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“there is no such thing as a random number – there are only methods to produce random numbers”

John von Neumann

Random numbers

A random number – simply a particular value taken on by a random variable.

→ Sequence of truly random numbers – unpredictable and therefore unreproducible!

I Sources of truly random numbers – physical generators:

∗ e.g. tossing a coin, a roulette, radioactive decay, thermal noise in electronic devices

(particularly “white noise”), cosmic ray arrival times, etc.

• Drawbacks of physical generators:

∗ too slow for typical calculational needs;

∗ problems with stability – particularly generators based on physical processes,

e.g. small change in physical conditions of the source or its enviromnent can cause

major changes in probabilistic properties of produced random numbers → additional testing

and bias-correcting devices needed.

B Old times: Tables of random numbers – not very practical!

→ Today coming back (?) – large and cheap storage devices (HDs, CDs, DVDs, etc.).
(1995: Marsaglia, CD-ROM 650MB of random numbers: electronic noise ⊕ rap music – “white & black noise”)
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“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin”

John von Neumann

Pseudo-random numbers – numbers generated according to a strict mathematical

formula (therefore reproducible and not at all random in the mathematical sense) but

having the appearance of randomness, i.e. their statistical properties are very close to the

ones of the truly random numbers (someone who does not know the formula is not

supposed to be able to tell that a formula was used rather than a physical process).

I Sources od pseudo-random numbers – mathematical generators:
∗ good statistical properties of generated numbers,
∗ easy to use (simple, fast, convenient, . . . ).

→ Dominated the Monte Carlo ‘world’ and made physical generators almost extinct!

This is why commonly pseudo-random numbers are called simply random numbers, and

mathematical algorithms for their generation are called random number generators (RNG).

• The first mathematical generator: ‘mid-square’ generator of John von Neumann:

→ Formula: Xn = bX2
n−1 · 10−mc − bX2

n−1 · 10−3mc · 102m

where: Xi, m – positive integers, X0 – a constant, b · c – truncation to integer.

⇒ Generates 2m-digit sequences of numbers – but short ones and dependent on X0!
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• Typical scheme of a random number generator (RNG):

1) Set up initial constants: X0, X1, . . . , Xk−1.

2) If (n − 1) numbers have been generated, the number Xn calculate according to:

Xn = f(Xn−1, Xn−2, . . . , Xn−k), n ≥ k.

B Most often one generates integer numbers or bits (0/1) ⇒ they are converted

to floating-point numbers of unifom distribution in the range [0, 1), denoted: U(0, 1).

• A period of RNG:

Sequences of numbers from mathematical generator – periodic sequences.

Let P, ν – integers, a X0, X1, . . . – sequence of random numbers,

P – period of generator (sequence)⇔ ∃ν,P : Xi = Xi+jP (j = 1, 2, . . . ) ∀i≥ν .

Usually, the period can be obtained theoretically (sometimes this might be difficult!).

B Requirements for the period of RNG:

If N – the number of random numbers used in MC calculations, then:

N � P .

→ In practice, it is required: N .
√

P .

Popular today RNG: Mersenne Twister (Matsumoto & Nishimura, 1998): P ≈ 106000.
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Basic methods of uniform random number generation

1. Linear Congruential Generators:

General formula: Xn = (a1Xn−1 + a2Xn−2 + . . . + akXn−k + c) modm,

where: a1, . . . , ak, c, m – parameters of the generator (fixed integers ≥ 0),

a mod b – denotes the integer modulo operation of a over b.

Period: P ≤ mk − 1 (maximum period only for appropriately chosen parameters).

B Popular implementations (e.g. in Pascal, C/C++):

k = 1 : Xn = (aXn−1 + c) mod m

I Main drawback: “Marsaglia effect” – points lie on regular hyperplanes.

2. Shift-Register Generators:

For bits: bn = (a1bn−1 + . . . + akbn−k) mod 2,

where: a1, . . . , ak ∈ {0, 1} – binary constants.

