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The previously reported neBEM solver has been used to solve electrostatic problems having three-
dimensional edges and corners in the physical domain. Both rectangular and triangular elements have
been used to discretize the geometries under study. In order to maintain very high level of precision, a
library of C functions yielding exact values of potential and flux influences due to uniform surface
distribution of singularities on flat triangular and rectangular elements has been developed and used.
Here we present the exact expressions proposed for computing the influence of uniform singularity
distributions on triangular elements and illustrate their accuracy. We then consider several problems of

Keywords:
Boundary element method
Triangular element
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Poetcet;toisatlatlcs L-shaped conductors. We have tried to show that using the approach proposed in the earlier paper on
Flux neBEM and its present enhanced (through the inclusion of triangular elements) form, it is possible to

obtain accurate estimates of integral features such as the capacitance of a given conductor and detailed
Charge density ones such as the charge density distribution at the edges/corners without taking resort to any new or
Corner special formulation. Results obtained using neBEM have been compared extensively with both existing
Edge analytical and numerical results. The comparisons illustrate the accuracy, flexibility and robustness of
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the new approach quite comprehensively.
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1. Introduction

One of the elegant methods for solving the Laplace/Poisson
equations (normally an integral expression of the inverse square
law) is to set up the boundary integral equations (BIE) which lead
to the moderately popular boundary element method (BEM). In
the forward collocation version of the BEM, surfaces of a given
geometry are replaced by a distribution of point singularities such
as source/dipole of unknown strengths. The strengths of these
singularities are obtained through the satisfaction of a given set of
boundary conditions that can be Dirichlet, Neumann or of the
Robin type. The numerical implementation requires considerable
care [1] because it involves evaluation of singular (weak, strong
and hyper) integrals. Some of the notable two-dimensional (while
all the devices are three-dimensional by definition, useful insight
is often obtained by performing a two-dimensional analysis) and
three-dimensional approaches used to evaluate the singular
integrals are discussed in [1-7] and the references in these
papers. It is well-understood that many of the difficulties in the
available BEM solvers stem from the assumption of nodal
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concentration of singularities which leads to various mathema-
tical difficulties and to the infamous numerical boundary layers
[8,9,33] when the source is placed very close to the field point ([2]
and Refs. [4-6] therein). While mathematical singularities (that
occur when the source and field points coincide) have been shown
to be artifacts, several techniques have been used to remove
difficulties related to physical or geometrical singularities (that
occur when boundaries are degenerate, i.e., geometrically singu-
lar, or due to a jump in boundary conditions) such as Gaussian
quadrature integration, mapping techniques for regularization,
bicubic transformation, nonlinear transformation and dual BEM
techniques [8]. The last technique seems to be a popular one
and capable of dealing with a relatively wide range of similar
problems.

Departing from the approaches mentioned in the above
references and many more to be mentioned below, we had shown
in an earlier paper [10] that many of these problems can be
eliminated or reduced if we adopt a new paradigm in which the
elements are endowed with singularities distributed on them,
rather than assuming the singularities to be concentrated at
specific nodal points. Despite a large body of literature, closed
form analytic expressions for computing the effects of distributed
singularities are rare [11,12], complicated to implement and, often,
valid only for special cases [13-15]. For example, in [11], the
integration of the Green function to compute the influence of a
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constant source distribution is modified to an “n-plane” integra-
tion. The evaluation of this integration involves co-ordinate
transformations and the resulting expressions are rather compli-
cated. In [12], the Gauss-Bonnet concept is used in which the
panel is projected onto a unit sphere and the solid angle is
determined from the sum of the induced angles. The procedure
and the resulting expressions are neither simple, nor easy to
implement in a computer code. In fact, possibly due to these
difficulties, these approaches have remained relatively unpopular
and even in very recent papers it is maintained that for evaluating
the influence due to source distributed on triangular elements in a
general case, one must apply non-analytic procedures [14]. Thus,
for solving realistic but difficult problems involving, for example,
sharp edges and corners or thin or closely spaced elements,
introduction of special formulations (usually involving fairly
complicated mathematics, once again) becomes a necessity
[8,16,33]. These drawbacks are some of the major reasons behind
the relative unpopularity of the BEM despite its significant
advantages over domain approaches such as the finite-difference
and finite-element methods (FDM and FEM) while solving non-
dissipative problems [17,18].

The Inverse Square Law Exact Solutions (ISLES) library
developed in conjunction with the nearly exact BEM (neBEM)
solver [10], in contrast, is capable of truly modeling the effect
of distributed singularities precisely and, thus, is not limited by
the proximity of other singular surfaces or their curvature or their
size and aspect ratio. The library consists of analytic solutions for
both potential and flux due to uniform distribution of singularity
on flat rectangular and triangular elements. These close-form
exact solutions, termed as foundation expressions, are in the form
of algebraic expressions that are long but without complications
and are fairly straight-forward to implement in a computer
program. In deriving these foundation expressions, while the
rectangular elements were allowed to be of any arbitrary size
[10,19], the triangular element was restricted to be a right-angled
triangle of arbitrary size [20-22]. Since any real geometry can be
represented through elements of the above two types (or by the
triangular type alone), this library has allowed us to develop the
neBEM solver that is capable of solving three-dimensional
potential problems involving arbitrary geometry. It may be noted
here that any non-right-angled triangle can be easily decomposed
into two right-angled triangles. Thus, the right-angled triangles
considered here, in fact, can take care of any three-dimensional
geometry.

A set of particularly difficult problems to be dealt with by BEM
is one that contains corners and edges and, in this work, we will
attempt to solve several problems belonging to this set. The
perfectly conducting bodies studied here are unit square plate,
L-shaped plate, cube, L-shaped volume and two rectangular plates
meeting at various angles and creating an edge. Besides being
interesting and difficult, these solutions can have significant
applications in micro-electromechanical systems (MEMS), nano-
devices, atomic force microscopy (AFM), electro-optical elements,
micro-pattern gas detectors (MPGD) and many other disciplines in
science and technology. For these problems, it is important to
study integral features such as the capacitance of the conductors,
as well as detailed features such as the charge density, potential
and flux on various surfaces of these objects including regions
close to the geometric singularities. While several approaches
including FDM, FEM, BEM and its variants such as the surface
charge method (SCM) and various implementations of the Monte-
Carlo technique (often coupled with Kelvin transformation) have
been used to study these problems, only the latter two
approaches, namely, BEM and Monte-Carlo technique are found
to possess the precision necessary to model the curiously difficult
electrostatics with acceptable levels of accuracy [23]. The volume

discretization methods are known to be unsuitable because of the
open nature of the problem and the inadequate representation of
edge and corner singularities. Methods using Kelvin inversion (or
quadratic inversion), although accurate, have been found incap-
able of handling planar problems. It may be noted here that
despite the usefulness of two-dimensional analysis, there are an
overwhelming number of problems that need to be addressed in
three dimensions. As a result, several interesting approaches have
been developed to analyze edge and corner related problems in
complete three dimensions, without even the assumption of axial
symmetry. In order to maintain applicability in the most general
scenarios, in this work we will deal with the problems of edge and
corner as truly three-dimensional objects even when comparing
the results with two-dimensional analytic ones.

