
1

First and second order spin amplitudes

for precision of PHOTOS Monte Carlo

Z. Was∗, A. van Hameren, G. Nanava. T. Przedzinski, P. Roig, Q. Xu
∗speaking, Institute of Nuclear Physics, Krakow and CERN PH-TH, Geneva

• (1) From semileptonic B and K mesons decays (measurements of quark mixing),

properties of W and Z decays at LHC, to signatures for discovery and properties of New

Physics particles bremsstrahlung must be taken into account.

• (2) PHOTOS Monte Carlo is used in such studies. Essential: Input from spin calculations

was necessary for design of the program and for tests of its physical precision.

• (3) I will mention: phase space parametrization, crude distribution in single photon

emission, double photon emisssion, and multiple emission; all modes needed for tests.

• (4) Technical points like: event record type HEPEVT, HepMC; intermediate particles

explicitly stored in it or not; numerical tests for user installation will be skipped.

• (5) At which precision QED FSR can be separated from the rest, that is: genuine weak

corrections, ISR, ISR×PS, ISR-FSR interference. This important point will be skipped too.
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PHOTOS: short presentation 2

Presentation

• PHOTOS ( by E.Barberio, B. van Eijk, Z. W., P.Golonka) is used to simulate the

effect of radiatiative corrections in decays, since 1989.

• Full events combining complicated tree structure of production and subsequent

decays have to be fed into PHOTOS, usually with the help of HEPEVT event

record of F77

• PHOTOS version for HepMC event record used in C++ applications is ready for

tests now.

• At every event decay branching, PHOTOS intervene. With certain probability

extra photon may be added and kinematics of other particles adjusted.
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Introduction 3

Main References

• E. Barberio, B. van Eijk and Z. Was, Comput. Phys. Commun. 66, 115 (1991): single

emission

• E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994). double emission

introduced, tests with second order matrix elements

• P. Golonka and Z. Was, EPJC 45 (2006) 97 multiple photon emisson introduced, tests

with precioson second order exponentiation MC.

• P. Golonka and Z. Was, EPJC 50 (2007) 53 complete matrix element for Z decay, and

further tests

• G. Nanava, Z. Was, Eur.Phys.J.C51:569-583,2007, best description of phase space

• G. Nanava, Z. Was, Q. Xu, arXiv:0906.4052. EPJC in print complete matrix element for

W decay

• N. Davidson, T. Przedzinski, Z. Was, IFJPAN-IV-2010-6, Presently main web-page for

program C++ version:

http://www.ph.unimelb.edu.au/˜ndavidson/photos/doxygen/index.html HepMC interface
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Phase space and crude distribution 4

Phase Space: must be exact to discuss matrix elements

Orthodox exact Lorentz-invariant phase space (Lips) is in use in PHOTOS!

dLipsn+1(P ) =

d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3

d3q

2q0(2π)3
(2π)4δ4

(

P −
n

∑

1

ki − q
)

= d4pδ4(P − p − q)
d3q

2q0(2π)3
d3k1

2k0
1(2π)3

...
d3kn

2k0
n(2π)3

(2π)4δ4
(

p −
n

∑

1

ki

)

= d4pδ4(P − p − q)
d3q

2q0(2π)3
dLipsn(p → k1...kn).

Integration variables, the four-vector p, compensated with δ4
(

p − ∑n
1 ki

)

, and

another integration variable M1 compensated with δ
(

p2 − M2
1

)

are introduced.
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Phase space and crude distribution 5

Phase Space Formula of Photos

dLipsn+1(P → k1...kn, kn+1) = dLips+1 tangent
n × W n+1

n ,

dLips+1 tangent
n = dkγd cos θdφ × dLipsn(P → k̄1...k̄n),

{k1, . . . , kn+1} = T
(

kγ , θ, φ, {k̄1, . . . , k̄n}
)

. (1)

1. One can verify that if dLipsn(P ) was exact, then this formula lead to exact

parametrization of dLipsn+1(P )

2. Practical implementation: Take completely construced n-body phase space point (event).

3. Reconstruct coordinate variables, any parametrization can be used.

4. Construct new kinematical configuration from those variables and kγθφ.

5. Forget about temporary kγθφ. Now, only weight and new four vectors count.

6. A lot depend on T. Options depend on matrix element: must tangent at singularities.

Simultaneous use of several T is necessary/convenient if more than one charge is

present in final state.
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Phase space and crude distribution 6

Phase Space: (main formula)

If we choose

Gn : M2
2...n, θ1, φ1, M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k̄1 . . . k̄n (2)

and

Gn+1 : kγ , θ, φ,M2
2...n, θ1, φ1,M

2
3...n, θ2, φ2, . . . , θn−1, φn−1 → k1 . . . kn, kn+1

(3)

then

T = Gn+1(kγ , θ, φ, G−1
n (k̄1, . . . , k̄n)). (4)

The ratio of the Jacobians form the phase space weight W n+1
n for the transformation. Such

solution is universal and valid for any choice of G’s. However, Gn+1 and Gn has to match

matrix element, otherwise algorithm will be inefficient (factor 1010 ...).

