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Abstract

The electrostatic properties of thin plate shaped structures relevant to the micro-electro-mechanical systems (MEMS) have been
computed using a nearly exact boundary element method (BEM) solver. The solver uses closed form expressions for three-dimensional
potential and force fields due to uniform sources/sinks distributed on finite flat surfaces. The expressions have been validated and, being
analytical, have been found to be applicable throughout the physical domain. The solver has been applied to compute accurately and
efficiently the charge densities on thin plate shaped conductors as used in MEMS components. We have presented results for the model
problem of parallel plate capacitors and compared them with results obtained from several other BEM based solvers.
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1. Introduction

The boundary element method (BEM) has been success-
fully applied to various branches of science and technology
including gravitation, fluid mechanics, acoustics, structural
mechanics, electronics and micro-electro-mechanical sys-
tems (MEMS). The method can be viewed as the numerical
implementation of boundary integral equations (BIEs)
based on the Green’s formula. In order to carry out the
implementation, only the boundaries need to be segmented.
The resulting boundary elements are endowed with
distribution of singularities such as sources, doublets,
dipoles and vortices. The strength of these singularities
are obtained by satisfying the boundary conditions
(Dirichlet, Neumann or Robin). Thus, in comparison to
finite element method (FEM) and finite difference method
(FDM), numerical discretization for BEM is carried out at
a reduced spatial dimension and the resulting linear system
of equations are smaller. Moreover, due to the nature of
Green’s formula, the method works accurately for pro-
blems with unbounded domains without invoking trunca-
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tion and other approximations necessary for FEM and
FDM. There are several other advantages of using the
BEM, e.g., mesh adjustment for moving boundaries is
easier to carry out, no interpolation/extrapolation is
required for obtaining properties at an arbitrary point in
the domain. There are some disadvantages associated with
the method as well. For example, the mathematics related
to the formulation of a BEM solver is considerably more
complex than that for FDM and FEM solvers. Moreover,
the matrices generated through this formulation are fully
populated and difficult to both generate and solve [1,2].
The most serious drawbacks, however, are related to the
approximations involved in the numerical implementation
of the BEM. They are, in general, as follows:

e While computing the influences of the singularities, the
singularities are modeled by a sum of known basis
functions with constant unknown coefficients. For
example, in the constant element approach, the singula-
rities are assumed to be concentrated at the centroid of
the element, except for special cases such as self
influence. This becomes necessary because closed form
expressions for the influences are not, in general,
available for surface elements. An approximate and
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computationally rather expensive way of circumventing
this limitation is to use numerical integration over each
element or to use linear or higher order basis functions.

e The strengths of the singularities are solved depending
upon the boundary conditions, which, in turn, are
modeled by the shape functions. For example, in the
constant element approach, it is assumed that it is
sufficient to satisfy the boundary conditions at the
centroids of the elements. In this approach, the position
of the singularity and the point where the boundary
condition is satisfied for a given element usually matches
and is called the collocation point.

It may be noted here that the majority of implementations
based on BEM are still the constant collocation ap-
proaches. This is because the method is a good optimiza-
tion between accuracy and computational complexity.
Both these approximations, especially the former, have
important consequences. It leads to the unhappy situation
where the potential and force field very close to the element
are found to suffer from gross inaccuracies. So much so
that a number of workers have had to devise ways of
dealing with special cases through which the errors can be
reduced to an acceptable extent [3—6]. However, these
special formulations are not valid for the entire physical
domain and thus, necessitate the use of several expressions
for evaluating potential and field on the charged surfaces
and other field points. It also becomes necessary to
subdivide the segments on some parts of the boundary
to justify certain approximations used to deduce the
expressions.

Accuracy of the near-field calculations becomes exceed-
ingly important for the structures used in MEMS which
normally have fixed or moving structures with thickness (/)
of the order of microns (um) and lengths (L) of the order of
tens or hundreds of microns. These structures are often
plates or array of thin beams which, owing to their
smallness, can be moved or deflected easily through the
application of low voltages and are widely used in
microjets, microspeakers, electrostatic actuators etc. Since
electrostatic forces play a very major role in maneuvering
these devices, a thorough understanding of the electrostatic
properties of these structures is of critical importance,
especially in the design phase of MEMS. In many cases, the
electrostatic analysis of MEMS is carried out using BEM,
while the structural analysis is carried out using FEM [7].
In this paper, we concentrate on the computation of
the electrostatic properties (e.g., the charge distribution
and the capacitance) of thin plates relevant to MEMS
using BEM.