The problem of estimation of capacitance of square plate and
cube raised to unit volt has been studied by an especially large
number of workers using entirely different approaches. In fact,
these have been considered to be some of the major unsolved
problems of electrostatics, of which a solution is said to have been
given by Dirichlet and subsequently lost. One of the more popular
numerical approaches used to explore these problems is the
BEM/SCM [13,24-28]. Some of the solution attempts are more
than a century old and yielded quite acceptable results. The later
studies [13,27,28] used the mesh refinement technique and
extrapolation of N (the number of elements used to discretize a
given body) to infinity in order to arrive at more precise estimates
of the capacitance. In order to carry out this extrapolation,
uniform charge density scenario has been maintained so that the
form of charge distribution on individual segments becomes
irrelevant. According to [28], it is justified to use uniform charge
density on individual elements because increase in complexity
through the use of non-uniform charge density ultimately does
not lead to computational advantage. In [28], the author mentions
that for the cube, the element sizes are made such that the charge
on each element remains approximately a constant (independent
of its distance from an edge) since this arrangement is found to
give the most accurate results.

The problem of estimation of the order of singularities at edges
and corners of different nature is strongly coupled with the
problem of estimation of integral properties such as the
capacitance of conductors of various shapes. Thus, this problem,
which also has importance in relation to other areas of science
and technology as discussed earlier, has attracted the attention of
a large number of workers as well. Here, fortunately, some
analysis has been possible using purely theoretical tools [29,30],
at least for two-dimensional cases. In [31], the authors used a
singular perturbation technique to obtain the singularity index at
inside and outside corners of a sectorial conducting plate.
Similarly, corner singularity exponents were numerically obtained
in [28]. According to [32], it was possible to achieve accuracy of
one in million through the use of FEM approximations for both
electrodes and surface charge density, in addition to proper
handling of edge and corner singularities. In this investigation, the
Fichera’s theorem was used to correctly describe the peculiarities
of surface charge density behavior in the vicinity of the electrode
ribs and tips.

According to another recent work [33], low-order polynomials
used to represent the corners and edges lead to errors in
estimation of the derivatives of the potential, and that is the crux
of the problem. Despite its advantages (no prior knowledge of
singular elements and the order of singularity is necessary) and
good convergence characteristics, the mesh refinement approach
has been mentioned to be less accurate than two other methods,
namely, (1) singular elements, and (2) singular functions. Among
these, beforehand knowledge of the location and behavior of the
singularity in terms of the order of singularity is required for (1).
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The singular function approach (2) performs the best since it uses
both the above and also information on singularity profile
(corresponding to the eigenvalues and eigenvectors of the given
geometry). Unfortunately, this approach requires complex for-
mulation and is generally restricted to two-dimensional. Since the
singular element approach uses the location information and only
the order of the singularity, it is more versatile and popular. Thus,
[33] implements the method of singular elements in three
dimensions while attempting to use proper shape function/
interpolation function to model correct singular behavior at
corners and edges. It is shown that singular elements are needed
to accurately capture the behavior at singular regions, such as
sharp corners and edges, where standard elements fail to give an
accurate result. Unfortunately, singular elements must be defined
before it is possible to apply either the singular function or the
singular element approach. This is a non-trivial task since for a
realistic device, there can easily be thousands, if not millions, of
elements involved. According to [34], the manual classification of
boundary elements based on their singularity conditions is an
immensely laborious task if not outright impractical. In [34], the
authors developed an algorithm to extract the regions where
singularity arises by querying the geometric model for convex
edges based on geometric information of the model. The asso-
ciated nodes of the boundary elements on these edges were then
retrieved and categorized according to different types of singu-
larity configuration. The algorithm developed was implemented
in the PATRAN command language (PCL) on the MSC/PATRAN
platform [35] which is an industry standard finite-element pre-
and post-processor allowing a high degree of customization. In
order to determine the order of singularity, two-dimensional
results have been used directly [29,36] for edges under the
assumption that the point lies sufficiently far from any corner. In
fact, in [34], any point other than the vertices has been considered
to be far enough. This approach is quite unlikely to be very
accurate, especially when the dimensions of the devices are small
enough so that no point may even be considered to be far enough.
Later, while discussing the results obtained using our proposed
approach, we will return to this issue again. A study on the effect
of bias ratio (a ratio of the largest element length to the smallest
element length, similar to r~-mesh refinement) has led the authors
[33] to state that while for normal elements this ratio should be
around 4:1 for a given problem, the singular element approach
works better with lower bias ratio.

Besides the above procedures to identify the singular elements
and their orders, attempts have also been made to place nodes at
optimal positions while solving problems involving edges and
corners. For example, in fracture mechanics [37], for handling
singularities of the order 0.5, mid-side nodes in quadratic
elements are normally shifted to quarter point positions. Several
other techniques such as least square, constrained displacement
of side nodes adjacent to a crack-tip [38] have also been used to
find the optimum position of the mid-side nodes for handling
singularities of other orders. In [39], the authors have subse-
quently shown that this approach of shifting mid-side nodes is
likely to produce singularities of order 0.5 only and it is not
suitable to impose arbitrary singularity in isoparametric elements
by simply shifting side nodes to assumed positions.

In addition to BEM approaches, work has also been carried out
using radically different approaches, for example, the Monte-Carlo
methods. An impressive array of work exists providing very
accurate estimates of capacitance and variation of charge density
near edges and corners [23,40-43,45,46]. According to [23], the
use of BEM introduces unnatural estimate of the charge density
distribution—not for shapes with smooth contours (disks or
spheres), but for plates and cubes. It has been mentioned that the
situation is worst for the corner singularities of plates in which

case there are no other surfaces present (as in a cube) to weaken
the order of singularity at the corner. We will discuss this issue
when results for square plates are presented below. The other
point is that the BEM cannot satisfy the boundary conditions at or,
at least, close to the edge because, the collocation points in BEM
do not match the boundary of the device. In fact, it is mentioned
that the solutions become unstable when the collocation points
are shifted away from the centroid of the elements. This notion, as
mentioned in the earlier paragraph, is not without counter-
examples. Moreover, this is a point that we plan to take up in a
future communication where we hope to illustrate that for the
proposed formulation, shifting the collocation points to non-
centroid locations does not lead to numerical instabilities. In
addition, the approach of extrapolating capacitance has been
criticized on the ground that they do not match for different
amounts of shift. It has been mentioned that no formal error
analysis exists for methods other than FDM and the extrapolation
is purely empirical in nature. It has been observed that the
apparent high accuracy may be illusory in nature and citing [47],
it has been emphasized that situation can become even worse by
attempting extrapolation of results obtained using non-equivalent
meshes.

By developing a model that incorporates the truly distributed
nature of sources/doublets/vortices on surfaces of three-
dimensional geometries, we have recently shown [10,19,22] that
it is possible to use the same formulation for studying a very wide
range of problems (multi-scale, involving multiple layers of
dielectric materials) governed by the Poisson’s equation. Recently,
we have extended the new formulation with the capability of
including triangular elements as an option for discretizing
arbitrary three-dimensional bodies [20,21]. Here, we present the
expressions to evaluate the exact values of potential and fluxes at
any arbitrary point due to uniform singularity distributed on
right-angled triangular element. These expressions have been
included as additional functions of the ISLES library and subse-
quently used in the neBEM solver in the manner usual to,
probably, most of the BEM solvers available. Besides presenting
the expressions, we have also shown results to illustrate the
accuracy of the expressions under various circumstances.

