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Theory of linear and non-linear perturbations of betatron oscillations

in alternating gradient synchrotrons*®

by

A. Schoeh

1. Introduction

The stability ecriteria of orbits in particle accelerators are
found by considering particles deviating slightly from the ideal orbit as
to fheir energy, direction of velocity, or position, In the case of stabil-
ity such particles ecarry out oscillations about the ideal orbit,

The osecillations are generally in three dimensions: two dimensions
trensverse, and one dimension longitudinal with respect to the orbit, The
necegsary restoring forces are provided by appropriately shaped guiding and
focusing fields,and by an appropriate longitudinal position of the particles
with respect to the phase of the accelerating field {considered as a travel-
ling wave). Strictly speaking, the osecillations in all three dimeasions are
coupled, Usually, however, the ‘"phase escillations" with respect to the
accolerating field are separated off, which in practical A,G.** synchroirons,
is justified by the  fact that the phase oscillations have very much longer
periods, than the "betatron oseillations™ due to the foecusing field. Thus
the offect of the betatron oscillations on the phase oscillations averages
out approximately, whereas the effect of the phase oscillations on the betla-
tron osciliations consists of an adiabatie variation of parameters. It is,
therefore, reasonable to disregard acceleration in an investigation of the
fundamental stabilizing properties of the guiding and focusing field, The
present report is resiricted to this problem of pure befatron oscillations,

In the earlier stages of development, & linear approximation to
the equations of motion of a deviating particle was used to obtain the stabil-
ity eriteria, which impose certain conditions on the guiding fields {Kerst
and Server {1941]). After the invention of the A.G. focussing by Christofiles

and Courant, Livingston and Snyder***, it was soon realized that very

% un ontline of thim report is contsinad in A paper given at the CERN Sympoaium heid ia Geneva in June 1956
{Hagedorn, Hine and Schech [1936]1).
4% 4,G. indicatss abbreviation given throughout thim report for "alternating gradient”.

#+4 gpg Courant, Livingsten and Smyder [1952] and Courant, Livingston, Snyder and Blewatt [19531.



small imperfections of the guiding field of cirecular accelerators with A.G.
focuging may cause the amplitude of oscillations about the stable orbit to
grow indefinitely with time, thus upsetting the stability the perfect siruc-
ture would provide*, This type of instebility is due to resonance of the
frequency of oscillation of the partiele and the frequency of repetition of
a perturbation in the guiding field, passed by the particle at each revolu-
tion,

In & later stage of development, the effeefs of non-linear terms
in the equations of motion became important., Even in a synchrotron designed
to make the orbits obey linear equations, there are non-linearities of kine-~
matical origin, and there will usually be others due to unavoidable imperfec-~
tions of the field. But, furthermore, the queation has heen raised whether
the stability eould eventually be improved by suitable artificial non-linear-
ities,

It was known Dennison and Berlin [1946] , Courant [1949)) that non-
linearities may give rise to new instabilities by excitation of "aubresonan-
cag" when the number §,, @; of betatron oscillations in the radial and ver-

tical directions permit of integral combinations
ny Q4 + nz Q2 = p; ny, nz, p integers

(the resonances of “order"|n1\ + 1n21 = 1, and tn‘l + ]nalz 2 are those
appearing in linear oscillations). On the other hand, non-linearities make
the betatron frequencies change with amplitudes and thus may prevent an in-
definite build-up of emplitudes, as the resonance is shifted out of tune,

Whereas there are powerful and elegant methods of treating linear
oseillations, and complefe linear theories of sfability of A.G. synchroirons
had teen presented comparatively early on, mathematical mefhods are much less
developed for non-linear osecillations, A great deal of exploration of non-
linear effects on betatron oseillations has, therefore, been done by numeriecal
computations®¥

A more complete pieture has at last been obtained by analytical
perturbation methods, among which those presented by Moser [1955] and Sturrock
19551 formed the basis of further work at CERN, where Moser's method was

* firat noticed by J.D. Lawson (mea e_g. Bell [1953], Liiders [1933, 19353, 193671,
** ses Adame. and Hine [1953], Powell and ¥right {19557 and unpublished calculations at Frookhaven and CERN,



extended to two dimensional oscillations and applied to betatron ogeillations
in eireular accelerators by Hagedorn [1955, 1956]. The methods apply to basic-
ally linear systema with relatively small non-linear pertﬁrbations.

In the following & simpler approach is presented which, ii is hoped,
facilitates physieal interpretafion and application of the theory, expressedin
terms of rather abstract formalisms in the afore-mentioned papera. The present
approach covers linear perturbations at the same time and leads gquickly to first
sapproximation results (otherwise identical with those of the earlier papers).

1t had been shown before (Schoch [1935])) that the results of Moser
and Sturrock can be obtained in an elementary way in the case of a non-linear
pscillator excited by periodically repeated kicks {such a system had been used
before as a simplified wodel of an A.G. synchrotron with an imperfection in the
early non-linear studies of Adams and Hine, quoted above)., The method was to
calculate the change of amplitude and phase of the oseillation brought about
by the perturbing kicks, making use of the fact that those quantities, which
would be constant for the unperturbed motion, vary only slowly if the pertur-
bations are small, This method of "slowly varying amplitude and phase® is
adapted in the following to the case of an A.G, synchrotron with quite general
perturbations. The procedure partly follows a paper by Beth [1910] who treated
non~linear c¢oupling resonances in systems with saveral degrees of freedom long
ago. For the sake of simple presentation the theory of one-dimensional ogeilla-
tions will be given in detail first, and extended to two dimensional oscilla-
tiona in the last sections., The more satisfactory part of the theory given is
resirictad te synchrotrons whose parameters are rigidly constant in time. The
"dynamioe” behaviour under conditions of varying parameters {e.g. due to phase
oscillations) ig known %o be appreciably different in certain cases., It is
econsidered to some extent in one of the last sections,

The comclusions of the theory regarding requirements on synchroirem
parameters and construction tolerances are summarized in the lagt sectiom with
a view to the CERN proton synchrotren (CERN P3) in pariicular.

Petaila necessary for the analysis of & practical synchrotron de-
sign are collected in & voluminous appendix.

It must be emphasized that already in 1950, Judd [1950] had treated
the problem of non-linear oseillations in bef{atrons and synohrotrons using
the method of slowly varying amplitude and phase in the version of Xrylov and
Bogoliubov 11937], His work contains all of the fundamental results having
?een given later in the papers mentioned above, Unfortunately it did not be~

some known at CERN wefore 1956, and seems to have passad unnoticed by most of
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the acceglerator centers, as it has not appeared in print.

Further work which has to be mentioned was done partly along similar
lines, by Cole [1934], Symom (1954 ], Courant [1956] and Kolomenski [1936] and
more recently by Parzen {1956, 1957 ) who used an entirely different approach,

2. Method of "variation of canonical constantsg"

As pointed out in the introduction, we try to represent the oscilla-
tions of the actual non-linear system by letting amplitude and phase of the
oseillations of the unperturbed linear sysiem undergo slow variations. That is,
we try to solve the non-linear equations by "variation of censtants”, as ampli~
tude and (inital} phase are constants of the motion of the unperturbed linear

system, If
e 1
p,a,t) = 1 (p,a,0) + 1S VpLa,0) (2.1)

o 1
is the Hamiltonian of the non-linear system, H( ) and H( ) being the Hamilto-

niang of the unperturbed system and the perturbation, and if

f{t,a,b)
g{t,a,b)

i

i

is the motion of the unﬁerturbed system, with a, b integration constants, we

solve the complete system by considering a, b as functions of t :

= £(t, 2 [t], b [t])
= g(t, a {t], b [t])

2 97
1 1

Tntroducing this inte the Hamil tonian equations of motion :

. _af 8f . 8t . ou
P=3t "3 3 T T &
o__ag ago a.‘-’-_ aH
q-g-{-i-ga-ﬂ'l-%b—- gi)-

*

and solving for &, b we obtain

oH _ 3g\ 3f _ /3H &1\ %g
“\& dt' &b Tiaq * L &%

J



1 turbation Hamil tonian

the solution for the unperturbed sysfem.

(D

au 9g\ af /on  ar\ og
. \@ "%, @ T\&| +5E}ﬁ
s A 5
b =
J
where
a ar af
. Fa b
" Jd = (2.3}
- ag ag
: Ja &b
Using now the faet that
! af aH(o)
gt~ T 2q
ag _ au(°)
gt = dp
the equations for a, b take the form
1 1
(aﬂ( ) ar  aul) ag\
“13p 8 T 3g  db;
. p ob 3 Gb 1au" Ma, b, t]
* =3 56
J
" () (2.4)
. (%H af | BH '7 3g)
. an 3a ~ 3dq  3a; 1
§ p a q & i} laH( )[a, b, £]
3 J da
Thus if J = 1, a, b siwply obey equations derived {rom the per-

, after suhstitution of p, g by a, b by means of

In particular, J =1 ig satisfied

if in (2.2) such constants as form a sei of canenical variables ere chossn

{i.e. if (2.2) represents a canconical transformation from p, q to a, b).

3. Introduction of amplitude and phase as variables

Considering only the radial oseillations in the plane of symmetry

of an A.G. synchrotron {(the two dimensional case will be treated in seetion



12}, the equations of motion for the radial displacement x may be written

{ses Appendix 1 ) :

o 4 (1)
g; - 527(3( ) . H( )) - x4 227*—
(3.1)
dx’ (")

w: - a-g (H(Q)'l- H(1))= n(ﬁ‘)x - a"x—_

where @ is the angular position on the circumference, x’ the "canonical
momentun® (defined by the first of the equations) n(#)} the field index with
period § = %? if there are M magnet perieds, The part H(ﬁ)(x, x') of
the Hamiltonian containg all linear and non-linear perturbation terms whers-

A8

°} - (x*)¥? -~ n(¥) x*
2

H

defines the unperturbed system, in which x' = g; , and which obeys the equa-

tion :

*x
:E;r - n{d) x = 0.

Its solution can be written in the well knewn Floquet form

: i(Q9 +9) -i(Q? + ¢)
. {8) \o 7{3) o
(::) = /a C ) + (3.2)
w2 (F) w2 ()

where & and ¢ are constants of the motion, and Q follows from the

characteristie equation for the transfer matrix T over one period B8 of

8
n(d9) :
© wlew e
Wz(o) Wz(ﬂ)
- (303)
( X, (0)> e 2o
T = & ( % )
"\ %200 "2 (0)
wy (&)
The Floquet {actors ( \ , which are periodic with period 8,

wz(ﬁ)/



w, (o

are related to the eigenvectiors ( }> ir the following way
)

wy{o
ey T w, (o
( ) = @ 0<? <8, (3.4)
w2 (&) Wz(o)
where 'I'19 is the tranafer matrix conneciing the points & and 0,

We are going to consider (3,2) as a traneformation of x, x’ to new
variables ©, a. In order that the Jacobian of this transformation be equal

to 1, the Flogquet factors have to be normalized properly :

, e i . . i
ER A R v
Jd = = .
1 } &% - T e 1
g%- g; i J"'(W2e % xze 1“) Eé;- (w=e1a + wae 1%)
& 4 »
Wy o Wy wy{o) wy (o) w, (0) w, (o)
= i =i 1T§| =1 =1
»* Y * .
W2 W; wa (o) wa(o0) wz(0) wa{o)
wherae g =03 + ¢,

W1(°)
The eigenvector ( ) follows from (3.3)

w2 (0)

F1(0)\ Tz Tz
( (1Q@_T>"C(T L ) . (3.5)
wa{0)/ " S s singd

Ti1, Tyz2s Tz2 being elements of the transfer mairix 7 and ©C & normalization

8
faetor, to be chosen such that J =1

*
CC. 2T1 23inQ0 =

SN
i

l_;
—
Sl
-
T
g

-2
= (21‘1281!1(26) .

Q
1

The choice of a {the square of the amplitude) rather than Va (the

amplitude) as & second variable ia imposed by the preservation of phrse space
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volume in a transformation with Jacobian J =1,

Expanding the Floquet factors in a Fourier series with fundamental

. period 3, we may write for w,{#) = w{#) {omitting the suffix as only w,{8)

¥ill be needed lster on) !

4 o ~ivMg
-
W(??) = Z_/ va &
V== co
2 ' X
M= -éz being the number of magnet periods on the eireumference 2w,

Fourier expansions of w(#) for structures of practieal interest are given in
Appendix IV. Choosing the n-value of a pure square wave structurs (alternat-
ing gradient without field-free sections) such as to make the essential para-

meters equal to those of the CERN 4,G, synchrotron, i.e.

2

M

A%

0a = E‘: (Q = 6025): ®

the following numerical values are obtained for n and the Fourier coeffi-

cients of the Floquet factor w(#) normalized according to (3.6)) :

-~ n = 33605
Wo = 0&289
wlI w_‘I
= 20,1122 — = 0.0678
WO W‘G
Y24 - p,00207 Y24 n.00050
\’I"o wC‘

---------

Thegse figures show to what extent, under conditions of practieal interest,
the transverse ogeillation in an A,G, synchretron is almost sinusoidal, The
wriggle due to the A.G. structure amounts to abhout 15 perqent of the ampfi~
turle of the "smooth motion" and is itself almost sinusoidal,

Freguently it is useful to compare the smooth part of the motiion
in the A,G. synchroiron with the oseillatien of & simple harmonie oscillator
of natural frequency G, Considering the unperturbed linear system as being

a harmonic cseillator, the Floquet factor in (3.2) becomes & constant vector



' 1 .

( Ty ) ( V20 \

\ v i ’g/
With the abova numerical data (Q = 6.23), wy = w = 0,283, which is very near-
ly equal to the Fourier coefficient wo = 0,289 giving the smooth motion in

the foregoing example of an A.G. synchrotron.

4., Bauations of motion in the ¢.a representation

Accor&ing to sectién 2), these are derived from the perturbation

(+)

Hamiltonian H° ’, after having expressed x, x' by ¢,a2 by means of (3.2)

do _ 38 (0,a,0)

d . Za
(4.1)
da __aH(!){Q,a,ﬂj
T S
Referring to Appendix I, H(1) congists of potential energy only,

if we ean disregard non-linear terms of kinematiecal origin. This is justi-
fied unless the non-linearities of the guiding field are extremely smalllFor
purely radial oscillations H(1) then takes the form

H(,) = V(x,ﬁ) = Z Vk(ﬁ‘) xk,

k=0

(4.2}

the Vk(ﬁ) being in genera! periodic functions of ¢, of peried 2 for a

perfect, of period 2w for an imperfect synchrotron, Substitution of ¢,a

for x gives

£+m
' _— ' £+ " } w
“( )= ZLJYk(ﬁ)xk = E{: ZE: ( mm> V£+m(ﬁ}w{ﬂ)& 1,‘_m(ﬁ)&mf_el.(161—11'1)(@3‘ o)
k <£,m»o
£+m=k
£am
= Z Z Vﬂm(ﬁ)aTei(&_m)(Qr? +9) (4.3)
k am=lt

£am
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where vémq are Fourier coelfiecients defined hy

+m rl
ng(f?) = Z ngqe—lqﬁ (4.4)

The summations are over ¢ >0, m >0, £ +m = k. Ve note that

It

. Lm £, *m
( ) V(@) I (9)
mn /

”

Vemg = vm{’,(-—q). (4.53) .

we further note that H(1) would have the same general form {£.3) alse if

()

terms centaining the canonical momentum x’ would ocecur in the original H -

5. Approximete equatiens for the "slowly varving" parts of amplitude and phase

The Hamiltonian (4.3) is composed of terms whoge explicit dependen-
ce on 9 1is of'oscillatory character, the freguencies being [(¢-m)Q - q].
W¥e expect - for';elatively small perturbations - the amplitude and phase to
change only little within the period of one osecillation or even one revolu-
tion (s?veral ozcillations), We may, therefore, expeect to obtain approximate
equatioﬁs of motion by keeping only those terms in the Hamiltonian the fre-

quency of which igs e¢ither zero or very small
He-m)g-ql = 0 or << 1. - S {5.1)

These terms are (i) those belonging to £-m = o, q = o, and (ii) those for

which the wave number ) satisfies, or almost satisfies, a relation
nQ ~-p=0, n,p integers, (5.2)

The terms obeying a relation (5,2) are the ones exciting subresonsnces, as
will bhe disgussed later,

() N

That part of the Hamiltonian H(index omitted from here on) which

is composed only of zZero and low frequency terms defined by (5.1} will be de-

noted by H, ' -
The approximation may be put on a more rigorous basis and improved

in the following way : Decomposing the motion in the form -

(9 + ¢ (4, A, &)

-5
1]

o (5.3}
A{ﬁ) + a [d: 4, §)

-]
H



where #,A represent the slowly varying part of the motion, and the rapidly
osaillating parts '$, & have to be added to give the exaet motion, {3,3) ean
be considered as a canenical transforrmation to new variables #, A, defined by
the requirement that the new Hamilfenian contain only zero or low frequency
terms in the sense of {5.1), Proeceeding in this way it will be seen in the
next section that the transformed llamiltonian ig ~ in a first approximation -
just the H, obtained by omitting the high frequency terms in the originel per-
turbation Iamiltonian H,

Tt will fuarthermere turn out that the higher apnroximations do not
affect the general form of the transformed Hamiltonian, and that the first
approximation ig sufficient for mest of the problems concerned with small
(1inear and pmon-linear)} perturbations. One may, therefore, often ignore the
more rigorous reasening given in the next section, as the first appreximation
seems immediately plausible,

The transformation #o dynamical variables in which the Hamiltonian
is aslittle as possible dependeant on # 1is the esgential feature of the pro-
cedure used by Moser [19553]. His new variables arrived at may, therefore, be
interpreted as the slowly varying part of the motion in the sense we have been
explaining above, Obviously this interpretation is useful as long as the re-
sidual rapid motion $, % remains relatively small, that is, if the above
transformation iz almogt infinitegimal, The conditions for this being the

case will be discussed in seation 7,

6. Systematie prosedure for obtaining the stowly
yarying parts of phase and amplitude,

Following the recipe of analytical dynamies we repressent the cano-
nical transformation (5.3) from ¢, 2 to 4, A by means of a generating
function

S(‘PlAﬂ?) PA + T ('P!A’ﬁ)

where upomn

408, ,0%

|
“+*
|

(601)
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&nd the new Hamil tomian

R=ns 3 ji: ZE: ve,(ﬁ) J1{E-m) (Qd+p) | + 3 (6.2)
Lam=k
Putting
£4m
Te) ) a7t @ 2D (6.3)
k L4m=k

with coefficients hzm(ﬁ) to be determined later, and assuming o in a simi-

lar form

L+m .
(2-m)(QF + @)
- 72 (A T o (6.4)

k Limz=k

we find from (6.1) and (6.,2) that h,, and T, have to satisfy the follow-

ing equation ¢

fiﬂ 1(£-m) (09 + 9)
I 5 e ] T

€r+mf . ; [y £ o’
T 1(L'-m’ }(Q0+@+57) U WA G DR G @)}
o me e - "&u ! + % e

Introducing (6.4) on the r,h.s., and using power expansions with respeet to o,

this becomes

Lam
zz 'T + i{2-n)Qc :\ATei(ﬁ"m)(Qﬁw) =

& am”

rid i’ i; - 1 - "
ZZ &'t [1"'1(‘6"“3!) Zz &4 ¢ -i-m‘ A 91(6 -H{’)(Q19+<p)+ ...]X

£ +m!

RERR T DICTITY

£ +m” +&! 4m’

- ZZ Ver T &l ZZ (&' -m )O-g: : ' ei(z'-m')(QT9W)+.Z;X

al(ﬁﬂ-mﬂ)(qﬁ+¢) (continued on next page)
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Lam
2 _i(£-m){(Qd+9)
L7 4m’ 44" 4t -2

BEANS LRIEANS 2
" ZZZZ 1( . )é )(h{’»’m’gﬂ”m””vﬁ”zn"o‘ym' L

RICE S S IC IR ]

where we have written down the expansions only up to the first order in o,

This equation is satisfied when the < singly satisfy the equa-

£m
tiaong @

oy (6.5)

e _m! £ R
- * 1(€"m)dem = by - v, 4-2{2 ;i (&7 -m %( +m’)(hgfmfcéﬂm”'vﬁ”m”gé’m’) PO

&7 +m’ + &7 +m” = L4ms2

!

£ —m’ + €7 - £ - m

#

Requiring now that h&m’ Gfm be perioedie, like Vom’ it is conven-

ient to use Fourisr expansions

o‘em(é‘) = z % ma a"”gqﬁ, ete.

q

The equations (6,5) then are equivalent to the following equations

for the Fourier component

h -v AL mf ) (87 4w ) -
€mg Lmg + Z Z 1 5 he_r qufo-aﬂmﬂ ,a-q’ “Yu m{rq:o-,g: m ,q-q’ +...

i

9

G.ﬁmq"

il(£ - m) Q - q] (6.6)

the summation on the r.h.s. to be earried out over the combinations of
&m/ &  indicated in (6,5).

In prineiple, one aould determine transformation coefficients Uﬁmq
from these equations for any choice of the coefficients hémq of the new
Hamiltonian (subject to conditions of solubility, of course), In accordance

with the programme of msction 5, we reguire all hémq to vanish excapt those
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of the zero or low fregueney terms for ~hiegh either

or a subresongnce conditien n§ -~ p = 0, holds,

€-m=mn, q=np.

(In fact, due to the denominator in (6.6} the h, ko and hﬁiﬂ ke are not
23 2 2

allowed to vanish generally, otherwise the transformation coefficients would
hecome infinite or very large), The appropriate choice for the remaining co-

efficients h, , and h followsg from (6.6) by requiring finite
k k k+n k-n
3 3° ) P

solutions G?mq . Solving these equations by iteration®* and uging the required

properties of hgmq; we obtain in first approximation.

_ Y tig

crﬁmq -—m s for (€—m)Q—q *’ 0, (6.7a)

For (€-m)Q-g = 0, we have to put in first approximation

{6.8)

Peon xan = Visn ken
37 3P z 2 P

in order to prevent o and o n from becoming very large,

whieh leads to

(In fact, only o = ponst, féllows from (6.5) or (6,6), Tutting the

* llere the procedurs differs Irom Moger's and lagedorn's, who agsume the pecturbation {lamiltenian te contain only
3rd and higher order terms, Then the o-coefficients appearing on the ¢ h.s. of equ, (6.5) and (6.6) are alwaye

of lower order than on the !.h.s. and the aquations ean be colved rigorously by recursicn up to any degree {save

for eonvargence limitatiens}, Admitting alse perturhations of degre < 3, tha eguations ean only be molved by

iterntive agproximetions, Thig is no sericus drawbaek from the point of view of practical usefulness, hut, how-

aver a eonsiderzhle advantage [or the treatwant of the linear perturbations,

(A, 7b)
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const. agual to zero is again the most convenient choice),

The coefficients of the new Hamiltonian as given by {6.8) in first
approximation eorrespond exactly to the zero and low frequeney terms of the
original Hamiltonian as had been assumed in section 5,

Reintroduecing (6,7} and {h.8) ‘into the r.h.s. of (6.6) we obtain a
gecond approximation for the Gfmq and h&mq which will be correct up to
- second order terms in the goeffiecients vﬁmq’ as Gﬂmq and hﬂmq are linear
in vﬁmq in the first approximation. We nsed only the coefficients

M k-n in second approximation, which we find from {6,6) and the require-

2 2 _
ments on H

= i(er-m (&) (1) (1) (1)
Pron kon % Yken ken T E:: 3 (s s 70 arr (pe) & mtq & (p-q)
2 2 P 2 2 P
q
where h(1), UI') indiestes first approximation values, The n and p oceur-

ing in the suffixes satisfy nQ - p = 0,

Now hii;,q £ 0 only if (¢/- wm’) Q ® q; then simultaneously

(¢# ~w*')q = {{& -m) - (& -w' )] Q=p-q
and therefore

= {
Terme(p - q)

Thus there is ne contribution of the first part of the sum and we have

Ver Youwait o
(&) (eram)y 2@ (p=a) (g gy

(&' -m')Q-q

1
"3
(&7 -’ )Q~qf o

¥ T

Mesn koo % Vien
2 2 P 3

k-n
o P

- The seecond order corrections to the transformed Hamiltonian are usual-
ly negligible in the application of this theory to an almost Iinear synchrotron,
- Furthermore, if they become important, the rapidly oscillating part.of the motion
becomes appreciabhle af the same time, ag will be seen later in  section 7. They

mey, however, have to be taken into account if some coefficient of the Hamiltonian
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vanishes in the first approximation or is very small. A few of the coeffi-

cients which will be of interest later on for this reason are, therefore,given

here explicitly

- ¥ v
' 20q e2(-q)
hiso = Yeq0 - 4 T g
a ¥ 29
vzbq v11{D—q)
haop = Vaop - 2 z R oa . (6.10)
q P 29
Yiaq Yos(-q) Vzeq Yi2(-q)
hzzo = va20 = 3 E{: [3 3 - q + R
a ¥ Q,20,30
= =
+ 2 vzﬂq V31q + v3“q vzoq
2¢ - q

7. The rapidly varving parts of phase and amplitude

For the power expansions, used above in deriving o to be valid, the

rapidly varying parts ¢ and a of phase and amplitude must be small in the

following sense

5 and a

n~r

p << 1, ; << 1, (7.1}

foltow from (6.1} 1

~ Jc
(P = (P - ﬁ = - a A
a=a-4A-+= P

Introducing o from (6.4) and {6,7), we obtein in first approximation

w2

k
S“;“ - k Aé‘l ¥ enq Lilem) (@8 + @) - q9]
L-' A i 2 ’ i{(eﬂm)Q-QJ
k Z+m=k q ${L-m)Q
K {7.2)

53 Ve i (£-m){(Q? + &) - ]
B = = )

q ¥ (&-m)1

[~
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where the "low frequeney" terms characterized by (£-m) @ - g ¥ 0 have to be.

excluded from the sum, as szq = 0 for these combinations of ¢£,m,q,

(7.2} may be used to check the inequalities (7.1) in each individual

case,

Tf the moedulation »f the Floquet factor is small, so that the free
1

oseillations are smooth, the order of magnitude of one term of the sum making

up 3 is )
k k k2
[ TE- - : ~m - k7
o/ (E-mid-q 2 ms a2 K
k
k-1 dR
/k\ @ 1 " qu"<k\l n A Vig
! {T-m)n- T oTR f ok Te-min- N~
\ m/ m)9-q 5% R 3 m ./ Qk {emjn Q7R
1
24\ *
where R = Ly is the slowly varying part of the actual amplitude., A similar
)i i
estimate is obtained for % .
Thuz the term in question is proportional to the ratio
k
daR v
dR kg
Q7R

of the g-th harmonic of the k-th power perturbing force to the effective un-
perturbed restoring foree, taken for an elongation equa! to the amplitude.The
proportionaelity factor may be large if 1(£—m)Q—q] is small, that is, if the
term is &n almost slowly varying one, The ratioc of perturbation to unperturbed
foree must, therefore, remeain sufficiently small for the whole approximaticn

to be useful, Numerical examples will he found in section 10,

8. Treatment of perturbations causing distortions of the "closed orbit"

The method deseribed in the preceding seetions encounters a Aiffie-
ulty if the perturbation Hamiltonian contains a term linear in x {which it
will in the presence1of guiding field errors or alignment errors in a synchro-
El

tson). The power a * will then appear in the transformed Hamiltonian and

from (7,2) it follows that the rapidly oscillating parts a and % become
very large for A - 0, thus invalidating the conditions for the a}proximation.
The reason for this difficulty can eagily be seen by considering the effect
of a constant force displacing the equilibrium pogition. A consgtant or near-

1y eonstant displacement, however amsall ii may be, ecannot bhe represented by a
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free escillation with modulated phase and ampiitude the rapidly varying part,
of whieh is amall compared to the amplitude itself,

The difficulty is removed by measuring the displacement from the
distorted "elosed orbit" which is that particular solutioen of the equations
of motion (3.1) that is periodic with period 27 (or the fundamental period
of the perturbation and n(8)), The determination of the closed orbit then
remaing a separate problem which has to be solved by a differeant method.

Assuhe x = ¢ (#) to be the perturbed closed orbit, then the dis-

placement y with respect to the eclosed orbit is defined by
x = ¢f?) + v, (8.1)

Substituting this in the Ilamiltonian (3.1), and defining a conjugate momen-

tum ¥y’ by
x = af 2 yf’ * (gvz)
the squations (3.1) become

e! 3
g; = gg + gg = 5y Hc+y, e'+y')

{8.3)

dyr_ dc} g!-!* a ; ;
Al I gs;H(cﬂ’, e’ +y’).

We now divide H(e+y, e¢’+y’) into two parts, the first comprising the terms

linear in y and y’, the second comprising all of the rest :

w= (F e, @)y s (g HGe, o))y v
(8.4)
Lx: H(c+y,'c’+y‘)-[%§’cﬂ_ly+%g}. yfjl. ]

As the closed orbit satisfies the original equations (3.1) :

dy de
* fgmember that x?, y*, of do not exactly equal the derivatives %, -d%, TR exoept for the unperturbed

lamiltonian.
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de _ dH(c,e")
@ T T ae”
(8.5)
de’  dH(e,e’)
aF - T " 3e ’
(8.3) reduces to Hamiltonian equations for y :
dy _ 8%
dt = ay’
(8.6)
dy’_ 3%
ad ~ By

where X as given by (8.4) and,expanded in polynomials in y and y’/, ne
longer contains any linear terms in y and ¥'.

nep
depend on x' (i.e, if the assumptions made in {4.2) are valid} the same is

true of the perturbation part J&m of ¥, and 56(1)

If the perturbation part of the original Hamiltonian does not
is then a polynomial in
y only,

Although the method of variaticon of amplitude and phase has proved
disadvantageous for solving the equations (8.5), we still make use of the

¢,a-representation (3.2) to define “smooth motion” coordinates x, x’ by

fa ]

D (ei(qa«p) . e-i(qm)) _ J’%? cos (QB+0)
(8.7)
s qu;% (ei(Q8+<p)_ e-i(Qa«p)> .- ﬁ sin (29+0),
7a

i.e, as the coordinates of an oscillator of frequency Q with amplitude T

and phase ¢, In this way the A,.G. gtructure wriggle is separated off.

