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Why worry?

Because QED corrections affect interpretation of measured quantities: cut off

induced corrections to the rates, to parity sensitive asymmetries ...

Effects appear sometimes in unexpected ways, misidentifications, radiative

corrections to backgrounds etc.

Expertise in experimental side is needed. I have to skip examples, they take

too long to explain.

Some examples were included in my pheno-club presentation; march 2006.
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Motivation

• PHOTOS Monte is used by eg. Belle/Babar/TEVATRON/LHC for simulation of

QED bremsstrahlung in decays.

• For many years the precison of the program prediction was not an issue.

• In recent years things started to change. Excellent news for me.

• Tests demonstrating precison and flexibility became public in 2005:

hep-ph/0508015 and Eur.Phys.J.C45:97-107,2006. Precision level 0.1%.

• Recently implementation of NLO corrections into PHOTOS for Z

(hep-ph/0604232) and B (my talk on May 19) decay was completed.

• Effort in explaining program foundations is justified now.

• I hope of possible future extensions into QCD, it is my motivation as well.

• I want to use PHOTOS project as a learning vehicle.
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Plan

• Brief presentation of PHOTOS.

• Phase space and algorithm.

• Single photon bremsstrahlung kernels Z and B decays.

• Numerical tests.

• Multiple photon generation case of Z decay.

• Numerical tests.

• Summary and outlook.
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Presentation

• PHOTOS ( by E.Barberio, B. van Eijk, Z. W., P.Golonka) is used to simulate the

effect of radiatiative corrections in decays, since 1989.

• Full events combining complicated tree structure of production and subsequent

decays have to be fed in, e.g. help of F77 HEPEVT event record.

• This is often source of technical difficulties as standard is often overruled.

• At every event decay branching, PHOTOS intervene. With certain probability

extra photon may be added and kinematics of other particles adjusted.

• PHOTOS works on four-momenta; watch numerical stability.

• I will not talk about those time consuming aspects but about relation of

PHOTOS with explicit field theory calculations, n-body phase space, and

expansions with respect to leadin-log truncation and eikonal-truncation.

• Program can provide precise results if one invest in process dependent ME.
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Phase Space: (trivialities)
Let us recall the element of Lorentz-invariant

phase space (Lips):

dLipsn+1(P ) =

d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3

d3q

2q0(2π)3
(2π)4δ4

(

P −
n

∑

1

ki − q
)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3

(2π)4δ4
(

p−
n

∑

1

ki

)

= d4pδ4(P − p− q)
d3q

2q0(2π)3
dLipsn(p→ k1...kn).

Integration variables, the four-vector p, compensated with δ4
(

p−∑n
1 ki

)

, and

another integration variable M1 compensated with δ
(

p2 −M2
1

)

are introduced.
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Phase Space: (cont.)

dLipsn+1(P ) =

=

[

kγdkγd cos θdφ
1

2(2π)3

]

× dLipsn(p→ k1...kn).

If we had l photons accompanying n other particles, the factor in square brackets would be

iterated. A statistical factor 1
l!

would complete the formula for the phase-space

parametrization, which is quite similar to the formal expansion of the exponent.

Replace dLipsn(p → k1...kn) in above formula by dLipsn(P → k1...kn) and we

obtain a tangent space. Photons do not affect other particles’ momenta at all. Have no

boundaries on energy and are independent one from another.

This expression would be only slightly more complicated if instead of photon massive particle

was to be added.
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Phase Space: (cont.)

dLipsn+1(P ) =
[

4dkγkγd cos θdφ
1

8(2π)3
× λ1/2(1, m2

1/p
2, M2

2...n/p2)

λ1/2(1, m2
1/P

2, M2
2...n/P 2)

]

×dLipsn(P → k̄1...k̄n)

The formula should read as follow:

1. Take the distribution of n-body phase space

2. Turn it back into some coordinate variables; choose two sub-groups: here 1 and 2...n.

3. add newly generated variables for photon accordingly to expr. in sqare bracket.