Easy to implement, because: (a + b) mod 2 = a xor b

⇒ Ui ∈ U(0, 1) according to Tausworthe scheme: Ui =
∑L

j=1
2−Jbis+j , s ≤ L.

Period: P ≤ 2k − 1

I Drawback: Do not satisfy modern statistical tests!
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B Generator of Tezuka (1995): Combination of 3 SR generators, P ≈ 1026, stat. OK.

B Mersenne Twister (Matsumoto & Nishimura): improved shift-register, P = 219937 − 1.

3. Lagged Fibonacci Generators:

General formula: Xn = (Xn−r �Xn−s) modm, n ≥ r, r > s ≥ 1,

where the operator: � ∈ {+,−,×, xor}.

Period: P ≤ (2r − 1)m
2

Statistical properties: the best for: ×, the worst for: xor.

B Popular generator: RANMAR (Marsaglia, Zaman, Tsang):

Combination of 2 generators, P ≈ 1043, very good statistical properties.

4. SWB Generators (subtract-with-borrow) – Marsaglia & Zaman (1991):

Scheme: Xn = (Xn−r 	Xn−s) mod m, n ≥ r, r > s ≥ 1,

where: x 	 y mod m =







x − y − c + m and c = 1 when x − y − c < 0,

x − y − c and c = 0 when x − y − c ≥ 0,

initially: c = 0.

I Drawbacks: Do not satisfy some recent statistical tests!

B Generator RCARRY (Marsaglia & Zaman, 1991):
P ≈ 10171, simple and fast, but does not satisfy some recent tests.
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5. MWC Generators (multiply-with-carry) – Marsaglia:

Scheme: Xn = (a1Xn−1 + a2Xn−2 + . . . + arXn−r + c) modm,

where: c = b(a1Xn−1 + a2Xn−2 + . . . + arXn−r)/mc – the so-called carry value

(to the next step).

I Advantages: Simple, fast, easy to implement, have long periods, very good

statistical properties.

B Several generators proposed by Marsaglia.

6. Non-Linear Generators (since mid 1980s):

B Eichenauer & Lehn: Xn = (aX−1

n−1 + b)mod m

where: c−1 = integer number: c · c−1 mod m = 1, m – prime number.

B Eichenauer-Hermann: Xn = [a(n + n0) + b]−1 mod m

→ The number Xn can be obtained independently of the previous numbers.

B L. Blum, M. Blum, Shub: Xn = X2
n−1 modm; m – product of prime numbers

→ Applications in cryptography.

I Advantages: Very good statistical properties (satisfy all known tests).

I Drawbacks: They are a bit slower than linear generators.

• Combinations of generators – usually give better results, but not always!
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“Random number generators should not be chosen at random.”

Donald Knuth

How to check whether a given generator is good or bad?

A generator is good when it produces sequences of numbers that have properties of truly

random numbers. ← How to check this?

• Traditional approach:

Formulate some properties of the uniform random numbers, i.e. r ∈ U(0, 1), and test if

the sequences of numbers from the mathematical generator posses these properties.

→ But one can formulate infinite number of such properties⇒ infinite number of tests!

B In practice, one can only prove that the generator is bad (fails some of the tests),

but one cannot prove, that the generator is good (the fact that it has passed

n tests does not guarantee that it will pass the (n + 1)th test, which could actually be

our problem at hand!).

Testing of generators→ negative selection: Passing some number of tests only increases

our confidence to a given generator but does not assert its complete reliability.

B A lot of strict tests of various kinds have been formulated to date,

→ see e.g. D. Knuth, “The Art of Computer Programming”, Vol. 2.
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→ E.g. a battery of tests DIEHARD by G. Marsaglia (http://stat.fsu.edu/˜geo/diehard.html)

– helped to eliminate many bad generators, also the physical ones.

I In fact, there is no credible reason why recurrence formulae should produce random

or even random-looking numbers! → This is really quite amazing!

