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Extraction of Mechanical-Reactivity Influences from Neutron Noise Spectra at
the IBR-2 Reactor ∗
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Neutron noise spectra in nuclear reactors are a convolution of multiple-induced reactivities. For the IBR-2 pulsed
reactor (JINR-Dubna), one part is represented by the reactivities induced by the two moving reflectors, and the
other part by other sources that are moderately stable. In the present study, using recordings of the mechanical
noise of the two moving reflectors, their non-linear correlations into the power spectra of the reactor are extracted
using statistical analysis. The remaining noise sources are moderately stable noise and can be further monitored
by other automated reactor diagnoses.
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Neutronic processes in nuclear reactors have a
probabilistic character due to the quantum mechanics
of scattering and the stochastics of propagation in ma-
terials. Design is mostly performed on the equations of
neutron flux transport (in energy and space) and the
associated effects (fission, thermal fluxes, etc). Statis-
tical deviations from average quantities give, however,
a complete image of the neutron physics in the reac-
tor, i.e. the so-termed neutron noise, described largely
using Markov-chain theories. The theories associated
with the underlying stochasticity that produces said
fluctuations are actually a century old,[1] stemming
from population studies. It was thus shown that
(Alphonse) de Candolle’s conjecture on the extinction
of family names[2] leads the case of neutron chains to
non-ergodic behavior. Such theories were picked up in
nuclear physics by Feynman, de Hoffmann and others
to describe neutron processes in fission,[3] leading to
the Feynman α-formula
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which shows the fluctuations (1) being over-Poissonian
(due to correlations of neutrons in the same chain),
and (2) the neutrons produced in the same group sta-
tistically disappearing (exponentially) all at the same
time. The modern theoretical approach is given by
the Pal-Bell equation,[4] as an applied case of the
Chapman–Kolmogorov master equation to Markov-
chain neutron processes. Complexity-based pattern
recognition analysis is one of the modern technologies
applied today.[5]

In addition to the neutron stochastic behavior is
the modulation of the neutron flux by various reactiv-
ities: some due to two-phase liquid flow (bubbling),
or fuel embrittlement, mechanically induced reactivi-
ties, etc. Any addition to the spectrum may be de-
tected and classified, issuing a specific warning. In
this respect, neutron noise spectrum analysis is a far
reaching tool in nuclear safety.

The problem, however, is that all the effects are
convoluted and that each individual pseudo-transfer
function (non-linear relation through which a source

noise spectrum reflects in the reactor’s power noise
spectrum) may be quite complicated.

In this respect, it is important to “subtract” all
known influences such as to have a “pure physics” spec-
trum, in which any stray effect is easily spotted.
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Fig. 1. Details of the IBR-2 reactor showing the active
core and two movable reflectors.
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Fig. 2. The reactor pulse structure: four satellite pulses
with a smaller intensity of roughly 2800 are present in
between the basic pulses.

The IBR-2[6] is a 2MW nominal power pulsed fast
research reactor with PuO2 fuel elements. The reactor
coolant is liquid sodium. The pulsed mode of IBR-2
operation is enabled by a reactivity modulator consist-
ing of two rotating parts: the main movable reflector
(OPO, at 1500 rpm) and the movable reflector (DPO,
at 300 rpm), as shown in Fig. 1. Each reflector creates
reactivity pulses. For nominal DPO rotation speed,
the reactivity of every fifth pulse is positive, i.e. the
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reactor becomes prompt neutron-supercritical for ca.
0.400ms (0.215ms half-width), with a repetition fre-
quency of 5Hz (Fig. 2). As a result, powerful power
pulses of 5Hz repetition frequency take place in the
reactor.
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Fig. 3. Degradation of the power spectrum due to the
mechanical noise of the OPO and DPO reflectors in fre-
quency channel 73 versus channel 249. It can be observed
that the power noise vibrations are correlated to a joint
increase in noise levels (in the respective channels) of both
the OPO and DPO reflectors. The quantities plotted are
the FFT values in each frequency bin 73 and 249 (approxi-
mately 0.7Hz and 2.5Hz) normalized (on log-scale) to the
average over the full sample of 96 spectra.