In case of PHOTOS Gn’s

W n+1

n = kγ
1

2(2π)3
×

λ1/2(1, m2
1/M2

1...n, M2
2...n/M2

1...n)

λ1/2(1, m2
1
/M2, M2

2...n/M2)
, (5)
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Phase space and crude distribution 7

Phase Space: (multiply iterated)

By iteration, we can generalize formula (1) and add l particles:

dLipsn+l(P → k1...kn, kn+1...kn+l) =
1

l!

l
∏

i=1

[

dkγid cos θγidφγiW
n+i
n+i−1

]

×dLipsn(P → k̄1...k̄n), (6)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1
, θγ1

, φγ1
, {k̄1, . . . , k̄n}

)

. . .
)

.

Note that variables kγm , θγm , φγm are used at a time of the m−th step of iteration only,

and are not needed elsewhere in construction of the physical phase space; the same is true

for invariants and angles M2
2...n, θ1, φ1, . . . , θn−1, φn−1 → k̄1 . . . k̄n of (2,3), which

are also redefined at each step of the iteration. Also intermediate steps require explicit

construction of temporary k̄′
1 . . . k̄′

n . . . k̄′
n+m , statistical factor 1

l! added.

We have exact distribution of weighted events over l and n + l body phase

spaces.
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Phase space and crude distribution 8

Crude Distribution for multiple emission

If we add arbitrary factors f(kγi , θγi , φγi) and sum over l we obtain:

∑

l=0

exp(−F )
1

l!

l
∏

i=1

f(kγi
, θγi

, φγi
)dLipsn+l(P → k1...kn, kn+1...kn+l) =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγiW
n+i
n+i−1

]

×

dLipsn(P → k̄1...k̄n), (7)

{k1, . . . , kn+l} = T
(

kγl
, θγl

, φγl
,T

(

. . . ,T
(

kγ1
, θγ1

, φγ1
, {k̄1, . . . , k̄n}

)

. . .
)

,

F =

∫ kmax

kmin

dkγd cos θγdφγf(kγ , θγ , φγ).

• The Green parts of rhs. alone, give crude distribution over tangent space (orthogonal set

of variables ki, θi, φi).
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Phase space and crude distribution 9

• Factors f (W ’ ignored) must be integrable over coordinates. Regulators of

singularities necessary, but simple.

• If we request from infrared regulators, f and F that

σtangent = 1 =

∑

l=0

exp(−F )
1

l!

l
∏

i=1

[

f(kγi , θγi , φγi)dkγid cos θγidφγi

]

we get Poissonian distribution in l.

• Sum rules originating from perturbative approach (KLM theorem) are necessary

to inccorporate dominant part of virtual corrections, into the scheme. We get Monte

Carlo solution of PHOTOS type.

• For that to work, real emission and virtual corrections need to be calculated and

their factorization properties analyzed. Choice for f and G are fixed from that.

• If such conditions are fulfilled construction of Monte Carlo algorithm is prepared.

• Truncate σtangent|O(α),O(α2), → phase space in single/double photon mode.
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Important property of fully differental distribution 10

• Fully differential single photon emission formula in Z decay reads:

Xf =
Q′2α(1 − ∆)

4π2s
s2

{

1
(k′

+
k′

−
)

[

dσB

dΩ (s, t, u′) + dσB

dΩ (s, t′, u)

]

}

• Variables in use:

s = 2p+ · p−, s′ = 2q+ · q−, t = 2p+ · q+, t′ = 2p+ · q−,

u = 2p+ · q−, u′ = 2− · q+, k′
± = q± · k, xk = 2Eγ/

√
s

• The ∆ term is responsable for final state mass dependent terms, p+, p−, q+,

q−, k denote four-momenta of incoming positron, electron beams, outcoming

muons and bremsstrahlung photon.

