
Manual for the nearly exact Boundary Element Method

(neBEM) toolkit

Supratik Mukhopadhyay, Nayana Majumdar

Applied Nuclear Physics Division

Saha Institute of Nuclear Physics

Bidhannagar, Kolkata, WB, India

e-mails

supratik.mukhopadhyay@saha.ac.in

nayana.majumdar@saha.ac.in

1 Introduction

Purpose of the neBEM toolkit is to help users solve scientific / technological problems gov-

erned by the three-dimensional Laplace’s / Poisson’s equation. At the end of a successful

solution, the user is left with a distribution of singularities that satisfies the boundary condi-

tions of the problem as specified by the user. The procedure that needs to be followed can be

described as a three-step one: i) Pre-processing, ii) Solution, iii) Post-processing. The three

steps are being described below in brief.

Pre-processing: The geometry of the problem and various material properties (such as

the conductor / dielectric nature, potential etc for an electromagnetic problems), amount of

discretization or the level of accuracy required etc are specified. These information can be

specified using a separate software (e.g., Garfield) or a small independent code or can be

1

directly built into the mandatory interface code. The geometry of the problem is described

by wires (1D) and flat surfaces (2D), the latter being rectangular or right triangles at present,

arbitrary polygons to be implemented very soon! The wires and flat surfaces used to describe

a given physical system are called primitives.

Solution: The real hard work is done here. Possible steps are discretization of the primitives

into smaller wire, triangular or rectangular elements on which it is reasonable to assume

uniform singularity distribution, setting up of the influence coefficient matrix, its inversion,

setting up the right-hand side (RHS) vector and finding the solution. The influence coefficient

matrix depends on the geometry, various material properties and remains unchanged for

a given device despite a change in the boundary conditions. That is why, we invert the

influence coefficient matrix as soon as it is made and keep it stored for use with various

possible boundary conditions. The RHS depends on the boundary conditions specified and

can be modified while keeping the geometry and other properties of the problem unchanged.

The solution (e.g., the charge density in an electrostatic problem) is obtained by multiplying

the inverted influence coefficient matrix to the RHS.

Post-processing: The solution is used to estimate necessary properties at any location or to

carry out some other estimation, such as finding out the capacitance or force on a component

for an electrostatic device. It is quite normal to invoke only the post-processing part of the

computation repeatedly for a given device, on which the singularity density distribution has

been estimated earlier. This is the reason neBEM has the provision to store each solution

for a given device model and boundary conditions.

1.1 Prerequisites

The toolkit is strongly dependent on the Inverse Square Law Exact Solutions (ISLES) library.

Both 32 and 64 bit versions of this library are packaged within the neBEM<version>.tgz file.

Recently, ISLES for a Mac running OSX 10.6.4 has been compiled (thanks to Achim). Correct

version of the library should be present in the lib directory of the distribution, and named

2

as libIsles.a. If necessary, please download this library from the neBEM web-page and

copy it to the mentioned location.

The toolkit assumes that the Gnu Scientific Library (GSL) and the gnuplot are installed on

the system. The present version also uses some routines from the book Numerical Recipes

in C by William H Press, Brian P Flannery, Saul A Teukolsky and William T Vetterling,

published by the Cambridge University Press. It should be noted here that the neBEM

toolkit is not intrinsically dependent on any of these external packages / libraries / routines.

It is quite likely that in a future version the toolkit will not use any of them except the ISLES

library.

2 Installtion

Download neBEM<Version>.tar.gz (preferably, the latest version).

1. Unpack the archieve at a convenient location. The necessary directory structure is created

as a result. Have a look into the lib directory and you’ll find that both 32 and 64 bit versions

of the libIsles are present in this directory. Based on your system architecture, copy the

relevant binary as lib/libIsles.a which is the one that is linked during a make.

2. The libraries and some example binaries will be there in the lib and bin directories. How-

ever, it is safer to issue make cleanall to remove the older object files, libraries and binaries.

3. Create new objects, libraries and binaries by issuing for example,

make

or,

make -f src/Applications/MakeExampleDev

or, ./CreateApplications

In order to remove binaries related to a specific application, a command similar to the

3

following may be issued

make -f src/Applications/MakeExampleDev clean

In order to remove all binaries related to all applications, issue ./CleanApplications

4. In a similar manner, individual examples or several of them can be tried out.

5. There are some initialization files in the InitFiles directory.

Please note the following:

• If you are building neBEM for garfield, do make all

• If you are building neBEM as stand-alone, do ./CreateApplications

Since the former uses gcc and the latter g++, it is better to clean the directories of old

binaries by issuing a make cleanall or a ./CleanApplications.

Please note that when being invoked from Garfield, no init-file is used and all the parameters

are passed to neBEM via parameters. For details, please check the Garfield help files:

(http://consult.cern.ch/writeup/garfield/help/).

The init-files, when present and relevant, provide certain default values to carry out the

computations using neBEM for any given problem. It even allows control over the phase in

which the computation is started. For example, if only a new post-processing is necessary

for a device that has already been solved for a specific electrostatic configuration and whose

charge densities have been saved, it is possible to change the flags related as NewModel=0,

NewMesh=0, NewBC=0, NewPP=1. It is necessary to maintain the correct counters for these

parameters so that the correct model, mesh, boundary conditions are used for the necessary

post-processing. One initialization file is usually maintained for each application and they are

expected to be stored in $HOME/.neBEMv<version number>/<ApplicationSpecific>.init

This default behaviour can surely be modified by editing the interface file specific for an appli-

cation. If an initialization file is not found, the computation is carried out by the parameter-

set defined in the neBEMSetDefaults function. So, after the files are unpacked and before you

4

start executing neBEM, it may be useful to create a directory $HOME/.neBEMv<version-counter>

and copy the initialization files from InitFiles to that directory. If necessary, keep a copy

of older initialization files.

In the following table, we have explained in brief the different parameters that may be

controlled using the init files:

Note that the parameter NewBC is of special importance. If this parameter is set to 1,

while maintaining NewModel = NewMesh = 0, it is assumed that we are delaing with the

same geometry and discretization, while having a different boundary condition. The in-

verted matrix from an earlier calculation (where NewModel and NewMesh were equal to 1)

needs to have been stored for this to proceed. In such an event, the inverted matrix is

read in, and the solution for the relevant boundary condition is easily and very quickly ob-

tained. This can save an enormous amount of time, especially for a complex device for which

generartion of the influence matrix, as well as its inversion is of significant computational

expense. Through Garfield, this is achieved by invoking parameters such as new-model,

reuse-model, keep-inverted-matrix (please see relevant portion of the Garfield manual).