It has already been noted [6] that computing the
resultant charge due to the two surfaces of a plate under
the usual assumption of vanishing thickness of the plate is
not an acceptable approach for these structures. This is so
because the electrostatic force acting at any point on these
surfaces depends on the square of the charge density at that
point. The two surfaces of the plate being too near, the

standard BEM does not work satisfactorily and several
modified BEM have been developed, such as the enhanced
BEM and the gradient BIE technique leading to the thin
plate BEM [6]. The former is suitable for moderately thick
plates, while the latter is suitable for very thin plates,
h/L<1073,

In this work, we present a BEM solver which overcomes
the first approximation mentioned earlier by using closed-
form expressions for computing influences that are valid
for sources distributed uniformly over a flat surface. As a
result, the first (and possibly, the most damaging)
approximation for this solver can be relaxed and restated
as,

e The singularities distributed on the boundary elements
are assumed to be uniform on a particular element. The
strength of the singularity may change from element to
element.

Thus, our approximation turns to be far less stringent than
the necessity to assume the singularity to be concentrated
at one single point on an element. This relaxation has
profound consequences for the solver and to reflect this
fact, we have named the new solver a nearly exact BEM
solver. Since the expressions used in this solver are analytic
and valid for the complete physical domain, and no
approximations regarding the size or shape of the singular
surface have been made during their derivation, its
application is not limited by the proximity of other
singular surfaces or their curvature. In other words, it is
possible to apply the solver for solving a very wide range of
problems including those containing extremely closely
spaced singular surfaces of any shape and size which are
known to create major problems for other approaches
developed and used so far. Thus, now, the same solver can
be easily applied to compute properties for plates of any
thickness and applicable for any structure, including those
relevant to MEMS, for which electrostatic properties need
to be computed. The necessity for special formulations to
tackle the near-field domain does not arise at all. The
approach, naturally, is not limited to electrostatics only but
can be applied to many other fields of science and
engineering where similar formulations are obtained.

In Section 2, we have presented a brief discussion on the
theory of BEM and the new analytic expressions for the
potential and the force field for a flat element having source
uniformly distributed on it. In Section 3, we present the
numerical implementation of the BEM solver, especially in
the context of the MEMS thin plates. The first part of
Section 4 contains the validation of the new expressions.
Here we also study the effect of using the new expressions
vis a vis implementing the usual BEM approximation. In
the second part, we present the computation related to
plates for a wide range of 4/L and d/L where d is the
distance between the facing sides of the two plates of a
parallel plate capacitor. Here, as in [6], we concentrate on
the charge density and the capacitance of the structures,
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both of which are known to be very important for the
design of efficient MEMS. We have compared our results
with some of those available in the literature and, in some
cases, our results seem to be better than the available ones.
Finally, in Section 5, we present our conclusions.

2. Theory

The Laplace and the Poisson equations are two very
widely used partial differential equations which occur in
various branches of science and engineering such as
gravitation, ideal fluid mechanics, acoustics, electromag-
netics, thermodynamics. They reflect the properties of
conservation and the inverse laws. The Poisson equation is
as follows:

V2 = —dnp, (1)

where ¢ is normally a potential and p is a source or sink
density. The equation is known as the Laplace equation
when the right-hand side is identical to zero. In general,
physical situations governed by these equations are termed
as potential problems and represent a very large class of
problems in which dissipation is absent.

According to the indirect formulation for the BEM, the
expression for the potential (¢) at a location (¥) is as
follows:
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where 7 is the position vector at which the potential is being
evaluated, ~ the location of the distribution density
function p, V the physical volume and S the surface
enclosing the volume, ' is the unit normal vector pointing
outward at ¥ and G(7,7) the Green function. In general,
the Green function has the form

GF,F) = + F(#, 1), (3)
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where F(7,F) is a solution of the Laplace’s equation

V2E(@#,F) = 0. “4)

For electrostatic problems, the BIE reduces to [8]
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where p(F) now represents the charge density at 7,
G, F) = 1 /4ne|F — ¥| and & is the permittivity of the
medium.

As discussed above, the above equation is normally
solved using a collocation technique where the boundary is
discretized into a large number of small elements on which
the surface charge density is assumed to be constant. The
centroid of each element is considered to be the collocation

point and the value of the potential there is assumed to
represent the potential on the element. Moreover, the
distributed charge on the element is assumed to be
concentrated at the collocation point except for special
cases (e.g., self induction). This severe approximation leads
to significant error in the near-field of the elements as will
be discussed below.

