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Introduction

◮ The Randall-Sundrum (RS) braneworld model postulates that
our observable universe is a thin 4D hypersurface residing in
5D anti-de Sitter (AdS) space

◮ The warping of AdS space allows us to recover ordinary
general relativity (GR) at distances greater than the curvature
radius of the bulk

◮ The equations of motion governing fluctuations differ from
GR at early times: they acquire high-energy corrections similar
to those found in the Friedmann equation

◮ Perturbations on the brane are coupled to fluctuations of the
5D bulk geometry (“Kaluza Klein” (KK) degrees of freedom)

◮ The only known way of tackling the problem on all scales
simultaneously is by direct numerical solution of the equations



Background dynamics

◮ Bulk metric in Poincare coordinates
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◮ Induced line element on the brane
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◮ Friedmann equation
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◮ Conservation of stress-energy on the brane
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Scalar perturbations
Mukohyama, 2000; Kodama, Ishibashi, Seto, 2000

◮ Wave equation for bulk master variable
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◮ Boundary condition on the brane
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◮ Wave equation for density contrast on the brane

d2∆

dη2
+ (1 + 3c2

s − 6w)Ha
d∆

dη
+

[

c2
s k2 +

3ρa2

σℓ2
A +

3ρ2a2

σ2ℓ2
B

]

∆

= −
k2Γ

ρ
+

k4(1 + w)Ωb

3ℓa3

A = 6c2
s − 1 − 8w + 3w2 B = 3c2

s − 9w − 4



Integration algorithm

Cardoso, Koyama, Mennim, Seahra, Wands, 2006

◮ Radiation dominated

w = c2
s = 1/3

◮ Dimensionless parameters

k = H∗a∗ â =
a

a∗

◮ Critical epoch

Ĥc = Hcℓ = 1 kc = Hcac



Enhancement factors and transfer functions

◮ Primordial value of curvature perturbation fixed by inflation

ζ5D ≈ ζeff ≈ ζGR ≈ 1 a ≪ a∗

ζ5D → simulation ζeff → O(ρ/σ) corrections ζGR → GR



Enhancement factors and transfer functions

◮ Enhancement factors
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◮ Transfer functions
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◮ We recover GR in the large scale limit
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Enhancement factors and transfer functions

◮ Critical scale

a0

kc

= 1.4×1012
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m ∼ 10AU, ℓ = 0.1mm



Conclusions

◮ Amplitude of modes which enter the Hubble horizon during
the high-energy regime gets enhanced over the standard GR
result

◮ Corrections to background dynamics and influence of the KK
modes give roughly equal contributions to the enhancement

◮ All tangible effects from the fifth dimension are on scales
smaller than a critical value

◮ Not relevant to present-day/cosmic microwave background
measurements of the matter power spectrum

◮ May have an important bearing on the formation of compact
objects such as primordial black holes at very high energies