3 neBEM toolkit - a How-To approach

The neBEM solver represents any given device by several primitives that can either be one-

or two-dimensional. Any thin device component can be modeled by a combination of such

straight one-dimensional primitives, while the surface of any three-dimensional device can

be modeled by a large number of such two-dimensional flat surfaces. These primitives are

then discretized into smaller elements on which the assumption of uniform charge density

is considered to be valid. The solver uses elements of three kinds to represent any given

device. These are (i) linear, (ii) right triangular and (iii) rectangular. It is quite obvious

the linear elements are used to discretize the thin wire-like components, while the other two

elements are used to discretize surfaces of two- or three-dimensional components. Among

5

Parameter Explanation

MinNbElementsOnLength Minimum number of elements allowed along the length of a primitive.

MaxNbElementsOnLength Maximum number of elements allowed along the length of a primitive.

ElementLengthRqstd Preferred length of the side of an element. neBEM tries to adapt to this

but is over-ridden by the minimum and maximum number of elements.

A log is maintained in MeshLog.out file.

LengthScale Specifies the length scale to be used during a given computation. This can be useful

to maintain accuracy of solution for problems very small or very large.

New or old? These parameters, including the accompanying counters have been described below.

DeviceOutDir Output directory. Internal subdirectories are created

by neBEM automatically within this directory.

OptDeviceFile 1 implies that the user will specify the device

by means of input files - useful for stand-alone applications.

DeviceInputFile User specified input file. Check stand-alone applications

described below.

OptPrint(s) Determines the level of terminal outputs.

OptGnuplot(s) Determines whether files are to be maintained

for use with the gnuplot routine.

OptPrimitiveFiles Determines whether files describing the primitives are to be stored.

OptElementFiles Determines whether files describing the elements are to be stored.

OptReuseDir Determines whether the output directories are allowed to be overwritten.

OptInvMatProc Procedure to be adopted for inverting the influence matrix (0 or default: LU, 1: SVD).

OptValidateSolution Whether a cross-check on satisfaction of boundary conditions is done (XChk.out).

OptForceValidation Whether cross-check is forced, if needed by recomputing influence matrix (XChk.out).

OptStorePrimitive Determines whether primitive details are stored.

OptStoreElements Determines whether element details are stored.

OptStoreInflMatrix Determines whether the influence matrix is stored.

OptStoreInvMatrix Determines whether the inverted matrix is stored.

OptFormattedMatrix Determines whether files are stored in formatted mode.

OptUnformattedMatrix Determines whether files are stored in unformatted mode.

OptRepeatLHMatrix Determines whether the influence matrix computations are

to be repeated in order to validate solution.

OptSystemChargeZero Determines whether the total charge of the system is

to be made zero. This usually means addition of a

voltage shift throughout the device.

6

these elements, the linear one consumes minimum amount of computational resources, while

the triangular one is, computationally, the most expensive. However, the triangular elements

are indispensable since they are the most versatile ones in the task of representing surfaces

of arbitrary geometry. Hence, a question of optimization arises that is irrevocably connected

to the geometry of the device and the necessary precision of a study.

Since neBEM has been developed as a toolkit, some coding is necessary to solve a problem

of interest. To begin with, the proverbial main function needs to be supplied. In addition,

interface functions and post-processing functions need to be provided. These additional

functions can co-exist with the main function in a single source code but we found it a lot

more convenient to keep the main source code trimmed to the minimum and having two

other source codes, one for the interface functions and another for post-processing. We even

preferred to keep these source codes in different sub-directories. All these can be changed

according to the user’s convenience. However, the changes must also be reflected in the

Makefile in addition to the source codes.

3.1 The driver code

From Applications/Plate.c Several templates have been supplied to illustrate use of the

neBEM toolkit. The user has to supply a driver main routine invoking neBEM functions in

a specific sequence, as shown below.

int main(void)

{

neBEMInitialize();

neBEMReadGeometry();

7

neBEMDiscretize(elementNbs);

neBEMBoundaryConditions();

neBEMSolve();

PostProcess();

neBEMEnd();

}

Let us see one of the example codes (named ExampleDevice) to check the details. A brief

discussion follows the source code which itself is self-explanatory.

/* Source code begins */

// Analyze an Example Device

#include <stdio.h>

#include <assert.h>

#include <Interface.h>

#include <Vector.h>

#include <NR.h>

#include <neBEM.h>

int main(void)

8

{

int PostProcess(void); // a typical post-processing function

neBEMState = 0;

int fstatus = neBEMInitialize();

assert(fstatus == 0);

fstatus = neBEMReadGeometry();

assert(fstatus == 0);

int **elementNbs;

elementNbs = imatrix(1, NbPrimitives, 1, 2);

for(register int prim = 1; prim <= NbPrimitives; ++prim)

{

elementNbs[prim][1] = tmpNbXSegs[prim];

elementNbs[prim][2] = tmpNbZSegs[prim];

}

fstatus = neBEMDiscretize(elementNbs);

assert(fstatus == 0);

fstatus = neBEMBoundaryConditions();

assert (fstatus == 0);

NewModel = 1; NewMesh = 1; NewBoundaryCondn = 1; NewPostProcess = 1;

ModelCntr = 1; MeshCntr = 1; BoundaryCondnCntr = 1; PostProcessCntr = 1;

TimeStep = 1; EndOfTime = 1;

fstatus = neBEMSolve(); // fresh calculation

assert(fstatus == 0);

9

fstatus = PostProcess();

assert(fstatus == 0);

fstatus = neBEMEnd();

assert(fstatus == 0);

return 0;

} // main ends

/* Source code ends */

At the beginning of neBEM computation, the user needs to assign the state variable neBEMState.

neBEMState = 0;

int fstatus = neBEMInitialize();

assert(fstatus == 0);

Within the neBEMInitialize function, default values of global variables used by neBEM are

set using the

neBEMSetDefaults

function. If the OptDeviceFile variable is set to a non-zero value via neBEMSetDefaults, it

is decided that the device details are to be read in from a file of name as assigned to a string

named DeviceInputFile. In such an event neBEMInitialize invokes

neBEMGetInputFromFile

function after setting up the defaults. For an example where the DeviceInputFile represents

a real input file, check the examples related to ExampleDevice, microMegas and Iarocci

tube. On the other hand, if OptDeviceFile is set to zero through neBEMSetDefaults, it is

10

assumed that the user will supply all the necessary details related to the device model using

hard-coded numbers, evaluation of suitable expressions within the interface source code, or

through the execution of other function calls presumably residing in external packages. The

GarfieldInterface, for example, follows the latter and invokes Garfield functions such as

bemnpr, bempri etc to specify necessary details from the functions discussed below. This

could be true for any other code being interfaced to the neBEM toolkit. For very simple

examples that do not use external files for getting in the device details, check the examples

related to Plate, DielectricInterface (DI, DItri etc).