In order to overcome the limitation of assuming the
charge to be concentrated at the collocation points of the
boundary elements, we integrated Eq. (5) [9] and obtained
analytic expressions which have been incorporated in the
present BEM solver. In general, the potential ¢ at a point
(X, Y, Z)in free space due to uniform source distributed on
a rectangular flat surface having corners situated at
(x1,0,z1) and (x2,0, z2) is known to be a multiple of

2o dxdz
X, Y,Z)= . (6)
/Z] L] \/(X—X)2+ Y2+(Z—Z)2

where the value of the multiple depends upon the strength
of the source and other physical considerations. For
deducing the above expression, the origin of the coordinate
system is assumed to be on the plane of the small element
which is assumed to be on the XZ plane as shown in Fig. 1.
The denominator within the integral can be easily
interpreted to be the distance 7 between the point
P(X,Y,Z) at which the potential is being evaluated and
an infinitesimal element on the surface situated at (x, 0, z).

The closed form expression for ¢p(X, Y, Z) is as follows:

d(X,Y,Z)
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Fig. 1. Geometry of the plates in MEMS.
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Dy = (X — x4 VP (Z— =),

Dy = /(X = x + Y2+ (Z - ),

D; = \/(X—X2)2+ Y2 +(Z - 21),

Dy=1/(X — %)+ Y2+ (Z - =),
R=Y'+(Z-2),R=Y"+(Z—- 1),
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S| =sign(zy — Z), S, = sign(z; — Z).

Similarly, the force field for the above problem is given as a
multiple of

2 X2 4
F(X,Y,Z)= / / rdx2dz’ ®)
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where 7 is the displacement vector from a small surface
element to the (X, Y, Z) point where the force field is being
evaluated. Eq. (8) has also been integrated in order to get
exact expressions to estimate the force fields in the X, Y
and Z directions. These expressions, valid for the complete
physical domain, are as follows:
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In Eq. (10), C is a constant of integration as follows:
0 if outside the extent of the flat surface,
C={2n if inside the extent of the surface and Y >0,

—2n if inside the extent of the surface andY <O0.

Egs. (7) and (9)—(11) are exact and valid throughout the
physical domain including the near-field. These are the
equations we have used to develop the nearly exact BEM
solver as described in the next section. We have also
presented the results of numerical experiments carried out
to establish the accuracy and effect of these expressions in
the first part of results and discussions.

3. Numerical implementation

In BEM, as applied in electrostatics in the absence of any
space charges, the charge carrying surfaces (normally the
boundaries) of a system are segmented on which unknown
uniform charge densities are assumed to be distributed.
The unknown uniform charge densities (p) and the known
voltages (¢) at the discrete points are related through the
influence matrix (A),

Ap:¢a

where A4;; of A represents the potential at the midpoint of
segment i due to a unit charge density distribution at the
segment j. The unknown surface charge densities can then
be calculated by inverting the influence coefficient matrix
and multiplying it to the potential column vector as
follows:

p=A""1.¢. (12)

From the charge densities, it is easy to obtain the charge in
each of the segments. In this work, we have used the
lower—upper (LU) decomposition incorporating Crout’s
method of partial pivoting to solve for p.
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Fig. 2. Geometry of the model parallel plate capacitor.

For the present problem of estimating electrostatic field
for plate structures relevant to MEMS, the geometry
considered is as shown in Fig. 2. We are interested in the
Dirichlet problem for Laplace’s equation for this geometry.
Because of the peculiarities of MEMS structures, the
charge density distributions on the upper and lower
surfaces of a plate have to be solved for separately
(designated by p™ and p~). So, in all, four or twelve
surfaces are discretized, the influence matrix is set up and
charge densities at each of the element obtained using
Eq. (12). While setting up the influence matrix and also in
all subsequent calculations involving potentials and
force fields (on the boundary or at any field point),
the expressions presented by Egs. (7) and (9)—(11) have
been used.

It is well known that the charge densities near the edges
of these bodies are much higher than those far away from
the edges. In order to minimize the errors resulting from
the approximation of uniform charge density, we have
progressively reduced the segment size close to the edges
using a simple polynomial expression as used in [5].
Although a true adaptive segmentation is a better approach
for these problems, the simple method has improved the
results substantially. In fact, it has been suggested [5] that
the simple algebraic expressions can actually yield more
accurate results since the adaptive approach may lead to
variation of segment sizes which is not smooth.