. In order to express the Hamiltonian now in terms of X, x‘ we observe that

the transformation (8.7) can be generated by a function

- xi'z
S((P,X", ﬁ) = = 20 etg (Q@‘HP)
as _
- as x?
=3 - gt (Q3+9)
38  x’? 1
a =

3p -~ 20 sin?(Qo+9)
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¥hich is equivalent to (8.7). The new Hamiltonian is, therefore,

(*) . a8 (1) X’
R i B 8in{Qd+p) °*

¥ — =

at)

F

v, & have to be replaced by x, x’ by means of (8,7). The second

term then becomem

Xt %x?
2 sin?(Qog) - T

If we start from H(f)(x,x',ﬁ) in

immediately from X,x’ to x,x"by

SRE LR
xi=z ‘J.—%Eﬂfz + ‘:p) :A'- —é-

Aftor this substitution we find as

a -, aul")
— X
TF=X T
— 1
ax’. 2% - aHE )
a0 3%
or
x| ep - ') g
AEL ax a9

x 2

2X 4+ X
2 L

the original variables, we may transform
combining (3.2} and (8.7)

* —~
(W, = mq) x’:|

(8.8)
('!‘;2 - T;a) X_~]
equations of motion for x, x
()
aH
= . {8.9)

This equation is rigorously equivalent {o the original equation of motion

{3.1) resp. (8.5). By introducing the smooth motion coordinates it has be-

come that of a simple harmonic osc

illator exposed to linear and non-linear

perturbations given by the terms on the right hand side, For caleulation of

the elosed orbit (8.9) is better suited than (8.5). Examples of how to use

(8,9) to obtain good approximstions to closed orbits in A,G, synchrotrons

are given in more detail in Appendix v,

9. General discussion of the motion

If Q@ is rational or almost rational,

Q=

(9.1)
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where p,n the smallest integers possible, the slowly varying Hamiltonian

according to sections 5 and 6 is explicitly :

[} ool

k> .
-k . p . o
v [(Q -5 + 4 -in[(Q - £)¢ + #]
+-21J A2 {h ) eln n 1+ h ‘ " }
k2

=]
k+n k~n k-n k+n
a 5P 7 3 (P
g i2n((-2)0+4] -i2n(Q-L)9+4]
* ) A [ Preon keon, ° * Pxon ke2n o, ° ]
- 5 —-2—2p Il P)
k>2n . -
Foun {9.2)

No terms of degree k¥ = 1 have been included, I{ they occur in the original
Hamiltonian the present lamiltonian is supposed to be derived from 3 of
section 8§, valid for the eseillations about the distorted elosed orbit. The
coefficients h&mq are given by (6.8) in first, by (6.9) in second approxima-
tion., As the suffices of h are integers > 0, n arnd k% are even or odd
simultaneously in the appearing coeflficients, and the summations start with
k >, k 2 2n .., ote.

The oquations of motion following from (9.2) are

- k4
dd _ g _\ ' k N A2
da aA ~ 2_} 2 E k o
g2 22
A K _
x 5-1 in[(q-D)e + 4]
* Z 2 hk+n k-n ° + conj. complex (9.3)
5T TH R
on 2 2
« £1 i2a{(0-D)e + 4] |
* 2 hk;Qn kézn 2 A e + eonj. aomplex
k32n
+ L
k.
all \ 3 13[(Q-§)ﬁ + 4] |
AT " Lhkﬂi ken © ° + conj. complex
2 2 °
k>n
_ ko b
; \ | 3 12“[(Q"ﬁ)§ + 8]
- 12 2_?k+2n k-2n A e + GONJe. COmplex
7 2 °P '
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Ir i comprises only zero frequency terms n = 0, p = (0, either be-

cause the relevant coefficients hk+n Xen ete in (9.2) are zero {(i.e. there

A, p—

2 2
are no 9-dependent perturbations), or because Q is not nearly rational, the

equations of motion beceme simpler

k
T ~1 :
g—g g‘hnk AQ =h1go+2h220A+ooo (9.4)
]
oo 22
da
3 0.

They show that the amplitude is constant (in the average, i.e. apart from the

rapidly oscillating part), This is the case of a free ogscillation without ex~

eitation. Obviously gﬁ is a correction to the frequency due to the perturb-

7
ation, the effective frequency being @ + gg . The linear perturbations {of

degres k = 2 in the Hamiltonian) produce & f{requency shift h,,, independent
of amplitude, The terms 2h;,, A + ..., fallowing give the shift of frequency
dependent on amplitude due to non-linearities. The contribution 2h,,4 A ia
proportienal to the sguare of the amplitude; a look at (6.10) shows that
hyse is, in first approximation, caused by 4th order terms in the Hamilton-
ian (cubic non-linearities in the forces), and that 3rd order terms (quadratic
non-linearities) contribute in second approximation.

Returning to equations {9.3) a change in amplitude is csaused by the
terms appearing on account of & rational value of Q= g . These terms are

therefore, responsible for the excitation of a "subresonance" ; n may be

ealled the order of the subresonance {(n = 1 corresponding to an ordinary re-
sonance) .

Suppose that the phase &, at some instant, is such that the change
of amplitude is a growth. How far the growth will go on depends on the change
of phase due to the first of the equations (9.3), In general, the phase will,
after some time, have changed enough to cause the amplitude to decrease again,
The motion then is a beating oscillation, Under certain eccnditions, there may
be unlimited build-up, if e.g. (i) the coefficients h,.o, hsse... are all zero
go that there is no shift of freguency with amplitude, and {ii)} only one of
_ ]hfeinﬁ

the exeiting coefficientis ig different from zero (we

hk+n k-n
5 2P

do not consider more general possibilities here). The equations of motion then
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take the more parficular form

k
=1
gg:h”oq»th_I;Az cos Il[(Q-rEl)ﬁ*ﬁ"'ﬁ)
) | (9.5)
B e’ sinn[@-Doedes

The maximum rate of growth of A 1is obtained for sin nl...] = 1, This con-

dition is maintained automatieally by virtue of the first of these equations,

% = h110 = BORSt,
if

G + bByyo -

=

=0,

f,e. if the effective frequency satisfies the condition for subresonance,

it is obviousifrom this, that any terms shifting the frequency with
amplitude tend to limit the build-up of amplitude, transfoerming it inte =a
mere beating of the oscillation.

For the slowly varying part of the motion an invariant relation
between amplitude and phase can be established which is very useful for study-
ing the range of amplitudes covered by the osecillation in the course of its
beating. This invariant had been derived and used by Beth [1910],Krylov and
Bogoliubov [1937], Judd{1950], Moser [1955] and Sturrock [1955}. It
follows most easily by calculating the rate of change of the Hamiltonian H

(see (9.2)) which depends on & expliecitly :

. . ) k
& _ o oy 1m(R ~ D)9 + 4] = 3 .
o5 in (Q - ﬁ) e 2{; o Ken A" + conj., compl.
L = 7P :
k>n
i2a[(Q - Yo+ 4] — ’% -
+ i2n(Q - =) e o }_/ hk4-2n k_27 , A" + conj. compl,
'k22n 2 2
+ L N )
Lo -yl py 44
= (Q n} i (q - ﬁ) I5

‘where (9,3) has been used. Thus
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C=(Q-5)a+=(Q+ni0-5)A+h0a% ..,

b }% - iﬁ{(Q - g)ﬁ' + ;5] j
+ [ 21}hk+n Yo A" 8 + conj, complex '
=z 3 P g
k>n
[f £ ion(a - D)o 4+ 4] N
+ h A" e + conj. complex'!
/. k+§n k—gn 2p S
k>2n
4 e (9.6)

ig a constant of the motion, Its value is, of course, determined by the ini-
tial amplitude and phase, It will be employed in the following section to
obtain phase space diagrams and beating ranges of the motion for the subre-

sonances of order 2 to 3.

To conclude this section it may be noted that the equations of

motion (9.3) ecan be integrated completely by means of the invariant (9.6),

in principle at least : Solving (9.6) for
P

Linf(a - f-;) 3 + 4)

x

in terms of A and €, and substituting in the Hamiltonian equation (9.3)

foer A we have

dA I
=55 ° function of (A, C).

From this o = #(4, C) may be found by straightforward integration.

10, Detailed discussion of the subrescnances of order n=2 to n=53

The invariant relation (9.6) determines A as a funetion of
Q - E}ﬁ + 4, that is the path in the two dimensional phase space of the
system, It should be noted that the phase path obtained in this way does
not represent the full motion of the original system but only what is left
after removal of the Floquet modulation, the oscillatory motien proper, and
the rapid variations of amplitude and phase, Thus only fhe evolution of

the mean amplitude and phase is retained.
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To simplify detailed discussion we assume gpe exciting term only,

with aoefficients

%ol e

notp = nap
(thig is the lowest degree term sufficient to excite the n-th order subre-
sonance), and one fixed non-linearity hjao.

Then n

2
C=(Q+ h11u - g) A+ hy,y 4% 2|hn°piA cos n[(Q - E)ﬁ + 4+ £]

(10.1)
The evaluation of € in its general form (9.6} would be considersbly more
troublesome, The restriction made does not affect qualitative features and
orders of magnitudse,

By measuring the amplitude in units of some reference amplitude

given by A,,* we may introduce the dimengionless variable

N .
a = i, - (10.2)
and write ﬂQs ) g
C' = AQa + -5 a® + a aQea COE Il ¥ | (16.,3)
where
v = Q-5 g5 (10.4)
&Q = Q + h11o - E (10|5)

the "detuning” , equal to the difference of the small escillation frequency

Q + hy.o, from the nominal subresonance [requency E,

QQS = 2]1220 Ao . (10.6)
the non-linear frequency shift at the reference amplitude, and
* Recamber thal the agtua] amplitude ia

R+ 2aT wg = 22 )7
y 9

aecording to section 3.
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g -1

8, = n]hnop1Ao | (10.7)

the "excitation width". It will be seen later Low the strength of excitation

is related to the width of the frequeney interval where oscillations are un-

.stable {(in non-stabilized systems),

To reduce the numbers of parameters to its minimum we divide (10.3)

=i

by aQe and write
o
C=Ea + Ka® + a2 £OS ny (10.8)

where

= (10,9)

¥ = m—— = (10.10)

n 2|h
nep

measure detuning and frequency shifting non-linearity in terme of the exeit-
ation width, and are the natural parameters of the problem.

Figs, 1 to 4 show phase diagrams Ya =Va(y¢) as following from the

invariant (10,8) in polar coordinates for the vieinity of subresonmances of
order n = 2, 3, 4, 3, For each subresvnance sets of curves without frequen-
ey shifting non-lirearity (x = 0), and with a frequency shifting non-linear-
ity (k = 2) are given. Such phase plots had been used frequently before in
discussing linear and non-linear ¢scillations; therefore, only a few points
shall be noted here : First the phase paths are either closed (i,e. amplitude
and phase change periodically*), or they reach infinity representing respect-
ively stable or unstable motions, _The latter is the case for x =0 and

£ = 0 {or very nearly zero), Going from x = 0 to x & 0, the unstable paths
are made to close at finite amplitudes and to become stable. For subresonan-
ces erders n >4 this is true for small enough amplitudes only as the dia-
grams show, L;rge amplitades remain unstable for this orders, It should be
remembered that a practical system will in general have more non-linear terms
than have been assumed for simplification in {10,1). The topelogy of the

phase paths at larger amplitudes will then be affected by the non-linear

* Thia may be true only in the approximziion used. In full rigour, the phase curves might show ergodie diffo-
gion, See reliavant remarks of Moser [1933],
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terms of higher degiee.
Further, note the appearance of "islands" outside the zero point in

certain stabilized cases. The centers of the islands are "fixed points" which

represent motions with fixed amplitude and phase, From

dy _ 5P, 98 _ .
a'a- —Q’ ﬁ+ai§— 0 ) (10.11)

it follows that in a fixed point the perturbed frequency Q + g% is exactly
rational = E . In other words, the eorresponding orbits are "closed orbits”
which elose after n revolutions,

The quantity of practical interest with regard to the confinement

of particles by the focusing field of a synchrotron is the range of amplitu-

des coversd by the oseillation. As illustrated by the phase plane diagrams,

it depends on the ratio « of ron~linear frequenecy shift to strength of ex-
citation and on the value of the invariant €, that is on the particular
phase curve, In function of the detuning AQ, the beating range is more
conveniently investigated by the type of diagram given in fig. 5 for the
subresonance of order n = 3, There, C according to (10.8) is plotted as
funetion of g for fixed phases; in faect only the limifing curves with

eos ny = + 1 are drawn, 3Several sauch pairé, corresponding to different

values of the detuning parameter & = nae are shown., The amplitude range

ig that part of the line C = const. whicﬁQe ig eut off by the relevant pair
of limiting eurves,

We now ask for the maximum value L of @ that can be reached
from the initial value ap = 1 by suitable choice of the initial phase (we
can always make ﬁo = 1 by choosing the initial amplitude as reference am-
plitude in the definition (10.2) of «). In a case as designated by [1]
and {3] in fig. 5, the initial phase leading to z_ _ is on ome of the limit-
ing curves, It may, however, be intermediate as in a case like {2] on fig.5.
To avaoid the tedious caleulation of the exacF am&x‘in the latter case we
gshall satisfy ourselves, in what follows, by finding the amplitude limits on
the dashed linés which are upper and lower bounds to the actual maximum. 3o
we fhave to do only with linea ¢ = coust,, which at a = 1 are intersected by
one of the limiting curves cos ny = * 1, On these lineg JE;;; is the
retio of maximum to minimum amplitude of the motion, sometimes called "beat-
ing factor",

If we start from ceos ny = + 1 at a = 1, we denote the other
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Fig. 5 Maximum beating ranges in a graphical representaticn of G = Ex + xa® = w32 (for 3rd order subresonance,
k= 2},

intersectiong of € = const. with the curves cos ny = = 1 by &, 0 X, Tes-

pectively, Similarly, if we start from cos ny = - 1, the other intersections

are _ , a__. These values of g are determined by the equations

-
n
C =E + + 2 E+x +1
LS o
n
¢ = e 2 E +x +1
= Ea+_ ke - a, = 4
n
C =En + wa? +a§=E+K-1
- -+ -t - i
n
a 3
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which we solve for £ to find how the 's depend on § :
n -

E = - K (a + 1) -

4t a - 1

i (10,12)

-+ a -1

u R

|
k
+
1
i

1]

= §

Fig. & Maxioum beating ranges a a8 function of detuning, for aubreganances of order =2 {top : ¢« = 0, no
non-iinear ahift of frequenay with amplitude; battem : « = 2, non-linear shift of [requeney with am-
plitude).
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Fig, 7 Maximum beating ranges a as tunetion of detuning,for subresonances of order n = 3 {tep ¢ x = 0, no
non-linear shift of frequency with amplitude; bettom ! x = 2, non-linear shift of frequeney with am-
plitude}, :

These equations are plotted in a &, a plane, first for the linear subre-
gonance n = 2, in fig, 6, for «x = 0 in the top part, and « = 2 in the
bottom part, The branches below a = 1 belong to motions towards amplitudes
smeller than the initial amplitude and are not of interest for our present
question. For x = 0, the upper branches go to infinity asymptetically as

£ approaches + 1 from the right hand side or - 1 from the left hand side.
Within the interval -1 < £ < + 1, there is no limitation of amplitude,

This interval is known as "stopband" from linear theory, The width of the
stopband is AF = 2, or

24Q

Iﬂqstop = e



with regard to (10,9). This explains the term "excitation width" introduced
for &Qe in (10.7). For the n = 2 subresonance, AQ  is independent of the
initial amplitude according to (10.7),

For x &£ 0, the curves are bent to one side by superpesition of
the straight line - x {a + 1), see fig, 6, bottom part {p. 29). The bent-

over leads to a limitation of amplitudes for all E, the stopband has disappear-

. ed, The heavy lines can be traced to represent the accessible maxima of «.
In the shaded region, we have the conditions marked by [2j in fig. 3. The
maximem is inside the shaded region, on its lower boundary at the left end,
and on the upper boundary at the right end.

The same kind of ecurves are shown in figs., 7 and 8 for the n = 3

and n = 5 subresonances, There are again stopbands for « = 0, whose width’

N

- x A F
I e NN < S

. -8 -1 - L] E] o L] f

Fig. & Maximum beating ranges = aa function of detuning,for subresonances of order n = J (top : ¥ =-'0, ne
nen-linear ghift of [requency with smplitnde; bottom : x = 2, non-linear Bhift of frequency with am-
plitude .
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.is equal to the distance between the intersections of + + and - - curves with

@ = 1, and is found from the figures or equaticns {10,12) to be

= 2 .
or, by (10.9) &Qstop aQe
AQa is now, however, dependerti on the initial ampliiude for a given exciting
perturbation, according to (10,7)
' n

-]
. 2 n-2 -
O N

By having « % O, the stopband is suppressed in the case of the n = 3 sub-
resonance by bent-over of the curves, much like in the =n = 2 case, For
n > 4, however, it depends on the magnitude of x whether the bent-over is
suzficient to limit the amplitude range or not : inspection of (10,12} shows
that overcompensation of the second terms by the first term - wla + 1) is

always possible for n=2 and n = 3, and eonditionally pogsible for n > 4,

the condition being | « | > some value depending on n. As by (10,10)
| e} e ;
o L=
I T~
52 R 4
Ao

|kl inerenses with inereasing initial amplitude for n < 4, with decreasing
initial arplitude for n > 4, and is independent of amplitude for n = 4.
Thus with any «x + 0, subresopances n > 4 are always stable for sufficient-

ly small amplitudes, For n = 4, stability requires 1x| > 1, independent of

.amplitude, These properties geem to have been stated first by Moser [1357 .

The exarmples of beating range vs fregueney ecurves given in figs,
6 te 8 show the characteristic shape of non-linear resonance curves in the
presence of a stabilizing non-linearity x + 0, The maximum beating, occur-
ing where the resonance curves show a sudder jump, depends on Ix[ as shown
on fig, 9 (p. 33), for the subresonznces n = 2, 3, 4, 5. Actually both the
a,_ and e¢__ values at the E- value of the jump are plotted whieh inelude
the real maximum as was pointed out by means of fig, 5., The difference hei-
ween .z and a__ is of no practical significance.

The resultsef the theory regarding practical sfability of betatren

oscillations near subresonances are now condensed in fig. 9. In particular
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one may conclude that a ratio of stabilizing non-linearity to excitation of
¢ = 10 ,,. 20 is required to keep Xoax < 2, that is the beating factor below
¥2,

It must be stressed at this point that these results apply to
"ziatic" conditions, where the parameters of the system do not vary with time,
They may be seriously modified under "dynamie"” conditionsif the system is

slightly varying; we shall return to this later,

11, Accuracy of results

For the method used in the foregoing sections te be a good approxima-
tion, the rapidly oscillating paria of phase and square-of-amplitude musi be
small, and it was pointed out in section 7 how to check this in particular
cases by wmeans of firgt order approximations for 5 and % . A few examples
may serve to ghow the restrictions imposed by this conditiom on the magnitude
of the perturbations, for shich the method is applicable,

First we try the method on a case for which the rigorous soiution

is known : the harmonic¢ osgillator
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—'?T;g}— + (9% + 2v)x = 0,

with a linear perturbation 2Vx independent of 9.
The solution is of course a harmonie oscillation with frequency

Q + 49, where

2
d'(}:ﬂ'qaq.2v-Q=Q<%,-% g-,-+.,.>. (11.1)

Aecording to section 3, the variables ¢, a are defined by
' 2a,
x = | g.cos (Q3 + ¢) = B cos [(G + 6Q)7]

x'= = Q ’%“— sin (39 + ¢) = - B(2 + 40) sin [(Q + 40)?]

where the amplitude B is arbitrary. Solving for & and ¢ yields
28. 2 én 1 m z m 1 m 2
T B [l+'§+§<-Q_>-[:T+2<Q_> ]cos[?(Q-n—cF‘Q)ﬁ]}

B2 {1 + gz - %’1 cosI: 2(q + m){“ (11.2)

H

tg (90 + 9} = (l + %Q> tg [(Q + cm)a] (11.3)

Writing ¢ = # + ¢, with # defined by ?Tg = §Q, we have from (11,3}

tg(Q0 + 4) + tg© /o O\
1 - tg {Q¢ + ) tg?fa'”(l**'q-) tg (@2 + #)

6q t£(Q¢ + g)
1. q +%3) tg? (09 + #)

tgp =

_ 49 -8in{Q¢ + n_’) cog (QF + £)
Q 1 +% sin?{Q? + 4)

Q

or, to second order in % , for é‘9—-«‘: 1



- 32 -

g ¥ = oy sin [2(09 + 9] - (g_g) [stn (209 + )]~ § sin [4(29 + m}

- QQE Sin Ez(qé t :d)[ - ".2—'3 Sill {Q(QTE + ﬁ)! + s—*l Sil’l 14((1!? -+ ﬁ‘)]

Applying now the method of variation of constants, the perturbation

Hamiltonian is

H=an=v2—a}-

3 cog? (QF + ¢) = %F 1 + cos [2(0% + @)]) (E1.5)

From thig and (9.4 ) the shift of [requency is

in first approximation.

1)
o
o

[
=
s

"

Ol o

Using (6.10) we find in gecond approximation

. 2 ¥ 7o
mzh“‘l:vsw"d’lf%flxﬁ-w

in complets agreement with (11,1), The rapidly oscillating parts are found
from (11,5) and (7.2) :

@

i2
~ 1«_ ¥ago 31 (@9 + #) _ Yoo
- 20

1

-i2(Q¢ + #) v
:1= ET gin [2(Q3 + #)] ,

o
i

i2(Q% + ) -i2(Q2 + 4)
..[2 V;éc:’m o + .2_;,%2_9 Ae ]: - g-;‘- cos[2(08 + #)],

agreeing with the terms of first order in % following from (11.2) and
(11.4), The conditions 3 << 1, ; <¢ 1 obviously imply 52 << 1 for the per-

turbation,
Having uged this trivial example to illustrate the working of the

method, we next investigate the example of a harmonie oscillator excited in

a subresonance of 3rd order by a non-linear perturbation Hamiltonian with

cosine dependence on &

H=7v:x’ = ¥ cos p& x*, p ® 3Q. ' (11.86)

In the ¢,a-representation, the following coefficients appear in the Hamiltonian

i e e e e ey
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The rapid part of a 1is given by (7.2) :

p)d + £]

w2

. T { cos[(3Q + p)d + 3 ] _ cos[(n -
__GVSUPA[ 3Q+p + o)

. cos( (0 +

-7

Q

from which

a
A

ItA
o
]

;
z 1| 1 1
sop {]3Q+pi+|Q-p!+|Q+P‘

+ p

}

p)d + £] ]

-~ 1
2 lee  AZ 1,1 1\ _ 3vA? 11
30p [ i) (20)*/2q 12
g 2A
112" 11 amplitude of mon-linear force
A Q’(3505 ~ 8 amplitude of linear force

Q

(11,7}

We compare this result with that for a perturbation censisting of

S-function kicks repeated after periods of 27, In (11.6) we then write

- )

Vi(9) = ¥ Zd‘(ﬁ -~ 2my) = 2"? 7 o -lad

=)
q:—m

The coefficients of the lamiltonian become

Y 3V

T ———— v,, = —_—
P om(2g)r/z

v R ete.,
30(} 27}'(2Q)3/2

and from {7.2) we find

=2

op TR T -a

atp q

The summations can be carried out in closed form, giving

1 " -igd . - =i .
= -3V, A% [ 7 S : 1300 + 4) 2__‘9 1 10+ 6)

+ conj.GOMPleX1
\

-
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4. _1
G o, cosiiv=g) 2m + 341 sl (Ga-p)? + 3 4]
AT 2a(20)3 2 L sin JQm 30 - p
cos[Q{v-%) 27 + 8] -
+ 24r :
gin 4w J
1 1 .
. 3VAZ - cos [(3Q~P)fv~2)2ﬁ‘+ 3 d]— . cos{(30 - p)o + 3 4]
271‘(2(:2)3/2 sin (}Q"m - 3Q - P
cos{Q(v-3) 2 + #]
+ 2 Sin O }

Hersin v = number of the period & is lying in, i,e,
(v ~1) 2r < % < v2m

Near a subresonance 3Q ~ p » 0 and the above expression goes towards

1

a _ _ 3JvA®
=

e — I ) i
- 5 (20) /2 { 2[2 - (v - 3)27] sin [(3Q - p)(w~ 5)27 + 3 4]

8in O

coan(v—é}Zr + #]
+ 27 }

from which

» 1 3.0 (24
al ‘ PVAZ’ (27r L2 ‘) I e (1 L > ;
Al = 2ﬂ{2q)3;z sinQmr Qz(Eéq% 2 sing;

T

amplitude of exeiting component of non-linear force

= 1.087Q amplitude of Linear force

(11.8)
(It has tacitly been assumed hers that g is noi integral; if it were, the
subreésonance would coincide with a first order resonance), (11.8) turns out
to be mush larger tham (11,7) {for the sszme ratio of exciting non-linear
force to linear force), due to the large number of harmonics present in the
exeitation, Fixing a limit of ; < fb, the ratio "non-linear force to linear

force" ig aliowed to reach~ o in the first case against ~ 3%5 in the second
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case for the approximation to be equally good. In the second case the per-
turbations must be very smll indeed for ihe theory to be applicable.

The separation of the perturbation Hamilionian into & "low" and

*high" frequency part encounters a difficulty if Q is about squally close

to two rational numbers %J and . 23 , a8 Q = 6,30, say, would be to
1 2
61/3 = %2 and 61/4 :%? . The procedure of section 9 requires the defini-
tion of one of the frequencies Q - 23 or § -~ %3 ag "low", If p, is
1 2

chosen to be the exciting frequency im H, the offeet of p, appears in the
rapidly varying part, and vice versa,

For the theory io hold, at least one of the choices mst be com-
patible with the condition E << 1. 1If both subresonances are excited with
about equal strength, the latier condition must be satisfied by either alter-
native, This means that the "slow" beating of the amplitude must be small
too,

The equivalence of both alternatives can be geen as follows : Let
H=H+1

be the decomposition of the perturbation Hamiltonian inte a "low frequency"

and a "high frequeney" part, Inspection of section 7 and (6.7a2) shows that
dg

H= g Slow and rapid parts then obey the equationsa
dd _ o dp _ off
d¢ ~ dA’ da¢ ~ 2A
dA oH aa _ 8

ag =~ 33 dag =" 3g

If in H the exciting frequenmey is p,, and the effeet of p, is preponderant
in ﬁ, the interpretations of H and i can be interchanged without affeeting
the result.

= %; = %g, we find for the two alter-

natives from (7.2) {mest important terms only) :

Taking the above example Q

B__4m Q1 By g 4], Bn
i 3n AQ-pZECOM'[(Q 4—)19+ﬁ_1,3—"Q
a . . TGRE Q4 L cos3 Q-89+ ﬁ_] P: 2 g
A QR JQ - p1 4 3 _j’ 4
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.where Y5y 2nd Y, are pertupbation amplitudes defined by the periurbation

Hamil tonian
H = §3x3 cosp,d + ;‘x‘cos P2t
and R = (%? z is the amplitude of the x-oscillatien, In the more specifi-
ed example Q = 6,30 = -1—; ~ 225 one obtains
% =*§ qQ ééégi CoS. ., g = gl
R signz cos... emb .

For these pratios to be <« ﬁf s say, the ratios of the exciting non~linear

1

10q °

The examples in this section show that ihe method of slowly vary-

forees to the linear force have %to be agmaller than about

ing amplitude and phase may be expeeted to give fairly good results for per-
turbations not exeeeding the percent region, Richness in harmonies of the
perturbation,interaction of several subresonances, and high Q-value tend to
reduce the permissible perturbations even mors,

However, in an essahtiaily linear A,G,., synchrotron, such as the
GERN proton synchroiron, the perturbations are usually small enough for the

present method to be useful,

12, Method of "variatiop of econstants" for oscillations in two dimensions

Proceeding now to the more general case of betatron oseillations
in the vertical (z-) direction as well as in the redial (x-)} direction, we

start from the Hamil tonian épecifiad in {1,24)).

I

Hex, 2 x0a09) = 1O + 1Y), (12.1)

RO BN LN Ol LN LT

N+
(&)

is the Hamiltonian of the idealized M"unperturbed" system obeying the equations

of motion (see Appendix IT).
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x7 - n{d)x

z¢ + n{d)z
The unperturbed motions in the x-

In both directions we introduce a

a,, a; by

[/ w,(8) i
( w,o{§) 8

z 2/ ug (8 4
()L ()

where w, au are the Flogquet fact

%
~_
I}
® -

1]
I
Y]

iy, and 9,4, Q: the "smooth motio

“ 40 =

0 (12,3
o, : (12.4)

and z-directions are entirely decoupled.

gain phase and amplitude variables ¢4, ¢,

(Q,0 + ¢1) + ( :1(3) e‘i(Qiﬁ + ¢1):]

wa(2)
(12.5)
(@29 + 02) ( }(a)) 1220 + 92) ]
u, (8)
(12.6)

ors of equations (12.3), (12.4) respective-

n "wave numbers per revolution (determined

by the funetion n{#)). Fellowing section 2, ¢,, @,,8,, a, can be shown to

obay Hamiltonian equations derivi
af ter substitntion of (12.3), (12

are supposed to be normalized acc
' x
¥yoWy

i « | = 1
Wy W,

Restricting tle perturbation Hami

find

(‘)_ \ kt ks .
H = 2_# Vk1ka X z =
12
)

k1,k2 £1+m1=k1
&2+m2=k3

where are defined hy

Vv
£ymyLameq

.

v a
2“, LimyLomeg
q

ng from the perturbation Hamiltenian H('),
x z W,y u,

,6) for () and (,,). (Wz) and (Ue)

ording to

&
u, u,

% = 1.7
U, u,

ltonian again to the potential energy we

ky ke
20T il (8mmy ) Qe )+ (£2mmp) (Qato2) -at]

(12.7)

the Fourisr expansion
o
am]

Lo+my Y\ [ La+mg €y Xy € FooyMe - -iqd
(m )(m )ﬂﬂ W)™ w@ RO Y @) =) v e

Ox=-m

(12.8)
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*

= s a,
Vi, eimaa(=a) = V4,m,22myq (12.9)

gimilar fo the one dimensicnal case.

We assume that no terms of order lower than 2 appear in the pertur-
bation Hawmil tenien {(12.7), i.e.- kKy+k, i8 > 2 for all terms, It was pointed
out in seetion 8 that terms of the type V,,x and Vy,z2 would causa a dis-
tortion of the "elosed orbit", and that they can be removed by measuring dis-
placements from the distorted closed orbit. The reasoning of section 8§ re-
mains valid in the two dimensional case,

S0 far everything is still rigorously correct. The next step is
the restriction to the Iow frequency part of the perturbation Hamiltonilan
which gives the slow (and appreciable)} variations of amplitude and phase,
Inspection of (12.7) shows that in addition to the zero frequency terms with
£y = my, £» = mz, q = 0, zero or almost zero frequency terms appear if{ Q,

and Q, satisfy a relation
nyQ, + n,Q, = p , ny, na, p integers, (12,10)

This is the well-known condition for the possibliiy of a subresonance in two-
dimensional oscillations, iﬁ,f + lnz[x n being called the "order®™ of the
subresonance. In 2 Q,, Qy~diagram, the Q-values giving rise to subreson-
ance lie on or near the rafional straight lines n,G, + n;Q» = p.

Explieitly the low frequency part of the Hamiltonian takes the

form @

2 2
H = ¥y4000 At + Voge10 Az + Yazaa0 AT + Viyya0 Atdp + Vognza A3 + ..s

{gii(ggii[(n1Q1+32Q2‘P)ﬁ +ntﬁ1+“2ﬁ2]
+ ﬁn4qn40p A A e S (12.11)

+ econj. complex,

Here ecapital letters g,, Ay, Bz, A, have been introduced to demote the
slowly varying part of the motion, Further it has been assumed that omnly
one resonance relation {12,10) holds, i.e. that Q,, ¢, do not lie on or
near an interseetion of two or more resonance lines, Multiples of n,, n,, p

could of course be included in (12.,11) without vielating this condition.
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. Extending the arguments of seections 5 and 6, the transition from
H(‘) of (12.7) to 1 of (12.11) can be interpreted as a canonical transform-
ation to slowly varying variables 4,, A,, ¥, A,, However, we need not go

into all this, if we are satisfied with the first approximation (12.11) to H.

13, General discussion of the motion in two dimensions, Invariants

The general character of the motion ig similar to that in one di-

mension, apart from effecis of coupling.