The neBEMReadGeometry function uses neBEMGetNbPrimitives, neBEMGetPrimitive,

neBEMVolumeDescription and neBEMVolumePoint, the last one used sparingly, to define the

device details.

Function neBEMDisctrize sets up a mesh on the primitives used to define the device. It is

likely that a routine will be supplied either by neBEM or the user to analyze the primitives

and to decide the size and shape of elements necessary on each primitive. At present, the

corase-ness or fine-ness is dependent on these user-inputs being supplied to neBEMDiscretize

as elementNbs array. For a wire, the first element of this array needs to be 1 or more to

be considered for meshing. For a surface, both the elements need to be 1 or more. If

the above conditions for the elements of elementNbs array fail, the control on meshing

goes to the first three variables specified in the init files, namely MinNbElementsOnLength,

MaxNbElementsOnLength and ElementLengthRqstd, or the NEBEM procedure call in Garfield.

We understand that while this is a convenient approach, the resulting mesh is unlikely to

have good qualities. While it is true that neBEM can produce reasonably good results even

on very coarse and uneven mesh, efforts will be made to make the toolkit intelligent enough

to take correct decisions on discretization matters.

Since a boundary condition is likely to be associated with each element, the correspond-

ing routine, neBEMBoundaryConditions can be called only after the primitives have been

discretized.

11

Finally, the solution is requested after setting up several important flags that define the

problem. These flags follow from the assumption that any unique device can have several

models, each model can be discretized to different extent, each discretized device can be

subjected to different boundary conditions leading to different singularity distributions, and,

finally, each solution may be used to estimate various properties of a device configuration

of interest. For example, a micromegas mesh in a micromegas TPC under study, can be

modeled using surfaces or by using wires resulting into completely different sets of primitves.

These primitives can have different meshing in order to attain different levels of accuracy. Till

this far, the problem is determined almost entirely by the geometry of the problem and the

material properties such as the dielectric permittivity of the components while analyzing an

electrostatic problem. The discretized device can be subject to different boundary conditions

each of which will result into distinct solutions, i.e., singularity distribution. These singularity

distributions can be used to estimate different properties of the configuration under study

by carrying out different post-processes. These flags have a hieracrchy, the first mentioned

having the highest priority:

Flag Explanation

NewModel 1 implies a fresh calculation.

NewMesh 1 implies a new mesh for a device.

NewBoundaryCondn 1 implies new RHS for the same LHS;

skips matrix inversion.

NewPostProcess 1 implies the use of the same solution;

skips matrix inversion, as well as

the step for computing the solution.

We maintain four counters as well:

12

Counter Explanation

ModelCntr keeps track of the model for a given device

MeshCntr keeps track of the mesh for a given model

BCCntr keeps track of the association of the boundary

condition and its solution. This has to

maintained by the user manually and supplied,

for example, while carrying out a post-processing

for a solution that was computed before.

PPCntr numbers different post-processes for a given

solution resulting from a given set of preceding

conditions.

If NewModel is set to 1, all the other flags are automatically ignored and a fresh calculation

is initiated. The counters are, however, used only to create a new directory structure or use

an existing one.

Please note that for solving a static problem, TimeStep and EndOfTime should both be put

equal to one.

Post-processing can be carried out with separate function(s) written within this code, or

function(s) residing in a separate source code, or a mix. Our experience indicate that the

post-processing functions are quite complex entities themselves and are better off if kept in-

dependent of the driver routine. Among many things to be carried out in the post-processing

phase, one could be the evaluation of weighting field. This is an important issue for nuclear

detectors and can be carried out in two simple steps, as follows:

int IdWtField = neBEMPrepareWeightingField(int nprim, int primlist[]);

int status = neBEMWeightingField(Point3D point, Vector3D *field, int IdWtField);

Here, IdWtField identifies the weighting field identification tag for which we have nprim

number of primitives identified by the list primlist raised to 1, while all the other primitives

13

are maintained grounded. At any point, the weighting field for the configuration identified

by the tag IdWtField is obtained through the varaible field.

Finally, neBEMEnd ends neBEM gracefully, writing and closing necessary log files.

3.2 The interface

In addition, the user has to supply an interface between the code and neBEM which con-

tains the following and usually resides in the src/Interface directory. Few templates exist

there for easy reference. If the DeviceInputFile is not set to an empty string within the

neBEMSetDefaults function, the initialization routine looks for the DeviceInputFile to read

in the details of the problem.

int neBEMSetDefaults(void);

int neBEMGetInputsFromFiles(void);

int neBEMGetNbPrimitives(void)

int neBEMGetPrimitive(int prim, int *nvertex,

double xvert[], double yvert[], double zvert[],

double *xnorm, double *ynorm, double *znorm,

int *volref1, int *volref2)

int neBEMVolumeDescription(int volref1, int *shape1,

int *material1, double *epsilon1,

double *potential1, double *charge1,

int *boundarytype1)

int neBEMVolumePoint(double x, double y, double z)

int neBEMGetPeriodicities(int primitive,

int *ix, int *jx, double *sx,

int *iy, int *jy, double *sy,

int *iz, int *jz, double *sz)

14

3.3 Creation of a new neBEM application

So, in order to create a new application in the stand-alone mode, the users needs to create

(by copying from existing files of example applications) the following five files and make small

changes in them (most of the time, as trivial as changing reference to existing names):

• src/Applications/<AppName>.c: Changes may be necessary if time-stepping is neces-

sary. Additional routines are best written here, for example, in order to specify location

of known charges (see Gdp.c). Besides these, no other changes are necessary.

• src/Applications/Make<App>: Change SRC1, SRC2, SRC7, OBJ1, OBJ2, OBJ7, and

EXE. No other change is necessary if the same directory structure is maintained and

no additional source / object code(s) is (are) being processed.

• src/PostProcess/<AppName>PP.c: Depends on the application. Even no change may

be necessary if only a typical field map is being sought for.