4. Results
4.1. Numerical experiments

In order to establish the accuracy of the above
expressions, we have compared the potential and electric
field distributions computed using the new expressions with
those computed by assuming a varying degree of dis-
cretization of the given surface, where each of the discrete
elements is assumed to have its charge concentrated at its
centroid. The flat surface has been assumed to be a square
(1em x 1cm) and length scales up to 10um have been

resolved. The source density on the flat surface has been
assumed to be of unit strength. In the Figs. 3 and 4, we
have presented a comparison among results obtained by
the exact expressions and those obtained by discretizing the
flat surface having a single element, having 10 x 10
elements and having 100 x 100 elements. The single
element representation gives inaccurate results as soon as
the point is less than 1 cm away from the origin. The 10 x
10 discretization is satisfactory only up to the edge of the
surface (i.e., Smm away from the origin), while the 100 x
100 discretization yields good results close to origin. The
last one, however, shows fine oscillations when inspected
closely. In order to illustrate the error incurred through the
use of point singularity rather than a distributed one, we
have plotted the deviation from the exact value depending
on the amount of discretization used. The deviation
normalized with respect to the exact value of the potential
has been plotted as a function of distance along X and Y
axes, as shown in Fig. 5 and 6. In order to accommodate
the large variation of magnitude of the error, a logarithmic
scale has been used. It can be seen that the usual boundary
element approximation leads to a very large amount of
error (more than 10%) as potentials at points on the
element are evaluated. The error increases as we move
towards the centroid of the element. At the centroid,
however, the point approximation leads to a singularity
and, in its place, an exact analytic expression is normally
used which gives correct result. With further subdivision,
the accuracy increases but at the cost of a large increase in
computational expenses. For example, with a 10 x 10
subdivision, the error within the element drops to around
5%. The error is less than 1% only if the influencing

element is subdivided into approximately 100 x 100
0.05 T T T T T
100by100 —
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2
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Fig. 3. Comparison of potential distribution along X -axis.
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elements which involves a very large computational
expense indeed. It may be noted here that for the standard
approximation, the error along the X-axis drops below 1%
only after the distance from the centroid is more than twice
the length of the element. A similar analysis of the error
along the Y-axis indicates that the error drops below 1%
beyond three times the length of the element. So, in

,.:'”/x N
01} e ™~ ;
L e
1000 by 1000 ——
0.01 | 100 by 100 - 3
10 by 10 ...........
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1e-04 1
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Fig. 6. Variation of error along Y-axis.
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Fig. 7. Comparison of F, distribution along X-axis.

general, the standard BEM approximation can be assumed
to yield accurate results only if the distance of the
influenced point from the centroid of the influencing
element is more than three times the length of the element.

Similarly, Figs. 7 and 8 show the comparison of force
values computed using the exact expression, the standard
BEM approximation and computations using a segmented
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element. It can be seen that for F, (Fig. 7), even the highest
discretization (100 x 100) leads to significant amount of
oscillation in the estimate while the exact expressions yield
a force varying smoothly along the X-axis. It is well known
that for the charged surface considered, there should be a
‘jump’ in F, from 427 to —2r at the centroid, as we move
from positive Y to negative values. From Fig. 8, it is clear
that this ‘jump’ is accurately computed by Eq. (10).

In Figs. 9-11 we have presented the surface plots of the
potential, force in the Y direction and force in the Z
direction in the near-field region. The potential surface has
been drawn on the element surface while the force fields
have been drawn just 10 um away from the surface. While
the far-field potential and force surfaces mimic the
behavior due to a point source, these near-field surface
plots are found to be markedly different. The figures
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Fig. 10. F, surface distribution at ¥ = 10 um.

Y=10um

el
0.1 LI
e g e
S R,
0.05 + i
. A L

R
Z
[

-0.05
-0.1
-0.15

Field (au/cm)

-0.5
X(Crn) ) 1

Fig. 11. F. surface distribution at ¥ = 10 um.

vividly represent the error incurred in modeling distributed
sources using the point approximation.

From all these figures, we can conclude that the exact
expressions reproduce the correct features of the fields
within the near-field even in the most difficult situations,
e.g., where there is jump in the value (Fig. 8), or where
there are sharp discontinuities (Figs. 4 and 7).

