
fxl C++ suite of FFT methods
 v1.2.4() / 21.01.2023 Mihai O. Dima, Group-1 Nuclear Security, JINR

Purpose

 Fourier transform (Cooley-Tukey), radix 2p:

o interval: smaller, equal, or larger than 2p

o super-sampling: for metrological quality (A, f, )

o apodisation methods:

- in Fourier-space: F2, F4

- in real-space: F8, F16, GX

 Weyl-Wigner Fourier transform for noise-signals:
o window interval coherentisation of random chirps around given frequency

fxl C++ suite of FFT methods

Performance

 71 log(N) ns / sample Cooley-Tukey<double>

 0.083 N0.79 ns / sample FoxLima<double>

on: proc: x86_64 Intel Xeon E312xx Sandy Bridge @ 2.6 GHz

 cache:32k, 32k, 4096k

 op-sys: Linux: 2.6.32-504.16.2.el6.x86_64
 gcc: 4.4.7 20120313 (Red Hat 4.4.7-11)

Header file: #include "fxl.hh"

Libraries: libfxl4.a (static) linux-2.6.32-504.12.2.el6.x86_64
 libfxl4.so (dynamic) gcc-4.4.7 20120313

Class fxl<T> T = double, long double, cpx<double>, cpx<long double>

Member variables (public):
 ddr / ddc = T pointers to Np long arrays of "real" / "imag" part of spectrum

 raw [0 ... +F -F ... 0]

 fzr / fzc = T pointers to Np long arrays of "real" / "imag" part of spectrum

 after FoxLima filter [-F ... 0 ... +F]

 after the FoxLima filter

 N = int # of Fourier bins = Np

 p = int oversampling ratio

 rms = double signal rms

Constructor (public)
fxl F(T*, T*, N, q, str, ...)

 ^ ^ ^ ^ ^ ^

 | | | | | |_ arg’s for the command (see below)
 | | | | |

 | | | | |_ command
 | | | |

 | | | |_ 2q FFT bins, allows oversampling, p = 2q / N,

 | | | recommended q > 3 + log(N)/log(2)

 | | |_ # i/p samples
 | |

 | |_ pointer "real"-part (or symmetrical part)

 |_ pointer "imag"-part (or anti-symmetrical part)

command = F0 = Cooley -Tukey, -6dB/oct tails, p = 2q / N

F1 = FoxLima -F1 , -6dB/oct tails, p = 2q / N

F2 = FoxLima -F2 , -12dB/oct tails, p = 2q / N, similar to Welch apodisation,

 but w/ exact cancellation of 1 / (f-f0) tails

fxl C++ suite of FFT methods

F4 = FoxLima -F4 , -24dB/oct tails, p = 2q / N, suis-generis Welch-4 window,

but w/ exact cancellation of 1 / (f-f0)k

tails (for k = 1, 2, 3)

F8 = FoxLima -F8 , -48dB/oct tails, p = 2q / N, suis-generis Welch-8 window

F16= FoxLima-F16 , -96dB/oct tail, p = 2q / N, suis-generis Welch-16

GX = gaussian (sigma), p = 2q / N, gaussian apodisation

FC = coherent chirp, p = 2q with no windowing,  size

FX = coherent chirp, p = 2q with Gaussian() window

FE = coherent chirp, p = 2q with back-exp() window

FW = coherent chirp, p = 2q with Welch() window

For the following: -3 p = # bins at which smooth function falls -3 dB

 -20 p = # bins at which smooth function falls -20 dB

 condition: 1.472 < -20 / -3 < 4.684

2f0 t = f0 / FSR = chirp coherence-frequency

chirp = chirp coherence-length # bins

case F0, F1, F2, F4, F8, F16 raw arg = void

F0, F1, F2, F4, F8, F16 smooth arg = -3, -20

GX raw arg = 

FC raw arg = 2f0t, chirp

FX raw arg = 2f0t, chirp

FE raw arg = 2f0t, chirp

FW raw arg = 2f0t, chirp

GX smooth arg = , -3, -20

FC smooth arg = 2f0t, chirp , -3, -20

FX smooth arg = 2f0t, chirp , -3, -20

FE smooth arg = 2f0t, chirp , -3, -20

FW smooth arg = 2f0t, chirp , -3, -20

Parameters

 fn = (n-Np/2) / Np / T frequency of bin n

 An = (ddrn
2+ddcn

2) / Np amplitude of bin n (Cooley-Tukey)