If terms exciting a resonance are absent, both amplitudes are cons-

tant, whersas the frequencies are shifted by

-

dg gH
d-T?—‘ = é-x.' = ¥Yy44000 + 2szooo A.‘ + Yiq4410 Ag + aew
d aH
a%? = a—A-2 = Yoor40 + Vyq190 A1 + 2\'00225 Ag + vas

the shifts depending in general on both amplitudes,

The preaence of resonance terms causes the amplitudes to change,
If only one resonance condition n,Q, + n,R; = p helds, two invariant relations
between amplitudes and phases can be established (Beth (1910),Judd (1950),
Hagedorn (1953), Sturroek (1955)). The first follows as in the one-dimen-

sionel case by calculating

ofl i p a1 e
Q + Q2 -—— *
! 531 53; R4 +Ry 53} 53;

A=)
i

O o

AES
1

Qo e,
"l ep ot

il

d
n_1 T 1, &3 (A + A2)

from which

ﬁ*”(Qn

B ) A+ Qe - =2y ap = g (13.1)

]11 +112 1114'112

Here use has been made of the obvious property of the Hamiltonianm (12.11)

1 a0 1 aiff
n, af, na 38: ’ (13.2)

and of the Hamiltonian equations of motion,

A second invariant is obtained immediately from the property of



(13.2) through the Hamiltonian equations :

Ay - ég -
(3_1 nZ) = 0y (13.3)

1f either =n, or n, is zero, we find A, = const, or 4, = comst, instead of
(13.3).

The sesond invariant relation has a very interesting consequence :

If my, np have opposite signs, i.e. |n,]Qy~ln2]Q2 ® p, (13.3) shows that
the amplitudes {which are propertional to YA) in x~ and z- direction stay on

& certain ellipse during the motion, Thus both amplitudes necessarily remain
finite, and the resonance does not cause instability. In a "stable" reson-
ance of this type always one of the amplitudes decreases while the other ampli-~
tude is increasing (& fact also exhibited directly by the Hamiltonian equations
for A, and A,), The particular case In,[Q1 - |nz|Q2 = 0 is a "coupling re-
sonance” where a growth of amplitude in one degree of freedom must be at the
expenge of the other one,

If ny, n, have equal =igns, the accessible ranges of amplitudes de-
pend on the first invariant{13.1). ' The second invariant can be used to elimi-
nate cne of the amplitudes, A, say, from (13.1)., Assuming that only one ex-
citing term is present in H (i.e. only the terms written in full in (12.11);
the same simplifying assumption was made in ihe detailed discussior of the

one-dimensional motion in section 10), we arrive at

(n Q.+ N2Qy - P + B(¥y1000 + DzVgosea)Ae

n n -4
+ Ity (%zanoo A + Vi1110 A1[}i Ay - nzCII:}+ Yooz20 [?% Ay = ﬂzGIIﬁ] )

_J
ATI%LI (23 A, - 1z CII) L%?lei[(n1Q1+DzQz- p)o+n, Arnad)
n

+ Dy

v]n1loln2|0p 1

+ conj. complex = G , (13.4)

This is & relation very similar to (10.1) whieh served to find the
beating range of the amplitude of one dimensional osecillations. The generzl
conclusions are correspondingly similar : The fourth order terms of zero-
frequency in the Hamiltonian have the effect of limiting the beating ratio
at large amplitudes for orders {n,| + |n,| < 4, and at small amplitudes for

orders ,n1, + ,nzl> 4 + The relevant parameter ig the ratio
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n n
[szooo + Vi1 Ef + ¥gozzo (Ef)z]ﬁﬁo
X = -

s {13.5)
(n2)!%llA |n1|+|n2|
— 10

2 V[n,IOInzlop n,

where A,, is the minimum amplitude of the beating, The higher the absolute
value of x, the more the beating is reduced.

If one of tha numbers n,, n, is zero, n, = 0 say, then A, = const,
and the motion is quasi-one-dimensional. In this case the invariant (13.1) can
be used immediately to find the beating range; with A, = const, it is of exact-
ly the same form as that discussed in sections 9) and 10) for the one dimen-
sional motion, The stabilizing parametoer x is obtained from (13.5) by putting

n2=0.

Resonance curves and maxima of beating ratios can alsec be found in a
way similar to that of section 10, with the complication, however, that the
value of CII (whieh is determined by the pratioc of the iwo initial amlitudes)
enters as a further parameter, The details have been worked out for the parti-
cular case of a 3rd order subresonance |n1] + In,] = 3 in a previous report
(liagedorn and Schoech (1957)). It was found that, for the same x~value, . the
maximum beating ratio in two dimensional oscillations {defined as the ratio of
the amplitude under consideration to the greater of the iwo imitial amlitudes)
exceeds the beating ratio in one dimensional oscillations at most by a factor
of about 2, Thus the beating in one and two dimensicnal oscillaticns does not
seem to differ in order of mapgnitude, _

The invariant CI was obtained by eliminating from - ol the

da ad
terms maitiplied by exponentials using the Hamiltonian equations -
dA, i 3A, S

5 = " A7, and 3T “T34." The latter equations are not independent because of
(13,2}, If Q., Q, lie on the intersection of two rational lines in the
(Q,, Qaz)-plane, that is if simultaneously

nyQy + Ny =

|
a

ny, np, p, My, M2, q integers,
mQy + mya =

t
V=)

it is still possible to obtain an invariant by the elimination of the terms
with exponentials by means of the Hamiltonian equations for 4A;, Ap which now

are independent, But there does not seem to be an obvious seecond invariant
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(.- A
a =3
n
-1
= 2
2 = -
2Ihn0p130 = 5 89,
(14.1)
hzzg AO = = ﬁQe L4
p 2
'Q+h11o‘ﬁ =1-1AQ9E
L
the new Hamiltionian, written in the variables y, a, becomes
. n
H = § 8q, [&(9)a + xa® + a® cos ny] (14.2)

If £ ig independent of &, this H is the constant of the motion
from whieh the phase plane paths have been derived in sections 9 and 10,
Provided that Z(2) changes only very little within the period a particle
takes to complete its phase plane eyecle, H 1is still approximately invari-
ant, In the phase plane the motion is, therefore, a sequence of gradually
changing cyeles sach of which almost coincides with a2 cyele of the corres-
ponding instantaneous system {with & kept constant). The change of cycles
is restricted by Liouville's theorem, whieh requires that the phase plane
ares enclosed by a cycle remains constant. These properties of the motion
define what is called an "adiabatic™ change of the system,

The opposite extreme to an adiabatic change is a sudden jump of & .,
Then the phase pattern switches suddenly over to a different one, the moving
point conserving its position in the phase plane during the jump, and continu-
ing its motion on the new phase curve on which it finds itself after the
jump, For this picture to apply, the switeh over must be completed within a
time whieh is small compared to the peried of a eycle,

Applying these ideaa to our present problem, a look at the phage
diagrams in figs. 1-4 shows that a particle moving on a closed curve in the
central region with £ either below or above resonance will continue to move
on a very similar closed curve after a sudden shift of & through resonance,
If £ is changed adiabatieally through resonance, the particle can encounter
phase paths going to infinity or phase paths forming separatrices, (A separa-
trix separates regions of closed eurves encirecling dif{erent fixed points}.On

both these kinds of paths the cycle period becomes infinitely long, so they
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to replace (13.3) which ceases to held., The conclusions whiech can be drawn
from the first invariant on the amplitude ranges in two dimensions are usual-
ly rather limited, Thus the behaviour of rescnances at an intersection of
several rescnances lines remasins a somewhat open question,

For more details on two-dimensional oscillations, reference is
made to the reports by Hagedorn [1955, 1957].

14, Osecillations in systemg with slowly changing parameters

Se far, the parameters characterizing the system and the perturba-
tions have been assumed to be constant in time. In reality, there will be
smell variations dus to the energy oscillations of the particles connected
with the acceleration mechanism, and due to unavoidable changes of the guid-
ing field in the course of acceleration {e,g., by saturation of magnets). These
changes are slow in eomparison with the period of a betairon oscillation or
even of a revolution,

Secular energy oseillations and changes of the field can be intro-
duced into the originel Hamiltonian (I.1) as secular variaticns of the momen~
tum p and the veector potential A, Putting these variations into the per-
(") of the Hamiltonian, the coefficients ¥, (8) of the lat-

ter are no longer gtrictly periocdie, They can, however, still be assumed 1in

turbation part H

the form of Fourier gerieg according to (4.4) with slowly varying coefficients
Vqu(ﬁ)'

The most important secular variations of the system are those alter-
ing the total frequency qQ + g% ; because they can influenes resonances, We
consider, therefore, in particular a slowly changing coefficient h,,, (see
(9.2) and (9.4)) in the Hamiltonian

H=hyo(#) A + hps0d® + 2 1 ;EWcosn((Q - E)ﬁ + 8 + 51,

n0p|

If we introduce
=(@-5) ¢ +4

v = (Q - & + 8+ 8

and furthermere use the abbreviations of section 10,
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cannot te passed adisbatically, and the application of the adiabatie theorenm
breaks down. It can, however, be applied to those parts of the phase plane

which are not crossed by separstrices during the interval considered.

Starting at & state corresponding to phase diagrams like those for
£=-8 on figures 1, 2, and J, bettom part, and moving away from resonance
(towards £ = = 16), central particles again approximately maintain their ampli-
tudea, but particles moving in the islands round the excentric fixed points,are
trapped in these islands, as far as adiabatie changes go, They move oufward as
the whole islands do, if £ movea away from resonance, It was pointed out in
section 10 that the osecillations corresponding teo fixed peints are synehronized
with the exeiting perturbation. The points trapped by fixed peints therefore re-
present motions kept in synchronism with the perturbation ("locked" to the por-
turbation), in spite of the changing fundamental frequenecy, This trapping or
lock-on process could play an important part in the loss of particles in synchro-
troas, as had first been noticed by Adams and Hine [1933].

The instantaneous fixed peints as funetions of £ are shown in figs.l0
11 and 12 for n = 2, 3 and 4 . The instable one is the intersection point of
the geparatrix; the maximum and minimum of & on the separairix are also shown
by dotted lines, They mark upper and lower bounds for the emplituds of particles
trapped near a stable fixed point, The shaded region, thereifore, represents the
extension in a of the execentrie islands,

It can be seen from fig, 3, seection 10, that in fixed points € = comst,
migt be tangent to

1

C = Ea + Kaz + az . ' (14.3)
Thus they follow from

g—g =&, + 2xaf ¥ g ap =0 {14.4)

A fixed point is stable or instable according to whether

d®¢
aign ”EE?) = = 8ign cos ny
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Fig., 12 Fited points as function of £ lar 4th order subressnance.

. (d%) ,
or gign { ~—w] = aign cos ny .
de s

For x > 0, the lower sign in (14.4) renders the sftable fixed point, 2nd the
upper sign the unstable ome, as can be inferred directly from fig. 3.

The separatrix is C = Cs, where from (14.3) and {14.4)

n

I B R
Meximom and minimum o on the separatrix (dotted lines in figs.l10,11,i2) follow
as intersections of ¢ = C_ with (14£.3),

Suppose now that some range o.,.ap at some initial &, is filled
with particles, Then with £ moving adiabatically to the lefi, as indiecated
in fig. 10, those of the particles in the shaded region whose phase falls into
excontriec iglanda will be dragged to higher ampliiudes, A fraction of the par-
ticles initially above the shaded region will be captured later on into islands
when the separatrix erosses their amplifude, Whether or met captiure opceurs

depends on the phase in the moment a particle is pasgsed bf the geparatrix
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Those near the instable fixed points of the separairix have a good chance of

finding themselves inside the central island(and below the ghaded region) after-

wards, because they almost do not move so thet the conditions are rather those
deseribed above as a "jump"™., On the contrary, points being crossed by the se-
paratrix sufficiently far off the unstable fixed points have & chance of find-
ing themselves in one of the run-away islands after the eressing.

One would like to know whieh fraction of the particles, initiaslly
filling some given domain of phase space, is carried beyond & given limit of
amplitude by a given change of &, This requires the knowledge of the evolu-
tion of the initial domain in phase space, the calculation of which is a dif-
ficult task, even though the Hamiltonian (14,2} looks relatively simple., The
evolution obviously depends on the way E changes with #; the faster this
change, the more the metion will deviate from adiabatie behaviour,

There exigts a threshold for the rate of change of £, above which a
particle cannot be "trapped®. It is clear for physical reasons, that enough
time must be available for the exciting perturbation to change the energy of

the system by the amount eerresponding to the irapped motion, The equations

of metion
2 1
dy 3 2 R
5 5% T 1 AQ, (€ + 2xa + 5 @ cos ny)
) (14.5)
de _ _SH 2 z s
&> "5 . 8Q, (na® sin ny),
show that the fastest possible rate of rise of a 1is given by
da z
Eg = 2QQQ a - (14’-6)

The #-interval necessary for lbuild-up from g5 =1 to a follows by integra-

tion
logn
t? = 2‘3(28 ] I = 2
o ' (14.7)
- 2
3 1 x

S o, 2

For the fastest rise to be maintained, sinoy = 1 must be maintazined, whieh



- 3L =
leads fo

dy _ 2 - 14.8
L=zaq, (€ +2%) =0, (14.8)

implying a certain program Z(8) by virtue of (14.7) :

,':_ E(ﬁ) i - i BZAQBL?
P (14.9)

- £(2) 2«

s n= 2

it

s 0> 2

2

[1 - {n-2)maﬂ]-'§:a

As a function of £, the time of fastest possible rise of a as given by
(14.8) is midway between the Iines for the stabje and unstable instantansous
fixed points (figs. 10, 11 and 12, dashed line; note thai this line at the
same time marks the shift of the free ﬁscillatiou frequency with ampliiude,
gsee (9.4).

! In any motion, in which similar or steeper growth of a with -~ &

: than defined by (14.8) occurs, the variation of & with & must necessarily

‘ be slower than given by (14,9).

: In partieular, the adiabatic motion of the stable fixed points and

' of thieir vieinity shall be considered in some detail, The instantaneous fixed

points were defined by

i dv _ de
o - 0 =

giving, by means of the squations of motion (14.5),
gin ny, = 0, E + 2xaf x % Xy = 0, {14.10)

in agreement with (14.4). With E changing adiabatically, there exists, of
-1 course, no longer a fixed peint in the rigorous sense, Defining a quasi-fixed

j point atill by the second of the lasat equations, the variation of ap requires

. a slight shift of 2 to make
daf i 1)
—_ 2 o 14,1
v QQQeaf sin ny; Lo, (14
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If £ changes slowly enough, cos ny, = % 1 atill to a very good epproximation,
so that the sescond of the equations (14,10) is not noticeably affected., If £
changes so rapidly that Yo and @, are both affected considerably, ihe conecept
of a quagi-fixed point loses its meaning. Supposing, therefore [sin n¢r| << 1,
(14.11) ie at least an order of magnitude smaller than the maximum rate (QQe
being the same), so Z has to vary also by an order of magnitude slower than
would correspond to the threshold rate defined above, in order to allew fixed
poeints to move adiasbatically.

To investigate the motion of particles in the vicinity of quasi-fixed

points, it is convenient to introduce the relative coordinates

i

A Bl 2

a* = g - ape
This transformation can be derived as

o = BS(gbza*)

- da*
a = 38y, a*)
=

from a generating function
3(v,a*) = (v - vp)lap + a*),

80 that the Hamil tonian in the new coordinates is

38
| - —
HA = H o+ oy =
A\ , . /BHN L, L1 /3%HN e 1 /@M Lo /[ 3THN . .
H(wf,ar) + (a¢>fw + Gaa}fa + 5 (5;:-fw + 3 -EE?fa * { 5434 vra® ..
ddf dy
e ™ am rre— ¥
+ 5 VT (g @)

where H{y,a) has been expanded in the neighbourhood of vpr ap Up to
terms of second order im y*, a*. As the .y, o; are supposed to obey the Hamil-

tonian equeticns



- 53 -

dre | fan dap (o
dg ‘\aa/f ' & T T3B!

H* reduces to

dv; 1 2

- H(wvf, af) ~ T %3 Hw ¥*® & = Hqg a*® + Hm g, (14.12)

3] W

(in obvious notation for the derivatives of H). For constant H.w and Hgy this
would be the Hamiltonisn of a harmonic oseillator, With our particular Hamil ton-
ian (14.2)

n n
'2"1&% Hop = ° n® “r? ¢os Ryg % n® ap®
a
nogo- 2+ B(E-1) 12_2308 ~ 2% - 2 (5 -1) £ (14.13)
7RG, ag = kK + 5 {35 - L \nwf.u k-5 A5 ap " .
n
2 mmet
I n F3 . ~
: = = = n P
287, Ny 3 % 81 Ry g 0

remembering that in a stable fixed point cos Ny, =%~ 1, sin nyp = @, The term
wich HWQ in H* can, therefore, be dropped,
For ag varying adiabatically, the instantuneous phase paths are the

curves

wa §2 o4 % Heq a** = C = const.

POk

which are ellipses for Hgr > 0., (If they are not,the fixed point is not stable).

The constant can be expressed by the maximum of ¢% or a* :

1 2 1 2
- * = =
€= 2 H¢¢ Ymax = 2 Haq “msx *

In the course of the adiabatic change the axes of the ellipse change, but Liou-

ville' theorem reguires constant area I

H %
w*z ( a) = a*2 (_Haa> = const, (¥4.,14)
¥y

From (I4,13)
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n

n .n 2
PGy == (= =1 2
B -5 (G- a

fH
(34 2

n
n 2

= 4
f ' .
This quantity (where it is positive)} deereases With increaasing a, . Therefore
¥ must decrease, o mist inerease with increasing a,, a feature which
max max T
is qualitatively exhibited by the phase diagrams in figs 1 to 3.

The [requency of the harmonic motion deseribed by the Hamil tonian
{14.12), i.e. the beating frequency, follows as

n

1 —

_ 7 _ 2 _ ndo_ nw2\Z
W= (wa Haa) = 23&8 (2Kaf 2(2 1} ap )_:

L

increasing with a, for n < 4.

In the foregoing analysis, the motion about the fixed poinis has been
treated in the linear approximation, valid for small beatings about the fixed
points, For larger deviations, the beating becomes non-linear, the beating pe-
riod approaching infinity as the separatrix is approached.

For the blow-up of amplitude by lock-in to happén, EZ has to move in
the right sense, that is such that the fixed points move outward. (This sense
depends on the sign of «). If the sense is reversed, the amplitudesnear the
fixed points go down with these, However, if the islands round the stable fixed
points move outward, there must necessarily be cther regions of phase space mov-—
ing inward at the same time, and vice versa, because of Liouville's theorem., This
phenomenon of "phase gpace displacement” has been discussed by Symon and Sesctler
(1956) in connsction with the dynamics of particle.acceleratiOn, whieh shows an
almost complete anarlogy with the adiabatie motion of trapped phase points dis-
cussed here, A particular consequence of this phase space displacement is that
in erossing a resonance reversely to the lock-in sense, empty islands will be
diving towards the center, displacing particles that occupy the cenfral region
to higher amplitudes, So in either semse of crossing resonance, increase and de-
crease of amplitude occursg, though a small fraction of phase space inereasing
amplitude by a large amount might be balanced by a large fraction decreasing am-
plitude by a small amouni omnly, and viece versa,

After having dealt with an adiabatic change of & a rapid non-adia~-
batiec change shall now be considered,

Integrating the second of the equations of motion (14.3) we obtain

for the change of a caused by & sweeping through resonance



lo %z
ga1 32 n=2
= 2AN f sin ny d¢ for { {14.13)
n n e
1—2' 1-.'5 8 no>?22
o o - !
n
b3

Because of the oseillatory character of the integrand, the main contribution
to the integral comes from the neighbourhuod of the point &,, where the

phase ¢ is stationary as a function of £, that is where (see (14.5)})

. . : ey |
<§—§ = E AQg (ﬁo + 2xao0 + % aa2 cos n¢o> = 0,
' =

Eo, @0, o denoting the values of &, a, v in 0. This condition is satis-
fied somewhere between the fixed point curves im figs. 10, 11 and 12.

In the neighbourhood of the stationary phase, we approximate v

--hy its powef series expansion up to the second order,

¥ = vo + % wo* (9 - 95)° (14.16)
whereupon
ﬁz . I ‘32 5;
: ~ ad Do ” F Nye” - 2
gin n¥ = 8in ny, | ces 5 (8 - 8,)% d& + cos nyo sin 5 (3 = Bo)%ad
! ! ! (14.17)

a?pears expressed by Fresnel integrals. The Fresnel integrals approach the

asymptotic value , a8 %2 » = and #, - - «, that is as E passes

njyo
from a point a2 long way from subresonance on one side to a point a
long way of[ on the opposite side. The asymptotic value is reached within
about 20% if the intervals |82 —-60| and ]ﬁ, - ﬂo| are large enough to

make

nye” (3 - ao)z 2 1_(_)_9 216
2 2 *

|n(¢2 - ?o)l =

Within the range of y or ¢ given by thia, y” has to be fairly constant
to justify the approximation (14.16, 14.17). Now from the first of equations
(14.5)
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n n
S B2 : a-l
d?y _ 2 g do non o 4.2 _dyn® 27 .
¥ = d—-——zl? = = ﬁqe aﬁ' + 33 2k + 5 (§ l)ﬂl ¢08 Ny i5 3 4 Sin Iy
n n n n
2aQ = R -1 na
_ e | d& 2 nn Ly 2 _ 2 n 2 ;
= =13 + QaQea <2x + 5(5 1la cosnt) AQena <E+2xa+2a cosn¢>31nn{] .
If, therefore g%l is itself practically constant in the d-interval of in- i
terest and much  greater than all of the remainder in [ ], the condition R
of constant y* is satisfied, It implies in particular L
2 .
2
g% >5 |2ﬂQe x 2ea’ |, (14.18)

that is much greater than the limiting rate of change of E for loek~-in
motion, given by (14.6) and (14.8).
Combining (14.5) and (14.17), the asymptotic change of & is found

from

log 33
1
= 20Q, 70 (sin nvo * £0S Dve) (14.19)
-h 1-2 N )
2

1
25Q82“' Z - n=2
o ( E ) sin (ny, * Z) for [
\a?}'| 11)2,

the upper and lower signs holding respectively for %%—: 0, o inecreases or
decreases according to the value of the stationary phase y,, which depends on
the initial eonditions. There is no influence of the direection of sweep 1in
this case of very fast sweep. For 5%%-» w {sudden jump) the change of a tends
to zero, in agreement with earlier statements.

The maximum change of a, occurring for an appropriate phase, is

log Gz 1 ‘
dq 2 =
max MQE 2 2 QQQB n= 2
~ —_— = 14.20
R i B gl 7 Clagh n > 2
2 ' max




dg ' dQ
where I has been expressed by @ °F by &Qrev’ the change 6Qrev of the

frequency per revolution 2w.
Expressing the condition {14.18) for the validity of the foregeing

analygis in terms of 8Q s O find

n n
AQ Smrnl} = =
rev e 2 _ | 2
536;‘ > = a”| = |2ﬂﬁQSa . (14.21)

4Q, is the non-linear shift of frequency for the reference amplitude a = 1

gs can be seen from (14.1) and (10.6). Assuming for example a = l,,gQs % 0.1,
bqrev muat be many times the stopband width for the approximation to be
valid. (14.21) at the same time implies that the r.h,s. of (14.19) or (14.20}
is much smaller than 1 in practice, and the percentage change of amplitude
in one passage therefore small.

Even a fast crossing of a subresonance might Iead to appreciable
build-up of the amplitude if repeated a great number of times. Such can be
the case due to the oscillations of the Q-value produced by the phase oseil-
lation of a particle under the influence of the accelerating radic frequeney.
An estimate of this kind of build-up may be made on a statistical basis,
assuming random phases ¢, in the ind}vidual erossings, After N ecrossings,
ths r.m.s. expectation values are (g)E times the maximm values for single

pasaage in {(14.20).

15. Comnclusions on tolerances for imperfections of A.G, synchrotrons with
particular reference to the CERN Proton Synchrotron.

In this final section the theory is applied to examine working son-
ditiong of the CERN Proton Synchroirom as far as betatron oscillations are
concerned,

The basic design parameters : radius r, of curvature in magnet
sectors, length of straight sectiows, number M of magnet periods, number
G of batatron ogcillations per revolution, and aperturs of the vacuum cham-
ber are considered as given. Their choice is narrowed down by requirements

on maximum particle energy, optimum scceptance (transversal and longitudinal),

* A rapark may be added Lo this aection to elarify s point regnrding the wall known adinbatic theorem by Bol tzmaon
and Ehrenfest, This theorem states that a harmonic sgaillator wiilh varying frequency 1 {but no excitation [or-
LTy §=conat. (a being the equare-of-smplitude varisble used in this report). From {14.5), however, A = const,
toliaws in this ocase, The diserepaney is removed by taking the rapidly varying part i of a inte account,
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pulse repetition rate, accomodation of sccelerating, injection, and ejection

devices and targets to the following set of values,

radius of curvature in magnet sectors' ry, = 7008 cm
mean radius ' ry = 10000 om
number of magnet periods M =50
number of straight sections : M = 100
number of betatrons oscillations
horizontally and vertically 0, =Qz = b '/,
The mean radius corresponds to a fraction 20y = 2T _ 30%  of

21y
the total length of the orbit consisting of straight sections, The straight

sections are arranged in the middle of eaeh "F-sector" [radially focussing,

n negative) and of each "D-sector" (radially defocussing, n positive), lead-
ing to the structure with {wo straight sections per peried shown in fig.15 b,
The 100 straight sections are not of equal length; 20 among them have been
made 3.0 m. long each against 1.6 m. for each of the remaining 80, beth kinds
of course uniformly distributed round the machine, By this a superperiod has
been created in the azimuthal structure, now compesed of S = 10 superperiods

of 5 magnet periods each. The effects of this superstructure are. very weak,

"s0 we will here assume 2 M = 100 atraight sections of equal length, summing

up to the same total length., Eaeh of these would then be 1,88 m. long.

The field index necessary to produce. the desired values of §,, Qa2
in the ideal struciure, defined by fig., 15b and the equations of motion(12.3),
{12.4) is found to be '

ln| = 282.4 .

Within the number of decimal places given, the value is the same for the strue-
ture with short end leng straight sections, and for the structure with equal

straight sections having the same total length, A graph of Q vs. n in the vi-
cinity of n = 282 given in fig.13 shows ihe sensitivity of G to changes of n,.

It must be noted that the definition of =n adopfed here is

referring to r, and net to rgp. Furthermere the szimuthal positien variable
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¢ has to be understood as length aleng the nominal equilibrium orbit divided
by the mean radius ry. AS a consequence of thess definitions, in the equa~
tions of motion of the basie system (3.1) or (12.3)(12.4), n{(#) has to be re-
placed by —;%-n(ﬁ). See Appendix I eznd II for further explanations,

The problem now ig to know the influence of systematic and acciden-
tal comstruction deficiencies on the stability of betatron eoseillations, on
which the survival of the beam depends. The basic paraneters chosen properly,
instability is exclusively due to rescnance with exciting circumferential pe-
riodicities in the structurae, '

The first condition is therefore that no undegirable periedieity is

systematically present in the structure on account of its design. The undesir-

able harmonics p =are given by (12.10)
ny Q4 + n, Q2 = p,

where n,, n, &are positive integers, (If =n,, n, have opposite signs, the
resonance does not produce instability, see section 13). The linear resonances
of order [n1| + ‘nzl = } and 2 have already been avoided by ehoosing Q4 = QG =
integer + % + Checkiog on pogsible non-linear resonances inside the range

Q, =6 ...61/2, Q, =6 ... 6 1/2, one finds the following list of harmonic

numbers p

In,d+ln,] 1 2 3 4 5 3 7 8 9 10 11
p 19 25 31 37 43 49 55 62 67
38 50 56 63 68

51 57 64 69

70

The harmonics of the structure being multiples of 30, or taking account of the
superperiod, multiples of 10, only the underlined numbers could oecur as excit-
ing harmopics. The corresponding resonances would be of order 8 at leasst,
As resonances in gepneral become less disturbing with inereasing order, the
choice of Q with respeet to the number of periods and superperiods can be
considered as rather good, Bslow order 8, the proper exciting harmonics can
be produced by irregularities omnly.

The influences disturbing the idesl structure, on which the n-value
given above is based, are analyzed and incorporﬁted in the equa?igns of motion
1

in Appendix I. They appear in the perturbation Hamiltionian H whoge coef-

ficients contain the information we need .
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First we have to mention & number of sysiematie influences leaving

undisturbed the repgular periodicity of the structure but affecting the radius
of the sguilibrium orbit and the Q-values :

(i) peviations of the n-value from the designed value due to profile
errors, due to remanent fields and eddy currents at low fields, and due to
gaturation effects at high fields, The behaviour of n in the CERN PS magnet
as a function of the radial distance x from the designed equilibrium orbit
is shown in fig.l4 for injection, medium and maximum fields., 1In the medium
field region, practically exterding from 2.000 to 10.000 Gauss, n is fairly
constant over the radial width of the vacuum chamber (]x] < 7 em), whereas
non-linearities, as well as deviations from the medium field value on the
central orbit x = 0, occur at low and high fields.

{ii) Fringing fields around magneti ends @ their effects can be discussed
in terms of an equivalent length of azimuthally constant field econtinuing
that inside a magnet sector. At the ends facing field free sections the
magnots are effectively lengthened by an amount A¢ given in the table be-
low for the CERN PS8 at various fields B, according to measurements {CERN PS
magnet group{1957

AL increases towards the wide gap side, roughly linearly, and
das
dx
diminishes the focusing power of the fringing field, resulting in an effec-

r, dafé

tive length for the field gradient of only 4%, = 48 - = —= .

is alse given in the table. This variation eof effective length with x

Effective length of fringing fields at magnet ends

B, = 150 3000 14000  Gauss

AL = 0,2 7.1 b cm

Bf_+ 0152015 * 0.20 em for tn
a&G = = 3.7 3.3 0 em

(iii) {FPocusing action on radial osecillations by unbalanced centrifugal
force. Its effect is to make .Q, + Q2, which would otherwise be gqual for
the bagie strueture with zero average of n considered here.

(iv) Deviations of particle momentum from the equilibrium valus. In the
CERN PS the momentum range corresponding to stable phase oseillations is

-3
about gE = % 3,10 {at injection). Additional momentum deviationsa
[+]



can be caused by errors in the frequeney of the aceelerating voltage, carry-
ing the total pessibly up to gg = * 10“2 near injection.

in general these influences are strong epough to require compensa-
tion. Unbalanced centrifugal force can be corrected for and Q, made egual
to Q2 by making D-sectors slightly longer than F-sectors {(by 1.8 ¢m in the
CERN PS). Compensating the bending effect of fringing fields by making the
magnet sectors shorter by A& at each end, the loss in focusing power must
be corrected by an increase of the n-value (by about 1.6% in the CERN PS).

This correction can be incorporated in the pole profile for medium fields.
Yariable corrections are, however, required at low and high fields as the
magnet n~value as well ag the effective lengths depend on the field level.

They are effected hy poleface windings and by quadrupcle lenses. Two sets of

10 quadrupele lenses each in appropriate arrangement allow to move the Q-
velues in the (Q,, Qz)-plane in arbitrary directions. Corrections of non-linear-
ities will be done partly also by pole face windings, partly by sextupole and
. octupole lenses arranged in two sets ofulo égain for each type (see Appendix

Y and Appendix VI for more details).

As to the influence of momentum deviations there is a slight effect
on the Q-values, because the focusing is weaker for higher momentum.

Additional effects on the Q-values appear in the case of non-linear-
ities (i.e. if n or the effectivelengths are net constant across the aper-
ture). The latter effects are due to the fact that a particle deviating in
momentum moves on an orbit of different radius and hence sees different n-
values,

A study made by Adams and Hine [1956] and based on an earlier, less
perfect magnet model demonstrated the importance of the displacement of the
Q=values in the (Q,Q.)-plane accompanying radial displacements of the equili-
brium orbit. How the Q-values may be expected to move with orbit displacemenis
in the final CERN PS8, with no corrections of non-linearities in operation, is

shown tentatively by the figs. 20...22 (Appendix V).