In this report, we have presented studies on the electrostatic
configuration of several three-dimensional bodies, all of which
contain corners and/or edges. The classic benchmark problems of
estimating the capacitance of a unit square plate and unit cube
raised to unit volt have been addressed. Electrostatics of generic
shapes such as L-shaped plate and L-shaped three-dimensional
conductors has also been analyzed. In all the above cases, the
order of the singularity distribution near the edges and corners
has been estimated in addition to estimating the capacitance of
the conductors themselves. The singularity distributions obtained
have been compared with theoretical and numerical studies
carried out by earlier workers. The variation of the singularity
along an edge between two corners at its ends has been studied,
probably for the first time. Finally, the well-known problem of
electrostatic configuration of two planes intersecting at different
angles has been addressed. The two-dimensional counter-part of
this problem is known to have analytic solution and has even been
discussed in several textbooks on electromagnetics [29,30].
Although accessible analytically, this problem seems to have been
rarely solved using numerical techniques [48]. This benchmark
problem is known to be a difficult one and, in order to test the
proposed approach under difficult circumstances, we have
computed electrostatic properties of a three-dimensional analo-
gue of this problem close to the point of intersection for a very
wide range of angle of intersection. Following the above studies,
we have come to the conclusion that the proposed approach is
capable of solving critical multi-scale problems governed by the
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Poisson’s equation in a rather straight-forward manner. While
higher bit accuracy, improved evaluation of transcendental
functions, adaptive mesh generation and parallelization is
expected to be of significant help, no special mathematical
treatment or new formulation has been found to be necessary
to deal with problems involving corners/edges and extremely
closely spaced surfaces.

According to [23], using BEM, it is difficult to obtain physically
consistent results close to these geometric singularities. Wild
variations in the magnitude of the charge density have been
observed with the change in the degree of discretization, the
reason once again being associated with the nodal model of
singularities. In contrast, using neBEM, we have obtained very
smooth variation close to corner. Presence of oscillations see-
mingly acceptable to [23] has not occurred. In fact, oscillations
close to edges and corners considered in this work seem to
indicate numerical inaccuracy and have been treated accordingly.
In addition to the shape, the magnitudes of the charge density
have been found to be consistently converging to physically
realistic values. These results clearly indicate that since the
foundation expressions of the solver are exact, it is possible to find
the potential and flux accurately in the complete physical domain,
including the critical near-field domain using neBEM. In addition,
since the singularities are no longer assumed to be nodal and we
have the exact expressions for potential and flux throughout the
physical domain, the boundary conditions no longer need to be
satisfied at special collocation points such as the centroid of an
element. Although consequences of this considerable advantage
are still under study, it is expected that this feature will allow
neBEM to yield even more accurate estimates for problems
involving corners and edges since it should be possible to generate
an over-determined system of equations by placing extra colloca-
tion points near the edges/corners. This will also allow the
method to satisfy the boundary conditions of a given geometry at
its true boundaries.

It should be noted here that the exact expressions for triangular
elements consist of a significantly larger number of mathematical
operations than those for rectangular elements presented in [10].
Thus, for any solver based on the ISLES library, it is more
economical to use a mixed mesh of rectangular and triangular
elements using rectangular elements as much as possible.

2. Governing equations and exact solutions

In the following discussions, we will concentrate on the
electrostatics of conducting geometries governed by the Poisson’s
equation. Using BEM approach, the Poisson’s equation for
electrostatic potential

V2 (@) = —p(@)/e0

can be solved to obtain the distribution of charges which leads to
a given potential configuration. For a point charge g at 7 in three-
dimensional space, the potential ¢(7) at 7 is known to be

¢ =—1L

4reg|F — 1|

For a general charge distribution with charge density p(),
superposition holds and results in

_ p@)dv o
qs(?)—’/m - /G(“r)p(r)dv (1)
where

N 1
GO = ot =71

is the free space Green'’s function for the Laplace operator in three
dimensions with &g, the permittivity of free space. Similarly, the
field for a general charge distribution can be written as

E@®) = -V

leading to

E@) = —V(/ G(?,P)p(f’)dv’)
and, finally to,
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The charge distribution can be obtained from Eq. (1) or (2) by
satisfying the boundary conditions at collocation points known
either in the form of potential (Dirichlet) or flux (Neumann) or a
mixture of these two (Mixed/Robin) on material boundaries/
surfaces present in the domain.

Considering the Dirichlet problem only at present (for ease of
discussion), the following integral equation of the first kind can be
set up:

O(F) = /'lc<f,ﬁ>p<ﬁ>dv' (3)

In the above equation, ¢(7) is the potential at a point 7 in space
and p(’) is the charge density at an infinitesimally small volume
dv’ placed at . The problem is, generally, to find p(7’) as a function
of space resulting the known distribution of ¢ (7). Once the charge
distribution on the boundaries and all the surfaces is known,
potential and field at any point in the computational domain can
be obtained using the same Eq. (3) and its derivative.

The primary step of the BEM technique is to discretize the
boundaries and surfaces of a given problem. The elements
resulting out of the discretization process are normally rectan-
gular or triangular though elements of other shapes are also used.
Elements of triangular shape can be used to model geometries of
any variety and, thus, is one of the most commonly used in many
approaches of numerical simulation including FEM and BEM. In
the collocation approach, the next step is to find out charge
distribution on the elements that satisfies Eq. (3) following the
given boundary conditions. The charge distribution is normally
represented in terms of known basis functions with unknown
coefficients. For example, in zeroth order formulations using
constant basis function, which is also the most popular one
among all the BEM formulations because of a good optimization
between accuracy and computational complexity, the charge
distribution on each element is assumed to be uniform and
equivalent to a point charge located at the centroid of the element.
This is the method that is referred to as the usual BEM in the rest
of the paper. However, diverse varieties of basis function have
been exercised to develop many more BEM formulations in order
to represent the charge distribution on an element more
efficiently so as to enhance the accuracy of the method. Since
the potentials on the surface elements are known from the given
potential configuration, Eq. (3) can be used to generate algebraic
expressions relating unknown charge densities and potentials at
the centroid of the elements. One unique equation can be
obtained for each centroid considering influences of all other
elements including self-influence and, thus, the same number of
equations can be generated as there are unknowns. In matrix
form, the resulting system of simultaneous linear algebraic set of
equations can be written as follows:

K-p=¢ (4)

where K is the matrix consisting of influences among the
elements due to unit charge density on each of them, p represents
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a column vector of unknown charge densities at centroids of the
elements and ¢ represents known values of potentials at the
centroids of these elements. Each element of this influence
coefficient or capacity coefficient matrix, K is a direct evaluation
of an equation similar to Eq. (1) or (2) which represents the effect
of a single element on a boundary/surface (obtained through
discretization) on a point where a boundary condition of the given
problem is known. While, in general, this should necessitate an
integration of the Green’s function over the area of the element,
this integration is avoided in most of the BEM solvers through the
assumption of nodal concentration of singularities with known
basis function. The construction of the matrix implies that its
diagonal elements are dominant through the presence of the
Coulomb-type singularity in the kernel. This singularity has been
shown to make the solutions well-defined in the class of rather
smooth functions [32]. Since the right-hand side of (4) is known,
in principle, it is possible to solve the system of algebraic
equations and obtain surface charge density on each of the
element used to describe the conducting surfaces of the detector
following:

p=K"¢

Once the charge density distribution is obtained, Eqs. (1) and (2)
can be used to obtain both potential and field at any point in the
computational domain.