 (fzrn
2 + fzcn

2) / Np - - ‘’ - - (FoxLima)

Resolution

 df / f = 0.7 / int(f T) …...................... frequency resolution

 dA / A = from i/p amplitude resolution

fxl C++ suite of FFT methods

Description

 The fxl class is a suite of D-FFT methods.

COHERENT SIGNALS

 F0 – is the classic Cooley-Tukey algorithm. It receives N time bins and outputs 2q bins, with a

frequency oversampling ratio of p = 2q / N (recommended 8 - 16). The oversampling

solves the imprecision of the Cooley-Tukey algorithm, which for frequencies (periodic in
the spectrum) has large errors, missing their peaks in:

- frequency, by: f < 1/pNt,

- amplitude, by: A < 2pA/,

- phase, by:  < /2p.

The native Cooley-Tukey algorithm has p = 1, hence the errors can be large.
 Also, since the Cooley-Tukey algorithm has -6 dB/oct fall-off spectrum leakage tails, for

certain peaks (with f = n / T), the Gibbs side-lobes are not directly visible as the sampling
occurs exactly at the position of their zero’s (for all other frequencies they are visible in

various degrees). Metrologically, the favourable case when the Gibbs lobes are not visible is
not a true representation of algorithm’s performance, as the spectrum leakage is still present.

 F1 – is a smoothing-filter to the Cooley-Tukey algorithm. It solves the problem of the Gibbs

satellite-lobes, but has still spectrum leakage tails, to the effect of -6 dB/oct fall-offs. Its
advantage is speed, requiring little CPU time with respect to other filters.

 F2 – is a Cooley-Tukey apodisation method (with or without smoothing-filter) with the best trade-

off between peak width and suppression of the Gibbs side-lobes. It has -12 dB/oct spectrum
leakage fall-off. Being performed in Fourier-space, its spectrum-leakage suppression is

exact with respect to digitisation – in order k = 1 of the 1 / (f-f0)k tails. It is loosely
equivalent to Welch apodisation.

 F4 – is an advanced version of F2, with -24 dB/oct spectrum leakage fall-off and wider peaks.

Spectrum-leakage suppression is exact with respect to digitisation – in orders k = 1, 2, 3 of
the 1 / (f-f0)k tails. It is loosely equivalent to Welch-4 apodisation, however (like F2)

performed in Fourier-space rather than in temporal space, hence exact.

 F8 – is an higher Gibbs lobe rejection version of F4, with -48 dB/oct spectrum leakage fall-off. It
is a Welch-8 apodisation, performed in real-space. It is susceptible to spectrum distorsions

due to inexact cancellations of digitisation terms when the signal has large phase noise, or it
represents a short temporal sequence.

 F16 – it is an advanced version of F8, with -96 dB/oct spectrum leakage fall-offs. It is a Welch-16

apodisation, performed in real-space. It is susceptible to spectrum distorsions due to inexact
cancellations of digitisation terms when the signal has large phase noise, or it represents a

short temporal sequence.

 GX – is a user customised version of F8 and F16 with gaussian apodisation (of user given ) in

real-space.

fxl C++ suite of FFT methods

NOISE SIGNALS

 The signal below is composed of two (coherent) chirps, at a certain delay one after the other. They
have the same frequency and it would seem they should also have a very well defined FFT-peak in

the spectrum.