Q1, Q2 should stay away from resonances, f[irst of all from integral
values, It is elear from the diagrams that correction devices are indispena-
able at high fields for achieving this, Thers is some chance that the CERN
PS could work without corrections at low fields.

Resonances become significant only by the presence of the follow-

ing unsystematic influences :

(i) Irregularities of the guide field B,, caused by misaligned magnets

azimuthal fluctuations of magnetic properties and of eddy currents in metallie
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parts {e.g. the vacuum chamber).
(ii) Azimuthal irregularities of the field index n

2
g%, %EE, ete of

{1i1) Azimuthal {luctuations of the radial derivatives
n (which characterize non-linearities).

The first type of irregularities produces deformations of the equi-
librium {or "closed") orbit. Not knowing the irregularities in an individual
machine, statistical estimates of the closed orbit deformations have been
made to obtain tolerance [igures for Bg-irregularities (see e.g. CERN reports
by Adams and Hine [1933d, 1954], Liiders [1953b, 1953, 1956]). A treatment of
this question by the methods of the present report is contained in Appendix V,
Assuming an admissible closed orbii deviation of 2 em, Q, = Q2 = £,2%, snd no
non-linearities, the error tolerances found are %g-i 10”7 for field fluetua-
tionsg, & < 0.05 om for misalignments of magnets, and Ae £ 0.007 for internal
twists of magnet units, the figures being r.m.s. fluctuations from magnet

unit to magnet unit.
The closed orbit distortions are influenced by non-linearities, in

particular because of the shift of the Q-values with momentum produced by such
non-linearities and mentioned elready above, The problem is discussed in some
detail in Appendix YV, with the result that the effect of momentum shifi de-
pends rather sensjtively on the exaet nature of the non-linearities. Zero
quadratic non-linearity plus a cubie non~linearity with appropriate azimithal
Fourier harmonics {see V(41)) might well serve to reduce the danger of infe-
gral resonances by repelling the Q-values antomatically from these with in-
ereasing clesed orbit displacement,

2
Azimuthal irregulsarities of m, g£3 g;g, ae, containing the rele-

vant harmonies, may excite subresonances of orders 2, 3, 4.. respectively.

To give an idea of how large such irregularities must be to produce disturb-
ing effects we shall calculate the number of revelutions necessary for build-
ing up the amplitudes of betatron osecillations by a given factor. The {igures
obtained have to be judged by comparisen with the rate of "adiabatic damping"
of betatrons oseillations. The adiabatic damping, caused by the process of
scceleration of the particles(and, therefore, not included in the theory pre-
sented in the preceding seetions) makes the amplitudes of free betatron oscilla-
tions decrg&se according to a law

R(tx) _ [ B(ts) -3
RCE) | B(%)) ’



B(t) being the guide field at time t. Thus a damping by a factor of V2 occurs
during an increase of B by a factor of 2, which corresnonds to an inerease in
partiele energy by between 4 al nen-relativistic energies, and 2 at relativistie

energies. In the CERN P.3,, the numbers of revolutions required for a v2 damp-

ing are
200 -
N = :9%75§2£ = 3:10° around injectionr energy
~ 2 - )
N = 24000 - 12000 _ 5 /.10° around top erergy,

G.05

as the particles gain energy at a constant rate of 0.05 MeV/turn, are injeded
at 530 MeV, and accelerated up to about 24000 MeV, Therefore, resonance pheno-
mena become important if they ean build up amplitudes by a factor of V2 in
a number of revelutions smaller than those above,

The minimum number of revolutions necessary for a given build-up is
obtained if conditions of perfe?t resoﬁance are maintained, and follows from

(14.7). For a ratio %- = (5)% = V2 of final to initial amplitude we find
a o :

[ 1og2 _ 0.0552
Zweny, T T, m=2
.
1 - 272 0,0466
2mA 0 T T AQ m=3
s e e
N = 55 =9 - for order
i~-2"" 0.0398 .
ar2Rn, T A, m= 4
1 - 2772 0.0343 .5
AT, T T, _ o=
Ay 18 the "excitation width" defined in (10.7) or (14.1) :
B -1 rpaz | dn I d%n -
2[h, ! = = () &n_+ (¢ =) + = (cz — .. ! m= 2
20q 2Q ‘ro L q -dx ' q 2 dx Jq N
Gy3 1 Py o [ cdn d?n
3(§} Rﬂlhqul. = 8_‘-}. (I':E‘) RC (a‘xf‘“)q+(c -—dx-—z}q'i'. .jl . m = }
A, = 4 . \ for ¢
Q g . L (ray: B3[ 4% _
4 5 Ra Ihuaql = In (Po) 3 L(y) + ..-l m= 4
Qy3/25 1 ,ro.2 RE{ ,d°n _]
_5(2) RQIhSOqlﬁ m (;‘—0") 3‘1: L(dx)) + ..J Lm = 5
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In writing this the canonieal amplitudé variable

has been expressed in terms of the actual amplitude R, and the Hamiltonian
Fourier coefficients hﬁoq have been expressed in terms of the synchroirom
parameters (see Appendix VI, first approximation). The suffix g indicates
the.angular harmonie of the quantity in question. Unlike the earlier nota-
tion, the order of resonance is denoted by m here to avoid confusion with
the field index n. )

The statistieal r.m.s. expectation value of the Fourier eomponent

an can be csaleulated from

ne-1 =

2
|2, k21 6% (k) su?y
> = Tk = U ’

<| én
9

if the values ¢n(8,) in different magnet units (or sub-units like blocks)
are statistically ihdependent. U is the number of units {or sub-units)} .
(<|5hq|2> is independent of the subdivision of the magnet chosen for calcul-
ating the average under the assumed statistical conditions), _
In the CERN P§, the relative r.m.& block tolblock fluectuation

—d
seems to be a few times 10  according teo first experience in magnet produe-

tion.
dn dall 2 2
. dGharacterlzlng the fluetuations of T Az o - <(R1E;) ,
= <( R dxn )252 (i.e. by the fluctuatiens of n due to a21muthal random ir-

regularltles of non-linearities at distance R, from the central orbit), they
alsoe seem to amount te a few times 10“‘ at B, = & em (with no correlation to
the n-fluctuations at Ry = 0). The number of blocks being U = 1000, the

r.m.s. expectation values of the Fourier components become

ua -3
Sn\ ~ Ry ,dm, ~ 1R§ d°ny ~ 10 ...10 -6 I
(Il>q 3 (dx)q 5 n (a;t)q 1000 ~ 3,10 ... 3,10 .

b -4

Using the figure 3.10 (corresponding to 10 blosk to block flue-
tuation) and disregarding the contributions of closed orbit distertions ¢(?)
first, we find the following excitation widths and minimum numbers of revoelu-

tiong for +2 build-up :

i
<dn? 2



v

[N

res. order m A N

o
2 1.47+107" 380
3 1.84-107° 2500
4 3.1 +107° 12900
5 0.57+10~° 60000
For orders m > 2, QQB and N depend on the initial pmplitude R,y. The

above figures hold for Ry = gi = 2 cm, this being the kind of beam radius
one would like to keep inside the vacuum chamber, Although the perturbations
assumed ars quite small and put severe requirements on the uniformity  of
nagnet productien, the build-up could outweigh the adiabatic damping for re-
sonance orders 2 and 3 already at the beginning of the acceleration cyele,
and for order 4 and 3 near the end of the cycle.

Equally important or even larger confributions {o the exeitation
width may be caused by closed orbit distortions, if appreciable systematic
non-linearities exceeding the fluctuations are pressnt, The important har-
monics are q ~ 2Q, 3Q, ... for m=2, 3, 4, ..., i.e. q =13, 19, 25 1in
the CERN PS where 6.0 < Q < €,5. (q = 12, 18, 24 coineide with first order
resonances which are likely to be exe¢ited stronger anyway). Considering that the
harmonics of e¢(&#) are strongest around 6, and that the number of lens
periods is 10 {the non-linearities produeced by lenses thus containing the

harmonies 10, 20, 30, .,.) the following excitation terms might become dis-

turbing :
n= 2 —
dn _ dn, _ dn dn dn.
(c d_{)is - ZG‘J—-S (d'—{)s - c!s(d?)o + cz(dx);u-i- c-?(d-x 20+ TTe
8
1, ,d%n, _ d*n @n dn
E(c &§7g1jﬂ(coc'3+c637+..)(az:)o+(coc3+csc_3+..)(azz 1°+(coc—7+.y)(a;2)za
m= 3
d%n d? d’n d
(o2, = Crs(my + 00 () +ome (2),, % oo

Only the terms likely to be the largest have been written down explieitly.
If ¢ is the radial deviation of the perturbed closed orbit, the zero har-
monic (averays digplacement) ey may he 1 em or more due to momentum devia-
tions, Assuming the higher harmonics cq bheing produced by random displace-
ments of magnet units, and corresponding to alignment tolerances & such as
required in a preceding paragraph, their expectation values are (see Appen-
dix V)
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n2 a2
cq m 0.7 8 az':—az ~ 0.04 ﬁ?—:“a? fem],
Specifically :
So Sy Ca3 C%xg Sy %i9 ®y3 Cxg

(1) 0,04 0.05 0,5 0.16 0,04 0,012 0,005 cm

The order of magnitude of

dn d®n
(dx)g, 10, 20e< (dx )o; 10, 20+

can be estimated on various assumptions :
{i) no lenses in operation, and therefore only magnet non-linearities effec-
tives
(ii) lenses operated to compensate magnet non-linearities (only g;% need be
ennsidered in this case, as g;- iz plamned to be cerrected to zers by pqle
face windings on the magnets in the CERN P8);
{iii) lenses o@eratad to produce certain desired non-lipearities, e.g.
{iiia) use of sextupele lenses for suppressing non-linear dependence of clos-
ed orbit displacement on particle momentum (see eq. (V.20); that this effeet
may be undesirable at transitiom energy was pointed out by Johnsen [1956];
{iiib) use of octupole lenses for reducing closed orbit distortions and resen-
ance effects {see {V.41), and this section further below. Details on the har-
menie analysis of non-linearities and lenses are found in Appendices ITI, V,
and VI1).

For these various cases the {igures obtained for the single con-

tributions to the excitation widths are put down in the table below :

3~



01 6°2 ,.01-6"1 01671 (qrer) eswy

v} 7} 0 {e¥711) WBBYWD
nuoH.n m..cfm; s 000¥FT
vICHo_ mlcﬂam " poog
P 1.3& eEn®y Qe (1%) e89)
. i) 0 U (1) esvwy
oz ok L1} a G
XY 4. *p P g Jybeg _ e
+ =2k a Rl gy Iy ¥ 2x 1 & o [y B
?%v ' ?Nb vt Afb 1 «?.,v 12w
M = B JAPI
] 81 ,-01°2 , 017 L O S o £F A (9711) eevp
nuE.m ot 12;.. {(vrT1) 09¥3
,01-T ] B ) O w  000%1
LUE-sTY L1970 AR « DODE
n:cﬂ.n qncm.m.w Q|E.h BEN®Y (LT (T§) esw)
LOTeY w  DOOY1
,-00-T u  0O0C
nlcn.n §9n%g DLl ¢ (1) e8W)

ou\ xp ot xp a xp 0z ok xp ] A
. L0 - Py - xp My g e
+ fmwwv 2% + Awwmvﬁn o% + £9%) 4+ MMm (to¥a + Srado) 4 mmv t=a 4 hwmv o+ mwv o H_ «AELU T = LY

g = ® Jopd)

Bd NHT9 8] UT 5U0T3d0381p }Iqd0 PARO[Q Aq U0[]¥}TI0Xa eoUBUCHAJqNG



B T e e

- 68 -

In these figures, the lens harmonics in cases (ii), (iiia), (iiib)
have been calculated for the lens arrangement in the CERN PS. In cases
(iiia) and (iiib) the non-linearities have been assumed to be exclusively
due to lenses; they would not change in order of magnitude if the magnet non-
linearities had been taken inte account.

The figures show that the excitation due te distortion of the ¢losed
orbit may ezsily exceed that duwe te a 10~ block to block fluctuation by an
order of magnitude, Clearly also, this excitation is strongly favoured by
the harmonics introduced by the lens structure, In particular the Jrd order '
resonance excitation terms written down are entirely produced by the lens
structure®*,

Build-up of amplitudes by resdnance oan be stabilized by a cubig

non-linearity of appropriate amount if the machine properties remain cons-

tant {Section 10). In order to keep beating of amplitudes withip a factor
of V2, the parameter « defined by (10.10) (essentially the ratio of the

cubie part of the focussing foree to the excitation fobce) hag to he 2 10

ee. 20, Using (10.7) and expressing A, = % R3 by the amplitude Ry, (10.10)

can be writfen for a m-th order resonance

_ ™ hppo RE .
K = 4 QQB ) (15:1)

where hzzp 1is in terms of machine parameters (see Appendix YI)

~ d* a2
Nazq = V220 = - 1"6“‘- (rﬂ!) [(dﬁ) + 4D, (d?n>h{ + .. ]
s

For CERN P8 data, an initial amplitude R, = 2 cm, and |K| = 20, one obtainas

for

crder m

il
n
W

1}
A |
.
-
=
o
(=
=]

excitation width ,AQe

I 2 2
(f—f) [(g-x-[} + 0.67( > ]| AQ z 10°aq, 5
a

If this ecubie non-linearity would be produced by the basie magnet struecture,

1 2
; g;? required in the magnets would be given by {see Appendix VI)

1}
A
=
Lol

n
]
(="

* See  evraTum

[



2d%n  /ra\?*{/a%n d%n
2 & T “(;g) l_a";ﬂ'\; 4o, (a?)M
]

or

d%n
dx?

5.3
1

2
= 0,18 for m= 5

corresponding to a change of n of 2.6%, resp. 0.09% per cn in radial direc-
tion. The first fipure, for suppressing the second order resonances, would
mean a eonsiderable non-linearity whereas the figure necessary for Jrd order
resonances is small (in fact close to the values that must be expected any-
vay).

It was mentioned in & preceding paragraph that it was desirable to
choose the cubie non-linearity such as to minimize closed orbii{ distortions.
Favourable values for the harmonics,given in (V.41), would have to satisfy

the conditions

ra\* [ /d%n d%n\ "} e\ /d°mY _
() B -+ @)oo o

These conditions would roughly meet the reguirements for suppression of the
third subresonance at the same time, They can be adjusted by octupole len-
ges {see Appendix V). The sign of g;g igs prescribed by these conditions;
it does not matter for the suppression of subresconances.

The foregoing conditions for stebilization of non-linear resonan-
ces hold strictly for one dimensional (radial) eoseillations only. In the
general case we have to consider several possibilities of subresonance, e.g.

corresponding to the relatiomns
3qs = 19: BQE = 19) 2¢4 + Qz = 19: Q1 + 202 = 19

for third order, The k-values differ for these resonances. For equal ex-

citation they are found to be of equal order of magnitude from (13.53), giv-
ing also the same order of magnitude for the beating factors(see section
13).

The intensity of excitation may also differ for the various subre-

sonance lines. In partieular, the resonances

Qy + Q2 = 13
3Qz = 19
= 19

2Q, + Q2
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are execited only by perturbations destfoying the plane of symmetry z = 0,
i.e. by twisted magneis or vertical deformations of the closed orbit (see
Appendix VI). '
If a 3rd order subresonance would be provoked solely by closed
orbit distortioﬁ, the adjustment of &« would not be completely free, be-
cause both stabilizing and exciting non-linearity then are proportional to
tolerance for closed orbit distortien.

in this vsse the requirement of a given value of « sets a maximum

Under real working conditions, the N-values are not fixed but un-
" dergo small changes (i) due to the momentum oscillations which accompany the
acceleration proeess, {ii) due to changes of the magnetic fisld caused by
a number of influences that have already been mentioned and are difficult to

eliminate completely, Therefore, dynamical crossing of subresonances can

happen. This may upset non-linear stabilization by particles getting locked
to resonance if the sweep of frequency is in the right sense (i.e. balances
amplitude dependent non-linear detuning).

The fastest rate of change of 1}, at which lock-in is possible was
gshown in (14.6 ) and (14,8 te be

(3=

dE da _
i = T2 gy T v A

o

or, expressed as change of O per revolution

m 1 3
/ 16mepna 2 7 Ao 2 ra\ | /d%n dzn\ ] -2 3
i = - e = = =8 2 _m e A 8
\Aqrev\ m x AT & Relrg &z ¢ 4o ax? | b10 Mg
\ Aimit 0 M=

where &« has been introduced from (15.1 ), and the numerical value at the
end refers to jrd order subresonance, the non-linearity (V.41) used above,
and Ry = 2 cm.

First we examine the rates of change of Q due to momen tum oscillae

tions. Assuming sinusoidal oscillations of Q, the maximum rate would be

(@ :
P =10 AQ
\ & jmax PP

if A" is the amplitude of the oseillation and Qph the number of phase oscillation
per revolution. Phase oscillations approaching the limit of phase stability
are, it is true, no longer sinuscidal, and their frequenecy depends on empli-

tude. Bui in the grester portion of the phase stable region the foregoing



formule is good enough for our present purpese. The average rate of change,

over a complete half oscillation is

"} N
@ , _ oh 2 dg
< = T 280 = T d‘J)max
Instead of gg we shall use the change of 3 per revolution.
&Qrev = 27 %% *
(aQrev)max
Qph and «~——Sr—w— are given below for a few values of the field B,
A0

-~

There is a limiting AQ, above which lock-in is impossible as &Qrev be-

comes >[AN

* i + . AL ,
rev)limit- (AQ)limit is also given below in units of je

Lock-in limits for Q-amplitodes :

B - 150 1200 2640 4500 12000 Causs
- -3 - .} osC.,

) = 5,310 1.2-10 0 7.1410 3.2-1¢0 —
ph rev
(AN ) _ _ - -3

revmaX . 3.3.107 1,110 0 £.5°107  3.3°10

A9
ADL . .

limit  _ 4 13 3.4 o 8 11

AD '

-d
We saw before that 089 = 10 {or even somewhat more) might be a
likely valne for the exeitation width, S0 lock-in throughout the oseillation

eould not taks place for Q—amplitudés greater than

150 1200 2640 4500 12000 Gauss

-5 —4 2

~ 1-10 310 o g.10"" 1107

-

aqlimit

The eorrespending inerease of amplitude would be smailer than given by
R2
s (z¢) = 1.007 1.2 - 1.6 1.7

apart from the vieinity of "transition" field (2640 Gauss), where the fre-
quency of phase cseillation passes through zero, and to which we return
later, the Q-amplitudes compatible with eeontipuous loek-in are guite small
and s¢0 is the corresponding change of betatron amplifudes. One should not

forget that we are considering limiting rates, and unless the change of 1
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_is properly programmed, the rates of'change have really to be much smaller

for lock-in to occcur, On the other hand, the limiting lock-in rate increases
with a = (%;)z; this has been neglecied here as the approximate figures
ahove would be affected only by factors < 2,

In order to show what meaning the limiting Q-amplitudes have in

terms of the phase stable momentum range, we note that

if non-linearities are very small; for the GCERN P,S, without non-linear

correctiona,

+ 0,016 AQ 150
%E = = 0,33 AQ at B = 3000 Gauss
Q

- 0,013 AQ 14000

would hold. Upon introducing Aélimit here, a very small frastion of the
phase stable momentum range is found te be affected by possible lock-in.
The region about transition requires separate consideration. To
give an 1dea of orders of magn1tude we ask within which region the lock-in
range animit is > 10 s corresponding to a momenium range |~—4> 1.5 10 .
It turns out that this is the case within an interval of about 20 Gauss
about the transition field, which is traversed in a time corresponding to
about 700 revolutions. Now the minimum number of revelutiions required for
a Y2 build-up is about 500, as follows from the figures on page 63 . Thus
during transition lock-in blow-up in one sweep. (the interval considered
covers less than one phase oscillation) might just become possible.
Examining the effects of repeated crossing of a subresonance a
loek-in build-up should be almost reversible, if the resonance is crossed
adiabatically. As for non-adiabatic erossing (which would apply to the
majority of the particles captured), a formula (14.20) derived for a speed

by far exceeding the lock-in rate becomes valid if (see (14.21))

&Qrev >» (AQ )

- (
rev 11m1t 4.10 aqa m=3).

- —4
For AQ = 10 , this seems to be gatigiied for AD > 10 . %We put down
] rev

the maximum growth ratios [a = (——) ] for one erossing through m = 3,



- -2 -3
caleulated for a Q-amplitude AQ = 10  (equivalent to |%E|: 1.5°10 ) :
"

B = 150 1200 2640 4500 12000 Gauss
- - -8
A % 3J3e107 1.1.107° o £.54107 3.3.107 -
Trev .
4 = 1,03 1.35 - - -
Max

These figures are not negligible, hecause there are several hundred phase
escillations beiween injection and transition, so the effect can accumulate
to appreciable amplitudes (perhaps 2 or 3 times the initial amplitude) by
statistical addition. Actual growth ratios may even be larger, as the rates
of sweep are rather intermediate between the adiabatic and extremely non-
adisbatie ease.

Apart from phase oscillations, variastions of the field index n
with Be pro&uce alsa changes of @, Mast of these changes will be compen—
sated for by the correction devices (pole face windings and lenses), Re-
maining effects may well be slow enouéh for lock~in resonances. There are,
however, the changes due to phase oseillations always superposed.

The figureé used above for the speed of erossing a reschance may
be nuch smaller in such cases where a resonance lipne in the (., {la-diagranm
is agwept over at an almost grazing angle, the likelihood of lock-in then
heing correspondingly greater.

Summarizing, one may conclude from the foregoing estimates that
probable imperfections of the CERN PS suffice for appreciable excitation of
gsubresonances, decreasing in strength with inereasing order of the reson-
ance (V2 build-up potentially in temns, hundreds or thousands of revolutions
respectively for order 2, 3, 4). It must be recalled that the estimates
were based on eonstruction tolerances which are difficult to improve.

The supprzssion of subresonance effects by suitable non-~linesar-
ities would, for the second order, reguire more cubic non-linearity than
obtainable from octupole lenses in the CERN PS, whereas the amount required
for third and higher order resonances would easily be available, But the
suppression becomes partially ineffective because the Q-values are in gener-
&l varying in time. On the other hand, apart from the vieinity of "{rans-
ition" these variations seem to be go fast for most of the particles, that
the effects of one gsingle erossing of a Jrd order subresonance are weak,

However, there may be accumulation in repeated crossings. So Jrd order re-

.sonanceg might still become a serious danger under unfortunate constellations
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of conditions. 4th and higher osrder Eesonances are less likely to be dis-
turbing.

fith regard te these faets, the most efficient way to avoid trouble
would be to keep the Q-values safely avay from lst, 2nd and 3rd order reson-
ance lines, This in turn requires the Q-values not to change too strongly
with momentum, which necessitates careful control of nen-lipearities.

As to the agentsexciting subresonances, possible improvements are
mainly on closed orbit distertions. They may be pushed beyond construetion
tolerances by controlled compensating periurbatiens. {(The feasibility of
such eompensations depends on the exient of information available on closed
orbit behaviour). Apart from this, again careful control of the Q-values is
essentiazl also for closed orbit straightening. The major part of the excit-
ation by closed orbit distortions would, of course, be eliminated by not
using non-linear lenses,

In order to control the Q-values to the accursaey required, it is
necessary to eliminate most of the quadratic non-linearity, at the high and
low end of the field range at least, for reducing dependence on momentum
deviation (compare figs. 20, 21, 22}, In the CERN PS this will be achieved
mainly by pole face windings on the magnecs. In this way the inerease of
width of the half-integral stopbands, which would be produced by sexiupole
lenses, is avoided.

Whether the remaining cubic non-linearity can be left uncorrected
depends on the radial'displacements of closed orbits occuring as a result
of momentum errors. This is a question of preciaion of the frequency pro-
gram for the accelerating radio freqﬂency. If the closed erbits stay with-
in * 2 ems from the center of the vacuum chamber, it may well furn eut that

the oectupole lenses need not be operated.
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Appendix I, Bguations of motion in alternating sradient synchrotrons

For the perturbatien method used in this paper we need the equations

of motion in Hamiltenian form. In c¢ylindriecal coordinates r, &, z for the

position of the particle, the Hamiltonian of a particle in an electromagnetic
field is
B .
" c[{pr' -5 A ”%‘9 =2 A7 4 (p, - A" (mPch:'z ,

c r

where Ar’ Aﬁ’ Az the components of the vector potential, m, the rest masg of
the particle, ¢ the velocity of light, and absolute elecirostatic units are
used. The canonical momenta PL» pﬂ,pz are defined by the first set of

Hamilton's equations

dr * . oH a2

e
A N SN
. 2 P
at Py H r'r e ¥
dz . aH o e
it 5, TrP )

The value of ¥ equals the energy of the partiele (ineluding rest

H A . P
energyl, o2 is its instantanecus relativistic mass,

As we restrict ourselves to motions without acceleration, Ar’ Aﬁ,
Az do not depend on time, zo that g% = g% = 0 expresses the fact that ener-

gy is constant for a particle moving in a magnetie field,

Intredueing & instead of % as an independent variable, the equa-

tions of motion are still of Hamiltonrian form, with a different Hamiltonian

however, (see Bell [1955], alse Whittaker's Analytical Dynamies {1937]), which

can be inferred from the following set of oquations :

oh aH
ar o B P T e B %
a8 T T p,’d " Pty TTET T
3P, ap,
3
aH 28
@~ TFTEH T T8, '8 P2y oM T3z ¢
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.Obviously - py = X(r, &, z, pp.s pz,H),'the negative canonieal angular momentunm
acta as the new Hamiltonian, where the function K is found by solving :

2

H(I‘, 19! Zy pl‘" pﬁl pz) =H = me

for Py :

@€

: N
K= - Pp =T [ E%z-mi) c? - (pr - S Ar)a- {pz— E Az)2:]2+ : Aﬁ}

a L
o ([t - 3407 - 0, - 2ap ] E s

In the geeond expression absolute value of the momentum

(=2 -]

A
a) (1.1)

(mz—m;)c2= mv = p of the particle has been introduced,

Next we assume a magnetic field which is of rotational symmefry and

has no d-component, Then Ar = Az = 0, and the only non-zero component of
the vector potentialisAa = A{r,z),

In an A.G, synchrotron this is true only sector-wise. As to the
field in the transiftion regions from cone sector to the next, its influence
is gmall in practice and will be taken account of approximately below. Under

these assumptions the Hamiltonian becomes
2 2 217, 8 '
K=-r ([p - p2 - pz] + 3 A) (1.2)

from which the desired Hamiltonian equations follow :

—

dr oK T o dz 8K r
s =T = _ T H a4 = A = T
d¢ = r! d¢ .2 5
BPP [pz—p:-p;]z P, [pz-p;—p;]z z
dp 1
Pr 8K _f. s 2%, 8 OrA (1.3)
a7 ~ar - PToppeil® 4
Pa oK _ o 9rA
dd = Ow c 9z

By elimipation of P, pz from these equations, second order dif-
ferential equations for r(@), and z(#) are obtained which may be noted in

paseing @



f 2 Fl ! %
r* - ;’ gE log {r? + (r’/}? + (z'}*] - r = ke );+(z = 5%-< g PA}
a %: é% log [rz " (r,)z + (z,jz] - [rz+(f');+{z§ 2}2 g% ( g rA)

These equations contain no approximations, if the field is retationally sym~
metiriec. .
Suppose now that 2z = o is a plane of symmetry of the field, and

that a circular-“equilibrium" orbit of padius r = r, exists. From the squa-

tions of motion (X.3) follow the conditions for the equilibrium orbit :

p[‘ =0 s pz =D *
5 e o °
po + (5= -rd = pPot+ = Iy B (ro, 0} = po + = ToBp = 0
ar e o z ¢
AN =y
Z=Q
Jg e b
(—a..%- E I‘A) = - E 1"0 Br(ro’O) - 0:
I‘:I‘o
E=0

Bz and Br are the componrents of the magnetiec flux vector, B, = Bz(ra,o) is
the magnetie field guiding 2 particle of momentum py on the equilibrium or-
bit r = ry. The last one of the conditions is sputomatically satiafied by
the symmetry of the field, the second condition relates the momentum of the

equilibrium particle to the magnetiec field, Introducing, by
= ry, +X,

x and z as deviations from the ideal orbit r = r,, we expand the Hamii~
tonian {I,2) in polynomial form in Pps B, X5 2 (remembering that in practice

Pp << P, P, << p):

Pr. * P (p2 + p?)?
I (R LR g BY (P AR RV
z 2 a

) () 1 L e (z) 1z % TPy e (3)
- Top - PX - (E rA) + 5 ——57;;- - (E rA) + 5 ;°~—E7;:— -3 ri +

= K(U) + K(1) + K(z) + K(s)

+ oaas
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where /g PA\(k) is the polynomial term of degree k in the expansioen of g ri,

! K(k) the part of K which is of degree k in the variables.

and
The second degree terms K(?) form the Hamiltonian of a harmonic oscillator
of two degrees of freedom, ;? %~ m? playing the role of mass,

2]

For convenience we introduce x‘, z’ by

o O
X! = ——=Tg — » Z! = = I'n
8Pr p apz n

dx dz
dd ’ do

as new variables to replace Pp: P, (x’, z! are not identical with
2 i
except for the purely quadratic lfamiltonian K( ), and a new Hamiltonian by :

ro e r

=2 ¥= - 2 2 _ 32 L 20
H 5 r‘J r3 {(x*) (z*) 5 rA
sap Ird e (x) - (z)7 4 R TA

A, p B

Upon expanding the sguare root, cne finally obtains
PRY-] ?
(), GO+ (2)7, (2)

= -~ Pd = Iox + ¥

-+

éc(x;)z ; (z')2 . V(B) . %g [(x)? ; {zf)?]2+ v(4)+ ;0 ;g [(x,)2+(z:)z]z+vﬁj

+ ... (I.4)

where
L] 2 3
V( ) + V( ) + V( ) + oen. =Y(x,2) = gg Eéégifj (1.5}
is the polynomial expansion of the "potential energy” V = Po gﬁ .
. &}

Note that the ideal orbit r = r, need not be the equilibrium orbit
of the actual system, It may be that of some idealized system whose Hamilio-

nian may be regarded as forming part of the actual Hamiltonian (I.4).
In the magnet gap, the vector potential % satisfies : eurl curl X=0

div A = 0 which leads to the equations for the components

2 2
3 1 arAr . 3 AP . g Ar . g BAﬁ Lo
ar r ar rigd’ 227 r? a8 =
2, = '
3 1 BPA§ . d Ag ) o) Ag . g aAP o (1.6)
ar r ar r:ad*  9m r2 39 - )

324 N 3%Ag_ , %Ay
ar rzaa! EPE

i
o]

Inside a magnet sector the field was supposed to be invariant under rotation,

f.e. A, = A = 0, and Ag = A independent of . The only equation remain-

ing is then



a Lard 330 1/ 3%4 1 ara 82ra\
rg_“ dz- ~ r ar- r ar-+ az2/=0
The petential ¥ = %3 %ﬁ appearing in the Hamiltonian (I,4) satisfies there-
Q
fore
3%y 1 av 3%y
ars “rar T =0 ‘ (1.7)

¥ 1is needed only in a region whose extension is small in comparison with the
radius r, of the equilibrium orbit, Within such a region about the equili-~
brium orbit, V is very near to & solution of Laplace's equation in two di-

mensians, We, therefore, put
v{x,z) = F {x,2z) + [(x,2)}, X =T =rg,

where F is a Laplace potential obeying
55T 5T O (1.3}

and f %gfh stall correction;_ Subatituting in (I,7) we find

~

g2t  2%f _ \ 1 @rF
ax2 T 327 T ro+x ax 9x;  To Jx

negleeting small terms on the r.h.s, We try to satisfy this equation by
f:g(X)F

and obtain the condition for the distertion fastor g{x)

d’g dg 1\ aF
"_TF+<2dx I_' ax‘-o.