Despite the elegance of formulation, the usual BEM suffers
from several drawbacks that have resulted in its relative lack of
popularity. Two of the most important ones can be mentioned as
follows. (i) It is assumed that a surface distribution of charge
density on an element can be represented by a nodal arrangement
based on a chosen basis function. (ii) It is assumed that the
satisfaction of the boundary condition at a predetermined point
(or, through the use of known shape functions) is equivalent to
satisfying the same on the whole element in a distributed manner.
The former assumption leads to infamous numerical boundary
layer [2,8,9,33] due to which the near-field solution in regions
close to an element becomes erroneous. Thus the estimation of
potential and field in near-field region close to the boundaries and
surfaces by usual BEM is found to be inaccurate. This also leads to
complications in solving problems involving closely spaced
surfaces such as degenerate surfaces, edges, corners and other
geometrical singularities. The degenerate surface refers to a
boundary, two portions of which approach each other such that
the exterior region between the two portions becomes infinitely
thin. It is well known that the coincidence of two boundaries gives
rise to an ill-conditioned problem. A number of special formula-
tions has been developed to cope up with these problems but,
unfortunately, most of these formulations are effective in a rather
small subset of problems related to potential and field that are
usually faced in reality.

This problem has been resolved to a great extent through the
development of the neBEM solver that uses exact integration of the
Green’s function and its derivative in its formulation. These
integrations for rectangular and triangular elements having
uniform charge density have been obtained as closed-form
analytic expressions using symbolic mathematics [10]. Thus they
account for truly distributed nature of charge density on a given
element. Besides the fundamental change in the way the influence
coefficient matrix is computed and the foundation expressions
used for evaluating potential and field at any point after the
charge density vector is solved for, most of the other features of
neBEM are similar to any other BEM solver.

The expression for potential and flux at a point (X, Y,Z) in free
space due to uniform source distributed on a rectangular flat
surface having corners situated at (x;,z;) and (x2,z;) has been

Y Field
Paint, P

4

Element

Fig. 1. Right-angled triangular element with x-length 1 and an arbitrary z-length,
zy; P is the point where the influence (potential and flux) is being computed.

presented, validated and used in [10,19] and, thus, is not being
repeated here.

Here, we present the exact expressions necessary to compute
the potential and flux due to a right-angled triangular element of
arbitrary size, as shown in Fig. 1. It may be noted here that the
length in the X direction has been normalized, while that in the Z
direction has been allowed to be of any arbitrary magnitude, zy,.
From the figure, it is easy to see that in order to find out the
influence due to triangular element, we have imposed another
restriction, namely, the necessity that the X- and Z-axes coincide
with the perpendicular sides of the right-angled triangle. Both
these restrictions are trivial and can be taken care of by carrying
out suitable scaling and appropriate vector transformations. It
may be noted here that closed-form expressions for the influence
of rectangular and triangular elements having uniform singularity
distributions have been previously presented in [12,13]. However,
in these works, the expressions presented are quite complicated
and difficult to implement. In [10] and in the present work, the
expressions we have presented are lengthy, but completely
straight-forward. As a result, the implementation issues of the
present expressions, in terms of the development of the ISLES
library and the neBEM solver, are managed quite easily. It is easy
to show that the influence (potential) at a point P(X,Y,Z) due to
uniform source distributed on a right-angled triangular element
as depicted in Fig. 1 can be represented as a multiple of

el dzdx
DKV, Z) = 5
e /0 /0 VX =x2+ Y2+ 2 -2 )

in which we have assumed that x; =0,z; =0, x; = 1 and z, = zy,
as shown in the geometry of the triangular element. The closed-
form expression for the potential has been obtained using
symbolic integration [49] which was subsequently simplified
through substantial effort. It is found to be significantly more
complicated in comparison to the expression for rectangular
elements presented in [10] and can be written as

¢ = % ((z,v,y2 — XG)(LP; + LM; — LP; — LM>)

+ 1|Y|(ZMx + G)(LP] — LMy — LPy + LMz)

_1/Ry +il4 _1(Ry— il
- 51X tanh1<l )+tanh ( >
! ( Dy11Z| D111Z]

_1(Ry + 112 _1(R1 — 112
—tanh 1( ! ) —tanh ( )>
D21 |Z| D21|Z|
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Ry + il -1 (R —il
+iS11Y (tan ( ) — tanh ( )
1Yl D1y11Z) D111Z]
+il, 1(R —ily
—tanh™! 1 ) anh” ( ))
211Z| Dy11Z]

2G ‘/1+22D12—El

+ log
‘/1+212Vl \/1+ZMD21_EZ
Dy —X+1

where

Dy = (X =% + V2 +(Z - 21)?
Dyz = \/(X—Xl)z +Y? +(Z - 200

Dy = \/(X—Xz)2 +Y’ +(Z-z)
L =X-x)Yl, L=X-x)lY]|
Sy =signz; —2), Ri=Y>+Z-2z1)
=(X+ZZM—ZMZ), Er=X-1-2zy2)

G=zuX—-1)+2Z, Hi=Y>+GZ~-2zu)

H,=Y*+GZ

LPy = ile|Y| lo <(H1 + G&zlj(—ﬂgllgil —ZMD12)>
M, = e ile|Y| o <(H1 + GD]zi);H}i/‘lﬁl —ZMD12)>
IM = — ile|Y| og ((H2 + GD211)_ —Xlli/ |i(|l;'/2‘ - zMD21)>

and C denotes a constant of integration.

Similarly, the flux components due to the above singularity
distribution can also be represented through closed-form expres-
sions as shown below:
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where Sn(Y) implies the sign of the Y-coordinate and C indicates
constants of integrations. It is to be noted that the constants of
different integrations are not the same. In addition to being
extremely useful in the mathematical modeling of physical
processes governed by the inverse square laws, these expression
are expected to be useful as benchmark expressions for other
approximate formulations. Being exact and valid throughout the
physical domain, they can be used to formulate versatile solvers to
solve multi-scale multi-physics problems governed by the
Laplace/Poisson equations involving Dirichlet, Neumann or Robin
boundary conditions.

3. Results and discussions
3.1. Exact expressions

The expressions for the rectangular element have been
validated in detail in [10]. Here, we present the results for
triangular elements in fair detail. In Fig. 2, we have presented a
comparison of potentials evaluated for a unit triangular element
by using the exact expressions, as well as by using numerical
quadrature of high accuracy. The two results are found to compare
very well throughout. Note that contours have been obtained on
the plane of the element, and thus, represents a rather critical
situation. Similarly, Fig. 3 shows a comparison between the results
obtained using closed-form expressions for flux and those
obtained using numerical quadrature. The flux considered here
is in the Y direction and is along a line beginning from
(—=2,-2,-2) and ending at (2,2,2). The comparison shows the
commendable accuracy expected from closed-form expressions.

