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Purpose 
 

 Fourier transform (Cooley-Tukey), radix 2p: 

o interval: smaller, equal, or larger than 2p 

o super-sampling: for metrological quality (A, f, ) 

o apodisation methods: 

- in Fourier-space: F2, F4 

- in real-space: F8, F16, GX 

 

 Weyl-Wigner Fourier transform for noise-signals: 
o window interval coherentisation of random chirps around given frequency 
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Performance 
 

 71 log(N)            .............................. ns / sample  Cooley-Tukey<double> 

 0.083 N0.79          .............................. ns / sample  FoxLima<double> 
 

on:      proc: x86_64 Intel Xeon E312xx Sandy Bridge @ 2.6 GHz 

           cache:32k, 32k, 4096k 

           op-sys: Linux: 2.6.32-504.16.2.el6.x86_64 
           gcc: 4.4.7 20120313 (Red Hat 4.4.7-11) 

 

 

Header file: #include "fxl.hh" 

 

Libraries: libfxl4.a   (static)                                             linux-2.6.32-504.12.2.el6.x86_64 
  libfxl4.so (dynamic)                                                             gcc-4.4.7 20120313 
 

 

Class fxl<T> ......... T = double, long double, cpx<double>, cpx<long double> 

 

Member variables (public):  
 ddr / ddc   = T  ....  pointers to Np long arrays of "real" / "imag"  part  of  spectrum 

                                              raw [ 0 ... +F -F ...  0] 

 
 fzr / fzc   = T  ....  pointers to Np long arrays of "real" / "imag"  part  of  spectrum 

                                    after FoxLima filter [ -F ... 0 ...  +F] 

 
                                            after the FoxLima filter 

 N           = int   # of Fourier bins = Np 

 p           = int  oversampling ratio 

 rms         = double signal rms 

 

Constructor (public) 
fxl F(T*, T*, N,  q, str, ...) 

      ^   ^   ^   ^    ^    ^  

      |   |   |   |    |    |_ arg’s for the command (see below) 
      |   |   |   |    | 

      |   |   |   |    |_ command 
      |   |   |   | 

      |   |   |   |_ 2q FFT bins, allows oversampling, p = 2q / N, 

      |   |   |               recommended q > 3 + log(N)/log(2) 

      |   |   |_ # i/p samples 
      |   | 

      |   |_ pointer "real"-part (or symmetrical part) 

      |_ pointer "imag"-part (or anti-symmetrical part) 

 

 
command =  F0 = Cooley -Tukey,   -6dB/oct tails, p = 2q / N 

F1 = FoxLima -F1   ,   -6dB/oct tails, p = 2q / N 

F2 = FoxLima -F2   , -12dB/oct tails, p = 2q / N, similar to Welch  apodisation, 

 but w/ exact cancellation of 1 / (f-f0) tails 
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F4 = FoxLima -F4   , -24dB/oct tails,  p = 2q / N, suis-generis Welch-4 window, 

but  w/  exact   cancellation   of 1 / (f-f0)k 

tails (for k = 1, 2, 3) 

F8 = FoxLima -F8   , -48dB/oct tails, p = 2q / N, suis-generis Welch-8 window 

F16= FoxLima-F16 , -96dB/oct tail,   p = 2q / N, suis-generis Welch-16 

GX = gaussian (sigma),                p = 2q / N, gaussian apodisation 

FC = coherent chirp,                    p = 2q        with no windowing,  size 

FX = coherent chirp,                    p = 2q        with Gaussian() window 

FE = coherent chirp,                    p = 2q        with back-exp()  window 

FW = coherent chirp,                    p = 2q        with Welch()      window 

 

 

For the following: -3  p  =  # bins at which smooth function falls   -3 dB 

   -20 p  =  # bins at which smooth function falls -20 dB 

                condition:  1.472 < -20 / -3  < 4.684 

2f0 t  =  f0 / FSR = chirp coherence-frequency  

chirp    =  chirp coherence-length # bins 

 

 
case F0, F1, F2, F4, F8, F16 raw  arg = void 

F0, F1, F2, F4, F8, F16 smooth  arg = -3,  -20 

GX raw    arg =  

FC raw     arg = 2f0t,  chirp   

FX raw     arg = 2f0t,  chirp   

FE raw     arg = 2f0t,  chirp   

FW raw    arg = 2f0t,  chirp   

GX smooth    arg = ,  -3,  -20 

FC smooth    arg = 2f0t,  chirp ,  -3,  -20 

FX smooth    arg = 2f0t,  chirp ,  -3,  -20 

FE smooth    arg = 2f0t,  chirp ,   -3,  -20 

FW smooth    arg = 2f0t,  chirp ,  -3,  -20 

 