This equation is satisfied for any F by

Sa

_ X
g = 5;; .
v = (1 4 §§;> F(x,z) (1.9)

satisfias the right equation (I.7) up to first order terms in ; , if F(x,z)
]
is 8 two~dimensional Laplace potential, '

For F(x,z) a polynomial expansion is most convenient, which we may
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obtain from the general golution of the two-dimensional Laplace equation (I.8)

in polar coordinates p,¢ in the x, z plane :

X = p cOB @, z = p sino
N k
F = Zl Fk p cos kK (cp-ek) =
k=1
= k
~ NS -3 j
= ELJ Fk 2_, ( p ) X z¥ ©os (kek - i 5 ).
k=1 j=o

This expansion represents a decomposition of F into "multipole®

fields, 2k being the order of the multipoles, If z = o is required to be

a plane of symmetiry, such that gg =0 inz = 0, all €k have to be =zero,

and the multipole expansien becomes explicitly :
F o= Fox + Fo{x2-22) + Fy(x*-3x22) + F{x*~6x%2%2+ 2°) + ... (1.10)

The are the angles by which the planes of symmetry of the component

€

k
multipeles are twisted, If they are due to construction errors in & synchro-
tron they can be assumed to be small, and the multipole expansion becomes

appreximately :
F= F,x + FP(x%-2?) + Fy (x7-3x22) + P {x*-6x%z® + z*) + ,..

+ €,F,z + 2¢,F,2x7 + BQJF,(Bkzz - 2?) + Le F4x%z - 4x37) + ...

(T.11)
The fiprst line in this expansion is symmetrie with respect to the plane z = 0,
the seecond line (produced by twist errors) is antisymmetric, The coefficients
F,, F;, Fz, ... of the symmetric part are completely determined by the z-com-
ponent Bz(x,O) of the field in the median plane z = 0, Similarly, the r-com-
ponent Bx(x,O) in z = 0 determines the antisymmetrie part of the field, that
is the twist angles ¢,, €2, ... The relations between Bz(x,o) and F,, Fs,..

follow from

av _po 1 [ ara om0 e B0
% P By \ ox T p Bo B Bo ° I'o
zZ=0 E=Q

(=



ﬁru
a

B (x,0) 1 x \ 8F 1
A To = L + 5 Jom v+ 53—~ F
B o 1. E L ( 2F > gx  2rg }
Q

F, + 2F,x + J3F.x? + ,., -

2—-2:.;(sz + 2Fsx? + ,..). (1.12)
Here the curvature correction terms have been kept to first order in - , as
(I.9) is correct to this approximation only, For a design aiming at{ & linear
machine the linear term 2F,x in (I.12) will be much greater than the non-li-
near terms, Then curvature correctign terms are negligible because of Eo<< 1,
g;: to the guadratie part,

Introducing the field index

except perhaps the contiribution

aBz(x,O)

T s (1.13)

n(I) = - ﬁ-(-;

commonly used to characierize the focuseing properties of the guiding [ield,

end expanding the I,h.s. of (I,12) into & power series, the coefficients F,,F,,

can be expressed in_terms of B (0,0}, n{0), and the radial derivatives of n !

B(:{,O) B(O,O) 2
o 20 B[ z M S/ e Loy s
> B, Ty = S [ Ba ro - n{0)x 5 (;x)ox 5 Kaig ) x ...J
= Fy + 2FPox + [ 3P - gl- x? 4+ 4P,x? o
1 2 3 rO 4 o
i.e, ~
e - Do BZ(O,O) .
1 p IBD ]
. _Pol
Fz = p 5 n(O)
<y = -Bol /dn\ pon(0) 1
Fs = - 5 3 (dx)o* p I3r, (1.14)
g, = . Po 1 d*n
1T T 4l \d&x? 5
eto,
Examination of the relative variation n(xi g n(0) shows that the coentributionm

of the curvature term left{ in F; is - X , which is smaller than 1 o/c0 all aver

2ry




(VPR

N o ks ey $ T FIW A

-

b T e 8 ey £ e AT e | e

* - 82 -

the cross-section of the vacuum chamber in a machine of the proportions of

the CERN Proton Synchrotron. As variations of this magnitude are at the li-

mit of the possibilities of measurement, the non-jinear curvature terms shall

be neglected altogether in the following. Also for another reason there is

no point in taking into account curvature corrections : in practice the mag- .
nets of synchrotrons are usually composed of straight magnets blocks arranged

in pelygen faéhion. The disturbance of rotational symmetry caused by this »
might easily be of the same order of magnitude as the deviations from the
two-dimensional field caused by curvature. In fact, with straight blocks

the field may even be more nearly two-dimensional,

Completing these results we may therefore adopt as potential

_ X z _ 2
(1 + 2r0) (th + Fa(x z2) + ...>

-t
1

~ B_(0,D) B (0,0)
1 1
- g-EL—E—é-;—-rox + Z—Bo*—-ixz - 5 n(0)(x* ~ 27) (1.15)

1 dn 1 dig
- oo (==} (x* - 3x2%) - 7, ——:) (z*-6x%z%+5*) -.i}
3 <dx>0 - \E7

Here one term due to curvature and influencing the linear part of the feree,
1
namely 59 gg 5 x?, has been retained. Physically it represents the excess of
3
magnetic bending force over centrifugal forece, reponsible for the 1 in the sim-

plified squation

2
%ﬁé + (1l =ndx =0
for radial betatron oscillatione,., Though its effeet is usually small in an 1

A.G, synehrotron, it is not quite negligible, partieularly as it does net alter-
nate like n,

| The equations of motion have been set up in eylindrical coordinates,
with reference to a cireular equilibrium orbit which requires a constant band-
ing field aleng it.‘ In practice most synchretrons contain sections without

bending field. These "straight” sections can be included in the Hamil tonian

by introducing a new angular position varisahbie np defined by

dn = — » (1.16)



where ds, is the line element along the equilibrium orbit (curved or straight),

and the mean radius rp 1is defined by

il

29 total length of equilibrium orbit

(I.17)
2qr, + toizl length of straight sections,

i

Considering first the magnet sectors, it is easily verified that the Hamilton-

ian H(x, x’, z, z’) has to be replaced by

r\2 r r
- # Fl - m o ] =0 !
H*(x, X', z, 2') = (E;> H<§, = X, z, E yA )

in order to render the equations of motion with n as independent variable,

T r
Xt = ) X', 7 = B g
g g

being the new canonical momenta. Applying these modifications to (I.4), the

Haemil tonian inside the curved sectors hecomes

H* = - 2 + % ((x)2 « (27)%] + éi;-o[(J(’)2 + (Z4)%] + 8—-11:%[(X‘)2+(Z’)2]z+..

2
+ Eﬂ) <T TaX + V>
Lg

In & straight section the Hamiltonian can be obtained from this as limit for
infinite radius of curvature, We replace r, by ry and let r; »w. In

doing so one must be ecareful with the potential energy term

X
1 + =
2 2
rf . _Th Do (ry + X)A(x,2) _ 2 Do r,
!"';"3 ¥ = ﬁ P B1 = I'g p I‘1B1 A(K,Z)
in whieh
Be _ Po _

|
G

remains constant, so that in the limit

I'i% ¥ - rr% Eg POA(K,Z)
ry I-'-az p By ?

xhere vy, B, now refer to the curved sectors, The vector potential A in-a
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field free straight section is of courae independent of x and 2z, but the
presence of devices like lenses must in general be allowed for,
The Hamiltonian holding in curved as well as in straight sectiomns
can now be formulated
2 2 X 2 2 Pmyz rj
B* = 2 [(X)2 + (23] + 50 (X% 4 (2)%] + o0+ (CB)2 [ - 23+ Vix,2)],
21‘1 Po rl
(1.18)

where ¥ and r,; c¢hange discuntinudusly with 15 at sector boundaries, and

Ay

in particular ry = Iy in magnet sectors, ry = in gtraight seetions,

A diseontinuous change of field at sector boundaries is rigorously
not possible. Across a boundary between sectors of different field there is
a transition region where A = A, changes continuously with # and the conm-
ponenta Ar’ Az’ mist appear at the same time. In this region we have to go
back to the gemeral Hamiltonian (1.1). Using the Hamiltonian equations which

define the canonical momenta,

-2
dr 3K _ Pr 2% .
@ < B, T e
Pe % - (p, - 2 A) - (p, - 2 A%
8
dz _ 8K _ P, " 24
d¥ = 3p_ F o e 2 e 212
z (p? - (p. - ;407 - (p, = 5 4,)%]
the equations of moiion become
dp 1
Pr e ~2a)2-(p -2a)2)F .S 2(E oz
dé - (p (pr e Ar) (pz ¢ Az) 1=+ c ar (dﬁ Ar Mt Az * rAﬁ)
dp
z e 3 /fdr dz
v Eé;((-i—é}\.r+d—ﬁ-kz+mﬂa> (1.19)

If the variations of the field occur within relatively short regions of "fring-
ing field", theéir effect may be replaced by impuls functions centered on the
ssctor boundaries, and giving the right change of momentum fo a particle travers-

ing the fringing field :
g
dpr
P;-Wz)'%(@*"f @ -
fy ¢, , ?z
z -8 a2 -8 427 e | 8 /dr dz .
[ [p (pr c Ar) (pz ¢ Az) 1% a8+ e j gr <dﬁ Ar * 3@ Az ¥ PAﬁ 9
&y ¥4

™
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-~ 8 g e
¢,
where 8,, ¢, are situated well inside sectors with longitudinally invariant

field, ds has components dr, rd#, dz, and r, gg s %% have been assumed to

be sufficiently constant over the fringing field regionm, The latter is justi-
fied by the small angles between eguilibrium orbit and pariicle trajectories.
T Similarly
J2
«
p,(22) - p,(8,) = ¢ 5}[ z s
¥4 s
The quantity l X ds is related to the magnetic flux through a surface o
bounded by ' the particle trajectory 5(9), the ideal orbit trajec-

tory s, and &, and ¢&p

72
[ (K (s} - K(sg)> ds = { s = j'curl X ds = j’ﬁ dr .

74

ar dz . . . .

Fys and g5 are very small the effect of the ineclination of the orbit on
¥

[ B do can be neglected, and % ds becomes & function of r, z only.

4
¥riting the field as & sum of an idealized field

Q&

AB

dise . . .
X changing discontinuous-

ly at the sector boundary plus the fringing field
1- Xdlsc . (% - Kdlsc) ,

the equations of motion ean be written im the form

dpr a 2 215 . € d dise
7o o mer - et e DR () 5 0 - 9y)
' dpz a d dise
' i7" s 52 (%Ag + g(r,z) & (¢ - 8b)>
- 9 +¢
whers  #(r,z) = [ (Kcr,z,a) %0 20 T
- ﬁb-e /

and &b the position of the secflor boundary under considera¢ion. The fringing

field can therefore bte deseribed approximately by a 4§-funetion potential to
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dise

be added to ri, . As to the dependence on r,z, ${(r,z) obeys the same
modified Laplace equation (I1.7) as rAglsc obeys inside uniform sectors :

2,
/3% 183 a2 o
(5}-’2“55?*3?)] ids =

2 2 32 ‘ P2 oA
32 18 3 3 /2Ap 1%
(é?-":‘-ﬁ-*ﬁi‘)[“ada"i a“é(“r*‘;a‘r)d‘“‘”
L 1
aAa
Ag Ar = g3 = 0 at 9, and #&,. Here one of the formulae (I.6) express-

ing curl curl X = 0 has been used.
Redefining a fringing field potential vfr in accordance with the
definition of the potential V in (I.3), the radial force due to the fring-

ing fisld can be written

fr
3V "~ _en3d(x,z) _ _ _ Po 98
- ST p §(¢ - 9,) = oB, 3% §(8 —Iﬁh)
fhte
_ _Bo _ p dise _
= - 3, (B, - B, ) ds §(8 - 8y)
6b-e

(This formula is, by the way, immediately evident). It is convenient to ex-
press the fringing field in terms of an equivalent change of length of the
discontinuous field sectors which would produce the same force, Thus, to pro-
duce the effect of the fringing field between a magnet sector and a field free

section, the effective length of a discontinuous magnet sector must be increased

by +eg .
fb (B (x,2,3) - B d"“'(x,z,@)) ds
Z Z
&4 =€
atlx,2) = -
B:lsc(x,Z)

where Bzdlsc(x,z) ig the discontinuous field insidg the magnet seeter, In

the case of a boundary between two adjacent magnet sectors (e.g. & + |n| and

T - ]n] sector), the effective lengths of each sectlor are changed by

. . +€ .
jﬂb (B - B disey 4 jab (B - B disey o
z Z Z z
& —e + 49y

disc - > bt = dise + !
B B
zZ z




+ indicating the sectors preceding and following & = 7.

Effective length is & useful concept because it can be measured
relativaly easily.

Once AL(x,0) is known in the median plﬁne, Vfr can be foupd
an account of its general form

fr fr ir fr

Vo=V, x + V¥V {(x%2-122) +Vy (x° - 3xz%) + ..

by comparing

fr
Y f f f
- a ax X 0 = - v‘r - szr X - 3V3P Xz
; Bzdlsc(x,o)
= - £¢ -
=-2 5. ae(x,0) 6(8 - 9) (1.20)

= -[1 - “?5?8)_231 2&(x,0) (8 - &)

diae

B (0,0)
Here %9 = 1 and -E——E—-uwv- = 1 have been assumed, and non-linear terms
i o
of Bzdlsc(x,o) oritted, as we are calculating an effect which is it-

self small,
. To illustrate orders of magnitude, figures foumd for the end face
of a CERN PS magnet (from measurements om a full scale model} may be given,

These magnets are designed to produce a relative field gradient

3By

1 -
— = 0,0
B, ox 40 cm

in & gap of height 10 cm at the ideal orbit, The effective length of the

fringing field {one end face) is

AL = Ady + (%) x=7 %20,15 x em, forn : 0. (1.21)
] .

It inereases roughly linearly towards the "open" side of the gap. Using

(1.20 + 21), we may write finally

viT - [Mo x - lil:n ‘2‘1—_";-" - (%)o] (x2 - z2)- %— ;_10 (%)0 (=3 - JxZZ)} §(8-9,)

(1.22)

_ - .
This has to be multiplied by (Eﬂ)z if n=;2 ¢ isused as
. Q
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azimithal variable, At the same time’ g8 - ﬂb) must be replaced by :
™
gl -
T f(ﬂ nh)o
The Hamil tonian has to be extended still further to include acciden-—

\ tal imperfections, They can be dus to (a) misalignment of individually perfect

sectors, (b) non-uniformity of the field from sector to sector, or even within
the gingle sectiors, .

Rigorously, the non-uniformity of the field implies the appearance

of Ar’ Az components of the vector potential as in the case of fringing N
fields. Going back again to the genera% Hamiltonian and the resulting equa-
3 tions of motion (I,19), the contribution to the forces due to the small aceci-
dental compenents Ar’ A, is seen to be smalldin c?mpagison witk tke contri-
butiorn of the accidental disturbance of A&, 3o and s being small quanti-

ties, In physical terms, this statement means that the transversal force due

to longitudinal particle veloeity v; and transversal field diasturbances 4B,
§Bz is much more important than that due to transversal veloeity v, and
longitudinal field disturbanece 680. It is therefore justified to take solely
i] the disturbance of Aﬂ into congideration in caleulating the effects of im-
- perfections, )

In order to express the perturbation of Aﬂ in terms of misalign-
ments of magnets, we fix in a magnet unit 2 coordinate frame x,, X,, X3 coin-

ciding with x =x,, '8¢ = Xz, 2 = Xy if the unit is in the correct position,
A unit can be considered as straight for the present purpose, In the unit
frame we have the unperturbed field given by

ri

veB ol RE R - e
0

In the machine frame X,, X., Xsthe fielé ia found by applying the coordinate

transformation between the iwo frames :

e
T

j=1
where &,, E,, Es are the displacements of the center of the upit, and the

matrix aij can be written -

1 €42 €13
L. o= 1 =4d.. + €, .
ala €24 €ax §1J ij

€31 €32 1




for

infinitesimal angles eij of rotation of the unit. e.g, &,2 iz the

angle by which the unit rust be rotated about the J-axis in the sense 1 » 2

to bring the 1 axis of the unit in line with the 1,3-plane of the machine

frame, Thus g,;, €23 are tilts about the vertical and radial axis, ¢.3 is

a twist about the orbit axis, As .. is an orthogonal matrix, Eij is anti-

1]

aymametrie

€29 = = €42 » €25 = = €33 €34 = = Eq3

A,, Az, Ay trapsform like x,, x,, x3, 80 we have in the machine frame

.-»-\"“ 1
A§ ® Aa =2J£:2k Ak = Xpz As

-y _ _ _
ajk = ajk + ekj = 4, e

heing the inverse matrix to a.., and

i

13
;;a (F\ial + Fz(gf - i’g) + a-)
Fo[(xy-Ey) + €12(x2-Ez) + €43{x3-Z23)]

Fa [:((xt—gi) + €12(xz“52) + €13(X3‘§3)>z - ((xs“gs) + 531(x1'51)+€32(xz“§2)>i]

Folxy + esx3) + Folxi-x3-28,%,428 X :+2¢ 13X Xz +2¢ 23X ;X3 +he (3% (X35

to first order terms in the Z£'s and e's, Terms not dependent on X, or Xs

can

be omitted from the potential,

By - €42%2 = E(8)

Es + €a3X, = g(ﬂ)

combine to form the local displacements E(#) and Z(#) of the unit orbit axis

in radial and vertical direction, Rewritten in the old motation, after having

used (I1.14) to express F, and F, by Bz and n, the perturbed poiential reads
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p Bz 1
= tg 2 - = 2_,2y o .
y 5 [ By ToXx-31 (x?-2z2) - ..
BZ
+ == raz - 2en{dxz
By

+ n(9) &(¥)x - n{9)Z(I)%

Bz(0+Jﬂ) - Bz(a)
Bq

+

rox - L (n(9459) - n(a)](xz-zz)} (1.25)

Here € = g,3 1is the angle by which the unit is twisted asbout the orbit axis
(in the sense X -» z). The terms arising from the twist produce a vertical
force distorting the equilibrium erbit and a coupling force, and are exactly
those to be expected from the general multipole expansion (I.11) as a conse~
quenee of removing the plane of symmetry. The terms arising from transverse
displacements together with the field gradient, produce horizontsl and vertii-
2al forces affecting the equilibrium orbit, Lastly, a longitudinal displace-
ment d'¢ produees perturbations of the guiding and foecussing forces corres-
ponding to the difference between actual and ideal field appearing at sector

ends,

Now at last a Hamiltoniar for the A.G. synchrotron ean be formula-

ted, comprising all of the more important features. We have fo use the modified

. . ds . .
angular position variable 7, whose element 18 ;-P ; we will, however, write
m

9 {=pn) for it, as the former ¢ no longer appears in the following. Conse-
quently X*, %' will also be written x‘, z’. Supplewenting {I1.18) by {I.15)

(1.22), (1.23) we obtain

q=ul®?, g
H(ﬂ) é [(x’)2+(z )2] -3 E_E)z n(xz_zz) .

-

'y Po

2 éB
()L ( ) g{ [:EEE r, - L2 éﬁ.rg ;ﬁ AL + ns:}x + [erg~ nz]z

1r, 5, 1 & ro  (4E daﬁ wr?) - D
+,§—;I -5[6‘“—'50- ﬂ*;"; (rn ) {x2~22) “gnXz

1 /dn  2n das 2y _ d’n 22 L o4y |
- 3!(3; = \ (x*-3xz?) 7 (aig> (x*-6x222 + z*) ..)

R 1% ()] + g (D)% (2)7]7 L



= Y._QX + Vaqz
+ Voox? 4 ¥o,22 + ¥y, x2

+ Vi(x® - 3x3%) & V.(x*-6x%z% + z*) + ...

+ %1{(X’)2 + (z)%] + é_i‘?, [{x*)? +.(z¢)]z+ (1.24)

g(®)

The Hamilfenian has Ubeen divided intoe +{wo parts

characterizing an idealized linear system, and H(1) containing all devia-

G ()

sion in the canponical variables, up to the 4th degree {cubic force terms),

tions and perturbations. ig written in the form of a polynomial expan-
Most of the coefficients are funetions of & : pr, = r, in ecurved sections
and P, = » in straight sections. JBZ and ¢n incorperate systematic de-
viations from the nominal values B, and n on the ideal orbit {e,g. due to
lenses and length adjustments of sectors) as well as accidental ones {due to
azimithal misalignments and qual ity fluectuations), A¢ and %%? stand as
abbreviations fer &-function kicks appearing at sector ends and accounting
for fringing fields; the integrated d4'-funetions represent effective length
corrections Af, and change of effective length with radius %%? on the

ideal orbit,

) The symbols Vk,kz serve asg abbreviations for the coefficients of
H . Then treating one dimensional motiens (z = 0), one subseript k = ky+k
is sufficient.,

The terms in H(1) eontaining momenta have heen omitted in the ana-
lysis of the preceding sections te simplify the presentation. For the CERN
Proten Synchrotron, the fourth degree term is small encugh to be neglected.
The third degree term may, however, coniribute noticeably te the quadratic
pon-linearity, There is no diffieulty in keeping this term in the perturba-

tion Namiltonian in the investigation of a practical case,
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Appendix 1Y, Theory of the idealized linsar "umperturbed" A.G,S.*

The Hamiltonian of the A.G,3, has been divided into a first part

(o) (1)

H

the systematic and aceidental additions characterizing the real physiecal

holding for anp idealized system plus a second part H containing
syatem (ses section 3 and Appendix X), The perturbation theory employed in
this report is based on the aslutions for the idealized system in which x

and z obey the Hill~type differential equations

4 2
gaé - .:_lg. al#)x = 0 (11.1)

4%z r?
+ n{d#)z = 0 . (11.2)

a7 * 52

9 is the azimuthal position veriable defined by (I.16) as length along the
equilibrium orbit divided by the mean radius r, . 10 is asdefined in {I.13)
frith referonce to the radius r, of curvature in the magnet sectors).

If the A.G, structure is to provide equally good focussing in x~
and z-direction, n(#) mmst alternate between equal and opposite values with
equal length of -|n| and + ]nl sectors (also called F- and D-gectors res-
pectively, because there is radial focussing in negative n apd radial de-
focussing in poasitive n sectors), The most simple structure of this type
is the pure sguare wave 1 1illustrated by fig.15a, Fig.15b shows a struecture
with field free (straight) sections in the middie of eacn F- and D-sector;
This type of structure is used in the CERN P.S.

The solution of (II.1) giving =x(&), x'(8) = g%— in terms of
x{0), x’(0) at some initial position & = O is most conveniently written by

means of the transfer matrix T : -

C(a) ) i (T,, Tﬁj x(0) >= NEI) ) (11.3)
(8 T2e T2 (0} *(0)

Regarding the solutioms of (IX.1) the transfer matrix for a section of cons-

cOB (%h gﬂ a) sin(%h Tm a)
o ry

.

tant n is easily seen to be

for a - [n| or F-sector : o /a (I1.4)
r'g
=% vh sin (Jh Tm é) cos(%h pa] 6)
| oY 'y !
L. J

* This appendix is included for sonvenient reference to otherwise well koown resulte of transfar matrix theery.
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for a +1nl or D-gectonr:

e m _sinh < I

for n = 0 (straight section) ( é

cosh (Jh
T

.
Ta 6) sinh ( n e # )
o Ta
Cm
F; Jh (11.5)
b ﬁ) cosh <%h In 5 )
& .
1) (11.6)

For A.G. struciures like those illustirated by fig,l5, the trangfer matrix is

a product compesed of elementary matrices

of type (11.4~6).

The determinant of the matrices {II,4-6), and thus of all transfer

matrices is unity, This is an expression of Liouville's theorem stating the

conservation of area in the phase plane x, x’ in the course of the trans-—

formation by the motion,

Floguet's theorem which states that the solution (II1.3) can be

written in the form (3.2) follows by introducing the eigenveectors of the

2w

transfer matrix T (8) over one complete period © = 4 of n (#). These are

defined by the eigenvalue problem

M

1 n §
r@3) = > (7)) ,r -
1
(11.7) (a) ! | -
) i ©
The transfer matrix over : :
one period, and therefore — }‘§ ? o
the eigenvectors, depend on r -
the starting point of the 1 '
period. The  notation | )
o | |
! -
(:;(0)) | (b) T e
} 1
indicates that & = 0 has = — L
been chosen as a starting { -(? £;2 =
= 1

point, The eigenvalues are

roots of the "characteristic fig. 13 (a}
{(m
equation”

nf{2) in aimple A.G, atructurs.

n{#) in 4.%. structore with fisld free sectiona
in the middle of focusing and de{geusing soctors,




JRS—

Tyy - A th ‘ T11 T1z
A - ATy, + Ts2) +
th Tz

)\Z - R(T.“‘ -+ Tzz) -+ 1 = 0,

showing that the two roots X,, A, must satisfy the relations

A+ Az = Tyq + T2z -
A he =1,

il

which suggest the notation

A, = e iQ3
Ap = e-lQG
2 cog Q8 = Tyy + T2z {11.8)

Q will be real or complex, depending on whether T,, + T, 1is smaller or
greater than 2.

Q2 is independent of the choice of the starting point of the pe-
riod, as can be shown easily,

The eigenvectors are found immediately from (11.7) :

1(0) T12
B =< } (11.9)

! +iQ9
\ wz(o)/[l) 1 - T11V/
(2)

Considering now an interval ¢ = N9 + ¢, and representing the

initial vector /x(O) 3 as linear combination of the eigenvectors

@)

/ X(O) \ = C, < w1(0) \ + C, / “1(“) \
\ x7(0) / "(0) /1) " (0) /()

the solution (II.3) becomes

' N
(x(ﬁ) >= roy 1o o, (Y Lo (@Y Taro
x* () L\ wa (0} /(1) \ w(0) /(2)_

= C, e % p(y0) / " (0) \ + Cy o 1AM T(é‘!)( “H(O)\J
(0 gy " (0)/(3)



In the case of complex q, one of the fundamental parts of this selutien
inereases exponentially with the number N of periods traversed. On the

other hand, for real § both parts remain bounded,
Q = real or |eos 39 | = 1244~%—235! <1

is therefore the fundamental condition for the A.G, siruecture to provide
focussing.

Assuming this condition to be satisfied, the eigenvsctoers (9)
and the coefficients C,, C, are conjugate complex {because the components
of T and (i') are rsal) so that (Y1.10) can be written, after having rein-

troduced & = N2 + 4/,

-3
x(3) , s w,{0) s , w, {0}
< ) N A T < ) + co 14 LR T(ﬁ‘)( - )
x*(8) “2(0) \ “2(0)
- (II.11)
whiech is the Floguet form of solution used in (3.2), exhibiting the Ploguet
factors
W1(73) -4 “1(0)
( ) = 7190 g0 < - N\, 0<8<o (11.12)
wa(9) w2 (0) /
as funetions with period 2
w, (8 +8) = wy(8)
wa(8 + 8) = wa(8) .

A few general proverties of transfer matrices are useful to faei-

litate the caleulation ¢f the matrices for the structures we are concerned
with,

If a section with matrix
T11 T1Z
TZ‘! T22
is reversed, then the matrix of the reversed section is obtained by (i) tak-

ing the inverse matrix 77" and (ii} reversing the direetion of #, The re-

eV ("’22 Tu)
Ta1 Ty

sult is
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If the structure of a section is symmetrie with respect to its

center, then

Y - T, that is Tap = T4

must hold.,
Adding to any section its reversed one results in a reversible
symmetric structure element., The trace of such a combination is therefore

2(Trev T)es = 2(T22T1q + T52T24)

Proceeding to the calculation of Q-values for the specified gtructures of

fig. 15 , one obtains for (a), the simple square wave structure,

cosh vn g sinh vn g cosfhg sinfhg
o) = Yn v
v sinhﬁhg cosh vn g —n sin#hg cosvn g

having the eharacteristic equation

Tyy + Taa

cos QA = = gosh vn g coa vn g . 611.13)

For the structure (b) with field free sectiens of langth es each

the transfer matrix over ome full period can be written

rey

™68) = SFDSSDFS=(3DF8) (s D F 8),

introducing the symbols S, F, D for the mairices of one half gtraight, one

half F-, and one half D-gsction :
cos fh—— (e gs) s1n¢h (-

o Vhslnfh—-(—-— ) cchh-—(e gs)

h
Euswn"m(@ 58) sinhvnit (9 - 29
Eﬂﬁh
Ty
D=
*n msinhvni®(S - 25 S . _
rg!hs:nhﬁhro(é 3 ) coshfh ( 5)

- .



As & =~ 298 = 52 9, the arguments of the e¢ircular and hyperbelic funetions |
m

can alse be written

For this structure, the eharacteristic equation results :

T cos Q8 = cosﬁhg ccshﬁhg
' 205I'y 8 o 8 .8 _ . -8 9
- A vn cos¢h4 costhZ (cmr.v"n_‘,+ smhwf'n4 81n¥hz cnsh#ha)
1 Ogra): 9 innvi? - sinved 8y
+ 5 ( 2 }2n (cosv’h4 althh4 s:l.n\/'n4 cosh#ha) . (11.14)

The n-values resulting from (II,13) and (II,14) for structures {(a)
and (b) and the data of the CERN PS can be found in the table of Appendix IV,
They are n = 336,5 for (a) and n = 2824 for (b). (It would be wrong to con-~
clude from these two figures that less gradient is necessary in the case (b)
with field free seetions to obtain the same focussing power (measured by Q).

Comparing the relative field gradients

198 __ =
Bax - oy’
336 . 282

they aTe 75000 and 7608 ° that is really larger in the second case as one
would expect),

The Floguet factors (11,12) become rather tedious expressions, even

for the most simple structure {(a), after explicit subatiiution of the transfer
matrix components, Fortunately, it is easy fo calculate the Fourier coeffi-
¢ients of the Floquei factors, as will be shown in Appendix IV, These Fourier
coefficients are all we need for the evaluation of our perturbation theory.