4. construct new kinematical configuration from all variables. If we had l photons

accompanying n other particles, the factor in square brackets would be iterated. A

statistical factor 1
l!

would complete the formula for the phase-space parametrization,

which is quite similar to the formal expansion of the exponent.
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Phase Space: (cont.)

dLipsn+l(P ) =

=
1

l!

l
∏

i=1

[

kγi
dkγd cos θidφi

1

2(2π)3

]

× dLipsn(P → k1...kn).

• We defined tangent space. Photons do not affect other particles’ momenta. Also, have no

boundaries on energy and are independent one from another.

• It is important to realize that one has to control matrix element on the tangent space to

define transformation to the real space. Rejection diminish photon mutiplicity.

• Rejection implements changes in phase space density and properties of matrix element.

• Rejection is performed photon after photon; phase space is in (principle) trivial.

• It remain to work out how the matrix element for original n particles plus photon(s) should

look.
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1. Accordingly to Poissonian distribution P (n) = e−λ λn

n! with its λ sufficiently

large and otherwise arbitrary multiplicity for photons in tangent space is

generated. For fixed maximum multiplicity crude distribution is a combination of

binomial distributions, then λ < 1.

2. For each photon energy and angular orientation is generated and Jacobians

are calculated.

3. New configuration from n’+1 body phase space can be now constructed or

rejection, individually on every photon candidate, can be performed.

4. We skip refinements necessary due to multibranching. It is similar like in:

TAUOLA paper: CPC 76 (1993) 361.

5. Note also that in this way correlations between photons are introduced.

6. I skip essential point of choice of frames for angular orientation.

7. But I do not skip matrix element: real emissions and virtual corrections.
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Heuristic picture
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Heuristic plots
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Heuristic plots
Difference between yellow surface and underlying hemisphere represent missing

parts of e.g. second order matrix element.
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Heuristic plots
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• In my construction I rely on properties of factorization, limits of my personal experience are

summarized in paper on e+e− → νeν̄eγγ, EPJC C44 (2005) 489.

• Matching NLO kernels for iterations lead to many options!

• In tangent space construction of ME was trivial, because photons were independent.

• In fact we went to construct even more primitive space than tangent space based on

eikonal approximation.

• We have piled up. emissions from all possible final states together; just one common

direction with respect to which photons are generated. At this step interferences between

emissions from different photons were missing of course.

• In this way we obtained poissonian distribution for number of photon candidates

P (n) = e−λ λn

n!
with nearly arbitrary λ.

• I checked that with the precision of better than 10−4 results remain unchanged, even with

drastic changes of crude level photon multiplicity.
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• The three spaces:

(i) of normal phase space configurations with arbitrary number of photons

(ii) tangent spaces with arbitrary number of photons

(iii) degenerate tangent space also with arbitrary number of photons,

− all spaces have volumes normalized to unity (watch: real photon and virtual corrections),

− residual parts of Sudakov form-factors not matching that constraint have to be shifted to

overall normalization.

− there are precisely defined transformation between those spaces; Condition of decreasing

photon multiplicity when we go from space to space is useful for MC construction.

• Instead of providing details of organization of these spaces, let me show some numerical

results.
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Back to starting point

• From the point of view of matrix element and choice of internal angular

variables in case of Z decays, PHOTOS is very close to MUSTRAAL MC by F.

Berends S. Jadach and R. Kleiss, CPC 29 (1983) 185.

• The first step to re-introduce NLO terms for Z decay into PHOTOS was to check

relations between 4-vectors and angles used in different version of phase space

parametrization.

• We had to separate the parts of weight responsable for phase space from this

of matrix element.

• Some factors of the type λ1/2(1, m2
1/M

2, m2
2/M

2) had to be reinstalled.
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• The fully differential distribution from MUSTRAAL (used also in KORALZ for

single photon mode) reads:

Xf =
Q′2α(1−∆)

4π2s
s2

{

1
(k′

+k′
−)

[

dσB

dΩ (s, t, u′) + dσB

dΩ (s, t′, u)

]

}

• Here:

s = 2p+ · p−, s′ = 2q+ · q−,

t = 2p+ · q+, t′ = 2p+ · q−,

u = 2p+ · q−, u′ = 2− · q+,

k′

± = q± · k, xk = 2Eγ/
√

s

• The ∆ term is responsable for final state mass dependent terms, p+, p−, q+,

q−, k denote four-momenta of incoming positron, electron beams, outcoming

muons and bremsstrahlung photon.
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• after trivial manipulation it can be written as:

