediately that for the sum resonance
Q. + Q, ~ integer
the difference of horizontal and vertical amplitudes is a constant:
I.=1I -1, - I, = constant . (3.105)

This means that each of the two amplitudes can take large values and the system can be
unstable. For the difference resonance

Q. - Q, = integer
and the sum of horizontal and vertical amplitude is a coustant:
Il = *-I; I, = I, = constant . {3.106)

This means that both vaiues are bounded so that instability is impossible. In the following
we wish to investigate the two resonant cases independentiy.
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3.5.4 The Case of the Difference Resonance

We now consider the situation where a horizontal oscillation is excited by kicking the
beam and we want to see how this motion developes. The equation of motion can be solved
by introducing variables [9]

w, = L - ¢V (3.107)

(z = z,y) in which the equation of motion is ( the indices of x will be omitted)

d i
=0 ws = 3 (k- wy+ A we); {3.108a)
d 7
S = 5 (K -we — A-wy) . (3.108b)

The solution is

() {2 (o))

with
1
Q= -vr?+ A (3.110)

To extract information on the resonance behaviour we consider the case-

wy(0) = 0e=y=0;p,=0; (3.111)
wL(0) #£0
For I,,I, the solution is then of the form:
I, = L (A? + &% cos” 06) ; (3.112a)
4812 '
I° 5 . 2 .
I, = 452 - k" sin‘ Q8 . (3.112b)

Thus during the motion we observe an emittance exchange between the r and y-planes with
a frequency Q. The coupling ratio r = I7"** /I is

e

As expected from eqn. {3.106), the oscillations for the difference resonance remain stable.
From (3.113} it is clear that the quantity x can be interpreted as the width of the reso-

nance.

The starting condition

wel(0) = 01 wy(0) # 0



of course leads to the same result.

This 1s an example of a coupling resonance (at A = 0, Ires =

Im“’“" ; see egn. (3.10%81) in

which there is a large exchange of energy between both degrees of freedom but in whick no

instability appears.

Finally we remark that for the vertical phase we obtain, with {3.109)

¥y, = 1,(0) = constant

and therefore the original variable ¢, becomes

Py

The development of the horizontal and vertical coordinates T,y

z(s) = /2L(s)-B(s)-
ys) = \2L(s) Auls)

= /21(0)-B,(s}- R
V2L(0) - By(s) -

over successive machine revolutions 6,

can e written as:

eqn. {3.111)

1
Re{ &) +de(s )]}
wz(‘"’) [Pz (2} rda(s)—a(s)+4=(0)]
Wy 0)
“2(8) | i(@ato) a(0)- 30100 0)40u00) |
w2 (0) '
RC{ 1y (s)+dy(s }
“yl8) iy (e)tanie) dylo)1a(0)]
'-‘-‘r 0)
Re {‘*y s) LBy ta) -2y (0)3+3 8.0+ 8y (0)+4(0)] }
w(0)

= 27n after we excited an horizontal oscillation (see

40 ) 1
rn = 20+ A) - cos2mn(@Qr - A = Q) + 2,(0) + 0,(0) (3.114a)
V21:(0) - 3, | 2 ‘
1 .
= (202 — A) - cos27n(Q, — 5A— Q)+ 2.(0) + @,(0)]
1 . .
= 4Q . cos[2mn(Q, - 5A) + 2:(0) + 9. (0)] - cos{2mn)]
. 1 -
-~ 2A -sin[27n(Q, — 5A) + 2.(0) + ¢.(0)] - sin[27n0)] :
il 27n{Q,, 1A + ) + 4, (0) + ,(0)] {3.114b
,,,,,,,,,,,,, _ “Yp = cos[2mn + —A - + v (0} + @,(0)) A14b
V21(0)- 3,k Y2 ” :
: 1 ,
- cos2mn(Q, — ;A =0+ v (0) = 2,(0). .
. 1 . .
= =2-sm2mn(Q, =+ A1+ U2 (0) + 2,(0)] - sin{27n Q) .
We sce that the motion of the y coordinate contains two frequencies:
1 .
Quir=Q,~A+Q (3.113)
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Figure 9: Coupled motion observed on successive machine turns

or. using A = @, — Q, — p:

]

1 1
Qrir = ;(Qr_-FQy_p)iEv&zw#A? . (3.1186)
We obtain a similar result for the motion of the z-coordinate (see Fig. 11).