• src/Interface/<App>2neBEM.c: Make necessary changes in the DeviceOutDir, DeviceInputFile

and initFileName

• src/InitFiles/<App>2neBEM.init: Usually modification in lines containing DeviceOutDir,

DeviceInputFile are necessary. Otherwise, it depends on the given execution. Please

remember to copy this init file to $HOME/.neBEMv<ersion> directory if you want

these parameters to be set up from values prescribed in this init file.

3.4 Device without use of input files

Let us now illustrate setting up of a simple device (a conducting plate) without taking resort

to input files. Consider the code Applications/Plate.c. The driver routine is similar to the

one discussed above. Consider the interface source code as written in Interface/Plate2neBEM.c.

Note that in neBEMSetDefaults, OptDeviceFile has been set to zero and DeviceInputFile

has been set to an empty string, the latter being superfluous, except serving the purpose of

15

assigning a specific value to the DeviceInputFile string a specific value. Since there is one

single square conducting plate in this problem as a primitive, the number of primitives is

returned to be 1. The same plate (device) could have been represented by several other mod-

els. For example, we could have used two right triangles, or several plates joined together.

The former model, in fact. has been tried out. The latter could be useful if we wanted

to study the concentration of charges in edges / corners of the plate. As is evident from

the source code, we have tried out several different configurations changing orientation etc.

Depending on the model being developed, it is necessary to change the return value of the

neBEMGetNbPrimitives function.

neBEMGetPrimitive gives the details of the of the primitives as is evident from the name

of the function. We pass the primitive number for which we want the details. The details

of this interface primitive are returned in terms of number of vertices, coordinates of these

vertices, the direction of the out-going normal, volume reference number referring to itself

and that referring to the external medium.

Next, the neBEMVolumeDescription function is invoked twice for each primitive in order to

get various important information such as the shape, material, relative dielectric permittivity,

potential, charge density and finally the type of boundary. Based on the type of boundary

on both sides of a given interface, an interface type for a given primitive is determined. The

allowed boundary and interface types and their respective integer values are shown in the

following lists:

16

BoundaryType Value

Vacuum 0

Conductor at specified potential 1

Conductor with a specified charge 2

Floating conductor (zero charge, 3

perpendicular E)

Dielectric interface (plastic-plastic) 4

without ”manual” charge

Dielectric with surface charge 5

(plastic-gas, typically)

Symmetry boundary, E parallel 6

(may not be necessary)

Symmetry boundary, E perpendicular 7

(may not be necessary)

InterfaceType Value

To be skipped 0

Conductor-dielectric 1

Conductor with known charge 2

Conductor at floating potential 3

Dielectric-dielectric 4

In the same vein, we list the possible values of other variables: materials from 1 to 10 are

conductors and from 11 to 20 are dielectrics keeping in tune with the Garfield code. shape

(at present does not have much of an utility) can be 0 for vacuum or a gas, 2 for a wire, 3 for

a triangular and 4 for a rectangular interface. In fact, the shape value reflects the shape of

the interface rather than that of the volume. For a conductor, the potential is expected to be

specified while the relative dielectric permittivity is usually needed for a dielectric material.

Known charge distribution is also another possibility for both these types of material. We’ll

soon have the effect of space charge incorporated into the toolkit. There will be several ways

17

of incorporating the effect of known charge distributions including the standard Particle-In-

Cell (PIC) and the Particles-On-Surface (ParSue) model, recently proposed by us.

By periodicity of any primitive, we mean having it repeated at some other location in space

besides the original one where it is initially defined. The repetition is carried out symmetri-

cally on the positive and negative axes. The repetition is made first on Z, then Y and finally

on X. The periodicity can also imply mirror reflections. The type of periodicity is determined

from the i- parameters, while the number of repetition is obtained from the j- parameters.

Finally, the distance at which the repeated image is to be constructed is decided by the s-

parameters. As can be seen from the source code, each primitive can have a different amount

of periodicity. On each of these repeated primitives, all the discretization details, boundary

conditions on the elements, solved singularity distribution are assumed to be identical. Please

note that the handling of repetitive structures (mirrored, or otherwise) is likely to undergo

several modifications in the near future. This is especially true for repetitions other than

those implying simple copies.

The number of elements into which the primitives are discretized is determined by the hints

supplied by the user through the two-dimensional integer array passed as as argument to

the neBEMDiscretize function. How the user decides on the number of elements depends

entirely on the user. The meshing is carried out such that the larger element number is used

for the longer side of a primitive. If we have a wire primitive, the first number is used for

meshing. Please note that, although planned, no adaptivity has been built into the toolkit

as yet.

At the end of this phase, files suitable for viewing the final geometry, primitive, elements

is prepared and placed as the <MeshDir>/GViewDir/gView.gp file. For viewing, the user

needs to issue

gnuplot <MeshDir>/GViewDir/gView.gp

at the command prompt. It is assumed that the gnuplot is installed in the machine on which

the code based on the neBEM toolkit is being executed.

18

The neBEMBoundaryCondition function takes care of setting up the proper boundary con-

ditions on each of the elements and usually would not require any user intervention. The

information related to setting up of boundary condition is extracted from the volume files.

As we have noted earlier, each interface is in between two volumes. If one of the volumes is

made of conducting material, the interface turns out to be a conducting-dielectric interface.

In such an event, the interface is likely to represent a conductor with known potential, or a

floating conductor with zero total charge. If both the volumes on either side of an interface

is dielectric in nature, the interface is considered to be a dielectric-dielectric interface. The

boundary condition in such an event is the continuity of the normal component of the electric

displacement vector. For interfaces with known charge distributions, no boundary condition

is enforced on the elements and the effect of the known charge distribution is incorporated

in a manner similar to the one described for space / volume charge distributions mentioned

elsewhere.

Once the boundary conditions are set up, we can proceed to the most important and compu-

tationally expensive part of the solution procedure. From the user point of view, the work is,

however, as simple as invoking the function neBEMSolve, after setting up the proper flags and

counters. For the example under discussion, and most of the other examples in the archive

at present, the problems are known to be static. This is the reason the invocation is done

only once, and the variables related to time (TimeStep and EndOfTime have both been set to

1. However, for a dynamic problem being solved under the assumption of quasi-statics, there

can be several invocation of the neBEMSolve function. If the device geometry, discretization

and material properties remain unchanged, the matrix inversion step can be avoided that

can lead to a huge saving computationally. In fact, this is one of the major advantages of

BEM techniques. This has been illustrated in a very simple-minded modeling of an idealized

plasma device where the positive and negative ions are moved randonly from one time step

to another and the voltage on a floating conductor within the device is estimated at each

time-step.

