Dual RF power detector optimized for pulsed signals

P. Katuscak **25. August 2015**

Motivation

- Measurement of RF power during the cavity conditioning in the LHC
- By measuring the forward and reflected power we can control the circulator bias current and minimize power reflected back to the klystron

8/25/2016

Motivation

- The current version of the Power meter works fine in continual wave operation
- For optimal tuning of the circulator during the cavity conditioning we have to measure the power also in pulsed mode

Requirements

- Fully compatible with the current "Dual RF power meter" (AED-00045)
- Abbility to measure the power of pulses with length from 50 µs with repetition rate of 50 Hz to continual wave
- Maximum input power +15 dBm
- >60 dB dynamic range
- 0-10 V outputs to the PLC

Block diagram

RF Power detection

- AD8307 logarithmic detectors used
- 90 dB dynamic range
- Good response for rising edge ~1 µs
- ~20 mV per dBm output

Detector operation in pulsed mode

- Peak detector can't be used because we need to capture the amplitude
- The PLC sampling frequency is low therefore we must hold the detector readings between the pulses
- Pulse amplitude should be stable after a few µs, so we choose 8 µs delay for the S/H pulse

Continual wave operation

- The repetition rate of pulses during the cavity conditioning is 50 Hz, therefore if wave lasts longer than 20 ms its considered as CW
- S/H amp can't accurately represent the input, so we apply S/H pulses every 100 μs

CPLD and Pulse detection

- Comparator used as a pulse detector
- Comparator threshold level can be adjusted by trimmer
- S/H signal driving are provided by Xilinx XC2C256 CPLD

LP filter and Analogue return loss calculation

- Low pass filter with cutoff frequency of 160 Hz filters noise from the signal sampling
- Instrumentational amplifier subtracts FWD and RFL signals to provide the analogue return loss output

$$RL(dB) \cong \log(RFL) - \log(FWD)$$

Boards comparision

New version of Power detector

Currently used Dual wideband RF power meter (AED-00045)

Transfer chracteristic

Log conformance comparision

CW and Pulse mode comparision

Project status

- Version 2 of the board designed and ready to be sent for production
- Prototype successfully tested
- Characteristics measured

Thank you for your attention

8/25/2016 Peter Katuscak