Thus the obvervable tunes are now Q;,Qn and we find these in both horizontal and
vertical motion. This allows us to measure the driving term x of a difference resonance
by varying the distance of the unperturbed tunes from the resonance A and measuring the

machine tunes. Qr, Q7 lie on a symmetric pair of hyperbolas which at A = 0 are separated
by the drniving term « (see Fig. 12).

3.5.5 The Sum Resonance

As mentioned above, near a sum resonance we expect unstable motion. The condition

for stability is the next point we wish to examine. The equations of motion are conveniently
solved by introducing the variables

w = \/I_a.coszj'z—i—i\/f;cosd*y (3.117a)
G = \/I_msinm_-’,'r—f—i\/gsinﬂ'y (3.117h)

for which the equations of motion are ( the indices of x will be omitted)

L

C(w? = AN (3.118a!

—

(T~ AN (3.118b

e 1 s |
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with the solution
w=wl e Ly e (3.119)

with Q@ = %\/ A? _ xZ. We see that for A < k the motion becomes unstable. Therefore we
can again interpret the driving term & as the width of the sum resonance.

4 Off-Momentum Motion. Chromaticity

4.1 Introductory Remark

Small deviations of the momentum from its nominal value change the focussing of the
particles and lead to distortions of the beam optics. A crucial aspect of these distortions is a
tune shift due to a momentumn deviation. The linear part of the tune shift

\.{:: = 8Q;/86H§:0

is called chromaticity. ' In the sections which follow we want to focus on this linear tune
shaft. ‘

In large machines in particular, uncompensated chromatic effects cause intolerable impair-
ment of the machine performance. The most obvious effect is that the tunes will be forced
to periodically cross unstable resonances when the particles perform synchrotron oscillations.
There is also a collective instability in which the chromaticity plays an important role, the
head tail instability. Consider a bunched beam of particles. The particles in the head of the
beam induce transverse fields which excite the particles in the tail. Because the particles in
head and tail exchange their position in half a synchrotron period there is a feedback effect
on the driving particles which may lead to instability. The condition for instability is that the

1Sometimes. the chromaticity is alternatively defined as E}—:@Q; /dé. G. Ripken and F. Willeke
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particles in the head which have a negative momentum deviation oscillate somewhat faster
than the ones in the tail. This can be the case if the chromaticity is not compensated.

As a consequence, the chromaticity has to be compensated. This is achieved by intro-
ducing sextupole magnets into the lattice. (This is also the reason why we included these
nonlinear magnetic elements in the linear machine theory.) They are placed at positions where
the dispersion function is different from zero. Thus the off-momentum closed orbit (in linear
approximation, the dispersion orbit as introduced in section 2.7) passes off centre through
these magnets. The sextupole field expanded about this orbit provides a linear focussing
term proportional to the momentum deviation é as shown in section 2.8 (eqn. (2.58-60)).
One makes use of this effect to compensate the chromaticity.

In order to determine the required strength of sextupolar correction elements, one needs
to calculate the chromaticity in the quadrupoles and dipoles. Although this can be done
exactly by solving the equations of motion as derived from a Hamiltonian including terms
propotional to § as given by eqn. (2.57), one usually prefers to treat the chromaticity by
perturbation theory. The results are then expressed in terms of the on-momentum optical
functions. This formulation of the chromaticity has the advantage that the beam optics need
not to be recalculated for every value of the momentum deviation. The procedure results in
a compact expression for the chromaticity which contains all the effects proportional to &.
After an introduction to the method which follows the procedure already given by Courant
and Snyder [2], the exact expression for the chromaticity is derived in section 4.2.2.

