
Lecture 1: Basics of Monte Carlo methods 1

Monte Carlo Methods
in High Energy Physics

WIESŁAW PŁACZEK

Institute of Physics, Jagiellonian University,

Cracow, Poland.

• Lecture 1: Basics of Monte Carlo methods.

• Lecture 2: Random number generators.

• Lecture 3: Monte Carlo simulations of HEP processes.

• Lecture 4: Markovian Monte Carlo.

⇒ http://cern.ch/placzek

W. Płaczek INFN and University of Pavia, 18–22 October 2004



Lecture 1: Basics of Monte Carlo methods 2

Outline of Lecture 1:

• Indroduction.

B Definition.

B History.

• Mathematical foundations of Monte Carlo (MC) methods.

B Random variables and distributions.

B Expectation, variance, covariance.

B The Law of Large Numbers.

B The Central Limit Theorem.

• Buffon’s needle and basic Monte Carlo methods.

• Classical variance-reducing techniques.

• Adaptive variance-reducing techniques.

• Comparisons of MC integration with numerical quadrature.
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Introduction

• Definition.
⇒ General definition:

A Monte Carlo technique is any technique making use of random numbers

to solve a problem.

⇒ Halton (1970) – a narrower but more enlightening definition:

The Monte Carlo method is defined as representing the solution of a problem

as a parameter of a hypothetical population, and using a random sequence

of numbers to construct a sample of the population, from which the statistical

estimates of the parameter can be obtained.

Let F – the solution of the problem (a real number, a set of numbers, a yes/no

decision, etc.) ⇒ MC estimate of F :

F̂ = f({r1, r2, . . . , rn}; . . . ),

where {r1, r2, . . . , rn} – the random numbers used in the calculation.

The problem does not have to be of the stochastic nature!
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History

• G. Comte de Buffon (1777) – perhaps the earliest documented use of random

sampling to find the solution to the integral (by throwing a needle onto horizontal plane

ruled with straight lines).

• Marquis Pierre-Simon de Laplace (1886) – use of Buffon’s method to evaluate π.

• Lord Kelvin (1901) – use random sampling (drawing numbered pieces of paper from a

bowl) to aid in evaluating some integrals in the kinetic theory of gases.

• W.S. Gossett (as “Student”) (1908) – similar random sampling helped in his discovery

of the distribution of the correlation coefficient.

• Enrico Fermi (1930s) – numerical sampling experiments on neutron diffusion and

transport in nuclear reactors (deviced FERMIAC – a mechanical sampling device).

• J. von Neumann, S. Ulam, N. Metropolis, R. Feynman (1940s) – first large-scale

random-numbers based calculations of neutron scattering and absorption during the

“Manhattan” project (work on a nuclear bomb). The name “Monte Carlo” was

invented for this type of calculations and respective mathematical methods.
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History – cont.

• H. Kahn (1950) – invention of “importance sampling”.

• N. Metropolis, A.W. Rosenbluth, N.M. Rosenbluth, A.H. Teller, E. Teller (1953) –

invention of “Metropolis algorithm” (or “M(RT)2 algorithm”) for solving some

random-walk (Markov chain) problems in statistical mechanics.

• I. Kopylov, JETP 35 (1958) 1426 – use of Monte Carlo methods in particle physics to

solve the Fermi phase-space problem.

• ...

• G. Peter Lepage, J. Comput. Phys. 27 (1978) 195 – “VEGAS algorithm” for adaptive

integration.

• S. Jadach, Comput. Phys. Commun. 130 (2000) 244; e-Print: physics/9910004 –

FOAM: a general-purpose cellular Monte Carlo sampler.

• ...
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Mathematical foundations of Monte Carlo methods

• Random variables and distributions
A random variable is a variable that can take on more than one value (generally

a continuous range of values), and for which any value that will be taken cannot be

predicted in advance (however, its distribution may well be known).

The distribution of a random variable gives the probability of a given value (or

infinitesimal range of values).

B For continuous variables we define

ρ(u)du = P[u < u′ < u + du],

ρ(u) – the probability density function (pdf) of u (gives the probability of finding the

random variable u′ within du of a given value u).

B The cumulative (integrated) distribution function (cdf):

R(u) =

∫ u

−∞
ρ(x)dx, ρ(u) =

dR(u)

du
.

Note: R(u) – monotonically non-decreasing function and 0 ≤ R(u) ≤ 1.
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Expectation, variance, covariance

• Expectation value of a function f(u′):

E(f) =

∫

f(u)dR(u) =

∫

f(u)ρ(u)du .

If u′ ∈ U(0, 1), i.e. uniformly distributed between 0 and 1, then E(f) =
∫ 1

0
f(u)du

• Variance of a function f(u′):

V (f) = E[f − E(f)]2 =

∫

[f − E(f)]2dR = E(f2) − E2(f) .

