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Abstract

Three-dimensional field configuration has been simulated for a simple wire chamber consisting of one anode wire stretched along the

axis of a grounded square cathode tube by solving numerically the boundary integral equation of the first kind. A closed-form expression

of potential due to charge distributed over flat rectangular surface has been invoked in the solver using Green’s function formalism

leading to a nearly exact computation of electrostatic field. The solver has been employed to study the effect of several geometrical

attributes such as the aspect ratio (l ¼ l=d, defined as the ratio of the length l of the tube to its width d) and the wire modeling on the

field configuration. Detailed calculation has revealed that the field values deviate from the analytic estimates significantly when the l is

reduced to 2 or below. The solver has demonstrated the effect of wire modeling on the accuracy of the estimated near-field values in the

amplification region. The thin wire results can be reproduced by the polygon model incorporating a modest number of surfaces (X32) in

the calculation with an accuracy of more than 99%. The smoothness in the three-dimensional field calculation in comparison to

fluctuations produced by other methods has been observed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Wire chambers are often employed as tracking devices
where it is necessary to detect and localize radiation.
Starting from its application in nuclear and subnuclear
physics, it has been employed in widely different fields such
as biology, medicine, space, industrial radiology, over last
three decades or more. The normal operation of a wire
chamber is based on the collection of the charges created
by direct ionization of the gas medium by the passage of
radiation. The charges are collected on the electrodes by
application of an electric field across the chamber. From
the electric pulses, thus generated, the relevant information
regarding the radiation is extracted. The flexibility in the
design of wire chambers allows for highly innovative and
often considerably complex ones necessitating meticulous
e front matter r 2006 Elsevier B.V. All rights reserved.
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investigations on their structure and performance. The
study of the electrostatic field plays a key role in optimizing
the design of these state of the art detectors to get a desired
configuration for the field in a given volume as per the
tracking requirement. The analytic solution of the field
configuration for a specific geometry is always the best
choice to do the same. However, the analytic solution can
be derived for severely restricted geometries which is often
not applicable to realistic and complicated wire chambers
[1,2]. The diversity in the chamber design necessitates
application of other techniques for numerical estimation
like Finite Element Method (FEM) and Finite Difference
Method (FDM) [3,4]. FEM is more widely used for the
reason that it can seamlessly handle any arbitrary geometry
including even dielectrics. However, FEM has several
drawbacks as well. It computes the potential at the nodes
and the potential at non-nodal points can be obtained by
interpolation only. The inaccuracy generated by the
interpolation technique can be made arbitrarily small by
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Fig. 1. A rectangular surface with uniform distributed source.
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proper meshing techniques at the cost of computation time
and efficiency. The more crucial aspect which harms the
accuracy of the estimation is the representation of the
electric field by a low order, often linear polynomial which
is inadequate especially in the vicinity of the wires where
the field changes rapidly. The combination of inadequate
representation of the electric field and poor meshing lead to
inaccurate estimation of the field in the amplification
region with the FEM technique. The other approach which
can yield nominally exact result is Boundary Integral
Equation (BIE) method. This method is less popular due to
its complicated mathematics and inaccuracies near the
boundaries. However, for the present problem of computa-
tion of electrostatic field in wire chambers, BIE method is
reasonably more suitable. It can provide accurate estimate
of the electrostatic field at any arbitrary point by employ-
ing Green’s function formulation which is necessary to
study the avalanche happening anywhere in the chamber
due to the passage of radiation. A brief comparison of
BEM, the numerical implementation of BIE method, with
FEM and FDM in the context of calculating three-
dimensional field configuration in wire chambers has been
presented in Ref. [5].