" Furthermore the knowledge of wy{(#) is sufficient because

w(8) = iQw (8) + g‘i . (11.15)

-1,

This relation is obtained by differentiation of x(8) as given by the first
. line of the Floquet form of solution (3.2) or (1I.12),
| The Floquet factors E'Eg; for the z-motion differ from those
2

for the x-motion, because of the opposite signs of n(#) in the equations
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(I1.1) and (II.2}. However, for structures of the kind we are considering

here
ald) = - n(9 + g)

is obtained by shifting the x-gstructure half a period. Therefore

(ﬂa) >= ( x(2 +3) )
2’ (9) x (9 +2)/ ,

leading to the following relation between the Floguet factors for z and x :

g8
u(8) = we (2 + g) 9.2
igg
(@) = w2+ 5) 0 2.
i

The constant factor e 2 ecan be dropped, so that we ecan take @

( uy (8) ) _ < wi (8 + g) >
uz(@) Wz(a + g)

as Floquet vector for z. It is automatically normalized like

(11.16)

fl/ LA \\

\ve )



Appendix TIT. Fourier analysis of A, G, synchrotron structure parameters

As far as the basie structure, defined by n{#), and the syste-
matic modifications by seetor length correctioss, non-linearities and lenses
(linear and non~linear) go, we have to deal with periodic repetitions of
given structures round the machine,

Repeating a funetion g{¢ - 8k), ceantered at
k 27

g =

Kk + J¢, k, P integers,

2
P times round the orbit at equidistant points é? apart, results in a fune-
tion

+ oo
=

p

N _ -iylg
£(2) = > 2(3-9,) = > £oe

—f A

k=1 UPs - =
with fundamental period %? , and Fourier coefficionts
_ ivPdae
fp=Fp Fe ’ (III.1)
where
2
1. ivPd
g0 % 5 [ g(d)e g .
o

All we need as gtructure element g(@) for our present nurvose is

a rectangular pulse, If it has height g &and width =n,

( 0 in # <« - g
_ ) n 7
g(s) = \ g in = 5 <3< 5
0 i ’-2’ <
and g sinE%E
gl/‘P - z-r UPT . (III ‘2)
2

Yo use these formulae to calculate the Fourier coefficients of

the most important siructure parameters :

{i) field index n{8) :

(a) basic struecture without field free sections, acecording to fig.l}3 a :

a F-sector (n negative) and a D-sector (n positive), each of length g = E
is repeated M times. Starting at #s = O with the center of a seector with
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n-value ﬁ, the centers of sectors with ~ 8 start at &, = 3. If the sector
at 8o = 0 is an F-sector, fi would be negativa=_|ﬁf . The Fourier coeffi-

cients of n(9) follow immediately from {III1.2) and (III.1) as

@

2sin-vg

n = f

M o for v odd,

(111,3)

n,., =0 for ) even,
v *

' Thus the sequence of Fourier coefficients is

Dy = a 7 Besy T T R3E Doy = Az ete..
(b) basic structure with field free sections, according to fig.15(b) . If
the length of the field free sections is &_, we have to superpose on (111.3)

a sequence of rectangular pulses of width es, and height -~ # starting at
9o = 0, and sequence of height # starting at do ='g, and find

2]
2 .o . g
nuM = f— [?1n = - gin vw @{J for v odd
(I11.4)
oy =0 for v eoven
5 r'm - 1 by
We note that §i = —55;533 =3 (1 - ;i), because there are two straight sec-

tions per period 8.

Ty 1 in magnet sectiona

rT 0 in straight sections has the Fourier components

(ii) The factor

‘2) =1-2_e_9.'=ﬂ
0o

Ty g "m
) By
ro gin 2w v—e—
(FT . — for v even (111.5)
VM
f,—f) =0 for v odd
vM

2
(iii) Field non-linearities g; . %Eg ; aea & If the alternation between

+ |n| and - |nf is produced by reversal of the same magnet pole profile,
2 4 _
all even derivatives g;%; '%;%‘, .. alternate with n whereas the odd de-

dn d’n

rivatives -E;;jaza,... do not. This can be seen by making the transition

a(x) » - n{-x) 1a the Taylor expansion of n{x), and is illustrated by fig.

16 separately for & linear and a purely quadratie n(x). Therefore g;



varies with @& only because of field free segtions {this can be taken ac-,

ecount of by putting the factor EE) whereas ggg alternates like =a, so that
1
{I¥1.3) and (II1.4)} ecan be used t¢ calculate the Fourier coefficieats.

(iv) Length correetions to magnet sectors : we assume that the magnet sectors

iy
are jincreased in length by A48 and &GD in the F-sectors and D-geetors
respectively, The additional length shall be added te or subtracted from
the end faces towards the straight sections according to the sign of AS,

The inerements A2 we have to envisage are so small that we can write(III.D):

_ Bue
&p = 27

If g is the field index =&, the inecremental &n produced by the length cor-

rections is represented by the Fourier coefficients

- iy a0" o, Ay R’ VA0
€nuM = s 2M cos s—+e 57— 2M cos —3
F D i M es
= 4{a8" - a8° o Y7} L cos v Tz
bacausge of ﬁD = - ﬁF = - fi, F-sectors starting at &y = 0, Thus
a
- F O, M 8
JnUM = filae - A8 ) s co8 v w= for v even
o (111.6)
F B, N 8 -
€nUM = (007 + A87) Zcos vor m~ for v odd,

If g atands for the field B, the inecremental field JB produced

has the Fourier coeffiecients

F O, M es
€BvM = B(Ag + a8 P 7 cos um g for v even
o (1I1.7)
dB ., = B(AGF - QBD i cos vﬂ'~E for v odd
| r g’ y

a3 B does net change sign between F- and D-sectors.

For equal ASF and ﬁBD, only odd coefficients of ¢n and even
ecafficients of JB are non-zero.
(v} Lenses: For & set of .8 (= number of "superperiods”) lenses producing a
quantity } (standing for n, gg ’ g;g , for quadrupole, sexiupole, oetu ole
lenses ete, ) ingside its longitudinal angular extension 7, we obtain the

Fourier coefficients
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-
~ 8in v 7 1v§ iivrg
t = f 2 R K
ws v
~ Sp
fo =1 Eope

m is the number of the half-period at whieh the sefl staris. 2g different
sets are possible, starting at m =0, 1, ... (2§ - 1),

x
k“‘

= an \x n=ng + L [2Pn) <2
n_n°+(dx J o+ |5}
x=0 x=0

Fig. 16 Alternation &nd non-alternation of even and odd derivatives of n(x)
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Appendix IV, Fourier_analysis of Floguet factors

For the Floquet solution

x = w(@) EIQi}

to solve the differential equation

a
gﬁé - n{8) x =0,

the differential equation

z ,
ggg + 21y g% - Q%+ njw = 0 . {1V 1)

mist be satisfied by the Floquet factor w(0), w{(&) is furthermore subject

2 .
to the condition of periedieity with period O = T? . Hepreseuting there-
fore w(#) as well as n (#) by Fourier series
+ oo o
W(r_?) - ZJ “_UM e"ll)mﬁ s n(a) = > uwl.t e"lvm‘o . (IV.2)
/N
== ca v

and substitutine these in (TV.1), an infinite set of linear equatious is ob-

tained for the Fouricer coefficients L :

(bt = Q)2 + > B My =0 w0, rllr2, L. (1V.3)
A

w
S UM

H+ p=y

The sum is over all nairs u,p with u + o0 = y. A non-zero solution w{J)
of this set of equations exists if 4 1s an appropriate eivenvalue, which
mist of esurse be the 4{-value determined already by the methods of Appen—
dix IT, 4§ and the num being known, the equations (IV.3) lend themzelves
to quick solution by iterative approximatien. Rememberine from Appendix
III, ithat only nuM = My
ferest here. we can write the equations for the first few Fourior coeffi-

with odd g oeeur in the structures of 1n-

cients

1
Wo = = gz [my vy +w () +m

3 W o+ ] (IV.4)

‘(wjh -3

3 M
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1 :
M - Q)3 [ny(wa -+ wopd + mgy W gy + o]

1
L T T o) Ry oyt

_ 1 1
W2M_ - w [n.M(wM + W}M) + an W_M + nSM w-3M T oaes ]

¥I.4
W = - 1 fnfw . + % ...} +n ., w +a_ W + % )
oM T T N+ )2 VM- -3M 3NN 58 3M

-1
LSV ey [nszu R b omey W ooy ¥ eael

1
Yo T Ga+ )l (g oy * Doy Mo ¥ Bgy Woy t oo ]

As a common £actor in all WUM ig arbitrary we devide by we and determine
w -~

the ratios ;M‘, e etc. by iteratiorn from the second and the follonwing
G

eguations. If the period number M is large, convergence of the iferation
is rapid.

The firsi eaquation

— W, + W W, + W
2 _ M -M 3M -3M
e —w_+] av.s)

provides a cheek on the accuracy of the sclution and onwhether the right

U-value has been used,

The Fioquet factor has to be normalized such as to make the deter-

minant
* *
wi(Q) wy (0) w(a) w(0)
i =1 =1
* * *
w2 (0) wa(0) [iow(0) + w(0)] [-iow(0) + w/(0)]
(see section 3)., Introducing the Fourier series for w{(#) this condition be-
comes
WotW  +Wa + Woo + W +W _ #a
20w3 (1 L A mWG'QM M= ) (1V.6)

Wa Q Wo

(1 Lt Mo T s T M "2y Yoy +3 (M3 gy "\,

/
permitting the computation of the normalized w,.
Numerieal values of the Fourier coafficients of n(#) end w(d) ob-

tained in this way for two structures close to the CERN P.S. are given in
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the table below. Under "check"™, the r,h.s. of {IV.,5), divided by Q% is gi-
ven, which should be equal to !, Furthermore, under "structure (a), (IV,7),
one finds the Fourier coefficients of w(#) as computed from the following
closed form expressien which can be worked out from (I1.,12) in the case of
structure (a) in a rather lengthy algebra :

L]

.. 4int 1 (¥ - q) {11 - vn[2] 1 (1Iv.7)
UK {uM-0)* -n2VnS fQSinQe(sinhﬁhg + sinﬁhg coahfh%)}f

where (1], (2] are the expressions

] = cos#h% (sinh Jh% + gin Jh% cosh 4h%)(sin %;'cos%§ - ¢os %;'sin%g)
+ sinJh% gin Q9 (cos%? cos?f + 31“2{ 31n%?
[2] = cos{h% gin QB (sin%;'cos%? - cosir Sln%?)
+ sinfh (sxnh#h_'+ 31n¢h- coshvnz )(cosig'cas%? + Sln?{ sxn??)
These 'w are already properly normalized. The comparison shows that the

vM
iteration methed is perfectly satisfactory.

It is noteworthy that

L LE
Wp ~(§a)= 0,283 : (IY.S)

is & useful approximation {see (IV.6)} and also seetion 3).
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Table of Fourier coefficients of n(8) and w(d)

oy

structure (a}

gtructure {(a)

structure {b)

W

wid) (fig.15a) (IV.7) (fig.15 b)
A 50 50 50
number of straight 0
sections(all equal) 0 0 100
T'm 10 000
Y ! 1 7008
9 6'/. 6" /4 6/,
2
A - 336.5 - 336.5 - 282.4(2%)
0
2
- - 214.2 - 98,4(2%)
71.41 119.0(Emy
T3y ’ o
. _ Pmy 2
N5y 42.84 10.36(:2)
¥o 0.287 0.289 0.287
\‘I'M . .
N 0.1121 0.1122 0.1048
Wo .
W”‘hr
il 0.0677 0.0678 0.0632
Q
W
_gﬂ 0.00208 0.00207 0.00035
4]
Yoy
=2 0.00051 0.00050 - 0.00133
o]
¥ 5u
L - 0.00343 - 0.00344 - 0.01173
Q
¥on
- - 0.00292 — 0.00292 - 0.00994
a
check 0,9975 1.0016 00,9959

The Floguet factor for =z

aecording to (I1.16) :
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5 - iluMg +
u(f‘?) = u‘(t?) = W(@ + 5) = Z‘ va a
v

- . e-ivﬁ e—ivyﬂ
- uM

v
_ u a—ivhﬂ
- v

v

Thus its Fourier compenents are simply

v
2= (217w

vM2

—_—

2

{1v.9)
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Appendix ¥. Perturbations ef the closed orbit

In the tranaformation (8.8) to "smoeih motien" coordinales we sub-

stitute the Fourier series for the Floquet facters, and obiain for the trans-

formation coefficients :

where

% (wy +%,) = wov¥2Q [1 + p, cos ¥ =+ p, cos 2MF + ..]
&
Quwy =¥ "oV [- o, sin M} - o sin 28 - ...]
2 iq Q
P
3 (wa + w2) = wov3Q [(Qory - Mp,) sin M + {90, - Mpz)sin2M@ + ,.]

* /3
.‘ % ¥z = ¥z _ Wov2Q [Q + (go, - Mo,) cos M + (Qpy ~ Mop) cos2Md+..]

1Q Q
_ ‘I’fh' + \\'-M _ \Tgu + 1_2.“
Py = o s P2 = o 3 =
, . v W (v.1)
¥, -M 2N -2¥
0-" = w O-z = » - n
o o

Using the approximation (IV,.8)

~ 1
"o VAR,

whieh is very good in the cases of interest here, we can write the transferm-
ation {8.8)

x = (1 + py cos M +..) x - q;gégﬂ?_:“;; 5
(v.2)

=

xEQEwt-gm)ﬂnW+.li+L}+u.-gm)msW+.]?

The corresponding transformation for the z-motion to smooth motion

variables 1z, z! is obtained from {V.2) by changing o, v, inte (-l)vpv,

(-l)vcb as follows from the property {IV.9) of the Floquet factors.

ey

When introducing (V.2) into the perturbation Hamiltonian (I.24)

= V,oX + Vor2 + VzoX? + Vo222 + Vyyxz + V3{(x’=- 3x2%) + Va{x*~6x22% + z*)+.,

+§;: x[(x?)2+ (2)?] (v.3)



L

v

we pneglect squares and higher powers of small quantities on account of the

fact that - g << 1, o << 1,
v v

e.g. in the c¢ase of the CERN PS8 the numerical

values (following from the table of Appendix IV) are

5, = 0.168 p2 = = 0.0010 py = - 0.0217
‘ oy = 0.0416 &5 =  0.0017 o5 = - 0,0018
) %’: = 0.00667 (V.4)
M M M
(5-1 “'"[S"gi) =-1 304’ (0-2 -Eﬁz) = 0'0097; {0-3 "‘[3193) = 0‘1?5
M M M
gy == Qy = = 0.165; g = =03 = = 0.0146; Pz — =0z = - 0.0073.
i q Q Q
The perturbation Hamil tonian then becomes
}[(1) = V.o [[1 + p,cos M + ..,] x - o.sin M 4 .. 7 ’\
ih] J
+ ( - pycos M o+ ..] z + o‘,sig Wy >
+ ([ + 2p,cosM + ,.] x2- 20-‘3{1\113&? LEEE J'E')
$
+ ([1 - 2p.cos¥ + ..] 2%+ 2""33“”’3 LRI E)
Fy (i;-}.mwj.__(x z’._xz)\
+ Vi ([1 + 3p.cosM? + ..} x*- 3 ﬁ% x2 x’
]
-~ 3[1 = p,cos M + ..] X 22 -3 EL‘SL"?-—*_- (2% 7232~ E*EZ))
) + Vg ([1 + 4p,cosMd + ..] x* - 4 d—'l—E%I-l——M-—a——:-'- °x’
-6+ 12 TEIROE s (3 13 - 2E )
i + [1 - 4p,cosM? + ..] 2* + 4 T sin W+ .. EJE’)
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+ ~L-/{1+p1cosﬁﬁ+..]f - TaSinkl+.. ;’\ (Q2[(d,—£;1}sinMﬁ+ v 13 (x4 2%
20\ ¢ /L L

(720 (574 2(0, o, eosho..] ((i')% (?)2)

+2Q [(c'p-};fp,)sinhh?-r..) (X% -7 2)
[

-t

+ EQ[@Ifjgp,)sinM§+..} [(p,- g o) cosM +.,)(x x'+ z 201, (v.5)

L

Ye now make a further approximation by neglecting those terms - of
H{Q) the coefficients of whieh have frequencies much higher than ¢. This is
Justified by the foerm of equation (8.9), respectively(V.9,10)below : right
hand side terms oscillating with a frequency mch higher than {Q contribute
little to the closed orbit solution.- In the CERN PS M = 50 is large encugh
in comparison with Q = 61/‘ to permit omission of 211 terms showing the
Periodieity of the A,G. structure. The only terms to be kept are therefore
those with constant or low order harmonic coefficients. The latter can
arige either from a superperiodicity introduced by lenses, or from accident-

nl strueture deficiencies.
First we consider the case of systematic perfurbations only. De-

lining Fourier coefficients of V,s, Vos, «.. by

]
N -igd '
Vk1kz(§) = 2_ Vk1kzq e (V.6)
g = -

only the harmonies q = 0, * M, * 2M, .. appear in systematic perturbations,

In this case furthermore -
Vikal= ui) = Yk, ko (vh)

{Sce Appendix IIT and V1}, therefore only cos vMJ -~ terms occur in the Fourier

)

series (V.6). The "low frequency" part of H('1 then is found to be

n() ' Jx
= (V10,0 * 2 Tiom * 72 Vig,on * 3 Vig,om * ++1 %

=2

+ [Vzo,o + 2p, Vzo,m + 2p2 Vzo,zu + 2p5 vzo’jM + .4l X

+ + .4] 22

- - 255 ¥
(Va0 =200 Vo 3 * 202 Vop oy = 203 Voo 3y
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' - -1 =3 - 2
+ V300 {(x>- 3 x z%) + 3o, YBO,M {x"+ 3 x 2z}
“a - B} 4 -4 —4
+ v40’0 (x*~ 6 x*2% + z%) + 45, v4n,m (x* = 2%)
+ s
sk (@@L -0 7 E
2rm 2 * Q £ (Vs?}

The low frequency part of the momentum dependent term {last line
of (V.7)) would in general be somewhat more complicated. The neglections
in this part have been made on the basis of the numerical values of tihe
coefficients holding for the CERN PS. 1In this particular case the neglected
terms do not exceed a few percent of fhose written down in the last line of
(v.7).

Specializing the Hamilieonian to systematic perturbations due te
momentum deviations, fringing fields and n-deviations by taking the pertain-

ing coefficients ¥ from Appendix (I.24)it reads

k, ks (vN)
(?) r ( r2 & z I8, -
i :(]._.‘.'.'."..2_._0 l——9-g+r‘0 B +p,r"o/-—ﬁ- + .. 10X
o P LL Fa Po o/n ALY _
1 - n T
+ i[_r.i_+2(p,ny * 3Ry * bl %—:— - (6no+ 2p, 6‘nm+ 202 d‘nzﬂ + ..)] x?
1 dp -
51_ - 2(p1nm + p3ng, + ee) 2 - (dng ~ 2p, fny+ 205 gy - .e) §ZZ
1 d_] (T3 =D 2 ! dz“j Ta_ T4 ?
3:1_3; ;G\x 3z z%) AT E“ Lp, (x*- 2z }-...,-j
1 -, - 2 - =
+ 5 x {{x)F + (2)° +g—(0’. - ¥ 502 (3 +zz)) (v.8)
m Q )

flere 4'p, EBZ, ¢n arae the deviations from the nominral "unperturbed"
values, the suffixes indicating the harmonic numbers of their Fourier compo-
nents. Expressed in terms of equivalent length corrections and magnet - n -

values they will be found in Appendix ¥I. With (V.8) we obtain the equations

of motion {8.9) (in two dimensions) for systematic perturbations :
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1}
[
=
a

d\p r.m E?Bz ( Cs'Bz —I
- = —In = + P = + ea
Po LY BD o . BG M 1

P
2
T Tq QE_ —l-
- (;: > {:f;+ 2{p, My * P3 an) - (ng + 204 Fny+ 202 <5‘n2M--)mJ x
1
2

.3 (%)’ [g.g 0(22- 22} « } | (v.9)
a?i .- o' a e’
W VI mm T Y ® AT
= (:_‘---EDzi-:-c[[:—(,c:1 Ly + 05 nM) f}—\f - (fno - o4 §ny + P2 r)"nzM - ..)] z
-4 [3}2 0225-...] ) (V.10)

The first line on the r.h.s. of (V.9) causes the radial shift of the closed
orbit by momentum deviation and guide field deviations. The second line in

(V.9) , respectively first line in (V,10) preduce shifis of the frequencies
by

- 1 (Ta¥psl Lo ép .
4§y = % (roj;[rm+ 2{p, ny + f3 Dy 4 es) E (dne + 2p, dny+ 202 é‘n2M+..):|

Poi 1l Tt _ o490 _ 1 (Tal .
s T, TRy e * e dmy s )

1 /r Ym‘ - _
Qe = 2Q <f§ p 2(p*“y T 03 Byt <) gg + {fno - 20, &y + 20, n,, )
. ‘ §p 1 [ta¥ I v
- %2 -5+ 5 (F:) (6ng = 204 dmy + ..0) (v.1D
where use has been made of (IV.5)
Ta\*( R ) = -2 (v.12)
g 24 nM 2k ] an e = *

If 4§n represents only a correction of the magnet-n-value, the last terms

can correspondingly be replaced by

2 -
(Eﬁ) (2p, Sy + 203 &an +oee) = = dn Q.

L
20\ rq n

-
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The expressions{V¥.1l1l} agree with those obtained by the method of variation
of phase and amplitude to the degree of approximation used, (See Appendix VI
for comparison),

Equations (V.9)...(V.11) may serve for calculating the modifica-
tions of sector lengths and n-~values neceésary to bring back the cloged or-
bit, %,, and Q, to the nominal values. Introducing length adjustments

6F, A&D of P~ and D-sectors, the equivalent length 56 of the fringing
field per magnet edge {(facing a field free section; see Appendix I}, and an
adjustment 48 of the magnet - n - value from Appendix YI, we have to re-

quire

Ty g? - — (A€ + a& + 2a2) [1

+

. T
" _ Ty
p2 cos 23 (1 f’m) + o]

f&ﬁﬂ- ﬂﬂn) [0, cos

ESTE]

{1 - Eﬁ) + py cos8 3%(1 - Ei) + ..) =0
' (v.13)

. F D
Boggtr A o (fe _ SAN, L ra\ [ g M At - ol 00527 (1-Lo
Po m‘_rn 29 Po T Q 2Q \ro T T'm (- 2.02(.!0322(1 Pm)]

o beFs 8l ane - or, B
+ @ = - 2[py cos; (1— ) + pyeos3z (1--9)]]
T Tn
(v.14)
P 4'p €n r\2 M aéF A&B +. T
== 2E _ a R A L Z{1-1°
ﬁ;dqaﬂ (Do ) A 2Q ( > [ o Tnm L+ 2pc0s25(1 r,}]
" A£F+ aé + 2AE - 2r°%if
- B = 2 [a, coss {1--—) + pscos I3 (1- )]}
n

. F
Impoging the supplementary conditien gg = (, the corrections A4 , AL, eand
]

and §f are determined by these equations. Using CERN PS data (see section

D
15 and Appendix I} one finds ﬂéF =« AL ~ 0,33 enty, AL = - 88 + 0,45 em,
i _ 5,016,
Il

Supposing that adjustments according to (V.13) (V.14), and (V.15)

have been made to bring the equilibrium orbit and the G-values back to their
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nominal positions, the equations {V.9) (V.10) can be simplified :

d?x 27 Pa ( $p )
- + X = Wi — 2 ——g-
gz * 9 p L "o A7 5 X y
1 rpyzpdny 22 o2 ] i
+"2": (PU) [dx]D (X - I ) + .-a{}
1. - - Q2 M =2 . = 1 - d%x
1 1L vz Q7 _H 2 z 2 i
Zrm[(x Y- (z7) 5 (o Qp.) (3x* + z2%)] + X gET {(v.16)
d%z 2z Do r 2 8p =
+ Q72 =+ 2172 —_ 2
as? s ° Y p
1 ,ra dn - = }
- 5:{1_‘0) [d--ilo 2x z ...':.
Qa - iy 7 -dz;
=5 (O - 5 p}2 xz+ = {(x' 2 +x g2 ) (V.17)

where dp is now the deviation from the adjusted equilibrium mementum.

From {V.16}, the radial displacement Jr = ¢ of the closed orbit provoked

by ép follows, In the absence of non-linearities one obtains tfo first
approximation in %E
1]

. (v.18)

§p/Po
— - &r/To
te @3, 4r = ¢ is independent of & and repressnts only the "smeoth"

This relation shows that the "momentum eompaction"factor is egual
part of the displaced closed orbit. Its real shape is obtained by multi-
plying by the "wriggling™ factor from (V.2)}

e(d) = {1 + p, cos ¥} + ...). (v.19)

If the non-linear terms in (V.16)} and the difference hetween ép

é-. . Pe
and ?P are taken into account, the following more correct relation then

emerges for the displacement 4T = ¢ of the closed orbit

2= 1 [ ra\® ,dny _ 3 Q3 _ N 2 | =2

Qc'é[‘rﬁ U S R
n g . 2O e e |4e
~t_rm + Q% =~ > ™ (o - 3 Pl e B



¥hen looking at numerical values of the coefficients involved the third

term on the right hand side is found te be negligible. Seolving then for
4p

pe the relation can be wpritten
Q

2 . 2 -
(Z2y (B 2 - 2 (o - ¥ o) :]9_ .. (v.20)

Pm

-
Sl
il
o
[+
|0
Ty
[
1
o1
"
+
b -

Putting in the numbers for the CERN PS we obtain

4'p dr ( dn ar

—~ = — 11 = {39 + 2530 (=) = 2.5] = + ... |

5 =3 ] { (Z), ] o i

§r =3 . . _ dn

= < 10 ~ within the limits of the vacuum chamber. For (a;) values up to
m - . o

the order of 1 em may be considered, For a number of particular cases the

relation between dr and %E is shown graphically in figs. 17-22 (p.126-128)

]

In treating now the effecis of accidental perturbatiens on the

closed orbit, we disregard -- for the sake of simplicity =-- irrelevant sys-

tematic perturbations like fringing fields, as well as perturbations due to
2
unsystematie irregularities of n, gg, g;g ete, The perturbation Hamilto-

nian (V,3) is then, written explicitely with the help of (I.24)

I
g o (Emy2 Be [ [ m2dR o 7B,7)
Py P Fv Po ° Bo

+ n(ﬁ)E(ﬁ}:lx + [e(®)ro - n(@)Z(3) ]2

+ 30 L (- 2= 2e(@)n(9)x
F .
- %: %%- x%- 3xz?) - %:gzg (x*- 6x%2%+ z*) - ..]
+ L. x [(x*)* + (z')?]
1

[l
e
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_€BZ(B) represents the field fluctuation.along the magnet axis; E, £, ¢ the
radial and vertical displacements, and the angle by whieh the plane of sym-
metry of the magnets is itwisted. Working out the "low frequency" part of
this Hamiltonian, after transformation to the variables X, z, X!, 2’ a8

given by (V.3), resulis in : s

H(‘) = - rp %? x -@Q? %? (x* + z%) + .
- &B_(#) _ =
v (L2)e Bo H:r DR+ umy ¢ pangs ) |
+ [roe(8) - n(8)4(8) + (ﬂan + .03113“1+ e 32(8)] z - 25(1‘})11(13);5
- % (gg) (x3-3xz%) + ( ) (x%-6x2%%+2%) + 7 [}(322 1+..:?£¢E‘)..}
+ 5%; ;[(;,)z+ (;:)24. g—f(c'1- %{p?)?(fzd- EZ):I F oae (v.21)

From (V.21) we obtain the equations of motion

2z - (1)
= Bo o 4P (Tmyz |y B0 + n{9)E(8) | + QPE(8)+207R% 2, (9)n(9)3
=5 CIw rq o By ] pg Xt2¢ n z
+(Eﬂ) 2(dn) (x2-3 )+— <( ) +4p1 ——?)M+..\x -5 (55 ——z} xz +. :T ]
{v.22)
ay - (1)

= Bo { (£8)2[roe()-n(9)5(8) ]+ Q2(9)+ 20° &2 Zu2e(9)n(s)

2“)05254...] }

(v.23)

o

(

Sl bt

gl

Imya_ ldmy o= 1 /(d%n - V7 -
+(Po) 2(dx)o 2xz + 3:<(dx 491(——7)M ve 1 Z ‘
The terms depending on x’ and z’ have been omitted here; unless the non-
linearities of the field are very small, their relative influence is negli-

gible in the case of the CERN PS as shown by the figures introduced into
(v.20) above.



The forcing terms Q°F and Q°Z appearing in the equations
{v.22), (¥.23) correspond to what one would expect for an osecillator with
displaced equilibrium position. There are, however, additional (forcing
terms nf and n% produced by magnet displacements. If £ and Z would
only smoothly vary with @, these terms would alternste as n(J) and there-
fore be "high frequency”, and have little effect eon x. For random displace-
ments, however, n{?)E(#) may give rise to appreciable low frequency contri-
butions.

In the CERN P3 one half F-sector and one-half D-sector are always
combined to form & rigid magnet unit. In this way the force n(3)E(P) al-
most cancels if a unit is displaced transversely parallel to itself. The
effect of a tilt of the unit is of course not eliminated by this. A simi-
lar statement holds for the linear coupling terms 2 e(d) n {(8Y ¥ and
2 ¢(9) n (8) z : The effect of en due to a rigid rotation e of a whole
% F = 1 D unit about the orbit axis almost cancels, not, however, the effect
due to & twisted unit.

In calculating the Fourier components of the forcing terms
n{#) E(#) and n(3)5{2), for % P % D sectors combined to form rigid magnet

units, we assume that the unit centers eare positioned at (see fig.15b)
2 1, o
7= (k - §) i’

and extend from

- I 1
ﬁk 5 to 6k 5
where
=9 o _TT
=3 ta” Hrg

the angular length of a unpit. The Fourier coefficients are now

'6 +E

2T 2M
(8-¢.)
(n&)q = %; f = %; j{: j [%(3 )+ k Ag_T iaf g4

k=1

AL, is the difference in radial displacement of the ends of the k-th magnet

_unit'due to tilt in the horizontal plane, Denoting by n the value of
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n{?} in the sectors adjacent to @ = 0 (as in Appendix ITI) this begomes

n
¢ #, +=
(né’.)q=z o [—[aqdﬁ-t—f eqdz?;
. : o
= Rl
k=1 ﬁk 5 3k
2N 7 "'

(-1)k
———-2-——_--[[(5 0)e1qdﬁ+j-(€8)lqﬁdﬁ] .

k=1 ﬁk 5 ﬁk
L 2, gr
A i ik
=B 2N ( [1 - cos qn] Z {- l) 5(5 ) e 23
el
k=1
1 - cos LT g& ik 27
1 . ogn _ 2 _nk 2N )
+ 3 [mn 5 T k 2 (-1) AEk e 'i {(V.24)
2 k=1

Fourier coefficients of Z(&) are

n
o oM ﬁk*ir_ 5 -9
1 Ul 1\ ! "k igd
@y =g [ 20 Vg ) &) - g, |1 as
o ~ n -
k=193
_ igm _
. ¢ an 2\ 1kq§%
= 7 ][51n —2—-] X E(uk e
- k=1
.o
sin 32 i ikq 22 |
L z . cos It AE. & 2M -2 {v.25)
2 qn 2 - 3 : ~
2 k=1 .