⇒ Standard deviation: σ(f) =
√

V (f) .

• Let x and y be random variables and c be a constant, then:

E(cx + y) = cE(x) + E(y),

V (cx + y) = c2V (x) + V (y) + 2c Cov(x, y),

where Cov(x, y) = E([x − E(x)][y − E(y)]) – covariance between x and y.

B If Cov(x, y) = 0: x and y are uncorrelated, but not necessarily independent!
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The Law of Large Numbers (LLN)

Let’s choose n numbers ui randomly with a probability density uniform on the interval

(a, b), and for each ui evaluate the function f(ui). Then, as n becomes large:

1

n

n∑

i=1

f(ui) −→
n→∞

E(f) =
1

b − a

∫ b

a

f(u)du .

That is, in statistical language, the left-hand side is a consistent estimator of the integral

on the right-hand side, since (under certain conditions) it converges to the exact value of

the integral as n approaches infinity.

B ‘Certain conditions’ concern the behaviour of the function f – it must be:

∗ integrable,

∗ piecewise continuous (it may have a finite number of discontinuities),

∗ everywhere finite.

The law of large numbers can be interpreted as a statement that the Monte Carlo estimator of

an integral converges to the correct answer as the random sample size becomes very large.
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The Central Limit Theorem (CLT)

The sum of a large number of independent random variables is always normally

distributed (i.e. a Gaussian distribution), no matter how the individual random

variables are distributed, provided they have finite expectations and variances

and provided n is ‘large enough’ (in practice the convergence is pretty fast).

B Gaussian distribution N(µ, σ2) with the expectation value µ and the variance σ2:

ρ(x) =
1

σ
√

2π
exp

[

−
(x − µ)2

2σ2

]

.

B The illustration of CLT for xi ∈ U(0, 1), i = 1, . . . , 12:
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B Gaussian random number generator based on the CLT:
Let xi ∈ U(0, 1), i = 1, . . . , n,

take Rn =
∑n

i=1 xi, then:

E(xi) = 1
2

V (xi) = 1
12






=⇒







E(Rn) = n
2

V (Rn) = n
12

→ From the above we have:

Rn − n/2
√

n/12
−→

n→∞
N(0, 1),

i.e. we get the standardized Gaussian random number generator.

A convenient choice for practical purposes is:

n = 12 −→ R12 − 6 .

Warning: The tails of the Gaussian distribution are not well reproduced by this kind

of a generator!
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Résumé: mathematical properties of the Monte Carlo method

Let ui ∈ U(a, b), then from the Law of Large Numbers:

1

n

n∑

i=1

f(ui)

︸ ︷︷ ︸

MC estimator of the integral

−→
n→∞

1

b − a

∫ b

a

f(u)du

Mathematical properties of the Monte Carlo estimator:

(i) If V (f) < ∞, the MC estimator is consistent, i.e. it converges to the true value of

the integral for very large n.

(ii) The MC estimator is unbiased for all n, i.e. the expectation value of the MC estimator

is the true value of the integral (easy to check – from the linearity of the operator E).

(iii) The MC estimator is asymptotically normally distributed (Gaussian density).

(iv) The standard deviation of the MC estimator is given by: σ = 1√
n

√

V (f) .

B The MC estimator of the standard deviation: σ̂ = 1√
n

√

V̂ (f) ,

where: V̂ (f) = 1
n−1

∑n
i=1

[
f(ui) − 1

n

∑n
i=1 f(ui)

]2
.
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Buffons’s needle and basic Monte Carlo methods

B Buffon’s needle (Buffon 1777, Laplace 1886):

A needle of length l is thrown at random onto a horizontal plane ruled with straight lines a

distance L, (L ≥ l) apart. A ‘hit’ is counted when the needle crosses the line, and a

‘miss’ otherwise. By counting the hits and misses calculate the value of π.

Experiment:

 

L

l x

n – number of ‘hits’

N – number of tries

(‘hits’ and ‘misses’)

Theory:

x – the angle between the needle and the perpen-

dicular to the lines, x ∈ U(0, π),

⇒ probability density function of x: ρ(x) = 1
π .

p(x) – probability of a ‘hit’ for a given angle x:

p(x) = (l/L)| cos x|
⇒ Total probability of the ‘hit’:

P = E[p(x)] =

∫ π

0

p(x)ρ(x)dx =
2l

πL
.

B Law of Large Numbers: n

N
−→
N→∞

P =
2l

πL
=⇒ 2Nl

nL
−→
N→∞

π .
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Buffons’s needle – Monte Carlo modeling

• Hit-or-miss Monte Carlo

Due to symmetry of p(x) we can consider: 0 < x < π
2 .