The major drawback of BEM is related to the
approximations involved in its numerical implementation.
The approximations give rise to the infamous numerical
boundary layer where the method suffers from gross
inaccuracies [6]. This may lead to inaccurate estimation
of electrostatic field configuration which is not desirable in
the close vicinity of the wires or the cathode. Recently, we
have developed a novel approach in the formulation of
BEM using analytic expressions for potential and electro-
static field which leads to their nominally exact evaluation.
The analytic expressions being valid throughout the
physical volume, the formulation is capable of yielding
accurate values even in the near-field region. The applica-
tion of this Nearly Exact Boundary Element Method
(NEBEM) solver [7] for the very accurate estimation of
electrostatic field in a wire chamber of elementary but
useful geometry has been presented in this paper.

2. Present approach

For electrostatic problems, the BIE can be expressed as

fð~rÞ ¼
Z

S

Gð~r;~r0Þrð~r0ÞdS0 (1)

where fð~rÞ represents potential at ~r integrating the
integrand over boundary surface S, rð~r0Þ the charge density
at ~r0 and Gð~r;~r0Þ ¼ 1=4p�j~r�~r0j with � being the permittiv-
ity of the medium. The BIE is numerically solved by
discretizing the charge carrying surface S in a number of
segments on which uniform charge densities r are assumed
to be distributed. The discretization leads to a matrix
representation of the BIE as follows:

A � r ¼ f (2)
where Aij of A represents the potential at the mid-point of
segment i due to a unit charge density distribution at the
segment j. For known potential f, the unknown charge
distribution r is estimated by solving Eq. (2) with the
elements of influence matrix A modeled by a sum of known
basis functions with constant unknown coefficients.
In the present approach, namely NEBEM, the influences

are calculated using analytic solution of potential and
electrostatic field due to a uniform charge distribution over
a flat rectangular surface. The expression for the potential
f at a point PðX ;Y ;ZÞ in free space due to uniform unit
charge density distributed on a rectangular surface having
corners at ðx1; 0; z1Þ and ðx2; 0; z2Þ as shown in Fig. 1 can be
represented as a multiple of

fðX ;Y ;ZÞ ¼
Z z2

z1

Z x2

x1

dxdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � xÞ2 þ Y 2 þ ðZ � zÞ2

q (3)

where the multiple depends upon the strength of the source
and other physical considerations. The closed-form ex-
pression for fðX ;Y ;ZÞ can be deduced from Eq. (3). This
can be expressed as follows:

fðX ;Y ;ZÞ

¼ ðX � x1Þ ln
D12 � ðZ � z2Þ

D11 � ðZ � z1Þ

� �

þ ðX � x2Þ ln
D21 � ðZ � z1Þ

D22 � ðZ � z2Þ

� �

þ ðZ � z1Þ ln
D21 � ðX � x2Þ

D11 � ðX � x1Þ

� �

þ ðZ � z2Þ ln
D12 � ðX � x1Þ

D22 � ðX � x2Þ

� �
þ

ijY j

2

� S1 tanh�1
R1 þ iI1

D11jZ � z1j

� �
� tanh�1

R1 � iI1

D11jZ � z1j

� ���

þ tanh�1
R1 � iI2

D21jZ � z1j

� �
� tanh�1

R1 þ iI2

D21jZ � z1j

� ��
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þ S2 tanh�1
R2 þ iI2

D22jZ � z2j

� �
� tanh�1

R2 � iI2

D22jZ � z2j

� ��

þ tanh�1
R2 þ iI1

D12jZ � z2j

� �
� tanh�1

R2 � iI1

D12jZ � z2j

� ���

� 2pY ð4Þ

where

D11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � x1Þ

2
þ Y 2 þ ðZ � z1Þ

2

q
,

D12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � x1Þ

2
þ Y 2 þ ðZ � z2Þ

2

q
,

D21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � x2Þ

2
þ Y 2 þ ðZ � z1Þ

2

q
,

D22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � x2Þ

2
þ Y 2 þ ðZ � z2Þ

2

q
,

R1 ¼ Y 2 þ ðZ � z1Þ
2; R2 ¼ Y 2 þ ðZ � z2Þ

2,

I1 ¼ ðX � x1ÞjY j; I2 ¼ ðX � x2ÞjY j; S1 ¼ signðz1 � ZÞ,

S2 ¼ signðz2 � ZÞ.