 
Parameters 
 

 fn   = (n-Np/2) / Np / T   ....................     frequency of bin n 

 

 An = (ddrn
2+ddcn

2)  / Np  ................     amplitude of bin n (Cooley-Tukey) 

        (fzrn
2 + fzcn

2)  / Np  .................            - - ‘’ - -            (FoxLima) 

 
 

Resolution 
 

 df / f = 0.7 / int(f T)  …...................... frequency resolution 
 

 dA / A = from i/p  .............................. amplitude resolution 
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Description 
 

    The fxl class is a suite of D-FFT methods. 

 
COHERENT SIGNALS 

 
    F0 – is the classic Cooley-Tukey algorithm. It receives N time bins and outputs 2q bins, with a 

frequency oversampling ratio of p = 2q / N (recommended 8 - 16). The oversampling 

solves the imprecision of the Cooley-Tukey algorithm, which for frequencies (periodic in 
the spectrum) has large errors, missing their peaks in: 

- frequency, by: f  <  1/pNt, 

- amplitude, by: A <  2pA/, 

- phase, by:  <  /2p. 

The native Cooley-Tukey algorithm has p = 1, hence the errors can be large. 
    Also, since the Cooley-Tukey algorithm has -6 dB/oct fall-off spectrum leakage tails, for 

certain peaks (with f = n / T), the Gibbs side-lobes are not directly visible as the sampling 
occurs exactly at the position of their zero’s (for all other frequencies they are visible in 

various degrees). Metrologically, the favourable case when the Gibbs lobes are not visible is 
not a true representation of algorithm’s performance, as the spectrum leakage is still present. 

 
    F1 – is a smoothing-filter to the Cooley-Tukey algorithm. It solves the problem of the Gibbs 

satellite-lobes, but has still spectrum leakage tails, to the effect of -6 dB/oct fall-offs. Its 
advantage is speed, requiring little CPU time with respect to other filters. 

 
    F2 – is a Cooley-Tukey apodisation method (with or without smoothing-filter) with the best trade-

off between peak width and suppression of the Gibbs side-lobes. It has -12 dB/oct spectrum 
leakage fall-off. Being performed in Fourier-space, its spectrum-leakage suppression is 

exact with respect to digitisation – in order k = 1 of the 1 / (f-f0)k tails. It is loosely 
equivalent to Welch apodisation. 

 
    F4 – is an advanced version of F2, with -24 dB/oct spectrum leakage fall-off and wider peaks. 

Spectrum-leakage suppression is exact with respect to digitisation – in orders k = 1, 2, 3 of 
the 1 / (f-f0)k tails. It is loosely equivalent to Welch-4 apodisation, however (like F2) 

performed in Fourier-space rather than in temporal space, hence exact. 
 

    F8 – is an higher Gibbs lobe rejection version of F4, with -48 dB/oct spectrum leakage fall-off. It 
is a Welch-8 apodisation, performed in real-space. It is susceptible to spectrum distorsions 

due to inexact cancellations of digitisation terms when the signal has large phase noise, or it 
represents a short temporal sequence. 

 
    F16 – it is an advanced version of F8, with -96 dB/oct spectrum leakage fall-offs. It is a Welch-16 

apodisation, performed in real-space. It is susceptible to spectrum distorsions due to inexact 
cancellations of digitisation terms when the signal has large phase noise, or it represents a 

short temporal sequence. 
 

    GX – is a user customised version of F8 and F16 with gaussian apodisation (of user given ) in 

real-space. 
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NOISE SIGNALS 
 

    The signal below is composed of two (coherent) chirps, at a certain delay one after the other. They 
have the same frequency and it would seem they should also have a very well defined FFT-peak in 

the spectrum. 