4.2 Calculation of Chromaticity
4.2.1 Demonstration of the Method on a Simplified Example

In order to demonstrate the perturbation procedure on a simple example, we calculate the
linear tune shift with momentum for uncoupled betatron oscillations. Let us first consider
how a single thin lens quadrupole at position s modifies the revolution matrix M:

1 0 ) . ( cos2mQ + a(s)sin2rQ  F(s)sin 27Q )

M+é¢M = ( Ak-ds 1 —v(s)sin 27 Q cos 27Q — ofs)sin 27 Q

The elements of the modified revolution matrix M + éM are composed of the modified

lattice functions and tunes:
M+é6M =
cos2m{Q + 6Q) + (a + ba)sin2n(Q + 6Q) (5 + 63)sin2n(Q + 6Q)
~(y + év)sin27(Q + 6Q) cos 2m(Q + 8Q) ~ (o + da) sin 27(Q + 6Q)

Thus by comparing the last two equations for the trace of M + é M we obtain:

tr{M +éM} = 2cos2m{Q - Q)
= 2cos27Q + B(s)sin 27Q - Ak(s) - ds

or

cos27(Q + 8Q) —cos27rQ 1 ) 5. n
sin 27(Q + 6Q) = (s Ak(s) - ds . (#.1)

(BN
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We consider now several successive modifications of M by thin lens quadrupoles at differ-
ent locations and we work to first order in Ak. Thus we neglect small changes to 3 at one
position caused by Ak at another position. This means that the contributions to the tune
change appear as a sum on the right hand side of eqn. (4.1):

cos 2m(Q + 6Q) — cos 271'Q
sin 27 Q)

Zﬁ(s YAk(s;) - ds . (4.2)

In the case of a continuous distortion Ak(s) (which is the case for chromatic focussing errors),
the sum transforms into an integral around the lattice:

cos 2m(Q + 8Q) — cos 2 Q)
sin 2mQ 2[ Bls)Ak(s) - ds (4.3)

Expanding cos27(Q + §Q) about Q eventually leads to:

AQ = —iw fL B(s)Ak(s) - ds . (4.4)

For Ak(s), we insert the contributions to the momentum dependent focussing error as given
in chapter 2. In a strong focussing machine, the main contribution usually comes from the
quadrupoles and sextupoles:

Aky(s) = +6 - [k(s) — DeA(s)] -

In small circumference machines in particular, the contributions from the dipole magnets are
not negligible. A rigorous derivation of the chromaticity in the general case is given in the
next section.

4.2.2 Exact Expression of the Chromaticity

The first step in a rigorous calculation of the Q-shift for off energy particles which also
takes into account coupling is to again write the (4-dimensional) transfer matrix as

M.(sa 50) + ‘5M(57 SO)

where M(s, o) refers to the unperturbed motion of the on-energy particles. We achieve that
by decomposing the ring into small intervals:

L <8< s+ Asu s (p=1,2,...,p)
and by considering the perturbation
AA(s) = §- B(s)

appearing in the equations of motion (2.58) in each interval separately.
Then we can write:

M(so + L,s0) + 8M(so + L, s0)
= M(so+L.sp)- Md(""p + Aspysp) - [M{sp + Asp,8p) + §M(sp -+ Dsp, 5p)]
JS M_.('Spsspwl) * M-I(Spfl —+ Asp—lesp—l)
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x [M('Sp—l + Asp_1,8p-1) + 6M(5:D—1 + Aspog, Sp*l)]

*

*

*

X M(sup1,80) M7 (s + Asyy ) - [M(s, + Asuysu) + M (s + Asyys,)]