Even a static problem with a given geometry can be re-solved with a different boundary

19

condition. In this case, a similar advantage can be extracted if the inverted matrix is stored.

However, storing the inverted matrix may lead to a very large file. Moreover, to ensure that

neBEMSolve takes advantage of the situation, the user will need to set-up the proper flags

and counters if multiple invocations are made for the same device as mentioned above. For

example, NewModel and NewMesh should be made equal to zero, ModelCntr and MeshCntr

being kept at their previous values.

At the end of neBEMSolve, we are left with the singularity distribution on the elements.

The array of Element structures is updated with the new values of singularity density and

thus are completely defined in all respects. The Elements can now be used to evaluate any

relevant property at any arbitrary location. In the present study, we have summed up the

charges on all the elements to find out the total charge on the plate.

Finally, by using neBEMEnd, we end the use of the toolkit gracefully, that allows it to write

to certain log files and save them properly.

In PostProcess/PlatePP.c, we can see how easily the total charge on the plate is obtained

simply by adding the charge on each of the elements present in this simple device.

Finally, we need to create a Makefile suitable for this project. The easiest thing is to copy

one of the existing ones in the Applications directory and change it according requirements.

Only a very small number of changes is required usually if the directory structure as provided

in the toolkit archive is maintained. The driver routine, the interface routine and the post-

processing source and object codes need to be correctly mentioned. In addition, the binary

file has to be given a suitable name.

3.5 Device using input files

Next, let us discuss an example where we create a device ab initio. Let us consider developing

a device that has one rectangle, one triangle and one wire primitive. As you can see from the

driver and interface source codes, there is hardly any difference from the earlier one we just

20

finished discussing. So, we will rather concentrate on the main differences in the interfacing

routines.

As expected, the variable OptDeviceFile is set to a non-zero value and the DeviceInputFile

string is assigned a string constant that is, in fact, the name of the file that contains the

device details. This prompts the neBEMIntitialize function to invoke a routine called

(neBEMGetInputsFromFile). This routine, in this example, simply uses the supplied file

to read all the necessary details as temporary variables (implied by tmp in all the variable

names). The neBEM global variables necessary for setting up the solution procedure are

assigned values from these temporary variables. The rest of the procedure is identical to the

one discussed in the earlier sub-section.

One additional question remains. How do we generate the DeviceInputFile for a realistic

device with several inter-related components? Since this step is in no way related to the

neBEM toolkit, this depends entirely on the user. However, just to provide a convenient

point of departure, we have provided some examples that can be used as templates. Let

us consider the problem related to the Applications/ExampleDevice.c source code. This

hypothetical device has one rectangular flat plate, one triangular flat plate and a wire. The

reason for including these shapes is the fact that, at present, these are the primitive shapes

that are directly allowed by the neBEM toolkit. In addition, since any three dimensional

device can be represented by a combination of these three types of primitives, if the user

knows how to set up these primitives, she / he should be able to set any device at all. So, let

us concentrate on the device generation code related to Applications/ExampleDevice.c.

This source code can be found in the Devices sub-directory and is named ExampleDevice.c

as well.

Any device is composed of primitives of two kinds: wire (1D) and flat surface (2D). The

flat surfaces can be either right triangular and rectangular. In the case of a right triangular

primitive, a sequence is maintained such that the second vertex is the right corner. By

definition, primitive of the first kind can be used to represent only few very special geometries.

On the other hand, the second kind can represent 3D geometries of any kind.

21

While defining the device, it is also important to define the volumes that define any given

primitive. This is so because, the boundary conditions applicable to an interface depends on

the properties of the volumes on its either side. So, each primitive has two volumes associated

to it. As a result, it is important to identify the volumes that we need to supply in order to

completely specify the problem. In addition, please note that primitives should be defined

such that they are at the interface of two volumes only.

The input files are defined in the following manner: A device input directory contains all the

information for a device under study, one subdirectory for each model representation; the

model subdirectories in their turn contain files that store data on each of the primitives, the

volume files and the map file. In the present example, ExampleDevice is the device directory.

The rest of the files are kept in a directory called Model1 while details of the device is given

in the Model1.inp file. The device directory is assumed to be already existing.

/* ExampleDevice.c */

// An example that creates three primitives:

// a rectangular plane, a right triangular plane and a wire

int main(void)

{

char DeviceInDirName[256], DeviceInFileName[256], ModelName[256], DeviceOutDirName[256];

char *homedir;

homedir = getenv("HOME");

assert(homedir != NULL);

printf("user homedir is %s\n", homedir);

strcpy(DeviceInDirName, homedir);

strcat(DeviceInDirName, "/Inputs/ExampleDevice/"); // existing

strcpy(ModelName, "Model1"); // do NOT put an appending /

strcpy(DeviceOutDirName, homedir);

22

strcat(DeviceOutDirName, "/Outputs/ExampleDevice/");

strcat(DeviceOutDirName, ModelName);

strcat(DeviceOutDirName, "/");

char DeviceInDir[256], ModelSubDir[256], ModelInDir[256];

FILE *fModelInp;

strcpy(DeviceInDir, DeviceInDirName); // existing directory

strcpy(ModelSubDir, ModelName); // to be created

fModelInp = PrepareInputFiles(DeviceInDir, ModelSubDir,

DeviceInFileName, ModelInDir);

FILE *fData;

fData = PrepareViewingFiles(ModelInDir);

// Create volume reference data

{

void CreateVolume(char ModelInDir[], int VolRef,

int VolShape, int VolMaterial, int VolBoundaryType,

double VolEpsilon, double VolPotential, double VolCharge);

} // Volume creation ends

// Component 1 - a rectangular plate

{

// a rectangular plate

{

CreatePolygon(fModelInp, fData, ModelInDir,

NbPrimitives,

nvertex, xvert, yvert, zvert,

xnorm, ynorm, znorm,

23

VolRef1, VolRef2, NbXSegs, NbYSegs,

PeriodicInX, XPeriod, PeriodicInY, YPeriod, PeriodicInZ, ZPeriod);

} // RectangularPlate ends

} // Component 1 ends

// Component 2 - a triangular plate

{

// a triangular plate

{

CreatePolygon(fModelInp, fData, ModelInDir,

NbPrimitives,

nvertex, xvert, yvert, zvert,

xnorm, ynorm, znorm,

VolRef1, VolRef2, NbXSegs, NbYSegs,

PeriodicInX, XPeriod, PeriodicInY, YPeriod, PeriodicInZ, ZPeriod);