1.5

1
o

Fig. 2. Potential contours on a triangular element computed using exact
expressions and by numerical quadrature.
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In Figs. 4(a) and (b), the surface plots of potential on the element
plane (XZ plane) and Y-flux on the XY plane have been presented
from which the expected significant increase in potential and
sharp change in the flux value on the element are observed. Thus,
by using a small fraction of computational resources in compar-
ison to those consumed in numerical quadratures, ISLES can
compute the exact value of potential and flux for singularities
distributed on triangular elements.

3.1.1. Near-field performance

In order to emphasize the accuracy of ISLES, we have
considered the following severe situations in the near-field region
in which it is observed that the quadratures can match the
accuracy of ISLES only when a high degree of discretization is
used. Note that in these cases, the value of z), has been considered
to be 10. In Fig. 5 we have presented the variation of potential
along a line on the element surface running parallel to the Z-axis
of the triangular element (see Fig. 1) and going through the
centroid of the element. It is observed that results obtained using
even a 100 x 100 quadrature are quite unacceptable. In fact, by
zooming on to the image, it can be found that only the maximum
discretization yields results that match closely to the exact
solution. It may be noted here that the potential is a relatively
easier property to compute. The difficulty of achieving accurate
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Fig. 3. Comparison of flux (in the Y direction) as computed by ISLES and numerical
quadrature along a diagonal line.
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flux estimates is illustrated in the two following figures. The
variation of flux in the X-direction along the same line as used in
Fig. 5 has been presented in Fig. 6. Similarly, variation of Y-flux
along a diagonal line (beginning at (—10,—-10, —10) and ending at
(10,10,10) and piercing the element at the centroid) has been
presented in Fig. 7. From these figures we see that the flux values
obtained using the quadrature are always inaccurate even if the
discretization is as high as 100 x 100. We also observe that the
estimates are locally inaccurate despite the use of very high
amount of discretization (200 x 200 or 500 x 500). Specifically, in
the latter figure, even the highest discretization cannot match the
exact values at the peak, while in the former only the highest one
can correctly emulate the sharp change in the flux value. It is also
heartening to note that the values from the quadrature using
higher amount of discretization consistently converge towards the
ISLES values.

3.1.2. Far-field performance

It is expected that beyond a certain distance, the effect of the
singularity distribution can be considered to be the same as that
of a centroidally concentrated singularity or a simple quadrature.
The optimized amount of discretization to be used for the
quadrature can be determined from a study of the speed of
execution of each of the functions in the library and has been
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Fig. 5. Variation of potential along a centroidal line on the XZ plane parallel to the
Z-axis for a triangular element: comparison among values obtained using the exact
expressions and numerical quadratures.
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Fig. 4. (a) Potential surface due to a triangular source distribution on the element plane. (b) Flux (in the Y direction) surface due to a triangular source distribution on the

XY plane at Z = 0.
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Fig. 6. Variation of flux in the X direction along a line on the XZ plane parallel to
the Z-axis for a triangular element: comparison among values obtained using the
exact expressions and numerical quadratures.
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Fig. 7. Comparison of flux (in the Y direction) along a diagonal line piercing the
triangular element at the centroid: comparison among values obtained using the
exact expressions and numerical quadratures.

presented separately in a following sub-section. If we plan to
replace the exact expressions by quadratures (in order to reduce
the computational expenses, presumably) beyond a certain given
distance, the quadrature should necessarily be efficient enough to
justify the replacement. While standard but more elaborate
algorithms similar to the fast multipole method (FMM) [50] along
with the GMRES [51] matrix solver can lead to further of
computational efficiency, the simple approach as outlined above
can help in reducing a fair amount of computational effort. In the
following, we present the results of numerical experiments that
help us in determining the far-field performance of the exact
expressions and quadratures of various degrees that, in turn, help
us in choosing the more efficient approach for a desired level of
accuracy.

In Fig. 8, we have presented potential values obtained using the
exact approach, 100 x 100, 10 x 10 and no discretization, i.e., the
usual BEM approximation while using the zeroth order piecewise
uniform charge density assumption. The potentials are computed
along a diagonal line running from (—1000,-1000,—-1000) to
(1000, 1000, 1000) which pierces a triangular element of z; = 10.
It can be seen that results obtained using the usual BEM approach
yields inaccurate results as we move closer than distances of
10 units, while the 10 x 10 discretization yields acceptable results
up to a distance of 1.0 unit. In order to visualize the errors
incurred due to the use of quadratures, we have plotted Fig. 9
where the errors incurred (normalized with respect to the exact
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Fig. 8. Potential along a diagonal through the triangular element computed using
exact, 100 x 100, 10 x 10 and usual BEM approach.
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Fig. 9. Error along a diagonal through the triangular element computed using
100 x 100, 10 x 10 and usual BEM approach.

value) have been plotted. From this figure we can conclude that
for the given diagonal line, the error due to the usual BEM
approximation falls below 1% if the distance is larger than 20 units
while for the simple 10 x 10 discretization, it is 2 units. It may be
mentioned here that along the axes the error turns out to be
significantly more [10] and the limits need to be effectively
doubled to achieve the accuracy for all cases possible. Thus, for
achieving 1% accuracy, the usual BEM is satisfactory only if the
distance of the influenced point is at least five times the longer
side of an element. Note here that the error drops to 1 out of 10°
as the distance becomes 50 times the longer side. Besides proving
that the exact expressions work equally well in the near-field as
well as the far-field, this fact justifies the usual BEM approach for
much of the computational domain leading to substantial savings
in computational expenses.

3.1.3. Comparison with multipole expressions

We also compared the value of potential with estimates for the
barycenter and other field point values as obtained from [14,15],
the expression having been slightly modified. At the barycenter,
the expression given is exact, whereas, the multipole (mono-
pole+quadrupole) expression is expected to be valid at any
arbitrary location. The accuracy depends on the distance from
the element as discussed in the papers, an approximate rule being
that the accuracy is of the order of 10™* when the distance of
the field point from the barycenter of the triangle is more than
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5.5 times the longer side of the right triangle. For points less
distant than the mentioned value, the triangle needs to be further
segmented. Consulting Fig. 9, we may note that along a diagonally
intersecting line, the usual BEM achieves this accuracy only when
the distance of a field point is 8 times the larger side. The 10 x 10
discretization is as good for a field point that is distant twice the
longer side.

In Table 1, we show the values estimated at the barycenter by
ISLES, analytic [14] and numerical quadrature of different
discretizations. Triangular elements of different sizes have been
used keeping the x-side always of unit length. It is interesting to
note that the right triangle for which two perpendicular sides are
of equal length, it is most difficult to obtain the precise value of
potential using quadrature. In fact, with a discretization of
2000 x 2000, we obtained the value of 2.407462, while with
5000 x 5000 we obtained 2.407323.