%

*

*

X M(sz, 1) M7 (1 + Asy,81) - [M{s: + Asy,s1) +8M(s1 + Asy, 1))

X M(s1,50) .
According to eqn. (2.58) we have:
M(s + As,s)
M(s+ As,s} +6M(s + As, s)
so that the factor

14 As- Ao(s);
1+ As-[Ag(s) + AA(s)]

M7 (s + Asyysp) - (M (s + Asyys.) + 6M(s, + Asyys,)]

can be written as

M_l(s + As,s) - [_M(S + As,s) +6M(s + As,s)]
= [1-As-4o(s)] - [1+ As - Ay(s) + As - AA(s)]

= 1+ As-AA(s).
Then eqn. (4.5) becomes:

M(SU -+ L,SQ) + §M(So -+ L, Sg)
= M(SU+L,3p)'[l+A5p'A“_4_(sp)j
X M{sp,s5-1)[1+ Asy 3+ AA(sp-1)]

M(s3,81) 1+ Asy- AA(sy)]

M{sy.50)

and the expression for M is in first approximation:

6M(50 -+ L., 50)

so+ 1
- / di - M(so+ L,3) - AA(S) - M(3, o)

30+L

- M(30+L,50)-/ d5 - M1 (5,50) - AA(S) - M(3,50) |

20
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The Q-shift is then ecalculated by considering the eigenvalues of the perturbed one turn
matrix M + §M[5]:

Using the fact that

MU, = AT
we obtain in first order:
Méﬁk—kéMﬁ'k = Ax -5'5‘):-!-6/\;‘,-‘51: . (411)
The tune shift is defined by
7
AQ, = — NPT 4.12
Qx Y k (4.12)

67, can be written in terms of the eigenvectors vr,v_r, Urr, Uogr:

6t = 3 Ap - U1 -
i

Then by multiplying eqn. (4.11) from the left by {7 S) and by using the orthogonality
relations (3.37) we get:

T TS M Tk = X1

Recalling that

MT(s1,82)- 5 M(s1,82)= S
so that

T T(so)-S-M(so+ L,so) = T *(s0) - [M_](So + L:SU)]T -8

= [MMso+ Lyso)-lso)] S
. +
= Ak_l . ’Uk(-So)] . §
= Ap-Tk T(s0)- 8
we find that eqns. (4.10) and (4.12) give :

1 .
AQk = MZ']{'-,\k s Vi +(So)'§_'M(SQ+L,So) (413)

su+L
x [ s MG s0) - AA(S) - M3, 50) - Ti(so)

1 so+L
— e f(sa) - [ A5 MT(Es0) - S - AA(E) - M3, 50) - Bulso)

3]

2m
1 SD+L
- m—-f di -5, *(3)- S - AA(E) - (3)
2 20
1 so+ L
= b [T a5 w T(5) 5 BE) - R(E)

2 50 -
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where B is given by eqn. (2.60).
Since in chap. 2 we have been careful {o keep our treatment of the equations of motion
symplectic, A4 1s free from damping terms. Thus

S-AA=—-AAY-S (4.14)
(see eqn.{2.65) and (2.58b)). Therefore by eqn. (4.13), AQ,, is real:
AQy = AQ. . (4.15)

With eqn. (4.13} we are in a position to calculate the tune shift, resulting from an energy
deviation, for an arbitrary distribution of (pointlike) sextupoles:

s) =32 §(s —s,) . (4.16)

The aim of the chromaticity correction is to find a distribution where AQ; and AQ;;
vanish. Then resonance crossing due to the synchrotron oscillations can be avoided.

