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What we know:

The word is in! (ACT, Planck, SPT) Spectacular confirmation of the (six
parameter) phenomenological ΛCDM model.

Assuming Ωtot = 1,wΛ = −1,
∑

i mν = 0 ...

Find best fit for PR(k) ∼ kns−1,Ωb,Ωc ,ΩΛ,As , τ –

Ωbh
2 = 0.02207± 0.00033 ns = 0.9616± 0.0094

Ωch
2 = 0.1196± 0.0031 ln (1010As ) = 3.103± 0.072

θMC = 0.00104± 0.00068 τ = 0.097± 0.038
PLANCK XVI, arXiv:1303.5076

Many of these parameters are not currently predicted by
fundamental theory (could they ever be?) Those that inflation
accounts for are widely accepted as confirmation of the simplest
realizations of the inflationary paradigm.

Taken literaly, on face value– a staggering statement!

∃ a single effectively light degree of freedom at ∼ ε1/41016GeV .
whose field modes began in the relevant vacuum state (BD)

whose self interactions and interactions with other fields are
sufficiently weak or irrelevant throughout inflation
which at the same time couples strongly enough to some sector that
contains the standard model so that efficient (pre)heating occurs...
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Are we done?

Are we to surmise the same situation as Michelson, quoting Lord Kelvin
in 1894: ”... the future truths of physical theory [physical cosmology] are
to be looked for in the sixth place of decimals”?

Or might there be evidence in the data for anything more than the
simplest parametrizations of inflation, treated classically?

The situation is not unlike that in particle physics:

∃ a very phenomenological paradigm that successfully accounts for
all known observations– the “Standard Model”.

With no definitive hints as to what underpins it.

It goes without saying that any signatures of primordial gravity
waves would be a great boone...

But what if all we ever get to see are the correlators of the adiabatic
mode? What could we still meaningfully hope to know? (At the
level of the 2-pt function, ∃ dualities between very different
backgrounds. Wands, arXiv:gr-qc/9809062 )
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Beyond the standard model of cosmology

Just as phenomenologists look for ‘exotic’ processes in particle
accelerators as portals onto BSM physics...

... cosmologists can also do the same (CMB “anomalies”?)

Features (if present) play an especially privileged role.

Linear response theory– can infer new characteristic scales that
could shine a torch on what the inflaton actually is.

Correlate in a precise way with features at commensurate scales the
three and higher point correlation functions as a function of the
background.

(Because R can be viewed as the Goldstone boson associated with
breaking time translational invariance, its EFT expansion is tightly
constrained.) Cheung et al. arXiv:0709.0293; Callan, Coleman, Wess, Zumino, Phys.Rev. 177 (1969) 2247-2250

w/ 3d info from LSS (up to kNL ∼ 0.1Mpc−1 ) and 21 cm promising
us access to never before seen comoving scales (k ∼ O(102)Mpc−1 ),
if present, features can be detected much more cleanly.
Huang, Verde, Vernizzi, arXiv:1201.5955

Might correlations of a particular class allow us to extract
information about the background evolution?
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Nothing is Something!

Even if we continue to see nothing beyond Gaussian, adiabatic scale
invariant perturbations, one can conclude a great deal more about the
early universe with data at small scales:

Scale invariant primordial power spectrum over a range of 15-17
e-folds (from high z measurements of the matter power spectrum)→
impossible to have adiabatic modes weakly coupled over full range*
unless Ḣ/H2 � 1 .
Baumann, Senatore, Zaldarriaga 1101.3320

* Though admitting varying, superluminal cs , can have up to 28
e-folds. (Inflation is the unique theory that keeps the adiabatic mode
weakly coupled over the full 60 e-folds). Joyce, Khoury arXiv:1107.3550

The EFT expansion of the adiabatic mode knows about the
background– terms in the derivative expansion more and more
constrained as the background becomes more symmetric (i.e.
dS–like).

What can we extract about the background in principle?
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Features, an analytic understanding

One can understand how any type of feature in the 2-pt correlation
function can be generated analytically:

We begin with the action for the MS variable

S2 = 1
2

∫
d4x

(
v ′2 − c2

s (∇v)2 + z′′

z
v 2
)

z := a
φ′

0
Hcs

with v = zR (N.B. the above only assumes that φ0 is
monotonic i.e. it is a good physical clock.)