} // TriangularPlate ends

} Component 2 ends

Component 3 - a thin wire

{

// a thin wire

{

CreateLine(fModelInp, fData, ModelInDir,

NbPrimitives,

nvertex, xvert, yvert, zvert,

radius, VolRef1, VolRef2, NbSegs,

PeriodicInX, XPeriod, PeriodicInY, YPeriod, PeriodicInZ, ZPeriod);

24

} // wire ends

} Component 3 ends

// data that goes into the Map files

{

CreateMapFile(ModelInDir,

NbMaps, NbBlock,

NbXMap, NbYMap, NbZMap,

MapLX, MapLY, MapLZ,

MapXMid, MapYMid, MapZMid,

NbLines, NbSegments,

XStart, YStart, ZStart, XStop, YStop, ZStop,

NbPoints, XPoint, YPoint, ZPoint);

} // Map creation ends

// Complete the DeviceInputFile

int NbBCondns = 1;

EndDeviceInputFile(fModelInp, NbBCondns,

DeviceOutDirName, ModelInDir, NbPrimitives);

return 0;

} // ExampleDevice.c main ends

The directory structure including the model name are user inputs. These can be read in from

an input file or hash-defined, if desired. One point to be noted is that the ModelName should

not be appended by a trailing despite the fact that this name is eventually used to form the

25

sub-directory name in which the primitives related to this particular model is stored. Most

of the other user-inputs, such as dimensions and locations of the primitives, outward normal

on them can be hard-coded or, even better, for a truly elaborate device, a separate input file

may be used. Another option could be to have ”.def” file which is #included at the beginning

of a device code, as has been done in the micromegas device codes. The convenience of using

separate def or input files is to avoid scrolling too often. There can, of course, be many such

files possibly representing each component of a device.

For this analysis, there are six volumes which is really quite arbitrary. The other examples

have a more realistic design as far as volumes are concerned. Here it assumed that the

rectangular surface is at the interface of two volumes (1 and 2) The triangular surface is at

the interface of two volumes (3 and 4) The wire surface is at the interface of two volumes

(5 and 6) Vacuum (VolRef: 1), Conductor 1 (VolRef: 2) Dielectric 1 (VolRef: 3), Dielec-

tric 2 (VolRef: 4) Gas (VolRef: 5), Conductor 2 (VolRef: 6) The surfaces that define the

device are interfaces between these volumes. Explanation of the different parameters of the

CreateVolume function is given below:

InterfaceType Value

VolRef n-th volume, to be used as a referral number.

VolShape does not have any effect now.

VolMaterial 1-10, if conductor; 11-20, if a dielectric.

VolBoundaryType equivalent to the Interface type described above.

VolEpsilon relative dieletric.

VolPotential applied potential on this volume.

VolCharge applied charge density on the interfaces of this volume.

The generic function calls for creation of volumes and primitives have been shown here while

the details are available in the source code. Please note that the second vertex is expected

to be the right-corner. In most of these calls, two file handler are being passed - one for the

input file and the other for creating a gnuplot-friendly datafile. The rest of the arguments

are self-explanatory.

26

After the creation of the volumes and primitives, a map file is created that allows the user

to evaluate properties on maps (2D grids), along lines and at given points. There can be as

many 2D grids, lines and points as are needed. The maps are created based on their lengths

along X, Y and Z and the mid-points of these maps. Points at which the properties are

evaluated naturally do not need these information.

Finally, a few more important information is written into the DeviceInputFile and it is

closed as the program stops execution. One of the important information here is the number

of boundary conditions to be used per element. At a later stage, we plan to incorporate ability

to tackle over-determined sets of problems through this integer. At present, the number of

boundary conditions per element is fixed as one.

At the end of execution, all the files related to the device are created. These may be easily

used by neBEMGetInputsFromFiles to carry out necessary computations.

3.6 Post-processing

After the singularity distribution is estimated, post-processing is usually carried out to find

a number of parameters of specific scientific / technological interest. Each of the examples

in the Applications directory has a Post-processing code in the PostProcess subdirectory

and it is a good idea to look into these codes to get an idea of what can be done during this

phase for typical electrostatic problems.

3.7 How to build the executable?

Each application needs to provide its own Makefile that can be very easily generated by

copying the templates. The Makefile has to be modified appropriately to incorporate these

three source codes (the driver routine, the interface routine and the post-processing routine)

while building the executable. The Makefile specific for a new application can be included

in the CreateApplications script, if desired.

27

3.8 Recent developments in neBEM

1) Improvements in computational efficiency:

During the course of this work, the neBEM toolkit has been improved significantly. The

major challenge in these developments has been to increase the efficiency of the solver, while

maintaining its precision.

Code parallelization: The Open Multi-Processing (OpenMP) is an Application Programming

Interface (API) that supports multi-platform shared memory multiprocessor programming in

C, C++ and Fortran on most processor architectures and operating systems. It consists of a

set of compiler directives, library routines and environment variables that influence run-time

behavior. It uses a simple, scalable API for developing parallel applications on platforms

ranging from the standard desktop to supercomputers. Recently, we have successfully im-

plemented OpenMP for the neBEM field solver. The parallelization has been implemented

in several computation-intensive sub-functions of the toolkit, such as computation of the

influence coefficient matrix, matrix inversion and evaluation of field and potential at desired

locations. These routines are computation intensive since there can be thousands of elements

where charge densities need to evaluated / influence due to all these elements need to be

taken care of. The matter is even more complicated through the use of repetition of the

basic structure in order to conform to the real geometry of a detector. This has proved to

be very important in improving the computational efficiency of the solver. We have tested

these implementations on 4, 6, 8 and 16 cores. The observed reduction in computational

time has been found to be significant while the precision of the solution has been found to

be preserved. In the following table 1, we present a comparison of the time taken to solve

charge densities for two typical problems involving 3000 elements and 20 repetitions and

10,000 elements and 10 repetitions of the basic structure. In the next table 2, we present

the time taken to generate a three-dimensional-map of the potential and three components

of the electric field for the same device. It may be noted here that the user inputs related

28

to invocation of OpenMP during a specific solution is passed to neBEM via a file (named,

neBEMProcess.inp) residing in the directory from where Garfield is being executed.