Xf =
Q′2α(1 − ∆)

4π2s
s
2

(

1
(k′

++k′
−)

1
k′
−

»

dσB

dΩ
(s, t, u′) + dσB

dΩ
(s, t′, u)

–

+ 1
(k′

++k′
−)

1
k′
+

»

dσB

dΩ
(s, t, u′) + dσB

dΩ
(s, t′, u)

–

)

• In PHOTOS the following expression is used:

X
PHOTOS
f = Q′2α(1−∆)

4π2s
s2

(

1

k′

+ + k′

−

1

k′

−

»

(1 + (1 − xk)2) dσB

dΩ

`

s,
s(1−cos Θ+)

2
,

s(1+cos Θ+)

2

´

–

(1+β cos Θγ)

2

+
1

k′

+ + k′

−

1

k′

+

»

(1 + (1 − xk)2) dσB

dΩ

`

s,
s(1−cos Θ−)

2
,

s(1+cos Θ−)

2

´

–

(1−β cos Θγ )

2

)

where : Θ+ = ∠(p+, q+), Θ− = ∠(p−, q−)

Θγ = ∠(γ, µ−) are defined in (µ+, µ−)-pair rest frame

• also factor Γtotal/ΓBorn = 1 + 3/4α/π defines first order weight.
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The differences are important

• The two expressions define weight to make out of PHOTOS complete first order.

• The PHOTOS expression separates (i) Final state bremsstrahlung (ii)

electroweak parameters of the Born Cross section (iii) Initial state

bremsstrahlung that is orientation of the spin quantization axix for Z.

• That would be heavy burden for managing PHOTOS interfaces. I know,

because we encounter such difficulties for universal interface for TAUOLA.

• It is possible but extremenly inconvenient. Parts of generation managed by

distinct authors.

• Of course all this has to be understood in context of Leading Pole approximaition. For

example initial-final state interference breaks the simplification. Limitations need to be

controlled: Phys. Lett. B219:103,1989.
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Scalar QED for matrix elements in B decays

• Scalar QED is not an ultimate theory in the case of decays like B− → π0K−

or B0 → π+K−

• Nonetheless matrix elements can be calculated and provie good input for tests.

• Massive final states, mπ/mB 6= mK/mB ' 0.1.

• Scalar particles.

• In fact much simpler matrix element than in case of Z decay.

• The one-loop QED correction to the decay width can be represented as the

sum of the Born contribution with the contributions due to virtual loop diagrams

and soft and hard photon emissions.

dΓTotal = dΓBorn
{

1 +
α

π

[

δSoft(mγ , ω) + δVirt(mγ , µ
UV

)
]

}

+ dΓ Hard(ω)
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• where for Neutral meson decay channels we have:
– Virtual photon contribution

δ
Virt

(mγ, µ
UV

) =

2

41 +
M2 − m2

1 − m2
2

Λ
ln

2m1m2

M2 − m2
1 − m2

2 + Λ

3

5 ln
M2

mγ
2

+
3

2
ln

µ2
UV

M2

+
M2 − m2

1 − m2
2

2Λ

2

4Li2

0

@

M2 + m2
1 − m2

2 + Λ

2Λ

1

A − Li2

0

@

−M2 + m2
2 − m2

1 + Λ

2Λ

1

A

+ 2 ln
2Mm1

M2 + m2
1 − m2

2 + Λ
ln

m1Λ

M3
+ (1 ↔ 2) + π

2

3

5

−
Λ

2M2
ln

2m1m2

M2 − m2
1 − m2

2 + Λ
+

m2
2 − m2

1

4M2
ln

m2
2

m2
1

−
1

2
ln

m1m2

M2
+ 1

– Soft photon contribution

δ
Soft

(mγ, ω) =

2

41 +
M2 − m2

1 − m2
2

Λ
ln

2m1m2

M2 − m2
1 − m2

2 + Λ

3

5 ln
mγ

2

4ω2

+
M2 − m2

1 − m2
2

2Λ

2

4Li2

0

@

−2Λ

M2 + m2
1 − m2

2 − Λ

1

A − Li2

0

@

2Λ

M2 + m2
1 − m2

2 + Λ

1

A + (1 ↔ 2)