If 3 << 1 (the validity of the perturbation Hamiltonian {v.21) is restricted

M

to harmonie orders much smaller than M), {V.24)} and (V.25) become approxi-

mately



2
f 2 lkqQ“ 1r, lquu
o0& B oo oo Fiz T ™5

(V.24a)
_igm
° (e q%ﬁ i,r - ikqg%
{E)q = [ pi- zg(a )8 + E(IT:,)Z %ﬁ Z‘ﬁgka 1 ] (V.250)

The complete foreing terms in {V.22) {V¥.23) may now be written in

the form of a Fourier series

2 Ppy2 dBZ 2 r— ~-igd
Q- (@) e g J-e) = (v.26)
g
Q%Z + (Ef)z [}4 - Iof€ :}= Q2 ;E: zq ,'e"iqﬁ (¥.27)
q

with Fourier amplitudes {using the approximations (V.24a) (v.25a))

-
. i 2M - 2M o) - (rm)z " (_l)k R ikq %%
SqT TN ra k ro' Q7 Sk °

k=1
2M
‘ d'B
- (E_:._)n)z % %_;{f z [ Agk - (Pm)z ( 1) E(‘s )] 2M-? ( Q Boq
k =1
(v.28)
-i T
i % 2N . ikq 21
2y = {Eﬁ j{: [%(&k) G Zgz(-l)k a;k:}e .
k=1
2M 2”
2 1 Tmy2 n Foy2 Te
. () 2’*‘2[ a, + (2 5 (nfze )] ]-(;—o) e
. —_—
(v.29)

If these Fourier coefficients of the forcing terms are known, it

is easy to caleculate the distorted closed orbit in Fourisr series
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representation in the absence of non-lipearities, Disregarding alse the .
linear coupling term 2enz, the radial closed orbit deviation resulting
from {V.22) and (¥.26) is

+ o

';(«9)=E o, o7 z = oY (V.30) '

q= -

From this, the root mean square deviation of ¢ follows ag
- 2 1
it (L) (]
q
q q

A gimilar formula holds for the vertical deviation. For statistically in-

n? - q® Tq

)‘ (v.31)

dependent E(ﬂk) and AE, , or z(ﬁk) and A%, resp,, expectation values
of ]E:qlz and Iqu can be eeleulated from {Vv.28) (v,29) :

2 N2 2 2
<= 12>'2u {(—@)%(‘m)z [P")z 2N 23):' <£2>+E<:—: %2) 15 f—,% %%) _]<A£2>J

—

(v.32)

LY 2 2
2 2 2 rp 1 l re gm 2
<{Z l >= QM{ D1 <e >+L(r J 2“ -2-6—91:[ <Z%> +[< 4 AﬂzQ>+<5?‘?n ) ]<ag>}
or, numerically for GCERN PS figures,

1:ql2 100[6 6e10® \(—-)2>+[0 49 + 0, 0130 2 1<E?> + (6.7 + 6.3°10" g2 )<aE? :}

58 {v. Jza)
On the right hand side, the expectation values of (___z’ E?, AE®, %, Z% a
aZ®  appear.

The numerical ceoefficients zhow to what degree the (% F % b) com-
bination reduces the effeet of unit transilatioens £&,Z with respect to that ;
of tilts AE, AZ. 1If we assume <AE%s and <E%>  of equal order of magni-
tude, <| :an> is almost independent of g (for moderate g; it should
be remembered thag the validity of our approximations is restricted to g
much smaller than M). Under this assumptien a rough estimate of the r,m.s,

«¢losed orhit deviation can be made by (V.31)

j<zzfz>JZi(?—E’f—q[r= (7.33)

Y




(V.33) together with (V.32) determines the admissible tolerances for align-
ment and guide field errers by fixing an upper limit for the c¢losed orbit
devistions. Actually, the limit is fixed for the maximum closed orbit devia-
tion rather than for the r.m.s, deviation. The maximum deviation, to which

the e¢losed orbit harmonics can add up is

0 ~ 2
) e e Y e (v.30
q q

assuming again lE;q‘ independent of g.

-

c

LN

-

To show how mueh Crax DAY differ from 4225;, the sums appear-
ing in {V.33) and (V.34) (added from q = - 12 to + 12) are given in the
table below for 3 values of @ in the neighbourhood of the working point
of the CERN PS, '

§ = 6.10 6.25 6.40

o 02 2 .
Z DT-_E:) = Ah.2 19.9 15.0
q:*iQ
+12 Q
X lwl - 926 58.4 518
=
2
ﬁmz = 43-5 18.0 11-7
Q2
2 P = 61.5 23.5 16,5

.The elosed orbit deviation ecan add up to 2 to 3 times its r.ms, value by
interference. The terms for which iq{ is closest to Q make predominant
contributions to the sums., The r.m.s. value and the amplitude of these
terms are given in the bottom lines of the table, in order to bring this

into evidence,

To obtain figures for tolerable gmide fjeld and misalignment errors,

statistical independence of the positions of magnet unit ends may be assumed
(for simplicity and lack of better knowledge), Then < AE° > =2 < &% >, and
from (V.32a)

L

< =% = 6,6.10% < (%E)zb r 13.4.107 < g% 5> Tem?)
; .
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{smaller terms omitted), Distributing the tolerance equally between B and

Bo
E we find as tolerable limits
2 = 2 _ 002? — -4
( ) = 0,027 [<Z % > = s 1c {em]] = 5.10 {cmxl
[+ -
2 _ —_2 _ 1.9 ~ ] ma.xl
< E°> = 1.9 <= T ,cmax 1 30 )
| ¢ max |
taking for , the figures of the above table at ¢ = 6,25,
Neo %>

Thus a tolerable maximum deviation of the closed orbit of 1cmax|
2 em would result in admissible r.m.s. errors of 10 : for %E end 0,06 cm
for E. ’

More careful estimates of the tolerazble errors had been based on
the probability of the closed orbit exceeding & given limit |cmax|, certain
statistical properties of the errors assumed {Adams and Hine [1953d], Liidera
(1953,1955]). Practically the same tolerances were found as in the rough

eatimetle given here.

It should be remarked that the f{olerances given for alignment errors
do net necessarily apply to the preeision of the circular shape of the“ ring
magnet in the large. Smooth, systematic misalignments (e.g. caused by syste-
matie errors in the setiing-up procedure, or by subsequent deformation of the
foundation) are followed by the closed orbit. For example, consider & sinusoi~

dal misalignment

E = E, cos g, q << Q ,
then the foreing term in equation (V.22) becomes . .
Q*e(#)~ (rm)zn(ﬂ)g(ﬁ) Q gocosqﬁ—(-) Eo[nMcos(M+q)ﬂ+nMcos(M~q)ﬁ + )

where, for q << Q, the first term determines the major part of the closed orbit

deviation :

= Q® T cos{M+g)? cos{i=-q)d
5(9) = el B wos ar-(E%E0 | my BT« my BEELE -

~ 2 cos(M+q)d cos(M-q)2
&8)- ( ) S0 1_ L T-0nq)? " ™ F=0E)T T _‘
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The second part on the r.h.s, happens to be very nesrly equal to

- &£(8)(p, cos MO + p3 cos I MP + ,.), as q << Q << M and approximately

from (IV.4). Thus

H

c{9) = c{3){1l + p, cos M3 + ..) = E(3¥) - p, cos M0 = ,. M1 + 5. cos M + ..)

it

E(9) .

The same conclusion can be made plausible by going back to the
original Hamiltonian (I.24, in non-smeoth coordinates) and considering a uni-

form displacement & = const. Then the equation of motion can be written

5 - a(@)x - 8) = 0,
showing that ¢ = E 1is the displaced closed orbit, This will still be approx-
imately ftrue for a very smoothly varying 5(6).

A8 the vacuum chamber will also follow smooth distortions of the
ring magnet, they do not affect the position of the elosed orbit with respect
to the vacuum chamber in firast approximation. The tolerances given before,
therefore refer to random misalignments with respect to the smoothly distorted

closed orbit.

The behaviour of the vertical elosed orbit deviations is of course
similar.

Whether the influence of the linesr coupling terms and the non-

linearities on the closed orbit is important or not c¢an be estimated by
comparing the corresponding forces with the alignment error forcing terms.
It has been pointed out that, with rigid (% F % D) units, the coupling
force is mainly due to twists Aec of units. The force produced is there-

¥’

fore roughly i A ¢ z, and

- —
iAe 2z > . > Q2 | = 1| =
m—g——| ~ 1 requires A g ~ z= |—=- ~F T

Q= _ n Z Z



i e s

e

Lo v ki b it
- o e

HE L LR 21

i L gy

Jollale oo v i

Rt

N

i it Lt

- 124 -

i.e. the order of magnitude following frem (V.34) and the table on page 121
twists ae < T%ﬁ would be required to influence the closed orbit distortion
strongly.,

For the non-linear forces we have

="
=}

1 dn -, —_
2 ax > .. dn = ] > 2 =4
Q? — =1 if & * = anquadratic 2Q x ! 4
[
2 i
;T'Cdixn x° > 1 d%n —2 > 2 3 &
T T M R R S Mlanse T Y [T Y

So nen-linear forces do affeet the closed orbit if the relative change %F

by clesed orbit deviations is more than about one percent (fi= 282 in our
numerical examples). 1In order to obtain an at least qualitative picture of
this influence, we assume that only the harmonic closest to q is preseﬁt
in the forcing term, This simplification is net too far from reality accerd-
ing to a previous paragraph. If we furthermore confine ourselves to only

radial perturbations, the equation of motion (V.22) fakes the form

S5

1 ,rpy2,dn -2
5 (53)2(

= v 025 =P (n 9P, 202 T ooaat 2 9P 5 rgyz¢dn
o+ Q% = b L + 2Q° Z coagd + 2Q X + e dx)o X

Pa p_o
1 rq 21- d®*n . d%n -3
F 5T | G e &t jx }
z =0

The closed orhit solution contains, except terms of {requencies
zero and q, also multiples of q as freguencies because of the non-linear
terms. The higher harmonies being small we may, however, consider an appro-

ximate soluticn

X =¢(8) = ¢co + ¢ cos qf : {v.36)

It ie of the same form as in the linear case, but mean displacement e, and



F

amplitude ¢ will now be affected by the non-linearities. By intreducing-.
(V.36) and

x

o

%2 = ¢} + 2, ¢ cos gqf + % (1 + cos 2qv)

~

2

- 3 o~y o~ s @
x° = e + 5 %o c? + 3¢ {cg + —) cos qf + ...
*

into (V.335). equating the constant and cosq? terms singly, and neglecting

. , . . ~ . &p
higher harmeonies, two equations determing ¢, and ¢ as a funetion of 5;,
S 0

= , and § result :

n it n
R, = g—" ‘r(m + 2Q%c,) g—-‘l + é-f (el + %—) + jn (cg + g— o cz)?‘
B 4] - ;
i -
: n .
~ -~ o~ ~ xx ~ [+
(3%-q%)C = gg [2Q2;L + 202 g? T +n_CpC o+ 5 C (el + Z_J? . (v.37)

Here n, and nxx have heen written as abbreviations for the coefficients of
the non-linear terms in (V.33) :
TPav2z ¢dn Tmyz | ,d%n d®n ]
= — ) ——— - = — /*'_"Z"' aw !
e (re) (dx)o P My (ro) [:(§;2 o T 4P (dx )M * i

With a few minor neglections, we ean wrilte the eguations {V.37) in the

féllowing form convenient for graphical seolution

™ i} -] n
PIES xx €2 1 ra 2 _ x5 2 &p ]
-——-——E + 2-—Q-z- e ,'j'zLQ -q ﬂx Cn 3 Ca 24 p": (v.38)
n 4 n n n
§p _ 1 [ a2 x 0 2 xx 1 _ 1 /x XX ~
5; = ;m L? Cy { 5 + Pm) Co _3T Cn 3 (2 + 3 agle

(V.39)
In the diagrams ({fig.17-22), the left and right hand side of(V,38)

are plotted horizontally as functions of respectively E, €g. In plotting

the r.h.s., {V.39) has been used, and the dependence of dp on ¢ has been
aceounted for by jiterative correction. Physically, the hoiizontal coordinate
in the diagrams is the relative difference of the square of the "effective"
frequency and g%, the effective frequencf {Q + §9,) resulting from the mo-
dification of the unperturbed {Q-value by deviations in mementum and radius,
The 1,h.s8. curve e ropresents the (non-linear) resonance curve of the [orced

oscillation.
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The diagrams are uged by first finding the effective frequency to a given
mean displacement ¢, of the closed orbit, and then reading off at the
same frequency‘(abmissa) the amplitude ¢ of the closed orbit oseillation.
Separate diagrams show the relation of the.m&an displacement ¢, to the
momentum deviation gg.

The diagrams given represent data of the CERN P.3. first for a
perfectly linear fjeld, then for a set of typical pon-linearities, as will
be encountered without any correction deviees applied, and finally for non-
linearities corrected by sextupole and octupole lenses in such a way that
either d&Q; = 0 independent of momentum, or §Q,, 4Q; always move away from
the integral resonasnces for any closed orbit displacement, in order to mini-
mize the closed orbit amplitude.

The sextupoles and octupoles required can be derived from the
formulae for the small oscillation frequency shifts (App. VI ) {these formulae

can also bhe inferred easily from (V¥.22,23))
_ dp _ (Tq dn 1 /.d%n d?n 2
m‘l - = Q po ( ) 2Q {dx)o ca +4_'5 <(dx + 4pf(dx )M"' co

- dp T 1 ,dn 1 d%n
4Q: = - Q Do + (;%)T:ga (a;)o g + Za‘((a;z o cg:].

With regard to the case considered, the vertical closed orbit displacement

has been assumed as zero; in addition a few minor approximations have been

made here as Ef 21, wix é%-, ps ~ 0, which are meaningless for the pre-
senl purpese. Introducing gg from (¥.39) and peglecting again small
0
terms results in
Moo= - L+ L (fay'(dn fmye | (£ + 40 (ED)
! Ta 20 ‘rg’ ‘dx’e Ca 4Q r M
] ' (¥.40)
_g_._ dan d?n 2
Mo = - | & 2Q(r)t>]ea+m(>( ) i
The linear dependence of £Q, on ¢ iz suppressed by making
(Fmyz (dmy ?_Q_.H..g;gcm‘
rg dx’o ~ g )
fgf)o is the average of the combined g% dus to magnets and sextupcle len-

gses, In terms of the magnet n-value, this non~linearity is very small
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(about 0.5‘10—3 of n per ecm). By suppressing the momentum dependence of

6Q4, &0z becomes twice as sensitive to it as shown by (V.,40), From the

point of view of avoiding rescnances, it is therofore more reasonable to
nake %% = 0 ‘and use octupole lenses to prevent 4N, , 4§90z from approach-

ing the resonances at 4¢Q, = §%2 = - 0,25, Making for erample

2

2
(B (5D, = - () L(ﬁ—;(-z +4o¢(ax—r)\—‘—000300m : «

/“Qr' aq

d®n, _ =2
0 = " 4p.(dx 1M = 0,079 em {(V.41)

|

, d?n
i.e. 2 (J;z

the working point moves between 7, = Nz = 5.45 for. ¢ = = 5 em, over
Q, =02 = 6,25 at e, = 0 and Q. = Q2 = 6.20 at e4 = + 4 em to B.20
at e, = + 5 cm. The non-linearities necessary are again very small in terms
of the magnet n-value.

The requirement (V.41) can be met by arranging two sets I and 0TI
of ocﬁupole lenses an odd number m of half-periods apart. As shown ;n

Appendix VI, they produce the harmonies

viln

a%a Netupoles s - [-- ny 01 ( )vm ( i%n L8 o
{ ) =22 gin f ( + (=1 b
dx? A 2u m L_ ax* B
d’n OI dn 011
So the even and odd harmonics are eontrolled by ( + ( M and

(d 0, OI (u n 011

be teken account of in setting the lenses for odd harmonics.

, respectively. The magnet octupole contrlbutlon has to

How the O-values move with the displacement c¢g of the closed
orhit is shown separately in figs 17-22 by lines in the (Q,, Q.)-plane., These
lines are modified somewhat by wavy distortions of the elosed orbit because
there is some influence of a wavy distertion on the relation-between momentum
and e, (see (V.39)})}. Vertical distortions of the closed orbit would cause
additional modifications of the movement of the Q-values, Their sffect will e
in general, however, be smaller as nothing like the mean displacement due to
momentum deviations. is invelved,

It is c¢lear from the diagrams shown that, e,g. for a momentum
range of * 5.10° ? the c¢losed orbits are kept within a reasonable central re-
gion of the vaeuum chamber at medium fields, buti that appropriaste c¢orrections

of the non-linearities (apart from necessary corrections of the n-value on



the equilibrium orbit) may be vital at very high, and perhaps also at very
low fields, They are provided for by pole face windings plus sexiupole and
octupole lenses in the CERN P38, The sinusoidal {orcing term assumed in the
caleulation of the diagrams (2= = 0.1 em) produces roughly the same maximum
amplitude of the cleosed orbit as 0,05 cm r.m.s. random misalignments.

Actually there exists a multiplicity of closed orbits because of

the non-linearity of the equations (V.22) or (V.33) resp. This is shown by
the bent-over resonance curves in the diagrams {ig.13-22, For the non-linear-
ities tending towards zero, one of the clesed orbits goes over into x = 0
whereas the others disappear towards infinity. {In mest of the cases repre-
sented by figs.19-22they would be outside the vacuum chamber region). The
question arising is : Which of these closed orbits are equilibrium orbits

for free betatrons oscillations?

Representing the particle métion by its phase space path (teking as
phase, as in section 9, the phase of the particle oscillation with respect to
the phase of the perfurbation which causés the elosed orbit distortion]), the
closed orbits are the fixed points in the phase path pattern. 3mall oscilla-
tions are pessible about stable fixed points, whereas large excursions can
take place about instable fixed points, The topology of the phase spuace
pattern may be studied on equation (V.35), simplified by retaining only the
essential perturbatien terms

: n
x” + 47 x =2 ~Q° cos pd + —%5 x*, B = integer, (V.462)

Following (V.36} to (V.38), the amplitude of the closed orbit
c(8) = ¢ cos p @

is given by

—_ .
2..Q%  Uix 2 .
=3, XX T g2 - p? (V.422)
e 8
and represented graphieally in fig, 23 for numerical wvalues close to those

of the preceding diagrams.
The phase paths are conveniently calenlated by means of the in-

variant {9.6)} {for firat order resonance) :
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C=(Q'P)-‘i+3€(1)=(Q"P"‘hno.)l&"’hzzo)\z

¢ Beo,zp A o120(2 =0 0 + 4]

+ h24p 4372 ai'l:((1 - p) 2+ 4] + conj. complex. (V.43)
52(1) ia the "low frequency" part of the perturbation Hamiltonizn im terms

of coordinates with reference to (any) one of the elosed orbits, In this
way, terms linear in the eceordinates or A2 are suppreased in the Hamilton-
ian, which was shown in Section 8 to be'necessary for the low frequency appra-
ximation te hold generally. For the present case (V.42), the perturbation
Hemiltonian (1) . —_ n o

H = V,x + Vux* = - (2 20%co0s pd)x ~ Z:-x* {(V.44)!
becomes in terms of the coordinate y = x - c(#) relative to a2 closed orbit,
according to (VI.7)

~

. e? e : 1
.}6( ) 6Vie2y? + 4Veey> + Tyt = - n_. |: g—-(1+cos2p5‘)y2+ Z (cospﬁ))’3+2—4 Y‘:r

Using this and Section 6 or Appendix VI, we obtain the coefficients

n_. B2 nxxgz
h110=v11o="2"‘§ 3 =‘W
4 nxx nxx
hazo = V220 = = bWg 5% - T 12
nXxE'z nxx";z
—_ — um 2 - . —
hzo,2p ¥ VYzo,2p = =~ Wo —jg— = 320
n e - n_e
- = - 33 X _ ix
h31p = Vai1,p = Wa s = - MQ

(in first approximation whiech is good enough here). The invariant {V.43) can

now he written

n:luc'é'z 1 nxx~ Dex
C=[g-p- 59 (1 + 5 cos 2¢)] A - 275_6?73 13/ 2008 v - 5 It
2 n '52
= %— [2Q(Q - p) - xBx - -?— (g- + ¢ cos ¥)?] (V.45)

where

y=(Q-p)d +4
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Pig. 23 Non-linear resonanes curve and phase diagrems of non-linsar betatron oseillations shewing multiple closed
orbits aa fixed points,
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and the actual amplitude

has been introduced.

It may be noted, here that in many cases (in particular in the pre-
sent example) the invariant derived directly from the low fréquency part of
the Hamiltonian (V.44) does describe the motion in good approximation. It has
been shown in Section 8 that limear terms in the Hamiltonian can make the ra-
pidly varying part of the solution too large for the "low frsquency” approxi-
mation to hold. This argument becomes effective only if small enough ampli-
tudes oceur in the motion., If this is not the case {or if zero amplitudes
are passed fast, the use of coordinates with reference to a closed orbit can

be dispensed with. Starting directly from (V.44), we find the invariant

_ (1) L TTa.24 /2 Oex ,24.2
C=(Q-plA+H = ~.2Q (?TJ cosy + (Q - plA - “r (?TJ
- E e Qacos - Q(Q - )R - lj.x_x RJ (V 46)
= 2 — ¥ p 32 . .

The fixed peints following from this are given by (see section 10)

dv _ aC dA _ ac

Egzé—xzo, d‘Tj'-——a—';=0’

leading to

n
20(a - p) = £22Q° R+ 5= R?

which is indeed practically identical with {V.428) (R is positive by defini-
tion, whereas 2 can have either sign). Introduction of the amplitude with
respect to one of the fixed points reveals (V.46) identical with (V.43).
(V¥.46) has been used to draw the phase paths in fig. 25 for numerical
values of ‘the parameters which might be typieal for the CERN PS (the cubic non-
linearity n_ assumed is higher than inherent magnet non-linearities but can
can ba produced by octupole lenses). The origin of the phase diagram cor-
responds to the center of the vacuum chamber {or, more generally to the un-
disturbed equilibrium orbit). The result obtained is independenf of which

of the closed orbit ig used in the ecalculation. The diagrams correspond to



ey

ﬁ’:»—:ﬁ"." i e

T

TEEEITTRN

S L a ahiol TB e Tt TS i T
s . E NN O N

- 134 -

a set of different Q~values around resonance indicated on the non-linear re-

gsonance curve in fig. 23.

If there are three fixed poinfts, one is instable, as can be seen
from the phase plots. The instable fixed point corresponds to the bhackward
bent branch of the resonance curve imn fig. 23 , The amplitude of ithe corres-
ponding cleosed orbit is between the amplitudes of the stable closed orbits,

Sufficiently small betatron oscillations have roughly constant am-
plitude about the stable fixed points {their phase paths are roughly cirecular -
about the f.p.). Those getting near the insteble fixed point, however, show
strong béating and may reach very large amplitudes. Il is noteworthy that
very large oscillations have constant amplitudes about the undisturbed equi-
librium orbit (center of the diagrams) rather than ahbout the distorted clesed
orbits. From this fact one may conclude that, if all fixed points lie entirely
inside the vacuum chamber, the space filled by betatron oscillations does not
depend very much on the deformation of the closed orbit (i.e. on the position
of the fixed points). 1In other words : the cubie non-linearity being suffi-
eciently strong, the closed orbit could be allowed to approach the chamber wall
to some extent without the particles oscillating about if{ being peeled off.

The question whether appropriate non-linearities can really be used
to reduce the effeets of closed orbit distortions is diffieult to answér, be-
cause the problem is more complicated than in the example considered here
(i) by the presence of other perturbation harmonics, and (ii) by dynamie va-
riations of the parameters, in particular of the Q-values. It is, however,
likely that non-linearities may help to make the effects of 7-value movementis

shown in figs.17-22 less alarming.



Appendix VI, Hamiltonian coefficients in terms of machine parameters.

The first approximation Hamiltonian coefficients v needed
Eym, L m,p
for the evaluation of the theory are defined by (12.8)
+ @
{‘E + m1\ K{z + Iﬂz\ E *m Eg tmg ’3 "'iq'a
\ m, S ma (3) Y8y *(9) u(ﬁ) k kz( ) = Yem,eamag ° i
qQ = -
(12.8 = ¥1.1)

where ¥V, K (#) are the coefficients of the polynomial expansion of the
152
perturbation Hamiltonian in the coordinates x, x‘, z, z’ as given by

Appendix (1.24)

(")

H = V,oX + V9.2 + VaoX~ + Vo227 + Vygxz + V5(x*-3xz®) + ... (v1.2)

Making use of the Fourier expansiens of the Floquet factors w and

£, *m £; *m
u in Appendix IV, we obtain Fourier expansionms for w ' w ', u 2 y 2

£, *m, £, +m, EoneMa oy Ciwg ™y s
w w = Wa l + — 8 4 ——
Wgq Wo
. E oY Loy J-i2M Moyt oy jous
Wa L) N
LW, MW . m W, +& W .
e S R S 1T MU 1w
e Emmm— - + ——————— + aes
¥o ) Wo J
&, *me £o+mz Lamytmar o Liwe TeVptRly g
ncu - o= wy 1 - —F e - e
Wo Wo
Lo\t a¥ oy -2 . Mot E2 o sous
e ¢ v e
 EMay e sy GmiNE M2 5yt £ 5y S ]
wn WO - . -J

Only terms of first order in

LETH

that —= << 1
w

¢

.!..
cations, sufficient aceuracy is obtained by keeping only the e~

W+OM
88 ’

Wo
CERN PS.

4]

.+, are small even against

a4

in practice (see the table in Appendix IV),

(v1.3)

~%ﬂ have been kept here, regarding the fact

In many appli-

terms;

in particular examples like the

Applying (¥1.3) to (VI .1), the Hamiltonian coefficients can he

written :
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(51‘63)NM+(E1‘m2)F‘M (m1_m2)'m+(61“€2)'_“

* Yo Vi kan-M * Yo Vi, kaqeM

. (81'&2)‘231“’(“11"“2)"_25{ v +(m1'm2)'2h{+(‘€1_52)‘7“2h

. ¥o k .k, g-2M %o k,kzq+2M

+ .,.} ' (VI.4)
where k, = £,+my, ks = £,4mz, and Vk K the Fourier coefficients of

. {R2
Vk1k2(ﬁ) defined by .
- - -iqd
vk1k2(6) - Z\ vk1 »Kz,q ° (v1.5)
e

It was peinted out in sections 8 and 12 that in the case of a

closed orbit distorted by first order perturbation terms (coefficients VIO’

an) new particle coordinates must be introduced by

|
i

= €4 + ¥y

Z =0z + ¥z . - (YI -6)
¥Y,, Yya are the displacements with respect to the perturbed closed orbit
x = e,(8), z = ep(#), which is supposed to be known {e.g. by the method of

Appendix V). The Hamiltonian imn y,, y2, which then contains no terms of

order lower than 2, is according to {8.4)

- :
L i 4y, ot y1) - Qﬁﬁgé_g_l - éﬁﬁgé7gﬁ) g

= [V q+3e,V3o+6(ef-e2)V o+ ..] yi + [Vgp=3e1Vs5q-6(ei-c2)V (+..] vi

4

[Y11-6c2V30-24c102V40...] Yi¥a

+

[?30+4civ40+' - ] (}'3 '3}'13'% )-[402?404’. - ] (33’12}’2 _yg)

(v

+

404-..]()’:“6}'%}'% + y8) o+ ...

+

%%j [(Y¥)2+(yé)2] + %%‘(31‘Y1 + chys) + %#1 T(y)%+ (y8)3] + ..
(v1.7)



Note that a vertical distortion of the closed orbit (e, # 0) destroys the
plane of symmetry of the system and intreduces coupling terms, even if
Yll = 0,

The ccmponents of the clegsed orbit may be expressed in terms of

the "smooth" clossd orbit by (V.2)

Q
-
1

(1 +p, cos M® + ..) o4 - (%3 sin M3) of
' (v1.8)

0
N
H

(1 ~ p, cos M@ + ..) ¢p + (%3 sin M#) e

where ¢,, ¢z can be assumed to contain low order harmenics {<< M) only in

appreciable strength, Harmonics will -~ as befere - be designated by adding

the appropriate suffix, e.g. ¢ _ and (cf)q are goefficients of eﬁlqa in

19
the Fourier expansions of ¢, and (e¢f)
The most important of the Hamilionian coefficients shall now bhe
given in more explicit form. These are

Yi1000, Yoo11o0s; determining the small-oscillation-frequency shifts. They will

first be given for the case of an undistorted closed orbit. From (VI.4)
- - 2
891 = Virooo = 29 (Vy0 o+ 24(Vpq Ly * Vag,u) + #2(Vag, oy * V20,28 * ++-)]

- - - 2 - r
a2 = Vaorra = 2 wW5Vgy o = 240y oy * Yoo 1) * 22 (Von oy * Yoo, * +-+]

{v1.9)
or, by (1.24),
2
Yi1000 = - gwo EE oy ) [:ﬁuu + p1(&n_ y t €nM) + P2z (€n €n2M) e
- [+]
(2p1nM + 203N F eee )
Pc M
- P9y . Yo -
(r1)0 93(P1)2M caae
Yoa140 = gwo Pu( ﬂﬁéno - 91(53 + §HM) + Dz(fn n2M) =~ avs
. 4o
Yo (20, o+ 203113M + )il
Here it has been used that n =n, & 0 for odd v only, and (£ °) =

-vM vM =il

( L 0 for even v only (see Appendix III). Using,furthermora (IV.5)

vM
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or {V.12) this can be written

p 2
Yis5000 = 7 w5 g,g [(;’.L;") l:ﬁ?no' + D«(é‘n_M + cf'nM) + Pz (d‘n_zM + §n2ﬁf) + .““}
—

+2Q2@-?—@']0

Po Py
ez Pe (oo
Vopiio = Wo T L( D) Ld‘no ,01.(0"n_M +dny) + o2 (6‘n_2M + d‘nzm) + .‘l
-2 02 ép .
Q Po }

Comments : It had been shown in (IV.8) that very nearly

2~ 1
Wo"“ﬁ_:

Q

so the shift of both {, and Q; due to momentum deviations is very nearly

dQ1=d‘Qz=-Qd—;-? »

The shift of radial frequency due to non-compensated centrifugal
force is
Th ~ 1 Tq

_ 2 PoTma 1Ty
0y =W o5 2 Ty,

((E%)O had been replaced by its value Eﬁ (111.5); higher harmonics have been
omjtted in the final formula as the even coefficients pz, ... are very smell
for the CERN PS).

&n(¥) may be due to various causes
(i) deviation from ideal magnet n-value (i + §ii instead of 7, where 1 is the
n-~value inside tue seetor centered at # = 0, see Appendix 11T}, In this case

we can write

and

I+

)

myz2
(r'o) [ﬁ 24 (c?n_M + é‘nM) * ps (cF‘n_3M + cs"njM

(I
n
+1
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(i1) Length corrections of magnet sectors, The harmonies produced by thess

have been calculated in (I1I.6). Introducing them results in

[é‘no * D, (d‘n_M + d‘n)[) + D (ci‘n_gM + :5‘:12.“) + :J

= ri?‘} {(QE)F - A@D) 1:1 + 2p, cos 2

(ST ]

{1 - %-:) + .”_—[__}

e
i(69F+&eD)25p,cosf(l—l-‘-?)+p;cos}q(l-&)+.. .
L 2 T 2 Tm
F D - .
49 , A8 are the lengths added to F- and D- magnet ends facing field free
gections, TIf they are length corrections equivalent to fringing fields, we
have from Appendix I

F_ D _ Ty dal
Pm &e - I:‘IT‘ .&O - .&‘6 1 dx_ -

The equivalent length corrections accounting for the field transition across
D-F junctions can be disregarded here, Their contribution to Jdn cancels

practically as it is due fo opposite influences acting elose to the junetion.

(iii) Quadrupole lenses : Using the harmonic analysis of dn for this case,
made in Appendix IT1I1, the frequency shifts due to a set of 5. quadrupole

lenses become

£, ¥Yi1900 2 Po (Tp L - . .
= = Wg 5’ (1'-‘-(;) + Jno = 23 (é‘n-M + d‘nm) + P2 (JH-QM + d‘nzs‘[) T
§q; Yoo140 -
sing—-———M”
= w2z Bo(fmy® o I3 2
= Wg D (1"0) dnp L+<l+2,02 3ty + .,>
2
8in M sin BLI
-~ (— l)m 2(p ._....__g-_. + p _...._.2...... + ..\—I
! ¥n ’ M /
2 ' 2 -

where dn, 18 the average produced by the quadrupeles

37 quu ad

dno = ﬁ_ PQuad = 2ot MQuad

and the lirst leas is located ip straight seelion pumber  m.

i -
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Independent variation of Q, and Q2 can be ohtained by arranging
to sets I and II of quadrupole lenses, located on odd number (m, - m;) af

half periods apart, Jointly they produce

4Q, 2 siingﬂ:l
= wi P2 (Do __2
= Wg 5 r ) [: (n <1 + 2p, it + ..)
6Q2 2
Mn 3Mn
) (_1)m1 (nI i nII) e gin 2, , sin 2,
2 2

In the (Q,, Q) dizgram, a variation of (nI— nII) moves Q,, Q> along the
main diagonal, and a variation of (nI + nII) perpendiecular to it.