The electrostatic field can similarly be represented as a
multiple of

~F ðX ;Y ;ZÞ ¼

Z z2

z1

Z x2

x1

r̂dxdz

r2
(5)

where ~r is the displacement vector from an infinitesimal
area of the element to the point PðX ;Y ;ZÞ where the field
will be evaluated. The integration of Eq. (5) gives the exact
expressions for the field in X -, Y - and Z-directions as
follow:

FxðX ;Y ;ZÞ ¼ ln
D11 � ðZ � z1Þ

D12 � ðZ � z2Þ

� �
þ ln

D22 � ðZ � z2Þ

D21 � ðZ � z1Þ

� �

(6)

FyðX ;Y ;ZÞ

¼ �
i

2
SignðY Þ

� S1ðtanh
�1 R1 þ iI1

D11jZ � z1j

� �
� tanh�1

R1 � iI1

D11jZ � z1j

� ��

þ tanh�1
R1 � iI2

D21jZ � z1j

� �
� tanh�1

R1 þ iI2

D21jZ � z1j

� ��

þ S2 tanh�1
R2 þ iI2

D22jZ � z2j

� �
� tanh�1

R2 � iI2

D22jZ � z2j

� ��

þ tanh�1
R2 þ iI1

D12jZ � z2j

� �
� tanh�1

R2 � iI1

D12jZ � z2j

� ���

þ C ð7Þ

FzðX ;Y ;ZÞ ¼ ln
D11 � ðX � x1Þ

D21 � ðX � x2Þ

� �
þ ln

D22 � ðX � x2Þ

D12 � ðX � x1Þ

� �
.

(8)
In Eq. (7), C is a constant of integration as follows:

C ¼

0 if outside the extent of the flat surface

2p if inside the extent of the surface and Y40

�2p if inside the extent of the surface and Yo0:

8><
>:

All these have been used as foundation of the three-
dimensional solver [8].
In the present problem, two different modeling schemes

of the wire have been used to study the field configuration.
When the wire has been modeled as a polygon, the above
expressions from Eqs. (4) to (8) have been employed to
estimate the potential and the electrostatic field. In the
other model, the wire has been considered as a thin wire
where the radius of the wire a has been assumed to be small
compared to the distance r of the observation point ða5rÞ.
The expression for the potential at any point due to a wire
element along Z-axis is the following:

fðX ;Y ;ZÞ ¼ 2pa log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
þ ðhþ ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2 þ Y 2 þ ðh� ZÞ2
q

� ðh� ZÞ

0
B@

1
CA
(9)

where h is the half of the length of the wire element. It
should be mentioned here that the analytic solution of the
two-dimensional electrostatic field of a doubly periodic
wire array in the Garfield code [9] is derived using a similar
thin-wire approximation [1]. The expressions for the
electrostatic field components can be presented as the
following under the same assumption:

FxðX ;Y ;ZÞ

¼ 2paX
ðh� ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
þ ðhþ ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q

ðX 2 þ Y 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
0
B@

1
CA

ð10Þ

FyðX ;Y ;ZÞ

¼ 2paY
ðh� ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
þ ðhþ ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q

ðX 2 þ Y 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
0
B@

1
CA

ð11Þ

FzðX ;Y ;ZÞ

¼ 2pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðhþ ZÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ ðh� ZÞ2

q
0
B@

1
CA.

ð12Þ

However, a separate set of expressions is needed to
evaluate the potential and electrostatic field due to a wire
element along its axis. These incorporate the effect of finite
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radius of the wire element and are expressed as

fð0; 0;ZÞ ¼ 2pa log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðhþ ZÞ2

q
þ ðhþ ZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðh� ZÞ2
q

� ðh� ZÞ

0
B@

1
CA. (13)

In this case, only the Z-component of the field is non-zero
and can be written as