The problem however is that its second part is phased 180o behind the first. As such, when they are
added, the FFT signal will be zero. This may be mathematically correct, however engineering-wise

unsatisfactory: there is a definite frequency in the spectrum, which needs to be flagged accordingly.

 Similarly, a wide set of noise-sources emit “chirps” (each with a valid coherent FFT-spectrum),

however at random time intervals (thus same / for all frequencies).

 For a given frequency the input sample can be divided into smaller samples and for each the FFT

be computed. The results could for instance then be summed as absolute values. For the frequency
asked this will give the maximum amplitude attainable if all samples are coherent.

 The problem with this procedure is the

poor resolution. For any FFT the thinness of
the peaks is given by the sum:

 k=1,N-1 exp(2i(-0)kT)

 which gives an “Airy”-function of

frequency resolution f = 1 / NT.

 To overcome this, a phase-jump estimate

at f0 must be performed – and this then
applied to all other frequencies. This should

be adjusted for frequency drift, however for
frequencies around f0 it is sufficient (distant

frequencies would have entailed too much
noise from extrapolation anyway).

 This preserves the main mechanism of

FFT computation (summation of the above
mentioned sum) and hence, the resolution of

signals in spite of small sample partition (and poor afferent f apodisation).

 The apodisation methods available are:

 FC – without windowing of the smaller samples. User given  and f0.

 FX – gaussian apodisation of the smaller samples. User given  and f0.

 FE – back-exponential apodisation of the smaller samples. User given  and f0.

 FW – Welch apodisation of the smaller samples. User given  and f0.

fxl C++ suite of FFT methods

Performance

 The main advantages of the FoxLima suite
are:

1. exact signal metrics – due to the

possibility to oversample in
frequency-space, FoxLima algo-

rithms provide exact peak resolution
over Cooley-Tukey, that can register

errors of up to:

o f = 1/2Nt in frequency

o A = 36% A in amplitude

o  = 90o in phase

These aspects can be seen in the

figure to the right and the figure
below, where the sub-sampling

problems of the Cooley-Tukey
algorithm are evidentiated as peak

truncation, central-frequency and phase imprecision.

2. exact leakage elimination – due to its Fourier-space apodisation, algorithms F1, F2 and F4
eliminate exactly the 1 / (f-f0)k spectrum-leakage tails for:

o k = 0 (F1 algorithm)
o k = 1 (F2 algorithm) and

o k = 1,2,3 (F4 algorithm).

The figure above shows smoothed versions of the algorithms for width and tail fall-off.

The 3 Fourier-space apodisation
algorithms have fall-offs of:

o -6 dB/oct (F1 algorithm)
o -12 dB/oct (F2 algorithm)

o -24 dB/oct (F4 algorithm).

It is important to note, that real-
space apodisation does not take into

account discretisation components
exactly, as does the Fourier-space

apodisation.

 Therefore signals with phase-
noise, or a short time data-

acquisition window are not
described as exact by time-space
apodisation algorithms.

fxl C++ suite of FFT methods

This is shown in the figure here to the left –
on a short time-window (of 6 x 50 Hz

periods).

The F8 algorithm has significant deviations
beyond the central- peak, whereas F2 and

F4 are both very precise.

3. Weyl-Wigner FFT – as mentioned above, random-chirp signals may deceivingly add

destructively showing little (or no signal at all) at certain frequencies.

 The Weyl-Wigner algorithms add coherently such signals around a (user given) coherence

frequency (f0), of sampling window (the approximate size of the chirp, ).

 A comparison with the F2
algorithm (on a noise signal) is given

in the figure here below.

 A small presence in F2, with a
large one in WW denotes significant

cancellation (or phase noise).

 The apodisation over the 

window can be:

o FC – plain Cooley-Tukey
o FX – gaussian

o FW – Welch
o FE – back-exponential

 The apodisation used in the figure

here is gaussian.