4.2. Parallel plate capacitive structures relevant to MEMS

A parallel plate capacitor with two square plates as
shown in Fig. 2 has been considered as the model problem
for structures used in MEMS. The length L has been
considered to be unity while different values of A, the
thickness of each plate, and d, the distance between the two
facing surfaces of the two plates, have been considered. The
medium external to the plates has been considered to be
vacuum. The potential applied to the upper and lower
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plates are V; =1 and V, = —1, respectively. Similar
capacitive structures have been considered by [6,10]. In
the former, a special BIE formulation was developed to
treat plates of medium thickness (enhanced BEM) and
another to treat thin plates (thin plate BEM). Our attempt
here will be to compare the results obtained using the
nearly exact BEM solver with those obtained using these
special formulations for capacitive structures of a wide
range of d and /. It may be noted here that capacitance (C)
has been computed as C = Q/2V where Q is the total
charge on the upper plate while 7 is the potential on it.
The value of the capacitance has been normalized using the
conventional formula Cd/Ae where A is the area of the
upper plate.

In Table 1, we have presented the variation of the
normalized capacitance for d/L = 0.2 with h/L varying
from 1 to 107°. The present results have been compared
with those in [6] obtained using the usual BEM, enhanced
BEM and thin plate BEM formulations. It can be seen that
there is a good amount of discrepancy in the values of the
normalized capacitance. Here it must be remembered that
while the usual BEM is not expected to produce correct
results for thin plates, the enhanced BEM is also not
expected to yield accurate results for the whole range of
h/L. Similarly, the thin plate BEM is expected to give
correct results only when /#/L<0.001. One important point
to note is that while the thin plate BEM indicates an
increase in the normalized capacitance with the decrease in
h/L, the present results, as well as the enhanced BEM
results, indicate an opposite dependence. This is possibly
because of the reason that the thin-plate formulation does
not incorporate the effect of the sides of the plate in an
explicit manner. This thickness, 4, is likely to have a
negligible effect on the total charge accumulated on the
plate only when it is extremely small. Since, for plates with
h/L>=0.001, this cannot be expected to hold true, it is safe
not to use the thin-plate formulation for these plates. In
order to illustrate this behavior, we have presented the
value of normalized capacitance computed by the pre-
sented solver in the fifth column of Table 1 for which the
total charge accumulated on the plate has been assumed to
be only due to the upper and lower surfaces of the plate. It
can be observed that the values in this column are quite

Table 1
Variation of normalized capacitance for d/L = 0.2 with varying /L

close to those computed by the thin-plate BEM and follow
the same trend. The last column of Table 1 contains the
correct values of normalized capacitance as calculated by
the solver based up on the proposed expressions. Here, the
contribution of all the sides of a plate are considered when
computing the total charge accumulated on the plate. As
expected, the obtained value for normalized capacitance
agrees with the usual BEM value when 4/L = 1, follows
the trend of the enhanced BEM for intermediate values of
h/L and agrees reasonably well with the thin plate BEM
when A/L<0.001. Thus, using the same formulation,
expressions and solver, it has been possible for us to
obtain accurate values of the normalized capacitance for
the whole range of /1/L. It may be mentioned here that the
value of normalized capacitance in the fifth and sixth
columns of the table tend to converge for smaller values of
h/L, justifying the thin plate BEM formulation and also
demonstrating the accuracy of the present formulation.

In Fig. 12, we present the variation of the normalized
capacitance of a system with 2/L = 107° and changing d.
From the rather small value of i/L it is expected that this
case corresponds to thin plate capacitors which are often
used as components of MEMS structures. Our results have
been compared with those from [6,10]. It can be seen that
the present results fall in between those of the other two,
being almost identical to the thin plate BEM results of [6].
The close match between the results confirms that the new
solver does not require any special formulation to handle
the most stringent of geometrical constraints. In this case
the proximity of the two surfaces of the plates under
consideration would have led to sure failure of any usual
BEM solver (and also the enhanced BEM solver as shown
in [6]).