• 1993: M. Lüscher – “Finally, a theory of random number generation” (F. James)

Martin Lüscher – theoretical physicist, specializing in lattice field theory.

B Article: hep-lat/9309020, Comput. Phys. Commun. 79 (1994) 100:

Operational definition of randomness in the sense required for Monte Carlo calculations,

based on chaotic behaviour in classical dynamical systems (theories of Kolmogorov

and Arnold) – the use of Lyapunov exponents and Kolmogorov entropy to study

chaotic behaviour of numbers produced by a generator.

I Generator RANLUX: based on the SWB generator RCARRY of Marsaglia & Zaman,

supplemented with an algorithm of discarding some sequences of numbers

– in order to achieve sufficiently good ‘chaotic’ properties of the generated numbers.

Period: P ≈ 10171.

→ No departures from randomness have been found so far!
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Non-uniform random number generation

B Random numbers of distributions other than uniform are usually obtained from

uniformly distributed random numbers by applying some transformation methods.

I. General methods
1. Inverse transform method:

Let U – uniformly distributed random number over (0, 1), i.e. U ∈ U(0, 1),

and F – some continuous and increasing cumulative distribution function.

Then the random variable
X = F−1(U)

is distributed according to the cumulative distribution function F (x).

Proof: P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x).

I Generalization: If F is any nondecreasing function, then one should take:

X = inf{x : U ≤ F (x)}.

EXAMPLE 1: Exponential distribution E(0, 1)→ pdf: ρ(x) = e−x, x > 0 .

⇒ cdf: F (x) =
∫ x

0
e−x′

dx′ = 1 − e−x.

Let r ∈ U(0, 1): r = F (x) = 1 − e−x ⇒ x = − ln(1 − r),

If r ∈ U(0, 1), then 1− r ∈ U(0, 1) ⇒ x = − ln r .
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EXAMPLE 2: Discrete distribution: P[X = k] = pk, k = 0, 1, . . . ;
∑

k pk = 1.

If r ∈ U(0, 1), then X = min{k : r ≤∑k
i=0 pi} .

B Algorithm in C/C++:

int DiscreteGen(double rn, double* p) {

// Generation of discrete distribution P{X = k} = p[k],

// rn - random number of uniform distribution over (0,1).

int k = 1;

double sum = p[0];

while (sum < rn) sum += p[k++];

return k - 1;

}

Limitations of inverse transform method:

• It is usually required that a cumulative distribution function is known analytically and

can inverted analytically – only a small number of functions satisfy these conditions!

• In principle, one can use numerical integration of pdf or tabulated cdf (histogram)

and, instead of analytical, perform numerical inversion of cdf – this is usually slower

and less accurate, therefore not so often realized in practice.
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2. Rejection (hit-or-miss) method (von Neumann, 1951):

Let f(x) – our desired probability density function, x can be n-dimensional variable.

A. Find a pdf g(x) for which random point generation is simple and fast

(in the simplest case g(x) = const) and adjust a constant c > 0 such that:

f(x) ≤ c g(x), ∀x.

B. Generate point X according to g(x) and a random number U ∈ U(0, 1).

C. If: c Ug(X) ≤ f(X) – accept X , otherwise reject it and go back to step B.

B Alternative way:

Step C. Calculate: w(X) = f(X)
g(X) – event weight; find maximum weight: wmax.

If: w(X) ≥ Uwmax – accept event, otherwise reject it and return to step B.

I Whenever weighted events are acceptable one can skip a rejection loop (as well as

generation of auxiliary random number U ); in such a case each point (event) X

is accompanied with the weight w(X).

Limitations of the rejection method:

• Zeros of the function g(x) are dangerous if at the same time f(x) 6= 0!

• Spikes of f(x) can degrade efficiency if they are not well approximated by g(x)!
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Limitations of the rejection method
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3. Composition (superposition) method (Butler, 1956):

∗ CONTINUOUS COMPOSITION

Let X – a random variable of the probability density function f(x):

f(x) =

∫

gy(x)h(y)dy,

where: gy(x) – some pdf depending on the parameter y; h(y) – some other pdf.