The pulsed operation mode of the reactor is es-
tablished when the prompt neutron supercriticality
(δk − β) reaches the “equilibrium” value ǫ

m
=ǫ

m0
≃

1 · 10−3 (at 5Hz), at which the reactor can be peri-
odically pulsed. For supercriticality smaller than the
“equlibrium” value, the amplitude (and consequently
the energy) of each subsequent pulse is smaller than
that of the previous one, which means that the re-
actor is attenuating. There are two main causes for
pulse energy fluctuation in the IBR-2 reactor: the
stochastic character of fission and neutron multiplica-
tion processes, and the fluctuation of external reactiv-
ity. Stochastic noise dominates power fluctuations at
low neutron intensity for powers below 1W. Pulse en-
ergy fluctuations at high power have adverse effects on
the operation of the IBR-2 reactor: in the dynamics,
startup and adjustment process, the performance of
the experimental equipment, etc. However, the power
fluctuations also have a positive aspect as a tool for
reactor diagnosis. The most important characteristic
of a pulsed reactor is the relative dispersion of pulse
energy fluctuations, which is a convolution of stochas-
tic fluctuations and external reactivity fluctuations.
All the noise diagnostics of the reactor are based on
research into this noise component.

During the reactor operation time, slow degrada-
tion (change in the shape of the spectra) of the power
noise is observed, mainly due to the degradation of
the mechanical vibrations of the movable reflectors,[7]

see Fig. 3. It is seen that some channels remain rel-
atively steady (channel 249, approximately 2.5Hz),
while others (channel 73, approximately 0.7Hz) de-

grade over time. Other parts of the spectrum repre-
sent uncontrolled sources of the reactivity (vibrations
of fuel elements, changes in the coolant density and
flow rate, etc). The vibration states of the movable
reflectors are represented by a set of FFT spectra of
their axial oscillations (towards the core) measured
during reactor operation. Reactor power noise spec-
tra were obtained by pulse energy measurements with
an ionization fission chamber. The frequency range
for all spectra is 2.5Hz (the Nyquist frequency of the
5 samples/s acquisition rate, and half the energy rep-
etition frequency of the pulses). The total number of
FFT intervals (“channels”) is 256, plus a zero chan-
nel (0.00973Hz/channel). The collection of spectra
is 96 (roughly three years of reactor operation), and
the vibrational spectra of the moving reflectors were
measured with accelerometers.
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Fig. 4. Comparison of the noise standard deviations of
the subtracted spectra in each frequency bin for the power
noise and mechanical noise of the OPO and DPO reflec-
tors. The vertical offsets are arbitrary and used to visual-
ize all three spectra in the same plot.

Operative diagnostics and the prediction of noise
behavior with time mean separating the reflector
degradation trend in the power noise, since the
reflectors “contaminate” the spectrum in a non-
anticipatable manner. Thus, if the pseudo-transfer
functions are known and the reflector mechanical noise
is measured, then said contamination may be taken
out, leaving only moderately stable noise sources in
the spectrum.

The first idea in such an analysis is to verify the
correlations between the power noise spectra and the
mechanical vibration noise spectra of the two moving
reflectors. The result is not an encouraging one, as
there is very little linear correlation; see Fig. 4. The
figure shows the standard deviations of the subtracted
spectra computed for each frequency bin over the full
sample of 96 spectra. When there is a large spread
in values in the reflectors, we would expect the same
in the power noise. Qualitatively this is true, how-
ever, not in the first-order (linearly). It is not surpris-
ing that since the reflectors were designed to give very
sharp power pulses, then the pseudo-transfer functions
should be expected to be highly nonlinear. The next
option is to find analytical expressions of the pseudo-
transfer functions that describe how the Fourier trans-
form of the OPO/DPO mechanical vibrations reflect
in the Fourier spectrum of the neutron noise. For this,
a similar, but significantly more complex statistical
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analysis has to be performed. Let the power noise
spectrum be denoted by z, representing any of the
0+256 channels (available in 96 spectra):

δz =

N∑

i,j

Cijδ[fi(x)gj(y)] + ρ, (2)

where x is the vibrational noise spectrum of the OPO
and y of the DPO. The functions f and g are a polyno-
mial base set of functions with which non-linearity will
be modeled. The δ’s represent variations in the quan-
tities around the average. The coefficients Cij mini-
mize the error of the fit, and ρ is the residual, which
should not contain any “overlap” with the terms in the
sum (or else the sum is not correctly determined). By
overlap it is understood that none of the terms are sta-
tistically correlated with ρ. Thus, ρ is just a random
residual, hence minimal:

〈ρ2〉 =
〈(

δz −
N∑

i,j

Cijδ[fi(x)gj(y)]
)2〉

= min, (3)

where the angled brackets denote the statistical av-
erage. Let φmn(x, y) = fm(x)gn(y), with f being a
polynomial of order m and g of order n. By taking
the derivative with respect to all Cij , the minimiza-
tion procedure yields:

N∑

i,j

〈δφmnδφij〉Cij = 〈δzδφmn〉 (4)

and by inversion Cij is obtained in all orders theoret-
ically.