Consider two different background solutions, one of which we will
take as some fiducial solution parametrized by ε0, c0 .

Defining w(τ) := c2
0 − c2

s (τ), W (τ) := z′′

z
− z′′0

z0
, and consider these to

be uniformly bounded by unity.

We can thus write S2 = S2,free + S2,int , with:

S2,free = 1
2

∫
d4x

(
v ′2 − c2

0 (∇v)2 +
z′′0
z0
v 2
)

S2,int := 1
2

∫
d4x

(
w(τ)(∇v)2 + W (τ)v 2

)
and treat the S2,int as a perturbative interaction.
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0 − c2

s (τ), W (τ) := z′′

z
− z′′0

z0
, and consider these to

be uniformly bounded by unity.

We can thus write S2 = S2,free + S2,int , with:

S2,free = 1
2

∫
d4x

(
v ′2 − c2

0 (∇v)2 +
z′′0
z0
v 2
)

S2,int := 1
2

∫
d4x

(
w(τ)(∇v)2 + W (τ)v 2

)
and treat the S2,int as a perturbative interaction.
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Features, an analytic understanding

Treating w(τ) and W (τ) as independent perturbations, one can compute
the corrections to the 2-pt correlator of the fiducial background via as

δW 〈v̂k1 (τ) v̂k2 (τ)〉 = (2π)3 δ3(~k1 + ~k2)
∫ τ
τ0
dτ ′ 2W (τ ′)=

{
G 0

k1
(τ, τ ′)G 0

k2
(τ, τ ′)

}

δw 〈v̂k1 (τ) v̂k2 (τ)〉 = (2π)3 k2
1 δ

3(~k1 + ~k2)
∫ τ
τ0
dτ ′ 2w(τ ′)=

{
G 0

k1
(τ, τ ′)G 0

k2
(τ, τ ′)

}
With the fiducial Green’s functions defined as
G 0

k (τ, τ ′) = π
4

√
τ τ ′ H

(1)
ν0 (−c0k τ)H

(2)
ν0 (−c0k τ

′)

Presuming that the fiducial background is a slow roll inflating
attractor, one can compute the leading order correction to the power
spectrum:
∆PR
PR

(k) = − 8π3

c0k

∫ 0

τ0
dτ{W (τ), k2w(τ)}=

{
e2ic0kτ

(
1 + i

c0kτ

)2
}

Induced features only have finite support in k if the interaction
potentials W (τ) and w(τ) do not contain arbitrarily fast variations*.

* Too sudden changes are limited by the requirements that the inflaton

embed itself consistently in some UV completion, requiring a consistent

derivative expansion for the action for inflaton field and its fluctuations.
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Figure : Relaxation to the attractor with W (τ) = λe−(τ−τ0)µ, with
λ = 5× 10−5/(4π4), τ0 = −104 and with µ running from 2, 1, 0.5 and 0.35 in
the upper left, upper right, lower left and lower right panels, respectively. For

fundamental physics motivation for beginning inflation off the attractor, see Dudas, Kitazawa, Patil, Sagnotti, arXiv:1202.6630
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Figure : Transient drop in cs with w(τ) = λτ 2e−(τ−τ0)2µ, with
λ = 2× 10−4/(4π4), τ0 = −30 and with µ running from 0.01, 0.1, 1 and 5 in
the upper left, upper right, lower left and lower right panels, respectively.
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Features, an analytic understanding

We observe that mechanisms that generate features such as sudden
changes in the potential, transient particle production, interrupted slow
roll, consistently modified initial states... all tend to generate features at
much longer comoving scales relative to transient changes in the speed of
sound.

Given that features in the power spectrum tend to get washed out at
large angular scales, even if they were present, we may never know
any better.

Transient changes in cs can consistently imprint on relatively much
shorter scales (beyond CMB scales) → might be detected with far
superior statistics if they are really there.

From the perspective of the EFT of inflation, transient changes in cs

occur very naturally– encode the influence of heavy fields on the
dynamics of the adiabatic mode completely consistent with
decoupling, adiabaticity, the persistence of slow roll, and the validity
of the single field regime. Achucarro, SP et al. 2010- 2012
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What do adiabatic correlators know about the background?