In Fig. 10, results from the above multipole expansion are
compared with those obtained using ISLES and numerical
quadrature with different levels of discretization along a line
passing from (-10,-10,-10) to (10,10,10), the range being
reduced to a distance of —2 to +2 for ease of viewing. Similar
comparison has been carried along a line parallel to the X-axis
passing through the barycenter of the element and in the same
plane as the element in Fig. 11. As indicated correctly in [14,15],
the multipole expansion works fine at distances far enough. At
close distances, only the ISLES results are acceptable. Other
options exist in terms of further discretization. In that sense,
both multipole expansion and numerical quadrature are likely
to work but it may be difficult to decide on the required level
of discretization a priori. Moreover, any advantage in terms of
computational expenses may be lost due to the necessity of
increased discretization.

3.1.4. Speed of execution
The time taken to compute the potential and flux is an impor-
tant parameter related to the overall computational efficiency of

Table 1
Comparison of estimated potential by ISLES, analytic and various quadratures

Zn ISLES Analytic [14] 10 x 10 100 x 100 500 x 500
0.1 0.545069 0.545069 0.5410382 0.5450810 0.5450695
1.0 2.407320 2.407320 2.460945 2.411947 2.408161
10.0 5.450690 5.450690 5.257222 5.450847 5.450696
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Fig. 10. Potential along a diagonal through the triangular element computed using
ISLES, multipole expansion, 100 x 100, 100 x 10 and usual BEM approach.
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Fig. 11. Potential along a line parallel to X through the centroid of a triangular
element computed using ISLES, multipole expansion, 100 x 100, 10 x 10 and usual
BEM approach.

the codes. This is true despite the fact that, in a typical simula-
tion, the time taken to solve the system of algebraic equation
is far greater than the time taken to build the influence coeffi-
cient matrix and post-processing. Moreover, the amount of
time taken to solve the system of equations tend to increase
at a greater rate than the time taken to complete the other two.
Thus, in fact, evaluation of longer expressions in the pre- and
post-processing phase should hardly influence the efficiency
of a BEM solver adversely. Moreover, due to the enhanced
accuracy of the proposed foundation expressions, it will be
possible to use significantly less number of elements to represent
a given device, ultimately leading to much faster execution for a
required level of accuracy. It should be mentioned here that
the time taken in each of these steps can vary to a significant
amount depending on the algorithm of the solver. In the present
case, the system of equations has been solved using lower
upper decomposition using the well-known Crout’s partial
pivoting. Although this method is known to be very rugged and
accurate, it is not efficient as far as number of arithmetic
operations, and thus time, is concerned. It is also possible to
reduce the time taken to pre-process (generation of mesh and
creation of influence matrices), solve the system of algebraic
equations and that for post-process (computation of potential,
flux at required locations, estimation of other properties such as
capacitance, force) by adopting faster algorithms, including those
involving parallelization.

In order to optimize the time taken to generate the influence
coefficient matrix and that to carry out the post-processing, we
carried out a small numerical study to determine the amount of
time taken to complete the various functions being used in ISLES,
especially those being used to evaluate the exact expressions and
those being used to carry out the quadratures. The results of the
study (which was carried out using the linux system command
gprof) have been presented in Table 2.

Note that the numbers presented in this table are representa-
tive and are likely to have statistical fluctuations. However,
despite the fluctuations, it may be safely concluded that a
quadrature having only 10 x 10 discretization is already consum-
ing time that is comparable to that needed for exact evaluation.
Thus, the exact expressions, despite their complexity, are
extremely efficient in the near-field which can be considered at
least as large as 0.5 times the larger side of a triangular element
(refer to Fig. 9). In making this statement, we have assumed that
the required accuracy for generating the influence coefficient
matrix and subsequent potential and flux calculations is only 1%.
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This may not be acceptable at all under many practical
circumstances, in which case the near-field would imply a larger
volume.

Some of the advantages of using the ISLES library, based on the
presented foundation expressions, are mentioned below:

e For a given level of discretization, the estimates are more
accurate.

o Effective efficiency of the solver improves, as a result.

Large variation of length-scales, aspect ratios can be tackled.

e Thinness of members or nearness of surfaces does not pose any
problem.

e Curvature has no detrimental effect on the solution.

e The boundary condition can be satisfied anywhere on the
elements, i.e., points other than the centroidal points can be
easily used, if necessary (for a corner problem, may be).

e The same formulation, library and solver is expected to work in
majority of physical situations. As a result, the necessity for
specialized formulations of BEM and associated complications
can be greatly minimized.

Table 2
Time taken to evaluate exact expression of ISLES, usual BEM and various
quadratures

3.2. Electrostatics of two- and three-dimensional bodies having
corners and edges

3.2.1. Square plate and cube

The capacitance value estimated by the present method has
been compared with very accurate results available in the
literature (using BEM and other methods). The results obtained
using the neBEM solver are found to be among the most accurate
ones available till date as shown in Table 3. Note that we have
neither invoked symmetry nor used extrapolation techniques to
arrive at our result presented in the table. In addition, it may also
be noted that the square plates are considered to be of zero
thickness.

In Table 4, we compare potentials at the center and along an
edge of the unit cube as obtained using neBEM with those from
[32] in which the authors use analytical techniques to determine
the order of singularity at the singular regions of a cube. From this
table, we find that it has been possible for [32] to maintain
accuracy of 1078 in 1 for the potential values at the cube center,
103-1072 in 1 along an edge and 1072 in 1 along edge but close
to a vertex of the cube. For similar locations, results using neBEM
indicate that an accuracy of 10~ is maintained at the cube center,
1073 at the edge and 1072 on the edge but close to the vertex.
Thus, the proposed approach has been able to achieve accuracy
that is comparable to those achieved by [32] that uses the
Fichera’s theorem to ensure proper variation of singularities near
edges and vertices. Interestingly, at critical locations near the cube

ziied B Ul BEY 000 100D S s vertex, results from neBEM are found to be better than [32] by a

Time for 06z 215 400 s 10ms significant amount. We have been able to maintain this accuracy

rectangular of 1072 as close as up to 1pum to the cube vertex which is

element extremely encouraging. Unfortunately, we have not been able to

Time for 0.8ps  25ns 2ps 400ps 10ms compare our results with other numerical results at distances less

two triangular . .

—— than a mm from the vertex. It is encouraging to note, however,
that while for [32], the error is 4.8 x 10~ when the evaluation

Table 3

Comparison of capacitance values

Reference Method Plate (pF)/4 méeg Cube (pF)/4 meg

[24,25] SCM 0.3638

[26] SCM 0.362 0.6555

[52] SCM 0.367

[13] Refined SCM and extrapolation 0.3667894 £ 1.1 x 10~° 0.6606747 £5 x 10~/

[27] Refined BEM and extrapolation 0.3667874+1 x 1077 0.6606785 £ 6 x 1077

[43] Numerical path integration 0.36684 0.66069

[23] Random walk 0.36 + 0.01 0.6606+1 x 1074

[45] Random walk 0.6606780 2.7 x 10~/

[33] Singular element 0.6606749

[28] Refined BEM and extrapolation 0.3667896 = 8 x 1077 0.6606767 + 4 x 10°¢

[15] Robin Hood and extrapolation 0.6606786 + 8 x 108

This work neBEM 0.3667524 0.6606746

Table 4

Comparison of potential at the center and along an edge of a unit cube

X Y Z Exact [32] Error in [32] neBEM Error in neBEM

0 0 0 1 0.999990 ~10x10° 1.000001 1.0x 106

0.4 0.5 0.5 1 0.9996 _40x 104 0.9994362 _5638 x 1074

0.45 0.5 0.5 1 0.99986 14 x10* 0.9995018 _4982 x 1074

0.49 0.5 0.5 1 1.0013 13x 1073 0.9991151 _8849 x 1074

0.499 0.5 0.5 1 1.0048 48 x 1073 0.9987600 _124x 1073

0.4999 0.5 0.5 1 - - 0.9974398 2561073

0.49999 0.5 0.5 1 - - 0.9951335 _48x1073

0.499999 0.5 0.5 1 - - 0.9945964 _54%x1073
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Table 5
Comparison of estimation of order of singularity