B Algorithm:

Generate uniformly two random variables

(x, y) : 0 < x < π
2 and 0 < y < 1.

y







≤ p(x) : hit ,

> p(x) : miss .
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Let’s define the weight function: w(x, y) = Θ(p(x) − y),

where Θ(z) = 1 for z ≥ 0, and = 0 otherwise (a step function).

B Probability density function: %(x, y) = ρ(x)g(y) = 2
π · 1 .

⇒ Total probability:

P = E(w) =
∫

w(x, y)%(x, y)dxdy = 2l
πL =

N→∞

1
N

∑N
i=1 w(xi, yi) = n

N .

⇒ Standard deviation of MC estimate of P :

σ = 1√
N

√

P (1 − P ) =
N→∞

1√
N

√
n
N (1 − n

N ) .
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• Hit-or-miss Monte Carlo – cont.
B Standard deviation of MC estimate of π for l = L: σhit-or-miss

π ' 2.374√
N

This means that the uncertainty on the value of π is :

after 100 tries: 0.2374
after 10 000 tries: 0.0237
after 1 000 000 tries: 0.0024

→ These uncertainties are very high!

Can we improve it?

• Crude Monte Carlo
Let’s define the weight function: w(x) = p(x) = l

L cos x

and generate x uniformly in the range (0, π
2 ).

B From the Law of Large Numbers we have:

P =
∫

w(x)ρ(x)dx =
∫ π/2

0

(
l
L cosx

)
2
π dx = 2l

πL =
N→∞

1
N

∑N
i=1 w(xi).

B Standard deviation of MC estimate of π for l = L: σcrude
π ' 1.52√

N

→ Crude Monte Carlo is more efficient than hit-or-miss Monte Carlo (always true)!

I But hit-or-miss MC provides unweighted events while crude MC only weighted events!
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Classical variance-reducing techniques

The uncertainty of a Monte Carlo integral is: σ =
√

V (f)/
√

n .

B It can be decreased by increasing n – very slow convergence!

B Another way is to try do decrease the effective variance V (f).

Intuitively, large uncertainties of MC integration are due to the fact that the integrand differs

considerably from the flat distribution from which points are generated → large

fluctuations of the functions values in the MC estimate of the integral!

I A possible solution: To make the distribution of points to be closer to the function f .

• Stratified sampling
B Based on the fundamental property of the integral:

I =
∫ 1

0
f(u)du =

∫ a

0
f(u)du +

∫ 1

a
f(u)du , 0 < a < 1.

I General scheme:

The full integration domain is divided into sub-domains. In the jth sub-domain whose

volume is ωj one chooses uniformly nj random points. Then, partial sums are formed

over each sub-domain, and these partial sums are added, weighted proportionally to

ωj and inversely to nj .
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Stratified sampling – cont.

Let I =
∫

Ω
f(x)dx, Ω =

∑k
i=1 ωj , and Ij =

∫

ωj
f(x)dx ⇒ I =

∑k
j=1 Ij .

pj – uniform distribution over jth sub-domain, i.e. dpj = dx
ωj

⇒ Ij = ωj

∫

ωj
f(x)dpj .

B Integral Ij is evaluated using the crude MC method, i.e. its MC estimator is:

Îj =
ωj

nj

nj∑

i=1

f(xj,i) .

Points over each sub-domains are chosen independently, therefore the total estimator is:

Î =

k∑

j=1

Îj =

k∑

j=1

ωj

nj

nj∑

i=1

f(xj,i) ,

and the variance:

V (Î) =

k∑

j=1

ω2

j

nj
Vj(f) → its MC estimator : V̂ (Î) =

k∑

j=1

ω2

j

nj − 1
V̂j(f) ,

where Vj(f) is the variance of the function f in the jth sub-domain.

It can be easily shown that uniform stratification (ωj = ωl and nj = nl for all j, l)

cannot increase the variance and will, in general, decrease it, if the expectation of

the function is different in the different sub-domains. (→ Try for the case k = 2.)
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Stratified sampling for Buffon’s needle

Let’s, for simplicity, take l = L and perform uniform stratification with k = 5 sub-domains:
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We have: ωj = Ω
5 = π

10 and nj = N
5 .

B MC estimator of the total probability of the hit:

P̂ =
1

Ω

5∑

j=1

ωj

nj

N/5
∑

i=1

p(xj,i) =
1

N

N∑

i=1

p(xi) .

B Standard deviation of MC estimate of π:

σstrat
π ' 0.345√

N
< σcrude

π ' 1.52√
N

.

• In the above uniform stratification one generates the same number of points in each

sub-interval, independently of their contribution to the total integral.

• This can be improved either by generating the numbers of point proportionally to the

area of the blue rectangles or by dividing the integration interval into the sub-intervals

for which the corresponding rectangles have equal area. In such cases, one can also

obtain unweighted events.