In practice, the inversion is a complete disaster due
to the innumerous inter-correlations of the terms. For
illustration purposes, consider the first-order (i+ j =
1), OI :
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)

,

(5)
where ∆ = 〈δ2f〉〈δ2 g〉 − 〈δfδg〉 2 is zero for f and
g is correlated. What happens in practice is that
such terms are correlated to quite a degree, and hence
δg = δf + ǫδγ, where γ is a function with small corre-
lation to f and ǫ a small parameter:

C01 = ǫ−1 〈δ
2f〉 〈δzδγ〉 − 〈δfδγ〉 〈δzδf〉

(1− α2)〈δ2f〉〈δ2γ〉
,

C10 = − C01 +
〈δ2γ〉 〈δzδf〉 − 〈δfδγ〉 〈δzδγ〉

(1− α2)〈δ2f〉 〈δ2γ〉
,
(6)

where α is the correlation coefficient[8] between f and
γ, α ≃ 0. Both coefficients are singular for ǫ → 0.
However, in terms of f and γ:

C01δg + (−C01 + C)δf = Cδf + (ǫ · C01)
︸ ︷︷ ︸

finite

δγ, (7)

the expression is well behaved.

This is nothing but a statement for using a pro-
cedure in which the polynomials are determined in
increasing order, and the next order is always uncor-
related with all the previous polynomials. To do this,
the computer code starts with the highest term of the
next order. It then subtracts the polynomial part cor-
related to the previous polynomial in rank in the set.
From what is left, the previous one is subtracted and
so on till the set is exhausted. What is left will be
uncorrelated to all polynomials in the set. The poly-
nomials have a single term for Ozero, two terms for OI,
three for OII and k + 1 for Ok. The complete expres-
sion in Ok has n = (k+1)(k+2)/2 terms, respectively,
and 65 terms for OX (since the Ozero is not needed).
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Fig. 5. The result for consecutive uni-dimensional (1D)
subtraction of DPO (in increasing order, from OI to OIX)
and OPO vibrational influences (in increasing order, from
OI to OIX) around channel 195 is shown. The quanti-
ties plotted are the standard deviations of the subtracted
spectra in each frequency bin over the full sample of 96
spectra.

After finding the coefficients, the pseudo-transfer
function can be used to take out the OPO/DPO vi-
brational influences from the power spectrum:

〈ρ2〉 =
〈 (

δz −
N∑

i,j

Cijδ[fi(x)gj(y)]
)2〉

, (8)

where the average for each channel is taken over its
entries in the 96 spectra of the collection. The re-
sult for consecutive uni-dimensional (1D) subtraction
of DPO (in increasing order, from OI to OIX), then
OPO vibrational influences (in increasing order, from
OI to OIX) around channel 195 is shown in Fig. 5. The
quantities plotted are the standard deviations of the
subtracted spectra in each frequency bin over the full
sample of 96 spectra. This channel seems to be corre-
lated to the DPO and OPO vibrational noise spectra.

It can be seen that consecutive 1D-subtraction
(DPO then OPO) does not flatten out the combined
influence, and that true 2D correlations (OPO and
DPO) are needed; see Fig. 6. The quantities plotted
are the standard deviations of the subtracted spectra
in each frequency bin over the full sample of 96 spec-
tra.

The spectrum remains almost the same after sub-
tracting polynomials up to Xth order (65 polynomi-
als), less the major resonance around channel 195.
However, two small peaks are uncovered at channels
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118 and 123, see Fig. 7, and these will be examined to
discover what they are. The quantities plotted are the
standard deviations of the subtracted spectra in each
frequency bin over the full sample of 96 spectra.
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Fig. 6. The result for simultaneous (2D) subtraction of
OPO and DPO vibrational influences, fromOI toOX. The
quantities plotted are the standard deviations of the sub-
tracted spectra in each frequency bin over the full sample
of 96 spectra.