3

5

−
M2 + m2

1 − m2
2

Λ
ln

2Mm1

M2 + m2
1 − m2

2 + Λ
− (1 ↔ 2)
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– Hard photon contribution

dΓHard = |ABorn|24πα

0

@q1
k1.ε

k1.kγ

− q2
k2.ε

k2.kγ

1

A

2

dLips3(P → k1, k2, kγ )

• Λ = λ1/2(M2, m2
1, m

2
2)

• The infrared divergency, is regularized by mγ , it cancels in the sum of virtul and

soft contributions

• The virtual correction depends on ultraviolet scale µ
UV

• The total width is free of ω and of the final meson mass singularity (KLN

theorem), we will choose the scale to make an overall correction of order of

zero.

• for Charged meson decay channels we have:
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– Virtual photon contribution

δ
virt

(mγ, µ
UV

) =

2

41 +
M2 + m2

1 − m2
2

Λ
ln

2Mm1

M2 + m2
1 − m2

2 + Λ

3

5 ln
Mm1

mγ
2

+
3

2
ln

µ2
UV

Mm1

+
M2 + m2

1 − m2
2

2Λ

2

4Li2

0

@

M2 − m2
1 − m2

2 + Λ

2Λ

1

A − Li2

0

@

M2 − m2
1 − m2

2 − Λ

−2Λ

1

A

+ Li2

0

@

M2 + m2
2 − m2

1 − Λ

−2Λ

1

A − Li2

0

@

M2 + m2
2 − m2

1 + Λ

2Λ

1

A

+ 2 ln
2Mm1

M2 + m2
1 − m2

2 + Λ
ln

Λ

Mm
2

− ln
2Mm2

M2 + m2
2 − m2

1 + Λ
ln

M2

m2
1

3

5

+
Λ

2m2
2

ln
2Mm1

M2 + m2
1 − m2

2 + Λ
−

M2 − m2
1

4m2
2

ln
m2

1

M2
+ 1;

– Soft photon contribution

δ
soft(mγ, ω) =

2

41 +
M2 + m2

1 − m2
2

Λ
ln

2Mm1

M2 + m2
1 − m2

2 + Λ

3

5 ln
mγ

2

4ω2

+
M2 + m2

1 − m2
2

2Λ

2

4Li2

0

@

−2Λ

M2 + m2
1 − m2

2 − Λ

1

A − Li2

0

@

2Λ

M2 + m2
1 − m2

2 + Λ

1

A

3

5

−
M2 + m2

1 − m2
2

2Λ
ln

2Mm1

M2 + m2
1 − m2

2 + Λ
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– Hard photon contribution

dΓHard = |ABorn|24πα

0

@q1
k1.ε

k1.kγ

− q
P.ε

P.kγ

1

A

2

dLips3(P → k1, k2, kγ )

• These formulas are far easier to work on than for Z.

• They do not require control of the quantization axis of B’s as their spin is zero.

• The complete matrix element can be thus installed into PHOTOS with standard

organization of information flow.

• Once matrix element is clearly defined. It can be also replaced.

• Gate for shape-factors from fits to data is open!
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Numerical results –first order

• tests for Z → µ+µ−

• tests for B− → K−π0

• tests for B0 → K+π−
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Standard PHOTOS, (singl em.) 100Mevts compared!

Found decay modes:

Decay channel Branching Ratio ± Rough Errors Max. shape
Generator #1 Generator #2 dif. param.

Z0
→ µ−µ+ 82.5137 ± 0.0091% 82.3622 ± 0.0091% 0.00000

Z0
→ µ−µ+γ 17.4863 ± 0.0042% 17.6378 ± 0.0042% 0.00534

Similarity coefficients: T1=0.302959 %, T2=0.092415 %

2

Price paid for universality: see table and plots of the next slide.
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Standard PHOTOS,(singl em.) 100Mevts compared!
1 Decay Channel: Z0

→ µ−µ+

Number of events from generator 1: 82513687
Number of events from generator 2: 82362193
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2 Decay Channel: Z0
→ µ−µ+γ

Number of events from generator 1: 17486313
Number of events from generator 2: 17637807
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3 User Histograms

4

Price paid for universality
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With NLO, (singl em.) 100Mevts compared!