Table 1: Computational time for calculation of charge density using code parallelization

Problem Thread Thread Thread Thread Thread Thread

specification 1 2 4 6 8 16

Element number

= 3489 6 m 20 s 4 m 18 s 3 m 29 s 3 m 7 s 3 m 20 s 5 m 2 s

Periodicity = 20

Element number

= 10683 64 m 51 s 35 m 43 s 28 m 53 s 34 m 6 s 36 m 49 s 47 m 13 s

Periodicity = 10

Reduced order modeling: Reduced order modeling (ROM) is a concept that is quite com-

monly used in numerical simulation of complex physical systems such as turbulent fluid flow,

plasma dynamics etc. The idea is simple and essentially maintains the details of modeling of

physical phenomena to an optimum level. A similar approach, when applied only to spatial

discretization of a problem is called adaptive meshing. In the latter, the solution is usually

attempted at a given spatial discretization and the solver is expected to increase or decrease

the meshing to meet the desired accuracy specifications. For neBEM, we have presently im-

plemented an algorithm which allows us to ignore the finer variations of charge densities on

a primitive provided (i) it is not on the base device (as opposed to repetitive virtual devices

generated in order to simulate periodic nature of a detector geometry) and (ii) it is at a far

enough location so that the influence of the average charge density on the primitive is equiv-

alent to the influence that is estimated preserving the real charge density variation on the

primitive. It may be mentioned here that this order reduction in the charge density variation

is implemented only at the evaluation stage, and not while actually computing the charge

densities on each of the elements. Although the ROM algorithm is implemented only for pe-

29

Table 2: Computational time for calculation of potential and field map using code paral-

lelization

Problem Thread Thread Thread Thread Thread Thread

specification 1 2 4 6 8 16

Element number

= 3489 30 m 57 s 30 m 24 s 32 m 1 s 30 m 36 s 31 m 35 s 31 m 42 s

Periodicity = 20

Element number

= 10683 26 m 23 s 25 m 53 s 25 m 56 s 27 m 51 s 28 m 19 s 29 m 59 s

Periodicity = 10

riodic geometries, at present, it can be very useful also in non-periodic geometries. Moreover,

there is no reason to stop the order reduction at the primitive level. It can continue through

merging of original primitives to larger ones and even to lumping of several primitives into

a component of the complete device, where the average charge density is assumed to be

representative of the component itself.

The user input for controlling the ROM level is done through the same neBEMProcess.inp

file that was mentioned above. The parameter primAfter=5 in the input file indicates the

solver to ignore the elements in a primitive that is situated on a structure beyond the fifth

repetition of the base device. I have presented the effect using different values of primAfter

on a typical problem having 2000 number of elements and 60 peridicities of basic structure.

In the present case, it can be seen that setting primAfter = 5 has negligible effect on the

evaluated potential and field for this device. In the following table 3, I have presented the

time taken to generate a map of potential and field using different levels of primAfter and

the errors associated.

Fast Volume: As is expected, the time to estimate potential and field for a complex device

is significant. This is especially true if the device is composed of hundreds of primitives,

30

Table 3: Computational time for calculation of charge density, potential and field map and

error estimation using ROM

PrimAfter Time for charge density Time for potential and field map Error

0 3 m 25 s 141 m 2 s

2 4 m 42 s 27 m 59 s 0.5 %

5 4 m 27 s 52 m 56 s 0.3 %

10 3 m 26 s 71 m 28 s 0.1 %

thousands of elements and hundreds of repetitions. Reduction of time taken to estimate

the electrostatic properties becomes increasingly important when complex processes such as

Avalanche, Monte-Carlo tracking and Micro-Tracking are being modelled. In order to model

these phenomena within a reasonable span of time, we have implemented the concept of using

pre-computed values of potential and field at large number of nodal points in a set of suitable

volumes. These volumes are chosen such that they can be repeated to represent any region

of a given device and simple trilinear interpolation is used to find the properties at non-

nodal points. The associated volume is named as the Fast Volume and the inputs related to

this volume are provided via an input file (FastVol.inp) residing in the directory from which

Garfield is being executed. It may be noted here that staggered volumes are allowed (takes

care of GEM and other similar structures), it is possible to omit parts of a FastVol from

being computed (inside a dielectric, or for other reasons) and to ignore computed FastVol

values in certain regions so that the more complete and accurate evaluation is used for points

in those regions. In order to preserve accuracy despite the use of trilinear interpolation, it is

natural that the nodes should be chosen such that they are sparse in regions where potential

and fields are changing slowly and closely packed where these properties are changing fast.

Moreover, the singular surfaces and edges should be avoided as much as possible to coincide

with the nodes since very sharp gradients are found to occur in these regions which are very

unlikely to be correctly modelled under the assumption of linear variations. In the Tavle

31

4, potential and fields estimated by direct evaluation and those using FastVol have been

compared. The maximum difference between the two estimates has been found to be 0.3

% which is very small and its effect on the modelling of avalanche etc has been found to

negligible.

Table 4: Effect of FastVol

Without FastVol With FastVol

Computation time for charge density 15 s 5 m 16 s

(includes calculation of FastVol)

Computation time for field map 6 m 33 s 1 s

Error in electric field 0.3 %

Computation time for 10 drift line 7 m 54 s 2 s

Value of avalache electrons

Computation time for 100 avalanche 21 s

3d Map for Garfield++: Garfield++ imports map from field solvers such as ANSYS, CST

etc. In order to equip neBEM with similar map generation capability, appropriate functions

have been written. The functions can compute the map utilizing multiple CPUs in a given

compute node using the OpenMP protocol. As a result, the map is computed within a

reasonable amount of time. The map file is written in text, resulting in large file sizes. In

this version, the generated map has a fixed mesh size throughout the computational volume.

Flexibility in this respect is exppected in near future versions which will lead to smaller files

and faster computation. Please go through the discussion related to FastVol above, in order

to get a more clear idea of the approach adopted for generating the map and the precautions

to be taken. The inputs determining the map is given via neBEMMap.inp. The inputs are

quite straight-forward. Please note that the present version of the map is 0.1, indicating a

32

rather early release. There are two output files in the BoundaryCondition (BC) directory (in

Outputs/Model/Mesh): MapInfo.out and MapFPR.out. These files need to be read by the

Garfield++ script in order to import data related to potential, field and region. A Fortran

Garfield script and related files are made available to the user (FieldMapforGEM.tgz). A

Garfield++ script that uses the resulting field map is also provided (GEM3dMap.tgz).

2) Optimization of numerical models:

For precise and efficient computation of electrostatic field configuration within a given detec-

tor geometry, it is often necessary to optimize the numerical model of the detector. Otherwise,

the computation may become unnecessarily detailed on one hand, and on the other, it may

lose the accuracy necessary to follow the complicated physics processes occurring inside the

detector volume.