2

0

4

6

8

10

12

14

16

18

100500 150 200 250

OPO-DPO subtraction: OI-X

Possible hint

2 new peaks uncovered

A
rb

it
ra

ry
 u

n
it
s 

(s
c
a
le

d
)

Channel

Fig. 7. Two small peaks uncovered at channels 118 and
123 after the correlated pedestal is subtracted. The quan-
tities plotted are the standard deviations of the subtracted
spectra in each frequency bin over the full sample of 96
spectra.

The spectra were scaled to have the main peak at
115 of the same amplitude. However, as correlative
information is subtracted, the pedestal (the plateau
underneath the peaks) does go down; see Fig. 8. The
quantities plotted are the standard deviations of the
subtracted spectra in each frequency bin over the full
sample of 96 spectra. This region is significant in that
it displays both correlated and non-correlated peaks,
and correlated and non-correlated pedestals. The full
spectrum cannot be visualized in its entirety, rather
section by section, with this section being the most
illustrative.

An example of how a pseudo-transfer function
looks (for scaled entries up to a maximum of the OPO
and DPO for channel 118) is given in Fig. 9. The plot-
ted function gives the expected amplitude of neutron
power noise, for a given level of the DPO and OPO
vibrational amplitudes.

A natural question then arises: at what order do

we stop subtracting? After all, with an infinite series
in the end, all information will be subtracted regard-
less of it being truly correlated or not. Figure 10 gives
some indication in this respect.
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Fig. 9. Example of the pseudo-transfer function (for
scaled entries up to a maximum of the OPO and DPO) for
channel 118. The function gives the expected amplitude
of neutron power noise for a given level of the DPO and
OPO vibrational amplitudes.
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Fig. 10. The effect of subtraction for a correlated (182)
and non-correlated (185) channel versus polynomial or-
der. It can be seen that saturation occurs somewhere after
OVI for the correlated channel. The quantities plotted are
the standard deviations of the subtracted spectra for fre-
quency bins 182 and 185 over the full sample of 96 spectra.

Channels with correlated information saturate
somewhere after 6–7 order polynomials.

To better evidentiate the remaining data in the
spectrum after subtraction, the following contrast
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function is used (Fig. 11):

contrast = ρ
( ρ

δz − ρ

)2

, (9)

where the quantities have been defined in Eqs. (2) and
(3). The method is order-continuous and shows that
6–9 orders are sufficient to reach stability. The mo-
tivation for using such a function is to see the peaks
better. It is not a physical motivation, rather one re-
quired for automated data processing (that needs to
extract the position of the peaks).
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Fig. 11. Contrast function (the formula in the text) used
for better evidentiating the remaining data after subtrac-
tion. It can be seen that it is order-continuous and that
9–10 orders are sufficient to reach stability.
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large majority of channels show no correlation to the vi-
brations of the OPO and DPO reflectors. The few that
do seem to reach the best parametrization for polynomial
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In principle, it could be exaggeratedly asserted
that correlation does not exist in low orders, rather
only in some high (unaccessible) order. How is it possi-
ble to find out? The answer is that so far, the method
does not pay a cost for using innumerous parameters,
an approach that at some point becomes unphysical.
The Akaike information criterion[9] folds this in by
adding a cost, a function of the number of parameters
used, based on entropy estimates. For each frequency
bin we have

AIC′c =
2n

1− n+1
N

− 2 lnL ≃
2n

1− n+1
N

+N ln(ρ/σ2
eff),

where N is the number of observations, n the number
of parameters used, L the likelihood of the model and
σ2
eff the effective standard deviation (taken in this case
to be that of z in each frequency bin). In the uni-
variate normal distribution statistical model (Gaus-
sian probability), the expression becomes a function
of ρ.
Figure 12 shows the Akaike information criteria

for all channels versus polynomial order. The large
majority of channels show no correlation to the vi-
brations of the OPO and DPO reflectors. The few
that do seem to reach the best parametrization for
polynomial orders V–VIII. The Akaike information cri-
teria are orientative as we do not have an exact σ2

eff
and may overestimate this quantity. The net effect
is pulling the optimum polynomial order up to 1–2
orders higher. Since z = z(x, y), we would need a
statistical sample of z for each (x, y) pair, which is a
luxury not available, hence the approximation of σ as
zrms in each frequency bin.
We have presented a method to correlatively re-

move (degrading) vibrational influences from the re-
actor power noise spectra, for which collateral (me-
chanical) noise measurements exist. The sifted spectra
contain (non-degrading) stable influences, for which a
contrasting function is proposed, itself stable with re-
spect to the order in which the above subtraction is
performed.
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