Reference Method Plate Plate Cube Cube
corner edge vertex edge
[29] Analytic 0.5 0.333
[31] Numerical shooting 0.7034
[53] BEM 0.5468
[44] Walk on spheres 0.7034 0.5381/
0.5458
[28] Surface charge 0.704 0.540
[45] Surface charge 0.558 0.333
[33] Singular element 0.5475
[23] Random walk
[32] Fichera’s theorem 0.7015 0.5454
[46] Walk on planes 0.7034 0.5457
This work neBEM 0.7068 0.4994 0.5539 0.332

point is 1 mm away from the vertex, neBEM commits an error of a
similar amount only when the point is 10 um away from the
vertex. The error for neBEM becomes larger by a small amount
(0.4 x 1073) only when the evaluation point is as close as a micron
to the vertex.

Next, we consider the problem of determining charge density
distribution at corners and edges of the above geometries.
Problems of this nature are considered to be challenging for any
numerical tool and especially so for the BEM approach. In Table 5,
we have presented the estimates of the order of singularity at the
vertex or the edge as done by methods as diverse as singular
perturbation [31], BEM [28], last-passage and walk on spheres
[44,45], application of Fichera’s theorem [32], singular element
approach [33] and the presented approach. From the table, it is
clear that there is good agreement among all the methods. As in
[28] properties on the element next to a corner or edge have been
ignored while carrying out the least-square fits. Points were
included in the fit as long as the maximum mismatch between the
fitted line and the computed value was less than typically 1%,
which also allows us to include points as long as they fall closely
on a straight line. Following this approach, we could use values of
singularities even up to 0.15 (for a plate or cube of unit side) from
the relevant edge or corner while fitting the lines (see Fig. 13, as an
example where we used both triangular and rectangular elements
for discretizing a square plate and obtained a singularity index of
0.7057 and 0.7068, respectively). These can be compared to the
facts that in [28], two points next to a corner were excluded, as
well as all points at distances beyond 0.05 from a corner. However,
the exact value of the index is, to a certain extent, dependent on
the discretization and the details of the least-square fitting
procedure. Thus, it may not be very prudent to attach great
significance to the obtained values except noting that they agree
with each other and also agree with the theoretical estimates,
wherever available. Thus, it may be difficult to accurately
ascertain the singularity index at an arbitrary corner or edge.
This difficulty can lead to problems for methods that depend on
beforehand knowledge of the order of singularity.

In the following study, we have presented estimates of charge
density very close to the flat plate corner as obtained using
neBEM. This has been carried out to investigate the objection
raised against the BEM in [23] where the author states that severe
oscillations in the charge densities are expected close to the
corner and edge of plates because the BEM cannot correctly model
the edge/corner of physical devices. Note that for this study,
the boundary conditions have been satisfied at the centroids
of each element although the neBEM has the capability of
satisfying boundary conditions at locations other than the
centroid. In Fig. 12, charge densities very close to the corner of
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Fig. 12. Corner charge density estimated by neBEM using various sizes of
triangular elements.
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Fig. 13. Variation of charge density with increasing distance from the corner of the
unit square plate and a least-square fitted straight line: slope of the fitted line is
0.7068.

the flat plate estimated by neBEM using various amounts of
discretization have been presented. It can be seen that each curve
follows the same general trend, does not suffer from any
oscillation and is found to be converging to a single curve. This
is true despite the fact that there has been almost an order of
magnitude variation in the element lengths. Thus, we can safely
conclude that the estimates obtained using neBEM do not suffer
from the numerical instabilities mentioned in [23].

In Fig. 13, we present a least-square fitted straight line
matching the charge density as obtained using the highest
discretization in this study. Results using both triangular and
rectangular elements are presented and it is found that the slope
of the fitted line is 0.7057 when the elements are triangular,
whereas, it is 0.7068 when we use rectangular elements. Both the
values compare very well with both old and recent estimates of
the order of singularity as shown in Table 5. The number of
elements used to discretize the square plate is quite large in these
computations. For example, in the case where the triangular
elements are used, we have discretized the square plate into
6597 squares and divided each square into two right-angled
triangles. The length of the side of each triangle varies from 0.005
units to 0.0267 units. In Fig. 14, we have shown how the slope of
the fitted line changes along the edge of a square plate as we move
away from a corner of a square plate. From the figure, it is
apparent that the change in the singularity index along an edge of
a square plate can be quite significant and only when we are in
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reality close to the middle of the edge, the analytic value of 0.5 can
be used with confidence for the order of singularity. This
observation is significant especially for the singular element and
singular function methods where prior knowledge of this
parameter plays a crucial role in determining the accuracy of
the solution.

3.2.2. L-shaped plate and volume

Despite being geometries of generic nature, these L-shaped
geometries have received relatively less attention. Here, we have
estimated the capacitance and orders of singularity at various
important locations, e.g., inner and outer corners and compared
these values with available numerical results. It should be
mentioned here that in [33,34], the L-shaped volume has been
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Fig. 14. Variation of the slope of the fitted lines along an edge of a square plate.

Table 6
Comparison of estimation of order of singularity

Reference Method L Plate inner L volume inner
corner corner

[31] Numerical shooting 0.1854

[33] Singular element 0.1104

This work neBEM 0.1840 0.0896

described very nicely in relation to the varying nature of
singularities it contains. Capacitance of the L-shaped volume
conductor has turned out to be 112.1497 pF. The estimate matches
extremely well with the value of 112.15 pF that has been used as a
reference value in [33]. In Table 6 we present the numerical values
of the order of singularities at inner corners of the L-shaped plate
and volume conductor. While the former matches well with [31],
the latter is not quite close to the estimate in [33], the difference
being close to 20%. Finally, in Fig. 15, we show how the magnitude
of charge density changes on a L-shaped plate. The remarkable
difference between external and internal corners in terms of
charge density concentration is very clearly observed in this
figure.

3.2.3. Edge problem having analytical solutions in two dimensions

While none of the above problems have analytic solutions, a
closely related problem has well-known analytic solution in the
two-dimensional case [29]. In fact, while discussing the earlier
problems, other workers and we have quite often referred to this
solution obtained in standard textbooks as an exercise in the
method of separation of variables.