Fzð0; 0;ZÞ ¼ 2pa
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ ZÞ2 þ a2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� ZÞ2 þ a2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh� ZÞ2 þ a2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ ZÞ2 þ a2

q
0
B@

1
CA.

(14)

3. Numerical implementation

The present problem studied with the NEBEM is to
compute the electrostatic potential and field for a simple
geometry consisting of a single anode wire running along
the axis of a square tube. Similar configuration is used in
Iarocci Tube, Limited Streamer Tube, etc. which are widely
employed in various high-energy physics experiments
[10,11]. It should be noted that no end plate has been
considered in the model. A schematic diagram of the wire
chamber has been illustrated in Fig. 2. The anode wire has
been supplied a positive high voltage of 1000V and the
surrounding cathode tube is grounded. Several cases for
altered tube cross-section (d � d), aspect ratio (l ¼ l=d) as
well as two different wire models have been studied. It
should be noted here that if only the mid-plane estimates of
the wire chamber are of importance, the computation time
can be reduced drastically by using even one element in the
axial direction resulting into less than 100 slender elements
in total for the present problem. This has been the case
when the computation has been carried out for the mid-
plane properties of large aspect ratio chambers. On the
Fig. 2. Schematic representation of the wire chamber. The length and the

width of the square tube are represented by l and d, respectively. The

anode wire along its axis has diameter 2a. The wire is supplied a voltage

þV and the cathode is kept grounded.
other hand, for proper three-dimensional computation, the
four flat rectangular surfaces have been segmented into 21
elements along the X -direction and 21 in Z-direction. The
anode wire when considered as a polygon has been
modeled with 32 surfaces. The size of influence matrix
has varied from 85� 85 to 2436� 2436 depending upon
the scheme of segmentation.

4. Results

The NEBEM calculations for potential and normal
electrostatic field (Y -component) at the mid-plane of the
chamber have been compared with the analytic estimates of
an infinitely long tube provided by the Garfield code [9] to
demonstrate the accuracy of the solver. In Figs. 3 and 4,
the results are shown for a variation in the tube cross-
section from 5mm� 5mm to 16mm� 16mm with wire
diameter 50mm, the wire being modeled as a polygon with
1
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varied cross-sections are illustrated along with analytic estimates.
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32 surfaces. The aspect ratio, l ¼ l=d, has been kept 10 to
retain the property of infiniteness so as to compare with
analytic estimates of an infinitely long tube. The compar-
ison of two calculations with a spatial frequency of 100mm
shows an excellent agreement over the whole range of tube
dimensions. The NEBEM results calculated with thin-wire
approximation has not been included in these figures which
also yield similar agreement with the analytic ones.

The difference of the NEBEM calculations from the
analytic values have been estimated as follows:

RelativeDeviationð%Þ ¼
Garfield�NEBEM

Garfield
� 100. (15)

This has been illustrated in Fig. 5 by plotting the relative
deviation of NEBEM normal electrostatic field from the
analytic values calculated at the mid-plane of the chamber.
The relative deviations estimated with thin-wire approx-
imation have been plotted as well. Since the NEBEM is a
full-fledged three-dimensional solver, the effect of l of the
tube on the field configuration can be studied using it.
Several such estimates of relative deviations for different
aspect ratios have been shown in Fig. 5 calculated using
both of polygon with 32 surfaces and thin-wire models. The
cross-section of the tube has been considered to be
10mm� 10mm with wire diameter 50 mm. It has been
observed that the departure from the analytic solutions for
an infinitely long tube becomes significant when l is
reduced to 2 and below. It becomes apparent (close to 1%)
as l is dropped down to 2 and enhances up to 10% when l
is still reduced to 1. The amount of relative deviation in the
vicinity of the anode wire is maximum 2% for the smallest
aspect ratio. The trend is similar in both of polygon and
thin-wire models as can be seen in the figure. It should be
noted here that the use of end plates is expected to alter the
relative deviation particularly at smaller aspect ratios.