Eqn. (4.13) is valid for an arbitrarily coupled machine. In the special case of an uncoupled
machine (no skew quadrupoles, no solenoids) we have (see eqns. (3.41,45,46,67)):

[ Bals)
- 1 - [“z -1 1 3
7(s) = —m——- leals) ~2] et ®=le) (4.17a)
28:(s) 0
0
( 0
1 0 ;
tr{s) = ——m—- 't (4.17b)
V25:(s) B:(s)
\ —la.(s) — 1]
and the matrix B takes the form (eqn. (2.60) with N = 0; R = 0):
K. D, (K.Dy + K,D3;) K,D, 0
5 (K24 k)-X-Dy ~K.D, A Dy -K.D,
= | K.D, 0 K,D, (KD, + K,Ds)
A-Dy -K,D, (K} ~-k)+X-D; —K,D,

In this case eqn. (4.13) simplifies to:

6 SU+L

AQ, = *Z"f d5 {BK? + k — X~ Du] + 200 KeD; — 72| K. Dy + K, D3]} (4.18a)
T Jag
6 sg+L - -

AQ, = _4_7?/ d5 {B{[K2 — k + X Di) + 20,K, Dy — 7, [K.Dy + K, D3]} (4.18b)

Note that the matrix elements Bqa, B1y, Bz and By, Bs;, By which are a source of cou-
pling for off- energy particles give no contribution to the tune shift in linear order.

We note that Courant-Snyder and other authors obtain only the first terms in brackets
in eqn. {4.18a.b). The second and third terms which we find in addition result from the use
of a second order expansion of the dispersion trajectories: Some of these terms survive after

linearisation.



5 Summary

In this lecture we have given a survey of linear machine theory taking into account in a
general way the coupling of betatron oscillations.

The equations of motion for on- and off-momentum particles were derived in a strictly
canonical manner. Because all transfer matrices are therefore symplectic, well known eigen-
vector methods can be used to investigate the stability of motion and to estimate the tune
schifts due to an momentum deviation. To study the influence of coupling, generalized lattice
functions were introduced and canonical perturbation techniques were applied.

Here we only have considered the betatron oscillations of a coasting beam. But it is possi-
ble to generalize the 4-dimensional formalism (in terms of the variables z,pz,y, py) described
here to include synchrotron oscillations. To achieve that, additional coordinates o = s —wo -1
and 7 = AE/E, (v =average velocity of the particles) must be introduced. With the
complete set ,p.,y,py,0,n one then is in a position to provide, in the framework of this
6-dimensional formalism, an analytical technique which includes consistently and canonically
the synchrotron oscillations in the electric fields of the accelerating cavities. Details can be
found in [10,11,12,13].
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Appendix A: The Symplecticity Condition

The canonical equations of motion can be written as (see eqns. (2.25) and (2.55)%

4z = S o (A.1)
ds =~ = 8z '
or in component form as
, oH
z; = S — (A.2)
Oz

with the notation

T

1y

= (21332, 33724) .

We now introduce the Jacobian matrix:

J o= ({Jw)): (A.3)
z8
Jin(s, =
Hes) = 5o )
Then it follows that:
e - r—— 6 -r
ds (s, 80) = Ozr(80) z(s)



_ g S OH(s)
T Ozls) | Bzals)
_ Oz(s) a S O0H(s)
— Ozp(s)e Oufs) |7 Bza(s)
8*H(s)
= J Sy ——2
(s o) 82(5)0z(n)
= Sin-Hu - Ju (A.4)
with BZH( )
s
Hy= ——3 .
: 8z1(5)0zn(8) (4.5)
or that
J'(s,80) =S -H-J(s,s0) (A.6)
with
H = ((Hu))
Thus we have:
d .
7s {JT(SaSO)'i'J(SaSO)} = {S$-H-J(s,50)} -S-I+J(s,50)-S-{S-H-J(s,5)}
= JT(s,80)-HT-87-8-J+1"(s,8)-5*-H-J
= JT(s,80) - H - J(s,80) — I (s,50) - H - J(s,50)
= 0 (A.T)
where we have used the relations
§T = -§;
S* = —1;
H' = H.
From (A.7) we obtain:
_{T(s,sg)-ﬁ-l(s,.so) = const
= JT(s0y80)- S - I(50,50)
= 5. (A.8)

If the Hamiltonian is quadratic in zq, 23,
i( 8, ‘50)

In this case eqn. (A.8) reads as

M7 (s,50)-S-M(s,s0) =5

z3,24 as in (2.56) one has according to (A.4):
= M(s, s} . (A.9)

(A.10)

Equation (A.10) represents the "symplecticity-condition” for the transfer matrix M(s, S0).