The maximum quadrupole strength required to shift § by 4Q in
the CERN P3S is roughly given by

SL N _
“quad ~ 16 49 (L = length of quadrupele lens)

or
1 3B . 2m.16 40
Be @or 3L :
It must be emphasized that the foregoing first approximation
formulae for the effect of quadrupole lenses are very noticeably modified
in second approximation, if S is a small fraction of M {see further below},
In the case of a distorted closed orbit, (VI.9) has to be modified

according to (¥I.7). 1In weorking out the harmonies of the coefficients, we
remember (VI.8) and find I

= S0 s °1, = 3 Sto 1aom T

Q
-
o

i

P2
2
(0% = ed) = (33 - &%) 5 (oF - o)y = oy (33 + D) .

In the second line, squares of py, pz.. have been neglected; alse terms in-
volving ¢y’ and e¢p’, These epnroximations restrict the following formulae

to closed orbits which are not too wavy.

Thus we obtain instead of (VI 9, neglecting p's in

owers higher than 1, and makinr use =of ing
3 , and makinr use () T k . GO {always holding

in our case)
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36 * 6(c? - e2) V40 + ue]

2w {[Vzo + 3¢, ¥ o

+ 2p, [V20 + 3e, on + 6{ac? « o3) V4n + ..]M

v 204 [V20 + 3¢, Voo + 6{a? = c3) Vio * "]2M + ..E

30
2wo[[\f20 at3(e1oV3p0+2e ¥ 30\;*")"‘{("* "02)V400*2 (T2 )V oyt )

+2p, [V 20M+3010V30U+6(c‘ ~-c2) VXOI ee]

+2p20V +3c,,¥ +6{cd- c;) v e ..}

20,24 30,2M 40, 2t

2
2“0[”20,0”2"'v20,m*2°2v20,21\1+' ]

+3(-=Ta[V30,0+3p1V305[+};;2V30’2B{+..]
o _ 3
+6{e3o-c3s) V4O’0+6(c?o)4fnﬂf40 1?2V 40, ool )s
- w2 EQ [ (Emy2lan, + 2p,€nM+292€n2M+ w208 Jp - Ef
+ c,o( )2 LF (EE)M + .{j
LG - s (D, 2 E?o<§§)2§"51 (48 :;7
ong [[vgg -3 e, Vg - 6let - o)V ¢ L]
-~ 2p, ¥ 02 -3 ¢, 30 - 6(e? - gi)v40 + "]M
+20: [ - O . . 0 ... ]QM * ..}

2 Po) (Tmy2 - 3 - zé_\__P
WS 5 {(Po) {Jno 2p,§nM+2p2§n2M+ﬁ..] 20 E
d
+ Gto( }2 [} n

(010 czo)(

s (F)y * jpz(dx)zxt“‘]

o) (L), + 25%0(2)* [ 0 (EB -
19 ry 2 '"'" 2M ;

-

l__m_J
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{1t can be verified that these formulae agree with what would be obtained

for 4&Q, and 40, from (V22,23), apart from those higher harmonics eof %2
3 :
and g;g- which had been neglected in deriving (¥22,23)). Those parts of
2
&n and g;g which are due to the alternating magnets {and not due to, e.g.,

lenses) ean be summed up according to

Pmy2 _2{5-_‘_11_
(Ff) {91 5nM + Pz £n3M + "] = Q ﬁ

Z 2 22
2 o Q_ dn
i) Lo (G2dy + 03 (""7)31«{*“]‘ i &
2n
where g;g ig the derivative at x = z = 0 in the sector centered at #=0,

Omitting the effect of lenses and other additional influences, and

using the approximations wE é%—, SP < 1 the formulae become
- §i _ 4p 1 g T'nm - 0 ,4d%f
6‘Q1 Q (ﬁ ) + 'é-a ;‘: - C,o 2Q ( )( ) + C490 I:'l. (d’;'?')
~ Jﬁ §p - 1 I'm dﬁ -] Q dzﬁ
csz 1 (. - ﬁ;) + Cyp 2_Q 1'? d_x Cop 1;1 d—xz .

Vo2000s Yoozaos Vii11o are the coefficients determining the shift of frequency

with amplitude, From (VI.4) and (I.24)

Vzzo00 = 6 Wg [Vé_o o " 291@40( \I) 4—00‘{)) + .

S Sr B (Imye (Eh), v oy (EE)y v -]

Yoopzzg = 6W; [V40’0 - 291(V40(_M) + Y4O(M)) + .o]

6%2 Do Pmy2z [,d°n d°n
- ﬁ-(;;) [(a;z)o - 491(3;2 Mt .o

L}

Vitt1o

4
4 wO {vzzo + 2p2(v22(_2M) + v22(2M)) + 294 (C-c)]

= - 4 Wo » 6 [v40 0 + o-]
H
- wt Po¢Tmyz (din
= Wy p(rﬂ) [(a—xﬁ 402 ("—?J2h1 + .']

If these coefficients are solely due to the alternating magnets they

ecan ba writtien
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¥a2z200p0 = = ¥oonazzo T

Vigg1e = O &

GCoefficients responsible for the excitalbion of resonances

The terms exciting first order resonences (q = () are discussed

in Appendix Y.

Second order resonances (g = 2Q) are excited by

ot * M
= w2 —_ =
¥2oo0q ® Yo E‘r20,q 2 W v2D:Q‘M 2 Wo vgﬁ,qa-'h! * "]

or, in the case of a distoried cleosed orbit

= w2 [}' q’ 3(},V§0>q + 6 ((c$ - ¢3) V40>q + .:1

1 L2 B (Tpyz dn 1/, 2 _ .2y d°n
-5 5 (I‘c) é‘nq+ e dx>q+2 (e} cz)d?q+ e [ o

Y

¥z000q

i
ha
(=1

W
Terma multiplied by ;ﬁ +.s 0otc, have not beern written down in the second
L

line as they will in general be smaller than the preceding terms; moreover,

only order-of-magnitude guessea are possible anyway in practice, !

1

Vaozoq = w3 [?OQQ = 3(°‘v30)q -6 ((cf - °§)Y40)q + --:}= = ¥z2oe0q

Yiaeog = wé Evllq - 6(02"30)(1 - 24((:‘32\740)(1 ..]

1)

e w? Po (Pmyz _ dny _ d’ny ,
Yo 5 (T'n) 1:2(\‘-‘11)q (e2 &g (c‘czd-—ir)qj

Comments : Harmonies, whose order is not a multiple of the number M of
magnet periods or 3 of superperiods are due to :

(i) fluetuationsof n{harmonics ; Juq);

(ii) perturbatione of the median plane by twisted magneta. The
harmonies (en)q can be calenlated analogously to (En)q by (V.24). For
random twists (V<Ae?> r.m.s. angle per magnet unit) and order gq << M, the

m,s. value, found by the same procedure as (V.32), is
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2, 1 (e 2
: < |(en)q| > = 55 (4) < Ae® >

(iii) Combination of elosed orbit distortions with non~linearities;

. . dn . dn
—_— 1 .
8.g. cq may combine with (i )o’ or more generally cq-vS with (T_)US (in
the presence of sextupole lenses arranged in 8 superperiods} to form g-th

harmonic¢ perturbations.

3prd order resonances are excited by

3 r 2 d dZ
Vigaog = w3 [Vzc + 4(ctvdc)q + --] = - i;i % (r_—r:) (Enq + (e, d‘—x'zn)q + .
. 3 2
- Wy Po/Tmyz dn d*n
3 Vopozog = 3 ﬁ'(;;) [? (e = q - {e2 x7'q + -.:}
3
% ¥20490qg = 7 3 Yoosng
;; Viozeg & < 3 Y30o0q
fi
i 4£th order resonances are excited by .
= A r d*n
. V4aooq = vDU‘Uq = W; [v40q =+ ..1 = - Z? p—c (;_11)2 (a,,_x_? 9 + ..
;- Vazozegq = -~ 6 Vioooq

o
|

*

L~ 3

. 2
- - - Po (Tmy2 d'n
V3oi0q = ~ Vio3eq = (Pa) 4(e &g

p

!

Commentg : Harmonies of order q different from wM or vS sare due to

- . A dn d%n
L. (i} fluctuation of R
v (ii) combination harmonics of a distorted elosed orbit and deriva-
12  tives of n. Such combination harmonics oceur of course also with non-linear-
2 ities of higher orders than those written down, if there are any present.
,é? (iii) Fluctuating twists € : Some of the coefficientis appear only

o on account of such twists. With unperturbed plane of symmetiry, the corres-

%j ponding resonances would not be excited, as

Qy *Qz =¢q
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1+
ad
]

H

Qa2 = q; _ 29,
3, £Q: = q, Q4

I+

3Q»

]

for resonance orders 2, 3, 4.

In second approximation, the coefficients have to bhe

v
€imy&amaq
replaced by corrected ones h& given by (6.9) for one-dimensional
My damaq
metion., In mest applicstions of the theory in the present report, the second
approximation eorrections have been neglected. The justification of this
{for CEEN PS parameters) may be cheecked for the coe{{icients dalermining {re-
quency shifts {see (6.,10)), Taking account of systematic perturbations hav-
ing the magnet period only, we have

I 2

lv
20q
804 = Dy = Yo -42 I —
- 20 - q
q=0, M, 128, ...

with (using (VI.4) and (1.24))

ez oo A Pe Toy- 1
'\?200 = Wqn [Vz(o) ] 2_0, VQ(M) + ..j 2Q p { ) 3 1[-291 S‘LM + -a]
W w 2
- w2 Lt X 4 3= - Loeeerayl
Vaou = "o Vo * 2 Yaeoy* 2 Vocow) .- 20 p (po)zwnm“‘“}
W W
w2 M ~M 21 Pofmyz 1 Mg
Voara) " Yoo Vo2 Yooyt ey )T 3 (250 day+-]

giving

)

4

-

Po Ty O S S SR 2 Ty o’
(p (f-c.)"‘ ‘9“1“) 9> [2 * 2 GayTar T (p. wo) T)*-Tan* |

i

-
—
o
S
N
o]
~
j]
L]
L, |
1
fam |
-
I
D
I
]
-
=
=
L |
-
-
[ —]
il
u
|
'.
P

or

M =0 %? 1 +0.09 g

=

1

|

Thus, for a change of Q of 10%, the first spproximation is wrong by only
about 1%. '

The second epproximation is more noticeable in the calculation
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of the effect of quadrupole lenses, because lower harmonic numbers g appear
in the correction term {i.e, multiples of the number of superperiods).

As to the non-linear frequency shift determined by ha,e {bottom

1..3_‘1?.,.:_?3:..: ,

1

line of (6.10)), there appears a contribution of the quadratic non-linearity

in the second approximation. Supposing first that the guadraiie non-linear-

L i

Gk ity is due to g% in the magnetic guide field, only the zero harmeanic q = 0
§_ is important, and we get
5

t v v

3 hzze = Va20 = J [} | 300] I Q'OF:]' Y2zo ~ ”‘ I‘Joul2

3

2

: %5 (nx)

3 ST Teg* T 48 QF

?

- with n

Voo = - "8 Bo (Tmyz (dny o X

£ 2007 75l p re &Ko 6(2Q)>/*

‘3'. . Vzi0 = IV¥ioo

_ (Emyz¢dny _ Ta di, - (fnye | Lz d’n _4Qf i
d By = (ro) (dx)o T re dx’ Nex © (ro) [}az?)o + 4p‘(a§?JM+°‘ TR dx2

At low and high fields (uncorrected) in the CERN PS the contribution to

hise by n_ may equal or predominate that by oL

Considering now a quadratic perturbation produced by sextupole
lenses, its contribution to hzzo may be enhanced if small denominators
(30-q) appear in (6.10), For the CERN PS structure for example, with § = 10
superperiods this would happen for _ﬁ = 20, unless the coefficient VBO(QS)
is zero.

The terms in the perturbation Hamiltonian depending on the deriva-

tives (last line in (I.24)) have been neglected in the present calculation
of Hamiltonian coefficients. Using numerical parameters which are typical

for the CERN PS, those ferms are formed to be small in comparison with the

preceding terms {which depend on the coordinates only). We check the in-
fluence of the third degree term E [ (x*)*+ (2')?], contributing to the
1

quadratic non~linearity in the equations of motiem : the first noticeable

effeect would be on the shift of @ with displacement of the elosed orbit.
Therefore, we calculate the contribution to h,,pco of the corresponding

term in the Hamiltonmian (VI.7) for a displaced elosed orbit, i.,e. of

R Bletd b o amion St




1
e le (1) + e, {y5)? + 2¢% y,yi + 2e§ y,v$] .

After transformation to 4&., P, 82, 02 according to (12,3) (12.6), we
find

1 * ® * - - . 3
his0ca = ‘”'{2C1W2"2 + of(wywy + Wth)]o ~ Gy Wg 3
m

2r

having used (11.15), (Vv.1), (V.2) and (VI.8). Comparing‘this with ¥y ian0

as given sarlier in this appendix, the effect is seen to be equivalent to a

dn .
i following from :
(Mp,)?
d -1
e (I (@), - - o = - oo Lo

This is indeed an extremely small non-linearity.
The same result was also found in apperdix V.

The pelynomial expangion of n{x), on whieh the perturbation ana-

lysis in the present paper is based, requires some comment : In practice,

the expansion must be limited to & small number of terms. The formulee in

2
this appendix do not contain derivatives higher than g;g , thus eorrespond-
ing to
dn 1 a2
n:_n(0)+(d—i— x+§(-—zn Xao
=0 =0

¥hen approximating a given function n(x) by a finite polynomial, the rele-
vant first terms of the Taylor expansion of n(x) deo in general not provide
the optimum approximation. This is rather obtained by a "least square' fit
of the polynomial %o the given function within the interval x of interest
(i.e. the aperture of the vacuum chamber). For illustration, 4th degree and
2nd degree lesst square fits of n(x)-cﬁrves of the CERN P3S are shown in
fig. 24 . Furthermore, & 2nd degres polynomial, comprising oenly the first
3 terms of the fourth degree Tit, has been plotted. Although giving a better
approximation for small x, the latter 2nd degree polynomial ig far off for
larger x, whereas the least square 2nd degree polynomial keeps closer to
the given n{x).

There is a difficulty which needs some clarifiecation : If a finite

least square polynomial expansion is used to represent also the part of n{x)
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fluetuating with &, this expansion may contain powers which do not appear
in the rigorous Taylor expansion, for instanee an x term whieh may be

misgging in the rigorous expansion, Correspondingly & 3rd order subresonance

could be excited by the approximation term which at first sight would not be
3 excited by the rigorous expansion. Looking, however, at (9.2) we find the

general excitation term te be (specialized to the third order subresonance)

2 i3[(q-2)2 + 4]

K A3/z.+ h A%/2 4+ h AT 4 \ ) 3 + conj. complex
/'- '.'I -
( 30p 1p 52p Y,

:11..?

Ll R

i3[(q - B) ¢ + 4]
= - [%1 g":'\ (WOAf/a)J*' g'(gx_’?)p (WGA1/2)5+ ..]B 3 + conj. COIIIPIBX
- /p L

So actually all odd powers (53 in the Hamiltoniam or > 1 in n(x)})} are con-
tributing to the excitation (for an even order subresonance it wouldzbe the
even powers), Using a least square {it limited to the derivative §;§ at
the maximum means replacing the excitation term by the simpler one

h30p AV o - %: gg)p (wo 4'/2)3, which approximates the more complicated
dependence on amplitude in the average. The results obtained from this’
approximation can be expected to give fairly correet overall beating ratios
and beating periods, whereas the approximation be less good for the détails

of the motion.

There is some econtribution to non-linearities by fringing fields

R T R WP TR N T S TR T

Fa e B

at magnet edges and junetions., Expressing the perturbation of B by fring-
ing fields in terms of equivalent length A¢ of the ideal field as explained

in Appendix I, the integrated contribution of one boundary to §n is accord-
ing te (1.20)

o _rpd b nx pe(x) 1 _n ro dAf | _aAL ] naég
[‘““”' Ba| R B T TR (MR & TR T

Afg is for x = O the equivalent length for gradient introduced earlier,

ot

,'\

From this the integrated contribution to g}% follows as
an gy _n e 2ndse r o

: - T'm dx ql’m dx 'm dx

The contribution to the quadratie non-linearity is the meost im-

portant one, Its zeroth harmonic {gg) become s
o



T 1 -
T ) L 1 -w L [0 17T 1 S .
TR HH H i T : I T 5 5 H HH +
s1avthl 3 HHHIE ST I H AT ] HHHTE 3 1 HH HEH FHIHA ]
; HiHH i | HHHHHH R 3 ! i i HHH i ! ! : ! ~
4 3 H H : HHEH e +H 4 “
1 L1 adan ¥ L 1] ] ¥ ESfpass ¥ T P | LT ] 1 ¢.w !
w.-.. H {1 [ HHTE - b H R 1 [ HHEHH AT TR TE 017
HE 1 SEEIEALE Sl Hilk - sesdiy T
H P I H $HHE HE O (18 B R R e 1 THTHH " H
HH i H Tt 4 Biu H ' HHH
.Hnu.r mmi I 1 il Hisiits : FH I EEE 1% hH ‘nw‘
3 I I TIH FH HH H H ]
¥ i i I ; au HHHED ; Fdd n T i : g ] i
M ABT:L ¥ km y qmﬂ._- [ “ (il H Hl T EEEEESEE PERTE 1.* H
1 rifl] L g H ! B TEEE: v .
| 1 hinti n.__m:_.\ R 3 1 1HHHHIH 1 IRTHIHTHIA L
.U.xl 11 SR ] I 4 m r FHHIT i 11 ¥ g ...m l | .r 1]
i #h ; | 1T i eiiisifittte [ A
1 S HITH] HHH HHH Y g TE : S
b ALY . AL K .‘. HH KRN EISRL HH LA e LT HH HE]HH L il [
HHIHTRE SEnE 41 HTHjAI Sy e R b e HIHHT I
Hpnaaiih | it R R e L e e P R ik i
{ H Y ® kT H HH 1 THHTH
K —- [ * 1] 1] i H+ H-Epsp w4 Lia
iR il B b B
il I ¥ D e I I T ¥ 3 ¥ 3
L.w-. 1| _ ks .m R % . .\nr 1 ._u “wun. ] JH 1 1 LT - %.
: L L LT 14 HH THTE P
b B afein el 260 DA TTHERG TR HHTEE A BN HHEHBH R T (i i
i 5 H $3HE HH H Hii 4 : i
¥ 1 1k 48 1 HH 1 HH- L] i 111 | Li] N FHH rrr.r e
)| padidyvinshe 1 m 4 L i H 7 ELE L Yol
il HE s HHHEH A HrE '
Tl ik L i it B il
TG T e S3Nie ; fives
T i TR T N : L K..:
1 Hantksisigte T i T L T i H T
s TSR T SRR
ks Lt i 3 3 :
. R IR
T AT BLH RN ;
tyll B L . vt b | 1
y $h5d I il 7 I
L}
ik ] L T 11 13 iH
Hhl i il b
| . . I i ks i HHITHE i
RS S ¥ ..irunw L “* HHRT m T T i ._...#W..L-... ...“urn L 3 u __.v.‘ ¥ ] by
HH . w i “ ! | —_, M) - 4 HEE Hy t : .m
] ] I 18 (T 1
114 i H ul m 111 i HEHE {1 N [ THE aletialy ris TH m 1
1 M y TR r4 || 1441 1 T - -H+1
! 11 i HIH i eitH ot f y 1 q 3
ill S HilsHataitie . L s R R

(full

The 4th order approximation

ieal n{x} curves by #4th order apd second order polynomials,

Line) represents measured values fairly accurately,

mpir

Fig, 24 Approximation of e



(QE\frlngzng !1e1d3= 53.5_5:( d&éﬁ> . ( d&8G> ;] .
dx/o om T X Jends dx junction boundarie

- 149 -

In the CERN P3 roughly the fellowing comtributions to (EEJO ares Ffound

Bo
o (G
magnets =
o
end faces (g%)
=]
. b dn
Jjunctions | =
Q
total dn

£

&),

Except for high

= 150 3000 14000

= - 1.4 - 0,07 1.4

= 0.27 0.27 0.36
= - 0,31 - 0.31 0

= - 1.4 - 0,11 1.8

(Gauss

cm

-

cm

-1

cm

cm

fields, end and junetion effects practically cancel.



i
i
2
B
i

ii

- 150 -

List of references

Page no-
in
CERN 57-23

Adems, J.B. and Hine, M.G.N. [1953a]. Notes on the resultg obtained

from the computing program investigating the effecis of non-linear
magnetic fields on the build-up of betairen oscillations by azimuthal
inhomogenities,

CERN PS/JBA-MG.EH 1%, teiniiivanannnnnans vecaasanneea P tereaves 2, A7
62, 122

Adams, J.B. and Hine, M.G.N, [1953b]. Further notes on the results

of the computing program investigating the effects of non-linear
magnetic fields on the betatron oscillations in a strong foeussing
proton synchrotron.

CERN-PS/IPA-MGNH 2%, +-vitivineonavavnassstossessrannnaanasssasans s 2, 47
Adams, J.B. and Hine, M,G,N, [1953c]. Theory of the non-linear sys-
tem used in the stage 1 computation.
CERN-PS/JBA-MGNIT 3%, ceveenmcecwusescoaraasonns vevieaaaeen tersensranns 2, 47
Adame, J.B. and Hine, M.G.N, [1953d]. The choice of magnet sector
srrangemsnt in the strong focussing synchroirom. o
CERN‘PS/JBA"MGNH 17*, P N N A N N I IR ) P AN B RN N B A - 2, 47
: 62, 122
Adams, J.B. and Hine, M.G.N, [1954]. The variations of the parame-
ters of an A.G, synchrotron with g and n.
CERN PS/JBA-MGNH 22% .. iivusstusarnassrennsssssrsssrassncntsaansas . 62
Adams, J.B. and Hine, M.G,N, [1956]. Variation in the Q value of a
synchrotron with radial displacement of the orbit.
CERN-PS/JBA-NGNH 25% cvvvunnennns Cesistasseataacroratatisaranan veess Bl
Bell, J1.S. [1953]. Basic algebra of the sitrong focussing system.
(AERE T/R 1114).
Atomic Energy Research Establishment, Harwell.............. feeseanas 2, 75

Bell, M. [1955]. Non-linear equations of motion in the synchrotron.

(AERE-T/M 123).
Atomic Energy Research Establishment, Harwell ....... cessasasareans .
Beth, H.J.E. [1910]. The oscillations about a position of equili-

brium where a simple linear relation exists between the frequencies
of the principal vibrations,

Koninklijke Akademie van Wétenschappen, Amsterdzm, B. Yerhandelingen,
volz, pt 619—34, ?35-50, PE e AR Y ek kA e s a N I RN RN R *ra s s s arasn 3, 23

-
unpublished, but svajlable for consultation at main accelerator centras,



- 151 -

CERN-PS. Magnet measurement group [1957].

CERN PS/ADE-Int® F cevncwnnarenss errasarcanans varanesane vasmassarerare

Cole, W.T. [19354]. Perturbation theory of A.G. motion with non-
linear restoring forces. (MURA-FTC-1).

Midwestern Universities Research Assoeiation, Madison seccaecacaans

Courant, E.D. [1949]. A resonance effect in the synchrofron.

Journal of applied physies, 20, p. 611-6 ....... Crrerennrasasaan veaa

Courant, E.D. [1956]. Non-linearities im the A.G. synchrotron,

In CERN Symposium 1956, Proceedings, v. 1, p. 254-61 ........ veenen

Courant, E.D, Livingston, H.3. and Snyder, H.S. [1952]. The strong-
focusing synehrotron ~ a nmew high energy acceleraftor.

Physical Review, 88, p. 1190-6, ..... feresanesrienssassennnaen R

Courant, E.D. Livingston, M.S., Snyder, H.S. and Blewett, J.P.{1953].

" Origin of the "strong-foecusing” prineiple.

Physical Review, 91, p. 202-3, ..... R T EE

Dennisen, D.M, and Berlin, T.H. [1946]. The stability of orbits in
the racetrack.

Physical Review, 69, p. 542-3, ..... Ceeeraseanvaterataitarasesasana .

Hagedorn, R. [1955]. Stability of two-dimensional non-linear oscilla-

tions with periodical Hamiltonian; applied to the non-linear beta-
tron oscillations of an alternating-gradient synchroiron.

CERN"‘PS/‘RH'?* S R N R R I I N A IR I I P N

Hagedorn, R, [1956]. Stability of two~dimensional non-linear oseill-
ations with periodical Hamiltonian, applied te the non-linear beta-
tron osecillations of ecircular particle accelerators,

CERN-PS/RH 100%™ 4.cirrune vevansanrntsnsaacerans eareseessavansanney .

Hagedorn, R. [1957]. Stability and amplitude ranges of two dimension-
al nen-linear osecillations with periodical Hamiltonian zpplied io

betatron oscillations in circular partiecle accelerators. Parts I and
II.

CERN 57-1 {CERN Reporta. Geneva, 1957) ticsveasacrsacnsnsssscssannns

Hagedorn, R, Hine, M,G.N. and Schoch, A. [1956]. Non-linear orbit
probless in synchrotrons,

In CERN Symposium 1956, Proceedings. v. 1, p. 237-233 seecccrccscns

Hine, M,G.N. [1953]. Topies on mon-linear orbit theory.

In lectures on the theory and design of an alternating-gradient pro-
ton synchrotron., Geneva, CERN, p. 69-8] ,....vvecaens cresiaeens caee

* [rc erraturm



et Ml‘-"«‘-W:'!.r‘.

e e, 86 A
ety i R
R R U

Ay P
DA

Johnsen, K. [1956]. Effects of non-linearities on the phase lransition.
In CERN Symposium 1956, Proceedings. v.l, p. 106-111 4evvrvnerinenees. BB
Judd, DP,L. [1950}. A study of the iﬁjection process in synchrotrons

and betatrons,

Thesis : California Institute of Technology, seeeseacacs .a

LIS LRI B B N Y ) 3’ 23

Kerst, D,¥., and Serber, R,[1941]. Electronic orbits in the induetion
accelerator.,

Physical Review, 60, p. 53-8, ........ setatrsenanasa e esenns

Kolomenski, A.A. [1956]. On the non-linear theory of betatron oscilla-
tions.

In CERN Symposium 1956. Proceedings, v. 1, p. 263-78 ... ............. . 4

Krylov, N.M. and Bogoliubov, N.N. [1937]. Introduction to non-linear
mechanies).

Kiev’ 1937 LS I IR R N RN R R R R R R R R N R BN R N B L L N L N I LI B I I B R B N B L N LI B 3, 2}

Liders, G. {19532}, Line theory of betatron oscillations.

In Lectures on the theory and design of an alternating-gradient proten-
aynchrotron., Geneva, CERN, 1953. p. 45-67 veiievrieninnnns srennaa . 2
Lider, G. (1953b). Statistical analysis of closed orbit and stop bands.
CERN-PS/GL 8* R EEEREREE T I I A I AR B R BN LR R R S B L L L B L B R R B B B N 4 W aa s 62’ ]22
Liiders, G. [1935]. Uber den Binfluss von Fehlern des magnetischen

Feldes auf die Betatronschwingungen in Synchretron mii starker
Stabilisierung.

Nuov, Cim. Suppl., 2, p. 1075=146, .cuvrnenenrienranrnannannan ceanaeens 2, 02
Liiders, G. {1956]. On the influence of irregularities of magnetic field
on betatron osecillations in an alternating gradient synchroiron,
CERN 36-8 (CERN Reports, Geneva, 19386} .ueiiiitorsreenncccnonnans eeres 2, 62
Moser, J. [1955]. StabilitEtsverhalten kanonischer Differentialgleich-
ungssysteme.
Nachrichten der Akademie der Wissenschaften in Gdttingen. Ila. No. 6,
p‘ 8?‘120) MR T E T R L R R L N T A N I S S A R R EE R R N - 2, }l
23, 26,
32
Parzen, G. [1956]., Non-linear resonances in alternating gradient
accelerators., {M/RA-200),
Midwestern Universities Research Association, Madison ........ ‘et rasasa 4

Parzen, G. [1957]. -Coupled non-linear resonances in alternating gra-
dient aceelerators (MURA-217).

Midwestern Universiiies Research Association, Madison .suvvevensravnsves 4.




Powell, J.L, and Wright, R.S. [1955] Non-linearities in A.G. synchro-
trons. (MURA - R¥/JLP 4).

Midwestern Universities Research Assoo1at1on, Madison, .c.cvevsvsnvcaes 2
Sehoch, A. [1955]. Orbit stability in a synchrotron with non-linear
restoring forces.

CEBN“PS/AQSG}L- 2* " e F B EERT HAS P e LR R R R L L R N L B R R - 3

sturrock, P.A. [1955]. Non-linear effects in alternating gradient syn-
chrotrons (AERE-X/R1771).

Atomic Energy Research Establishment, Harwell, .....vocuviivennaaaes eee 2, 23
Symon, K.R. [1954 }]. A swmooth approximation to the alternating gradient
orbit equations. (MURA-KRS-1).
Midwestern Universities Research Association, Madison, ..... O
Symen, K.R. [1934b). Smooth solution to one-dimensional AG orbits with
cubic forces (MURA-KRS-2).
Midwestern Universities Research Associstion, Madison ....cieevsvanees. &
Symon, K,R, and Sessler, A.M, [1956]. Methods of radio frequency accel-
eration in fixed fiald aceelerators,
In GERN Symposium 1956. Proceedings. v.1, p. A4=38 cuiaiinrreenanns 7 4
Whittaker, E.T, [1937]. A treatise on the analytical dynamics of
particles and rigid bodies. 4th ed,

Cambl‘idée, Uni\fer‘sit}' PS8 ccectsensssananuvrisrrsrrscssdassboctsrsnaceas 75




AR
.

i il S,

CERN 57-2%- S7-2.4

Proton Synehrotron Division
Ist February 1938

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE
CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Theory of linear and non-linear perturbations of betatron oscillations

in alternating gradient synchrotrons

by
A. Schoch

GENEYE



p.68

p.151

CERN - Scientific Information Servlce . - CERY 57-21
Geneve 23 - Cern

Erratum

The following report

Schoch, A. Theory of linear and non-linear perturbations of
betatron oscillations in alternating gradient synchrotrons

wa3 given in error the number CERN 57- 25 #ould you please change
this number to

CERN 57-21

O yOUTr COPY.

The following items should also be added to this report :

a footnote reading :

*# T4 should be noted %hat "smooth motion" wvalues have been used for

the closed ¢rbit hermonics. Rigorously the wriggle modulatiocn of
the closed orbit by the magnet periocdicity can combine with the
magnet periodicity to produce exciting harmonics without lenses,
which would be, however, about an order of magnitude smaller than
those given above.

a reference as follows

Hagedorn R. and Schoch 4. (1957). Stability and amplitude ranges of

two-dimensional non-linear oscillations with periodical Hamilionian,
applied to betatron oscillations in circular partiole sccelerators.
(Part III).

CERN 57-14 (CERN Reports. Geneva 1957} v.ueevrvuissacanrnvennansans 44
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