If all we ever see are correlators of the adiabatic mode, what is the most
we could infer in principle?

Scale invariant primordial power spectrum over a range of 15-17
e-folds (from high z measurements of the matter power spectrum)→
impossible to have adiabatic modes weakly coupled over full range*
unless Ḣ/H2 � 1 .
Baumann, Senatore, Zaldarriaga 1101.3320

* Though admitting varying, superluminal cs , can have up to 28
e-folds. (Inflation is the unique theory that keeps the adiabatic mode
weakly coupled over the full 60 e-folds). Joyce, Khoury arXiv:1107.3550

The EFT expansion of the adiabatic mode knows about the
background– terms in the derivative expansion more and more
constrained as the background becomes more symmetric (i.e.
dS–like).

What can we extract about the background in principle?
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What do adiabatic correlators know about the background?

Up to two derivatives, the quadratic action is a function of only two
independent functions, ε = −Ḣ/H2 and cs .

S(2) =
∫
d4x ε a3

(
1

c2
s
Ṙ2 − (∇R)2

)

Where e.g. c−2
s = 1− 2M4

2

M2
pl

Ḣ
;

... because R is conserved on super-horizon scales. i.e. ��R2, ��ṘR
Similarly, at cubic order we have six possible operators:
δN3, δN2δE i

i , δN(δE i
i )2, δNδE ijδEij , (δE i

i )3, δE i
i δE

ijδEij .

But the cubic action depends only on four independent functions–
the coefficients of: Ṙ3, Ṙ2R, R(∇R)2, Ṙ(∇R)2, ���ṘR2, ��R3

Moreover, if Lm = Lm(φ,∇φ) , then in unitary gauge, shift vector
can’t appear in matter Lagrangian. Only δNm appears.

Action up to cubic order depends only on Ḣ,M4
2 ,M

4
3 .

M4
3 = #M4

2 (1− c2
s ) Chen et al hep-th/0605045; Achucarro, Hardeman, Gong, Palma, Patil 1201.6342

True under very general assumptions Senatore, Smith, Zaldarriaga arXiv:0905.3746

All coefficients in the EFT expansion depend only on ε, c2
s , and their

derivatives.
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2 ,M

4
3 .

M4
3 = #M4

2 (1− c2
s ) Chen et al hep-th/0605045; Achucarro, Hardeman, Gong, Palma, Patil 1201.6342

True under very general assumptions Senatore, Smith, Zaldarriaga arXiv:0905.3746

All coefficients in the EFT expansion depend only on ε, c2
s , and their

derivatives.



Introduction BSM Cosmology Features as cosmological probes Correlated Features

What do adiabatic correlators know about the background?

Up to two derivatives, the quadratic action is a function of only two
independent functions, ε = −Ḣ/H2 and cs .
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M2
pl

Ḣ
;

... because R is conserved on super-horizon scales. i.e. ��R2, ��ṘR
Similarly, at cubic order we have six possible operators:
δN3, δN2δE i

i , δN(δE i
i )2, δNδE ijδEij , (δE i

i )3, δE i
i δE

ijδEij .

But the cubic action depends only on four independent functions–
the coefficients of: Ṙ3, Ṙ2R, R(∇R)2, Ṙ(∇R)2, ���ṘR2, ��R3

Moreover, if Lm = Lm(φ,∇φ) , then in unitary gauge, shift vector
can’t appear in matter Lagrangian. Only δNm appears.

Action up to cubic order depends only on Ḣ,M4
2 ,M

4
3 .

M4
3 = #M4

2 (1− c2
s ) Chen et al hep-th/0605045; Achucarro, Hardeman, Gong, Palma, Patil 1201.6342

True under very general assumptions Senatore, Smith, Zaldarriaga arXiv:0905.3746

All coefficients in the EFT expansion depend only on ε, c2
s , and their

derivatives.
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Moreover, if Lm = Lm(φ,∇φ) , then in unitary gauge, shift vector
can’t appear in matter Lagrangian. Only δNm appears.

Action up to cubic order depends only on Ḣ,M4
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2 ,M

4
3 .