%]
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Appendix B: Thin Lens Approximation

The equations of motion (2.58) have the general form:

d - -
a = Lz ' B.1
52 Als) - 2 (B.1)
with
A(s) = Ao(s)+6-B(s) (B.2)
= [1+6-(K;-Dy+ K, - Ds)]  Cpl(s) +
Ci(s) + Ca(s) + Ca(s) + Cyls)
and
{01 00
000 0
Co=lopoo1]? (B.3a)
\0 0 00
0 00 O
e 0o N o
-N 0 G, 0
0 0 10
1. 10 0o 01
QZ(S) - ER -1 0 0 0 (B'3C)
0 -1 0 0
E.D, 0 0 0
B 0 ~K.D;, 0 0
Cols) = &-| 4 o K,D, 0 (B.3d)
\ 0 0 0 ~ K, D,
{0 0 K,D, 0
B 0 0 0 —K.D,
Culs) = ¢ K.Du 0 0 0 (B.3e)
\ 0 ~K,D, © 0
where G1,G,, N and R are defined by:
1 i 1 .
G = ~ZR2—(Aj+k)+5-{§Rz+(hj+k)m-pl}; (B.4a)
1 . 1 .
G = —2R—( ;—An)m-[gﬂh(Aj-k)u-p]]; (B.4b)
N = N.-(1—8—6-X-Ds; (B.4c)
R = R-(1-8). (B.4d)

The solution of eqn. (B.1) can now be obtained using the method of the thin lens approx-
imation .
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For this, we divide a lens into a sufficient number of thin lenses with length As for which,
in the power series expansion of the matrix M(s + As/2,s — As/2), only the linear terms in
As are needed. Then for the transfer matrix M we obtain in first approximation :

A A
M(s+?s,s——2—s)=l+As-A(s). (B.5)
However, M so calculated is not symplectic (see eqn. (2.64)) for finite As.
To ensure that the symplecticity of the matrix M(s+ As/2,s — As/2) is rigorously main-
tained by the linearisation we write

A A
M(s+500-57) = Mp(s+508)-C00 (B.6)
2 2 2
. . - A As
x4(s) - 8als) - €a(s) - Euls) - Mp (5,6 - =)
with
Mp(s+1,8)=1+1-Cyp; (B.7)
(transfer matrix for a simple drift space of length {)
and
Cls) = 1+6-(K.-Di+Ky-Ds)-Co-As (B.8a)
Ci(s) = L+Cy-As; (B.8b)
cosA©® 0 +stnAG 0
- ¢ cosA® 0 +51nA©
_ : 8
Cats) —sinA© 0 cosAG® 0 ’ (B.8c)
0 —sinA©® 0 cosA©®

1
(A® = ZR-As);

(1+4;) O 0 0
- 0 (1+4)" 0 0 _
Csls) = | 0 (1+4,) 0 ’ (B.8d)
0 0 0 (14 4,)7
A, =6 -K.Dy:As
A, =6 -K,Dy-As;
Culs) = 1+C,-Ds. (B.8e)

In linear order, the right hand side of (B.6) agrees with the r.h.s. of eqn. (B.5). Further-
more, all factor matrices on the r.h.s. of (B.6) and therefore M(s + As/2,s— As/2) itself are
symplectic.

In this way, the linear approximation (B.5) for M(s + As/2,s — As/2) can be made
symplectic by adding terms of higher order in As.
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