 

The problem however is that its second part is phased 180o behind the first. As such, when they are 
added, the FFT signal will be zero. This may be mathematically correct, however engineering-wise 

unsatisfactory: there is a definite frequency in the spectrum, which needs to be flagged accordingly. 
 

    Similarly, a wide set of noise-sources emit “chirps” (each with a valid coherent FFT-spectrum), 

however at random time intervals (thus same / for all frequencies). 

 
    For a given frequency the input sample can be divided into smaller samples and for each the FFT 

be computed. The results could for instance then be summed as absolute values. For the frequency 
asked this will give the maximum amplitude attainable if all samples are coherent. 

 
    The problem with this procedure is the 

poor resolution. For any FFT the thinness of 
the peaks is given by the sum: 

                  k=1,N-1 exp(2i(-0)kT) 

 which gives an “Airy”-function of 

frequency resolution f = 1 / NT. 

 
    To overcome this, a phase-jump estimate 

at f0 must be performed – and this then 
applied to all other frequencies. This should 

be adjusted for frequency drift, however for 
frequencies around f0 it is sufficient (distant 

frequencies would have entailed too much 
noise from extrapolation anyway). 

 
    This preserves the main mechanism of 

FFT computation (summation of the above 
mentioned sum) and hence, the resolution of 

signals in spite of small sample partition (and poor afferent f apodisation). 

 
    The apodisation methods available are: 

    FC –  without windowing of the smaller samples. User given  and f0. 

    FX –  gaussian apodisation of the smaller samples. User given  and f0. 

    FE –  back-exponential apodisation of the smaller samples. User given  and f0. 

    FW –  Welch apodisation of the smaller samples. User given  and f0. 
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Performance 
 

    The main advantages of the FoxLima suite 
are: 

 
1. exact signal metrics – due to the 

possibility to oversample in 
frequency-space, FoxLima algo-

rithms provide exact peak resolution 
over Cooley-Tukey, that can register 

errors of up to: 

o f = 1/2Nt in frequency 

o A = 36% A in amplitude 

o  = 90o in phase  

 
These aspects can be seen in the 

figure to the right and the figure 
below, where the sub-sampling 

problems of the Cooley-Tukey 
algorithm are evidentiated as peak 

truncation, central-frequency and phase imprecision. 
 

2. exact leakage elimination – due to its Fourier-space apodisation, algorithms F1, F2 and F4 
eliminate exactly the 1 / (f-f0)k spectrum-leakage tails for: 

o k = 0       (F1 algorithm) 
o k = 1       (F2 algorithm) and 

o k = 1,2,3 (F4 algorithm). 
 

The figure above shows smoothed versions of the algorithms for width and tail fall-off. 
 

The 3 Fourier-space apodisation 
algorithms have fall-offs of: 

o -6 dB/oct (F1 algorithm) 
o -12 dB/oct (F2 algorithm) 

o -24 dB/oct (F4 algorithm). 
 

It is important to note, that real-
space apodisation does not take into 

account discretisation components 
exactly, as does the Fourier-space 

apodisation. 
 

    Therefore signals with phase-
noise, or a short time data-

acquisition window are not 
described as exact by time-space 
apodisation algorithms. 
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This is shown in the figure here to the left – 
on a short time-window (of 6 x 50 Hz 

periods). 
 

The F8 algorithm has significant deviations 
beyond the central- peak, whereas F2 and 

F4 are both very precise. 
 

 
 

 
 

 
 

 
 

 
 

 
3. Weyl-Wigner FFT – as mentioned above, random-chirp signals may deceivingly add 

destructively showing little (or no signal at all) at certain frequencies. 
 

    The Weyl-Wigner algorithms add coherently such signals around a (user given) coherence 

frequency (f0), of sampling window (the approximate size of the chirp, ).  

 

    A comparison with the F2 
algorithm (on a noise signal) is given 

in the figure here below. 
 

    A small presence in F2, with a 
large one in WW denotes significant 

cancellation (or phase noise). 
 

    The apodisation over the  

window can be: 

o FC  – plain Cooley-Tukey 
o FX  – gaussian 

o FW – Welch 
o FE  – back-exponential 

 
    The apodisation used in the figure 

here is gaussian. 