Part of formactor FR = 3
4

α
π affecting total rate is watched after. Note: it decreases

by 1 + FR (e.g.) the final weight; and as consequence number of events with

photon. This point is important for algorithm extensions.

Found decay modes:

Decay channel Branching Ratio � Rough Errors Max. shape
Generator #1 Generator #2 dif. param.

Z0 � γµ� µ� 21.9118 � 0.0047% 21.9369 � 0.0047% 0.00000

Z0 � µ� µ� 78.0882 � 0.0088% 78.0631 � 0.0088% 0.00000

Similarity coefficients: T1=0.050265 %, T2=0.000000 %

2
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With NLO, (singl em.) 100Mevts compared!

1 Decay Channel: Z0 � γµ� µ�

Number of events from generator 1: 21911762
Number of events from generator 2: 21936907
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2 Decay Channel: Z0 � µ� µ�

Number of events from generator 1: 78088238
Number of events from generator 2: 78063093
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Single emission in Z ; numerical results 32

Also for Higgs decay agreement is to stat. err.!

• Probably PHOTOS formula from transparency 19 coincide with exact result for

Higgs decay.

• After all Higgs spin is zero. There must be similar simplifications as for B decay

matrix element

• I do not have yet analytical, but only numerical support for that statement.

• The methodology of comparisons we have used in case of Z decay, is good to

localize the differences, but somehow does not quantify agreements.

• we will use slightly different method for B decays.

Z. Was CERN, May 2006
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SANCSANC

SANCSANC is a network Client-Server System for a semi-automatic 
calculation of Electroweak, QCD and QED radiative corrections at a 
one-loop precision level for various processes (-decays) of 
elementary particle interactions

The Present level of the system is realized in the version 1.0                
 (“SANCscope – v.1.0”,   hep-ph/0411186)

Application – LHC, Linear Colliders

More information can be found on web page http://pcphsanc.cern.ch
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Comparison With PHOTOS

We used the same methodology as in the case of “ W decay”        
(Acta Phys. Pol. B34, (2003) 4561-4569; hep-ph/0303260)

To visualize the usually small differences between SANCSANC and 
PHOTOSPHOTOS, we plot the ratios of the predictions from the two programs 
for the certain class of (pseudo-)observables

These observables are
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List of Observables

� Photon energy in the decaying particle rest frame – sensitive to the 
collinear–soft componet of the distributions

� Energy of final state charged particle – as the previous one

� Angle of photon with final-state charged particle - sensitive to the 
collinear componet of the distributions

� Acollinearity angle of the final-state particles - sensitive to the non-
soft and non-collinear, but non-leading componet of the distributions
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Single emission in B; Numerical results 36

B
− → π

0
K

−; standard PHOTOS looks good, but ...
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B
− → π

0
K

−; standard PHOTOS ... not perfect
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B
− → π

0
K

−; NLO improved PHOTOS Looks good ...
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B
− → π

0
K

−; NLO improved PHOTOS ... and is good.
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B
0 → π

−

K
+; standard PHOTOS Looks good ...
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B
0 → π

−

K
+; standard PHOTOS ... but not perfect.
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B
0 → π

−

K
+; NLO improved PHOTOS Looks good ...
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B
0 → π

−

K
+; NLO improved PHOTOS ... also perfect (since May 25) !
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Kernels; summary

• We have demonstrated that complete first order kernel for single photon

emission can be installed into PHOTOS.

• We have provided numerical tests that it works for samples of up to 109 events.

• Thanks to explicit form of matrix element it opens the gate for fits to the data

and introduction of shape factors.

• but ...

• We need multiple photon radiation as well !!!
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MC-Tester as measure on space of events.

• For Z-decays and first order it was relatively simple to define comparison

• All invariant masses, which could be constructed from 3 four-vectors were

histogramed.