• Uniform stratification is the safest choice if we know nothing about an integrand, but it

is suited only for integration – one cannot obtain unweighed events.
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Importance sampling
B A large variation in the value of the funtion f leads to a large uncertainty in the MC

estimate of its integral.

I MC calculations will be more efficient when each point has nearly the same weight.

→ A possible solution: a change of integration variable(s) (mapping)

f(x)dx −→
f(x)

g(x)
dG(x) , where g(x) =

dG(x)

dx
– Jacobian.

• Importance sampling – the basic scheme:

(i) Points are generated according to G(x) instead of uniformly.

(ii) The weight w(x) = f(x)/g(x) is calculated for each point.

(iii) The expectation ÊG(w) and the variance V̂G(w) are evaluated for the whole sample.

I If g(x) is appropriately chosen, the variance of the weight w = f/g can be much
smaller than the variance of the function f ! (one may even have w = const).

I One can easily obtain unweighed events by applying hit-or-miss MC to the weight w(x).

• Requirements:

B The function g(x) should be non-negative and integrable analytically.

B The cumulative function G(x) can be inverted analytically (only handful of functions).
or g-distributed random number generator is available.
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Importance sampling for Buffon’s needle

B Let l = L, for simplicity.
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Let’s take: g(x) = 4
π

(
1 − 2

πx
)

.

⇒ G(x) = 4
π x

(
1 − x

π

)
– invertible analytically.

I The weight function:

w(x) = p(x)
g(x) = π

4
cos x

1−2x/π and π
4 ≤ w ≤ π2

8 .

B Standard deviation of MC estimate of π:

σimp
π ' 0.406√

N
< σcrude

π ' 1.52√
N

.

• We can do even better by chosing: g(x) = cosx.

B Then: G(x) = sin x – invertible analytically.

I The weight function: w(x) ≡ 1 !!!

B This means that we can calculate our integral exactly, i.e. the variance: V (w) = 0 !!!

• Importance sampling is one of the most basic and useful Monte Carlo

techniques, but it has to be used with care! (e.g. zeros of the function g(x) may be

dangerous!)
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We skip other classical variance-reduction techniques, such as control variates and

antithetic variates, because they cannot be used for event generation.

Adaptive variance-reducing techniques
• All presented so far variance-reduction methoths, with the possible exception of

uniform stratification, require some advance knowledge of behaviour of the function.

• A natural extension is toward adaptive techniques which learn about the function as

they proceed, preferably requiring no a priori knoledge about the function.

• A typical scheme of adaptive algorithm → two phases:

1. Exploration phase: Usually recursive division (stratification) of the integration

region into sub-regions (hyper-rectangles, simplices, etc.).

2. Calculation phase: Based on the results of the exploration phase, the integral is

evaluated. Sometimes there is also a possibility to generate points (events)

according to a distribution given by the integrand.

• Examples of adaptive algorithms (in terms of computer programs):
B RIWIAD of Sheppey & Lautrup: one of the earliest multidimensional MC integrators.
B DIVONNE2 of J. Friedman, SLAC CGTM No. 188 (1977): MC integrator.
B VEGAS of G. P. Lepage, J. Comp. Phys. 27 (1978) 192: MC integrator.
B FOAM of S. Jadach, CPC 130 (2000) 244: both MC integrator and event generator.
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Comparisons of MC integration with numerical quadrature

• All quadrature formulae approximate the value of the integral by a linear combination

of function values:
IQ =

m∑

i=1

wif(xi) .

Different methods correspond to different choices of the points x and the weights w.

Note: The crude Monte Carlo method can be considered as a quadrature formula with unit

weights and point chosen uniformly but randomly.

• Efficiencies of integration methods:

Uncertainty as a function of number of points n In 1 dimension In d dimensions

Monte Carlo n−1/2 n−1/2

Trapezoidal rule n−2 n−2/d

Simpson’s rule n−4 n−4/d

m-point Gauss rule n−2m n−2m/d (m < n)

• However, quadrature methods are difficult to apply in many dimensions (> 2), for

complicated integration regions and integration errors are not easy to estimate!
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Summary

• A Monte Carlo method is, in brief, a technique which uses random numbers to solve a

problem.

• Formally, the Monte Carlo method is based on two basic theorems of the

mathematical statistics: the Law of Large Numbers and the Central Limit Theorem.

• Convergence of the MC calculation is slow – inversely proportional to the square root

of the number of generated random points, however, there exist efficient

variance-reducing techniques.

• MC methods can be used to solve various kinds of problems, not only the ones of

stochastic nature.

• Most commonly, the MC methods are used for complicated multi-dimensional

integration and event generation according to multi-dimensional distributions.

• MC techniques were first applied in physics, but now they are also used in many other

areas, such as: biology, chemistry, biomedical technology, engineering,

telecommunication, economics, sociology, etc.
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