Generation scheme:

A. Generate Y according to the pdf h(y).

B. For a given value Y , generate X according to the pdf gY (x).

EXAMPLE: f(x) = n
∫ +∞

1
y−ne−xydy, x, y > 0, n ≥ 1.

Let’s define the functions: gy(x) = ye−xy and h(y) = ny−(n+1).

A. Random numbers Y of the pdf h(y) can be generated using the inverse

transform method: Y = (1− U)−1/n, where U ∈ U(0, 1).

B. Random numbers X of the pdf gy(x) can be generated as for the exponetial

distribution E(0, 1
y ): X = − 1

Y lnV , where V ∈ U(0, 1).
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∗ DISCRETE COMPOSITION

Let:

f(x) =
∞
∑

i=1

pi gi(x),

where: pi – density of some discrete distribution, i.e. pi ≥ 0,
∑∞

i=1 pi = 1;

gi(x) – some continuous pdfs.

Generation scheme:

A. Generate a number i according to the density pi, e.g. using the inverse transform.

B. For a given value i, generate X according to the pdf gi(x).

I This technique is also called a branching method.

EXAMPLE: Polynomial probability density functions

Let:

f(x) =
n

∑

i=1

cix
i, 0 ≤ x ≤ 1, ci ≥ 0;

n
∑

i=1

ci

i + 1
= 1.

A. Generate the index i ∈ {1, 2, . . . , n} according to the pdf pi = ci

i+1 .

B. For a given value i generate X according to the pdf (i + 1)xi, e.g. using

the inverse transform method: X = U 1/(i+1), where U ∈ U(0, 1).
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4. Combination of composition and rejection (Butcher, 1960):

Let X – a random variable of the probability density function:

f(x) =
∞
∑

i=1

pnfn(x), pn ≥ 0,
∞
∑

i=n

pn = 1,

where: fn(x) – some n-dependent pdfs.

For each fn find a pdf gn(x) and a constant cn (cn > 0), such that:

fn(x) ≤ cn gn(x) ∀x.

Generation scheme:

A. Generate a number n according to the distribution P[n = i] = pi.

B. For a given value n, generate X according to the pdf gn(x).

C. Generate U ∈ U(0, 1).

D. If: cn Ugn(X) ≤ fn(X) – accept X , otherwise reject it and return to step A.

B Alternative way:

Step D. Calculate: wn(X) = fn(X)
gn(X) – event weight; find maximum weight: wmax

n .

If: wn(X) ≥ Uwmax
n – accept event, otherwise reject it and return to step A.

Note: Here we need the maximum weight for each branch n independently. Their values can

be estimated analytically or numerically (e.g. by histogramming the weights in a trial MC run).
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Branching algorithms

The simple branching method:

f(x) =
∑K

i=1 pi gi(x)

pi

. . .

i=1,...,K

g (x)
K

g (x)
2

g (x)
1

f(x)

Combination of branching and rejection:

f(x) =
∑K

i=1 pi fi(x)

pi
i=1,...,K

. . .g (x)1 g (x)2 g (x)K

max

max

max

NO

NO

NO

rejection loop

YES1

2

K

w > Uw

w > Uw

w > Uw

f (x)2 f (x)f (x)1
YES

YES

K

f(x)
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II. Random number generators for basic distributions

1. Gaussian (normal) distribution N(0, 1)

pdf: ρ(x) =
1√
2π

e−
x2

2 .

a) The method based on the Central Limit Theorem, see Lecture 1.

→ Drawback: Lack of inifinite tails of Gaussian distribution!

b) Inverse transform method:

B The cumulative function of one-dimensional Gaussian distribution cannot be

expressed in terms of elementary functions!

I Go to 2 dimensions:

pdf: %(x) =
1

2π
e−

x2+y2

2 .

and make transformation to polar coordinates, then invert the cumulative function:

x =
√

−2 ln r1 cos(2πr2), y =
√

−2 ln r1 sin(2πr2)

where r1, r2 ∈ U(0, 1).