Satisfaction of parallel plate condition: In most of the detector geometries considered in this

work, the gaps in the detectors are rather small in comparison to the size of the foil or mesh.

For example, for a Micromegas detector, the size of the mesh is 10cm by 10cm, while the

amplification gap is 128 µm and drift gap is ∼1cm. As a result, while modelling the charac-

teristics of the detector, this feature needs to be preserved. However, modelling the full 10cm

by 10cm geometry is essentially a waste of computational effort since very little happens

beyond the middle of the detector (unless we are interested in the edge effects, in particular).

So, we have tried to strike a balance between computational precision and computational

effort by optimizing (a) placement of drift, and (b) choice of the number of repetitive struc-

tures beyond a base device model. For example, to model the above Micromegas detector,

we have considered the length of the basic cell structure to be 63 µm both in X and Y-Axis.

Now the choice of the number of repetitive structure would be such that the parallel plate

condition is statisfied. As shown in the Figure 1, when the length of X and Y-Axis is 5 times

the drift length, the field is smooth throughout the volume. It can be observed that instead

33

of making the drift gap to be 1.2cm, as in the experiment, it is possible to reduce it to 0.1 cm

and still get the same variations for the two fields in question. In the experimental condition,

the mesh and drift voltage have been given to -410 and -650 V, respectively. In order to

maintain the correct value of the drift field, the potential at the drift plane in the latter case

has been adjusted to -427 volts instead of the experimentally applied voltage.

(a) (b)

Figure 1: The axial electric field for different

Wire modelling - thin wire versus polygonal cylinder: Better wire modelling is achieved if

the wire is represented as a cylinder whose cross-section is a polygon. The accuracy improves

when the polygon matches the cross-section of the real wire. However, computational effort

increases substantially as more sides are added to the polygon since each additional side adds

one more surface primitive to the problem. A thin wire model is the other extreme of the

representation. In this case, it is assumed that the real wire can be replaced by a line charge

situated at the axis of the real wire. The potential boundary condition is satisfied at the

wire surface, but imposes a cylindrical symmetry at a distance equal to the radius of the

real wire. When cylindric elements are used, the voltage boundary condition is applied to

each surface panels of the cylinder. Also, the thin-wire approximation neglects the dipole

moment, created to ensure an equal potential on both surfaces. The wire element approach,

which has the convenience of a much less computational effort, is acceptable only when the

asymmetry in the potential distribution around the wire is not very large. In the Figure 2

34

we have presented the consequences of using the two models in order to represent the same

experimental problems. Here, the micromesh of a Micromegas detector has been modelled

using wire elements and cylindrical element respectively. The potential contour in the drift

and amplification region, using these two elements, are shown in the Figure 2. As illustrated,

the calculations using thin-wire approximation affects the potential.

(a) (b) (c)

(d)

Figure 2: The potential contour for wire element at (a)200 V/cm and (c) 2000 V/cm, for

cylindrical element at (b) 200 V/cm and (d) 2000 V/cm

35

4 License

Please note that we want neBEM to be used for peaceful and non-profit applications. The

license of neBEM is written below:

neBEM Software License Version 1.5, 26 October 2009

Copyright (C) 2005-2009, Supratik Mukhopadhyay and Nayana Majumdar

All rights, not expressly granted under this license, are reserved.

neBEM Software Terms and Conditions:

The authors hereby grant permission to use, copy, and distribute this software and its docu-

mentation for any peaceful and non-profit purpose, provided that existing copyright notices

are retained in all copies and that this notice is included verbatim in any distribution.

Additionally, the authors grant permission to modify this software and its documentation for

any peaceful and non-profit purpose, provided that such modifications are not distributed

without the explicit consent of the authors and that existing copyright notices are retained

in all copies.

User documentation, if any, included with a redistribution, must include the following notice:

”This product includes software neBEM developed by Supratik Mukhopadhyay and Nayana

Majumdar, Saha Institute of Nuclear Physics, Kolkata, WB, India”

The name ”neBEM” may not be used to endorse or promote software, or products derived

therefrom, except with prior written permission from the authors. If this software is redis-

tributed in modified form, the name and reference of the modified version must be clearly

distinguishable from that of this software.

You are under no obligation to provide anyone with any modifications of this software that you

may develop, including but not limited to bug fixes, patches, upgrades or other enhancements

or derivatives of the features, functionality or performance of this software. However, if you

36

publish or distribute your modifications without contemporaneously requiring users to enter

into a separate written license agreement, then you are deemed to have granted the authors

of this software a license to your modifications, including modifications protected by any

patent owned by you, under the conditions of this license.

You may not include this software in whole or in part in any patent or patent application in

respect of any modification of this software developed by you.

Users of the software are requested to feed back problems, benefits, and/or suggestions about

the software to the authors:

supratik.mukhopadhyay@saha.ac.in

nayana.majumdar@saha.ac.in

In the event of any documentation / publication through the use of this software, the users

are requested to kindly refer to one, or more, of the following references:

[1] Computation of 3D MEMS electrostatics using a nearly exact BEM solver, Supratik

Muhkopadhyay, Nayana Majumdar, Engineering Analysis with Boundary Elements 30 (2006)

687–696, doi:10.1016/j.enganabound.2006.03.002

[2] Simulation of three-dimensional electrostatic field configuration in wire chambers: A novel

approach, Nayana Majumdar, Supratik Mukhopadhyay, Nuclear Instruments and Methods

in Physics Research A 566 (2006) 489–494, doi:10.1016/j.nima.2006.06.035

[3] A study of three-dimensional edge and corner problems using the neBEM solver, Supratik

Mukhopadhyay, Nayana Majumdar, Engineering Analysis with Boundary Elements 33 (2009)

105–119, doi:10.1016/j.enganabound.2008.06.003

Support for this software - fixing of bugs, incorporation of new features - is done on a best

effort basis. All bug fixes and enhancements will be made available under the same terms

and conditions as the original software.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY

37

PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTA-

TION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE.

THIS SOFTWARE IS PROVIDED ON AN ”AS IS” BASIS, AND THE AUTHORS AND

DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,

UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

THE AUTHORS MAKE NO REPRESENTATION THAT THE SOFTWARE AND MODI-

FICATIONS THEREOF, WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE

SECRET OR OTHER PROPRIETARY RIGHT.

This license shall terminate with immediate effect and without notice if you fail to comply

with any of the terms of this license, or if you institute litigation against any of the authors

with regard to this software.

38