We have considered a three-dimensional equivalent of the
geometry as presented in [29] in which two conducting planes
intersect each other at an angle f. The planes are assumed to be
held at a given potential. In order to specify the boundary
conditions conveniently, a circular cylinder is also included that
just encloses the two intersecting plane, has its center at the
intersection point and is held at zero potential [48]. The general
solution in the polar coordinate system (p, ¢) for the potential (&)
close to the origin in this problem has been shown to be

Do) =V + S anp™ P sin(mnes /) (10)
m=1

where the coefficients a,, depend on the potential remote from
the corner at p = 0 and V represents the boundary condition for ¢
for all p>0 when ¢ =0 and ¢ = f. In the present case where a
circular cylinder just encloses the two plates, the problem of
finding out a,, reduces to a basic fourier series problem with a
well-known solution

for odd m (11)

am = ——
™ mn

Charge density on L-shaped plate

p
Z(inm.)

1.5

2 # 00 -
2

Fig. 15. Charge density estimated by neBEM on a L-shaped conducting plate raised to unit volt.
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It may be noted here that the series in (10) involve positive
powers of p™/#, and, thus, close to the origin (i.e., for small p), only
the first term in the series will be important. The electric field
components (E,,E) are

Ep(p,¢) = - % i amp ™ sin(mn/ ) (12)
m=1

Ey(p,$) = — % i amp ™™ BT cos(mmnp/B) (13)
m=1

The surface charge densities () at ¢ = 0 and ¢ = f are equal and
are approximately

o(p) = (14)

E(/)(pa O) ~ _ﬂp(n//j)_l
4T~ 4f

Thus, the field components and the charge density near p =0
both vary with distance as p™/#»-1 and this fact is expected to be
reflected in a correct numerical solution as well.

While the above theoretical solution is a two-dimensional one,
we have used the neBEM solver to compute a three-dimensional
version of the above problem. In order to reproduce the two-
dimensional behavior at the mid-plane, we have made the axial
length of the system sufficiently long, viz., 10 times the radius of
the cylinder. The radius of the cylinder has been fixed at 1m,
while the length of the intersecting flat plates has been made a

Table 7
Electric field close to a 360° edge

mm shorter than the radius to avoid the absurd situation of
having two values of the voltage at the same spatial point.

The cylinder has been discretized uniformly in the angular and
axial directions. The flat plates have also been uniformly
discretized in the axial direction. In the radial direction, however,
the flat plate elements have been made successively smaller
towards the edges using a simple algebraic equation in order to
take care of the fact that the surface charge density increases
considerably near the edges. From Tables 7-9, we can compare the
accuracy of neBEM results with other analytical and numerical
results. The two ends of the range of angles, 360 and 90, represent
particularly difficult situations. The former is difficult due to the
very large concentration of charge density close to a sharp edge
and the resulting large electric field. The latter is difficult due to
the fact that to truly simulate a null point in a concave corner,
extremely precise estimates are necessary to ensure cancellation
of electric field. Throughout the range, the neBEM results are
found to be very accurate except at the location that is just 1 um
away from the edge. Even at this location, for all the convex edges,
the results are reasonable and surely comparable to the only other
numerical result available. The neBEM estimates are unaccepta-
ble, however, at locations less than tens of microns away from the
null corner of the concave corner. It may be noted, however, that
the problem is not at all inherent to the formulation and is clearly
related to the size of elements used in the vicinity of the corner.
Here, on our desktop PC with 2 GB RAM, we could use a spatial
resolution of around a micron close to the corner despite using a
large profiling factor. And this was at the steep cost of having
elements with extremely large aspect ratios (1 : 10%). We believe
that these are the factors that have resulted in the inaccuracy of

Distance  Analytical ~ ELECTRO Error (%)  neBEM Error (%) the presented results when the locations considered were a
038 03954180 03954213  0.00059 03950786 —0.086 micron away from the edge. .
01 1.830153 1830155  0.00010 1830110  —0.002 To end this section, we present one contour plot of electric field
0.01 6.303166 6.303172  0.000094 6.305784  —0.041 for a convex corner. From Fig. 16, it is evident that the intensity of
0.001 20.11157 20.11122 0.0018 20.11963 —0.04
0.0001 63.65561 63.64274 0.020 63.64780 —0.012
0.00001  201.3148 200.88 0.22 200.5488 -03
0.000001 636.6191 621.25 24 621.6034 -2.36

250

200
Table 8 —
Electric field close to a 270° edge 150 g_

>

Distance Analytical ELECTRO Error (%) neBEM Error (%)

100
0.8 0.5246997 0.524710 0.0019 0.5241510  —0.105
0.1 1.747623 1.747621 0.00014 1.747953 —0.018
0.01 3.931433 3.931284 0.0038 3.933242 —0.046 50
0.001 8.487415 8.4854 0.023 8.491335 —0.046 -10 -5 0 5 10
0.0001 18.28732 18.202 0.46 18.29270 —0.029 X (um)
0.00001 39.39902 35.80 9.1 39.30955 —0.227 0 H
0.000001  84.88264 57.10 32.7 80.74309 —4.877

Fig. 16. Electric field distribution very close to a convex edge.
Table 9
Electric field close to 90° and 225° edges
Distance 0.8 0.1 0.01 0.001 0.0001 0.00001 0.000001
90°
Analytic 1.445221 2.546224e—1 2.546479%e-2 2.546479e-3 2.546479e—4 2.546479e—5 2.546479e—6
neBEM 1.444098 2.547710e—1 2.548018e—2 2.547723e—3 2.778723e—4 3.760117e—3 1.518850
Error (%) —0.001123 0.058361 0.060436 0.048846 9.120200 usable(?) inaccurate
225°

Analytic 0.6266090 1.574802 2.556973 4.055022 6.426876 10.18592 16.14359
neBEM 0.6259308 1.575165 2.557946 4.056545 6.428439 10.16933 15.63912
Error (%) —0.108233 —0.023050 —0.038052 —0.037558 —0.024313 —0.162871 —3.124893
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the field increases only very close to the convex edge. Note that
the dimensions in the figure are mentioned in microns.

4. Conclusion

An efficient and robust library, ISLES, for solving potential
problems in a large variety of science and engineering problems
has been presented. Exact closed-form expressions used to
develop ISLES have been validated throughout the physical
domain (including the critical near-field region) by comparing
these results with results obtained using numerical quadrature of
high accuracy and with those obtained using quadrupole expres-
sions. Algorithmic aspects of this development have also been
touched upon. The neBEM solver that uses foundation expressions
being evaluated by ISLES has been used to solve several corner and
edge electrostatic problems. Several classic benchmark problems
such as those related to unit square plate and unit cube have been
solved to very high precision. Charge density values at critical
geometric locations like corners have been found to be numeri-
cally stable and physically acceptable. Values of singularity
indices at different corners and edges have been estimated and
compared with other analytic and numerical estimates. The
agreement among the different approaches has been found to
be quite acceptable. It has been observed that the variation of this
index along the edge of a conducting body is non-negligible
implying caution necessary for methods that need prior knowl-
edge of these indices to solve a given problem. Finally, using the
same solver, a three-dimensional equivalent of an edge problem
has been solved for which analytic solution exists in two-
dimensions. Detail comparison with this problem and those
stated earlier have led us to believe that the neBEM approach
yields a precise, flexible and robust solver that works over a very
wide range of problems. Several advantages over usual BEM
solvers and other specialized BEM solvers have been briefly
mentioned. Some of the criticisms leveled against the BEM
approach in general have been addressed in this work, while we
expect to solve some of the remaining in future communications.
Work is also under way to make the code more efficient through
the implementation of faster algorithms and parallelization.
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