The most essential study in such wire chambers is the
field configuration in the amplification region which
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Fig. 5. Relative deviation of normal electric field from the analytic values

at the mid-plane of the chamber with varied aspect ratios for polygon and

thin-wire modeling of the wire. The cross-section of the chamber and the

diameter of the wire are 10mm� 10mm and 50mm, respectively.
matters most in their performance. Since NEBEM can
evaluate three-dimensional field at any point in the physical
volume including the near-field region, a thorough study of
the field values in the amplification region can be made
using it. A comparative study has been carried out within
twice the diameter from the wire-axis (i.e. 100mm), the
closest limit being just 1mm away from the surface of the
wire (i.e. 26mm) using two different wire models. The
calculations have been shown in Fig. 6 for the cases
illustrated in Fig. 5. Although the agreement between the
polygon and thin-wire model is excellent up to quite close
proximity of the wire, a departure has been observed within
one radius to the wire in case of polygon modeling. It has
been observed that the departure is almost negligible
(below 1%) when larger number of surfaces (about 32) has
been incorporated. It can increase to as high as 5% when
less number of surfaces like 12 is used. It is obvious from
the calculation that the thin-wire approximation is
adequate to estimate the field configuration in the near-
field region in symmetric configurations. However, depend-
ing upon the nature of the problem, the polygon model
may be useful in calculation of azimuthal variation of
properties in an asymmetric configuration. In that case, a
modest number of the polygon surfaces should be enough
to obtain the field configuration with high accuracy.
Finally, the variation of normal electrostatic field along

the axial direction of the tube has been studied which has
been plotted in Fig. 7. The tube dimension has been
considered to be 10mm� 10mm� 100mm with wire
diameter 50mm. The calculations have been carried out at
three different transverse locations as indicated in the
figure. The middle line represents the calculation done
at halfway between the anode and the cathode. The
two-dimensional analytic solutions provided by the Gar-
field code have been illustrated in three dimension by
the lines representing the uniform field configuration
throughout the length. The NEBEM results reproduce
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the two-dimensional analytic values for more than 85% of
the tube length. However, in the remaining 15% towards
the ends, the three-dimensional effects are non-negligible.
Even more important point to be noted here is that the
NEBEM calculation produces perfectly smooth variation
of the field with a spatial frequency of 10 mm only while
significant fluctuations are known to be present in FDM,
FEM and usual BEM solvers because of their strong
dependence on nodal properties. This remarkable feature
of the present solver should allow more realistic estimation
of the electrostatic field of various gas detectors resulting
into better gain estimations.

5. Conclusion

The three-dimensional NEBEM solver has yielded
accurate electrostatic field configuration of a square tube
wire chamber which represents the analytic estimates quite
well in most of the detector volume when the aspect ratio is
large enough ðl45Þ except at the ends of the chamber
where end effects can be observed. For smaller aspect
ratios ðlo2Þ, non-negligible departures (about 2%) from
the analytic values estimated for infinitely long chamber
have been observed even in the amplification region. A
large deviation (about 10%) has also been observed near
the cathode surface. The near-field calculation in the close
vicinity to the anode wire (within one diameter) has
produced a difference in the results obtained with polygon
and thin-wire models. The observation has implied that in
order to obtain accurate field estimates with polygon
modeling in the asymmetric configuration, an adequate
number (e.g. 32 for error o1%) of polygon surfaces are
required to reproduce thin-wire results. The simple but
robust formulation of the solver using closed-form expres-
sions can also be used to solve for gas detectors of other
geometries. Since the solver can produce very smooth and
precise estimate of three-dimensional electrostatic field
even in the near-field region, it should be very useful in
providing important information related to the design and
interpretation aspects of a wire chamber.
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