M4
3 = #M4

2 (1− c2
s ) Chen et al hep-th/0605045; Achucarro, Hardeman, Gong, Palma, Patil 1201.6342

True under very general assumptions Senatore, Smith, Zaldarriaga arXiv:0905.3746

All coefficients in the EFT expansion depend only on ε, c2
s , and their

derivatives.



Introduction BSM Cosmology Features as cosmological probes Correlated Features

What do adiabatic correlators know about the background?

Up to two derivatives, the quadratic action is a function of only two
independent functions, ε = −Ḣ/H2 and cs .
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What do adiabatic correlators know about the background?

Might it be possible to extract information about the background
expansion from adiabatic correlators?

There is only one clock in the universe. Scale factor fluctuations ↔
local time reparametrizations.

So you cannot use fluctuations in ε to clock expansion history,
(unless you introduce isocurvature modes Chen arXiv:1106.1635 )

Although cs is not another clock, might it be used to extract
appropriately limited information about Ḣ through the features
induced by its variation?

At the level of the 2-pt function:
∆PR
PR

(k) = −π3
∫ 0

τ0
dτ{W (τ), k2w(τ)}=

{
G 0

k (τ, τ)
}

w(τ) := c2
0 − c2

s (τ), W (τ) := z′′

z
− z′′0

z0
; z = a

√
ε/cs

Classifying the various possibilities is a work in progress (under
certain assumptions for the inverse problem to be tractable)...
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The effective action

Comoving gauge action (π ≡ 0 )

S2 =

∫
d4x

a3εM2
pl

c2
s

[
Ṙ2 − c2

s

(∇R)2

a2

]
S3 =

∫
d4xa3

[
−εM2

plR
(∇R)2

a2
+ 3

εM2
pl

c2
s

Ṙ2R+ εM2
pl

(
1− 2

c2
s

)
Ṙ3

H

+
M2

pl

2a4

{(
3R− Ṙ

H

)[
ψ,ijψ,ij − (∆ψ)2

]
− 4R,iψ,i ∆ψ

}]

Where ψ is the scalar component of the ADM shift vector
Ni = ∂iψ + Ñi

Terms ∝ ...
c s appear at higher order (H6/M6

eff )
Reduction in cs as well as time variation makes certain higher
dimensional operators more strongly coupled.
Strong turns cs � 1, ċs ∼ 0 are easily accommodated by the EFT,
sudden turns ċs � Hcs , cs . 1 , less so.
EFT valid so long as |ċs | � M|1− c2

s | → ω̇+/ω
2
+ � 1 Cespedes et al

arXiv:1201.4848; Achúcarro et al arXiv:1205.0710
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Correlated non-Gaussianities
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Figure : f eq
NL vs ∆P

P
(left), f f

NL vs ∆P
P

(middle) and f sq
NL vs ∆P

P
(right) for

τ0k∗ = −11, c = 0.8 (top) and τ0k∗ = −11, c = 1.5 (bottom) respectively for
the ‘cosh’ drop in the speed of sound given by 1− c2

s = − ∆max
Cosh[c(τ−τ0)]

.
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Conclusions

Prominent features could be imprinted onto primordial observables,
whose correlations at commensurate scales encode the embedding of
inflation into some parent theory.

The positive detection of such (correlated) features in future data
sets would help us better understand the true nature of the inflaton.

Features induced by varying cs can in principle, be imprinted on very
short scales (where the statistics for their detection improve
markedly).

Encode the influence on heavy fields on the dynamics of the
adiabatic mode.

In principle, a primitive spectroscopy.

In combination with other statistics, can tell us about the
universality class of effective Lagrangians that resulted in inflation.

The real fun is yet to begin (LSS, 21cm, spectral distortion)!
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The positive detection of such (correlated) features in future data
sets would help us better understand the true nature of the inflaton.

Features induced by varying cs can in principle, be imprinted on very
short scales (where the statistics for their detection improve
markedly).

Encode the influence on heavy fields on the dynamics of the
adiabatic mode.

In principle, a primitive spectroscopy.

In combination with other statistics, can tell us about the
universality class of effective Lagrangians that resulted in inflation.

The real fun is yet to begin (LSS, 21cm, spectral distortion)!
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