⇒ General Gaussian distribution N(µ, σ): x′ = µ + σx.
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2. Exponential distribution E(θ, λ)

pdf: ρ(x) =
1

λ
e−

x−θ
λ , x ≥ θ .

I Transformation: x→ x′ = x−θ
λ ⇒ E(θ, λ) → E(0, 1): ρ(x′) = e−x′

, x′ ≥ 0.

B Inverse transform method: x′ = − ln r, r ∈ U(0, 1).

3. Cauchy (Breit-Wigner) distribution C(θ, λ)

pdf: ρ(x) =
λ

π

1

(x− θ)2 + λ2
, −∞ < x < +∞ .

I Transformation: x→ x′ = x−θ
λ ⇒ C(θ, λ) → C(0, 1): ρ(x′) = 1

π
1

1+x′2 .

B Inverse transform method: x′ = tan(π[r − 1
2 ]), r ∈ U(0, 1).

4. Power-law distributions

pdfs: ρ1(x) = nxn−1, ρ2(x) = n(1− x)n−1, 0 ≤ x ≤ 1, n = 1, 2, . . . .

a) Inverse transform method: x = r1/n, r ∈ U(0, 1).

b) Let: r1, r2, . . . , rn ∈ U(0, 1) – independent random numbers.

x = max{r1, r2, . . . , rn} – is distributed according to ρ1(x),

x = min{r1, r2, . . . , rn} – is distributed according to ρ2(x).
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5. Binomial distribution b(n, p)

pdf: P[X = m] =

(

n

m

)

pm (1− p)n−m, 0 < p < 1, m = 0, 1, . . . , n .

I Algoritm 1: Rejection method (like ‘hit-or-miss’ for the Buffon’s needle problem)

long BinomialGen1(long n, double p) {
double r; long m = 0;
for (long i = 0; i < n; i++){

r = RNG(); // random number generation
if (r <= p) m++; }

return m;
} // Drawback: Many random numbers needed!

I Algoritm 2: Only one random number needed!
long BinomialGen2(long n, double p, double r) {
// r - random number of uniform distribution over (0,1)

long m = 0;
for (long i = 0; i < n; i++)

if (r <= p) { m++; r /= p;}
else r = (1 - r)/(1 - p);

return m;
} // Drawback: More floating-point operations!
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6. Poisson distribution P (µ)

pdf: P[X = k] =
µk

k!
e−µ , k = 0, 1, . . . ; E(k) = V (k) = µ .

I Algoritm 1: Popular in HEP applications

int PoissonGen1(double mu) {
int k = -1;
double r, s = 1.0, q = exp(-mu);
while (s > q) { r = RNG(); s *= r; k++; }
return k;

} //Many random numbers needed, but can be used e.g. to conctruct particles 4-momenta

I Algoritm 2: Inverse transform method

int PoissonGen2(double mu, double r) {
// r - random number of uniform distribution over (0,1)

int k = 0;
double q = exp(-mu), s = q, p = q;
while (r > s) { k++; p *= mu/k; s += p; }
return k;

}// Only one random number needed, but more floating-point operations!
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Summary

• Monte Carlo calculations are based on random numbers.

• There are three types of random numbers: truly random numbers (from physical

generators), pseudo-random numbers (from mathematical generators) and

quasi-random numbers (special correlated sequences of numbers, used only for

integration – give faster convergence than the standard MC integration).

• In real-life Monte Carlo calculations pseudo-random numbers are used most often.

• Use only well tested random number generators! The popular RNGs are: RANMAR,

RANLUX, Mersenne Twister. Do not trust generators provided with compilers,

operating system, programming-language libraries, etc.

• Having an uniform random number generator and using basic MC generation

techniques one can construct a random number generator for almost any distribution.

• The art of Monte Carlo calculations is to use appropriate combinations of various

generation methods in order to construct an efficient MC algorithm being solution to a

given problem.
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