• MC-TESTER: Comput. Phys. Commun. 157 (2004) 39 was used for our

automated comparisons for multiple photon configurations.

• Analysis has to be infrared safe; photons of energies below threshold added to

the nearest charged photon.

• Also if there was more than two hard photons, the softer ones were added to

the nearest charged muon.

• In this way we define as identical, states of different photon multiplicity, if they

differ by presence/absence of soft photons only.
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NLO in PHOTOS (exp) included, 100Mevts

Found decay modes:

Decay channel Branching Ratio � Rough Errors Max. shape
Generator #1 Generator #2 dif. param.

Z0 � µ� µ� 83.9176 � 0.0092% 83.9312 � 0.0092% 0.00000

Z0 � µ� µ� γ 16.0824 � 0.0040% 16.0688 � 0.0040% 0.00003

Similarity coefficients: T1=0.027109 %, T2=0.000482 %

2

Improvement by a factor of 100 for shape difference parameter!
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NLO in PHOTOS (exp) included, 100Mevts

1 Decay Channel: Z0 � µ� µ�

Number of events from generator 1: 83917588
Number of events from generator 2: 83931158
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2 Decay Channel: Z0 � µ� µ� γ
Number of events from generator 1: 16082412
Number of events from generator 2: 16068842
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Multiple photon emission 48

NLO in PHOTOS (exp) included, 100Mevts, 2-ph test

Found decay modes:

Decay channel Branching Ratio ± Rough Errors Max. shape
Generator #1 Generator #2 dif. param.

Z0
→ µ−µ+γ 14.8164 ± 0.0038% 14.7829 ± 0.0038% 0.00005

Z0
→ µ−µ+ 83.9177 ± 0.0092% 83.9303 ± 0.0092% 0.00000

Z0
→ µ−µ+γγ 1.2659 ± 0.0011% 1.2868 ± 0.0011% 0.00293

Similarity coefficients: T1=0.066630 %, T2=0.004108 %

2
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NLO in PHOTOS (exp) included, 100Mevts, 2-ph test

3 Decay Channel: Z0
→ µ−µ+γγ

Number of events from generator 1: 1265886
Number of events from generator 2: 1286801
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NLO in PHOTOS (exp) included, 100Mevts, 2-ph test
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This is too good to understand source of differences ... Leading discrepancy,

probably due to lack of third order formfactor in KKMC. Any intuition I got from (pT )

ordering pictures suggest that it should be worse!
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Acoplanarity distribution – Looks good
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Two plane spanned on µ+ and respectively two hardest photons localized in the

same hemisphere µ+. as Why PHOTOS works so good?
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SUMMARY –Applications. Topics:

• Installation of complete first order kernel in case of Z and two-body B-decays.

• Numerical tests of these kernels at single photon radiation level.

• Numerical tests for multiple photon radiation for Z decay only.

• New results: numerical size of genuine NLO effects in case of B-meson decays.

• Older results, for Z decays and size of genuine NLO, partly skipped. They were presented

already.

• We usd technical pseudo-observables only. Interesting ones need long introduction.

SUMMARY –Algorithm. Topics:

• Definition of tangent phase space. Starting point for iteration.

• Relation: fixed order ME, parton shower-like iteration and exact phase space.

• Crude tangent space: all sources piled together. Algorithm branches.

• Solution is stable (0.01 %) for huge redefinitions of tangent space volumes.
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• Algorithm works technically well, even for up to 10 charged particles in final state.

• Algorithm does not depend on tunable technical parameters.

• Nonetheless shape-factors can be introduced.

• No phase space slicing or ordering necessary, instead of degrading, we

reproduce nice, normally only NNLO effects.

• Most of genuine NNLO effects escaped our tests; they are of order∼ 10−4,−5.

• It is refreshing to see that PHOTOS parton shower like solution is realization of

functional polynomial on the ring (polynomial on the field for tangent space).

• Relations between fixed order versions of the algorithm lead to intriguing

coefficients: just ratios of integers. Tangent space is free of physics!

• Is PHOTOS ‘toy model’ instructive for some aspects of PS in QCD?

• May be, but it is quite ‘heavy toy’ by itself already.

• Fortunately represents established pheno-tool for QED as well.
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