In Fig. 13, we present the charge density on the upper
and lower surfaces of the upper plate of Fig. 2 and compare
our values with those from [6]. In this case, the i/L = 1073
while d/L =0.2. The values are in excellent agreement
throughout most of the span. However, we have not found
any ‘bump’ towards the end of the plate. In fact, such
bumps could be observed only when we used very coarse
discretization and is probably an artifact, as has been
remarked in [6]. The fact that the new solver computes
charge density without the ‘bumps’ has led us to believe

h/L Usual BEM [6] Enhanced BEM [6] Thin plate BEM [6] Present (excluding side)  Present (including side)
1.0 2.3975 1.259038 2.374961
0.1 3.3542 2.6631 1.2351 1.360813 1.757175
0.05 1.7405 1.3879 1.392805 1.679710
0.01 1.6899 1.5611 1.455047 1.590639
0.005 1.6652 1.5874 1.475206 1.574417
0.001 1.6221 1.6094 1.511291 1.558108
0.000001 1.6200 1.539550 1.552190
(1.5830

with finer mesh)
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Table 2
Comparison of surface charge density values for d/L = 0.2

that the present results are more accurate than those
available. It seems that the small disagreement in the earlier
comparison of normalized capacitance (Fig. 12) stems from
these artifacts present in the surface charge density
computation of [6].

In Table 2, we have presented a comparison of the
surface charge density computed by various methods. The
enhanced BEM method is found to overestimate the value
of the surface charge density for #/L = 0.001. For the
thicker plate its estimates are similar to the thin plate BEM
and the present results.

Finally, in Table 3, we present a study on how the
accuracy of the results obtained using the presented solver
depends on the amount of discretization. The discretization
has been varied on the top and bottom surfaces of the plates
only, while the same discretization has been maintained for
the side surfaces (10 x 4 on each side for plates having
h/L<0.001 and 10 x 10 for plates having /L greater than
that). It can be seen that the values computed for all the
discretizations are similar and fairly accurate results are
obtained with even the coarsest 10 x 10 discretization. It
may be mentioned here that number of elements in this case
is 720 for thin plates which is reasonably small. For the most
accurate computation (30 x 30 discretization), the number
of elements is 3920. This computation also, although time
consuming, can be easily undertaken on a present day
desktop computer. The discretization of 20 x 20 for the top
and bottom surfaces of a plate seems to yield accurate
results without requiring long computation time. In this
case, the number of elements turn out to be 1920. Please
note that the assumption of symmetry has not been
implemented for any of the results presented in this work.
A suitable implementation can drastically reduce the
amount of computation.

The present formulation is based on rectangular
elements which are known to create problems while
modeling generalized three-dimensional objects. Hence, in
order to make the presented approach more versatile, we
have started to work on developing a similar formulation
based on triangular elements so that the solver can be
extended to model geometries that require unstructured
mesh.

5. Conclusions

Exact expressions for potential and force field due to a
uniform source distribution on a flat surface have been

Method Enhanced BEM [6] Thin plate BEM [6]

Present Enhanced BEM [6] Thin plate BEM [6] Present

h/L 0.01 0.01
pt at plate center 1.9972 1.4539
p~ at plate center 9.8761 9.4399

0.01 0.001 0.001 0.001
1.6008 4.5300 1.4500 1.6264
9.9983 12.150 9.8600 9.9988
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Table 3
Variation of accuracy with discretization for d/L = 0.2 for different /1/L

h/L Mesh on top and  Mesh on sides Normalized BEM
bottom capacitance
0.1 10 x 10 10 x 10 1.756467
20 x 20 10 x 10 1.757175
30 x 30 10 x 10 1.757083
0.01 10 x 10 10 x 10 1.588973
20 x 20 10 x 10 1.590639
30 x 30 10 x 10 1.590558
0.001 10 x 10 4x 10 1.55591
20 x 20 4% 10 1.558108
30 x 30 4x10 1.558268
0.000001 10 x 10 4x10 1.548260
20 x 20 4x10 1.552190
30 x 30 4x10 1.552516

presented. The expressions have been found to yield very
accurate results in the complete physical domain. Of special
importance is their ability to reproduce the complicated
field structure in the near-field region. The errors inducted
in assuming discrete point sources to represent a contin-
uous distribution have been illustrated. The use of the new
expressions in a BEM solver can help in relaxing the most
damaging of approximations involved in the development
of the solver.

A BEM solver has been developed based on the exact
expressions for potential and force fields. The nearly exact
solver has been used to compute the electrostatic properties
of structures relevant to MEMS. The obtained results have
been compared with other available results. The compar-
ison indicates that the presented ones are possibly more
accurate than the available results. Thus, it may be said
that the new solver yields precise results for a very wide
range of electrostatic configuration without needing special
formulations for critical geometries. The presented ap-

proach can be equally helpful for several other areas of
science and technology that are governed by similar
mathematics.
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