Thermal compensation of SPS optical delay lines Reference signal distribution within the LLRF lab complex

SPS damper pickup and test point signal fan-out

A. Lassak 25. August 2016

Motivation

- SPS reference RF signals are generated in BA3
- SPS damper installed in BA2 (opposite direction than the beam is circulating)
- RF signals have to be made synchronous in BA2

How is the delay achieved

Delays of several tens of µs can be easily obtained using single mode 0 optical fibres with analogue optical transceivers

module

Status after summer 2015

- Thermal drift of optical fibre measured and characterized
- Prototype regulator designed and performance tested
- PCB design and mechanical parts drawings finalized, ready for production

Maximum fibre temperature variation as a function of total fibre delay and tolerated delay drift.

Design of thermally insulated enclosure

- Set-point temperature set above ambient, no need for active cooling
- Evenly spaced 8x heating MOSFET and 8x PT1000 temperature sensor
- $_{\odot}$ Total available heating power of ~70 W

Design of regulator

- Fully analogue circuit
- PI topology
- Designed such that temperature induced drifts within the regulator are cancelling-out → very robust topology

Fully assembled chassis (July 2016)

25. Aug 2016

State of the regulator...

'Sweet spot' - set-point temperature reached

'Colder' than set-point temperature. Deviation during the initial warmup.

temperature. Should

Detail of optical fiber

• Fiber is split in two, for precise trimming of total electrical length

PT1000 Heating block Heating 7.2 MOSFET

Configuration of fibers:

Regulator performance test

• Entire chassis was put into thermal chamber, 20°C step in ambient temp.

25. Aug 2016

Electrical delay stability

- $\circ~$ Group delay of the longest (10.4 $\mu s)$ fiber
- Only 200 ps drift over 20 °C step in ambient temperature
- Both traces were captured after several hours

Installation in BA2

11

Chassis installed in BA2

Performance under real conditions

- Chassis was installed in BA2 on 10. August 2016
- Measured ambient temperature in BA2 varying between 22°C and 29°C
- First tests with ion beam revealed that the achieved total fiber delay for the two pick-ups is well within tolerable limits
- Fiber temperature level was found to be constant at 45°C since instalment

Other projects I was working on during my stay

- Reference Signal Distribution in LLRF Labs
- SPS Damper Pickup and Test Point Signal Fan-out

Reference Signal Distribution in LLRF Labs

- A spare HIE-Isolde GPS reference is running in the lab
- A 2nd hand rubidium oscillator is running in the lab
- 864-R-C08 is a fiber starpoint with connections to all LLRF labs
- ...10MHz reference anyone?

Sockets for labs distribution

Optical outputs for between labs distribution

SMA outputs for local distribution

Reference Signal Distribution in LLRF Labs

- Two designs; Fiber to SMA distributor and SMA to Fiber distributor
- \circ BW ~ 5 MHz to 1 GHz
- Single rail power supply 6 V, ~0.5 A per board
- Based on Finisar FTLF1321 transceiver modules

SMA distributor board

• 1x Fiber/SMA input to 8x SMA output

 $0 \ \Omega$ resistor to select between inputs

Frequency response of Fiber to SMA distributor

*SMA input was used for this measurement

Fiber distributor board

• 1x SMA input to 4x Fiber output

Frequency response of SMA to Fiber distributor

*Both distributors were linked together for this measurement

• HIE-ISOLDE GPS Reference as source of 10 MHz

$_{\odot}$ Signal generator SMC100A as source of 10 MHz

$_{\odot}$ Signal generator SMC100A as source of 200 MHz

25. Aug 2016

$_{\odot}$ Signal generator SMC100A as source of 400 MHz

SPS Damper Pickup and Test Point Signal Fan-out

- BW < 250 MHz
- $_{\circ}$ 50 Ω input/output characteristic impedance
- Signal level max. 10 dBm
- o Gain 0 dB
- Full BW on through output for switching matrix

Frequency response of test circuit

MAX4224-

SPS Damper Pickup and Test Point Signal Fan-out

• Prototype PCB sent for production

Questions?

www.cern.ch

Thank you for your attention

25. Aug 2016

Adam Lassak 28