• Factorization of first order matrix element and fully differential distribution

breaks at the level α2

π2 ≃ 10−4

Z. Was Loop Verein, Cern, October, 2010



Important property of fully differental distribution 11

• after trivial manipulation it can be written as:

Xf =
Q′2α(1 − ∆)

4π2s
s2

(

1
(k′

+
+k′

−
)

1
k′

−

»

dσB
dΩ

(s, t, u′) + dσB
dΩ

(s, t′, u)

–

+ 1
(k′

+
+k′

−
)

1
k′

+

»

dσB
dΩ

(s, t, u′) + dσB
dΩ

(s, t′, u)

–

)

• In PHOTOS the following kernel is used (decay channel, decay particle

orientation, independent but interference wt needed):

XP HOT OS
f = Q′2α(1−∆)

4π2s
s2

(

1

k′
+ + k′

−

1

k′
−

»

(1 + (1 − xk)2) dσB
dΩ

`

s,
s(1−cos Θ+)

2
,

s(1+cos Θ+)

2

´

–

(1+β cos Θγ)

2

+
1

k′
+ + k′

−

1

k′
+

»

(1 + (1 − xk)2) dσB
dΩ

`

s,
s(1−cos Θ−)

2
,

s(1+cos Θ−)

2

´

–

(1−β cos Θγ)

2

)

where : Θ+ = ∠(p+, q+), Θ− = ∠(p−, q−)

Θγ = ∠(γ, µ−) are defined in (µ+, µ−)-pair rest frame

Z. Was Loop Verein, Cern, October, 2010



First order spin amplitudes 12

• The formula which we had on previous slide could be constructed because the Born level

matrix elemet (and resulting Born level distribution) relates with the one of first order in

αQED through convolution of positively defined function (I will use it as emission kernel)

(Berends Kleiss Jadach 1982).

• Does such convolution hold for other processes, even if we are concerned with the first

order only?

• Paper by R. Kleiss from 1992 tells us that it will not hold at level of (α
π
)2 ≃ 10−5.

• Comment, these properties are important for all variants of NLO factorizations.

• All these issues can be solved with studies of matrix elements only.

Z. Was Loop Verein, Cern, October, 2010



First order spin amplitudes 13

• Structure of singularities for the first order corrections to decay of Z/γ∗ which we will use

as an example.

• Two kinematical branches need to be taken into account.

• Fortunately kinematical parametrizations for the two branches have identical phase space

Jacobians. It simplifies tasks for multiphoton configurations.
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First order spin amplitudes 14

• Feynman diagrams for FSR in Z/γ∗ decays

• Out of the first two diagrams distribution for Z/γ decay was obtained.

• Other two diagrams appear e.g. in scalar QED, and/or in decays of W’s or B mesons.

• Let us look into sub-structure of these amplitudes.
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First order spin amplitudes 15

Matrix Element for Z decay:

•
I = IA + IB + IC

•
I = J/

[(

p·e1

p·k1
− q ·e1

q ·k1

)]

−
[

1

2

e/1k/1

p·k1

]

J/ + J/

[

1

2

e/1k/1

q ·k1

]

• Expression decomposes into 3 parts. Each is independently gauge invariant.

• Only |IA|2 contributes to infrared singularities.

• Terms IB and IC contribute to collinear big logarithms.

• We could expect another term ID which would not contribute neither to

collinear nor soft divergent/large logarithms (once integration is performed)

structure of singularities identifies already at amplitude level
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First order spin amplitudes 16

What happens for other decays

1. W → lνlγ: IA, IB and ID dependent on electroweak calculation scheme.

2. B0 → π+K−γ: IA only

3. B+ → π0K+γ: IA only

4. γ∗ → π+π−γ: IA, and ID

5. τ+ → π+ντγ: IA and ID

6. ...

It is important that in all cases, and not only for processes of QED, amplitudes can be

constructed from the same building blocks.

These properties of amplitudes translate into properties of distributions and that is why exact

PHOTOS algorithm for single photon emission can be constructed.

If non dominat terms can be neglected algorithm simlifies and process dependent weights

can be replaced by the ones dependinch on charges and spins of outgoing particles.
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First order spin amplitudes 17

Single emission

1. Solution for single emission works perfect.

2. Technical precision controlled to precision better than statistical error of

100 Mevts.

3. An example where interference between emission from two charged lines

is hidden in exact process dependent kernel, but must be added if

basically identical one is used.

4. Web page with multitude of automated tests (RECOMENDATION: to be

repeated after installation in collaboration software):

http://mc-tester.web.cern.ch/MC-TESTER/

5. Let us go to iteration, used in solution for double and muliple photon

emission modes.
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Multiple photon emission 18

Elementary test of principle

• Do PHOTOS generate the LL contribution to lepton spectra?

• Formal solution of QED evolution equation can be written as:

D(x, βch) = δ(1−x)+βchP (x)+
1

2!
β2

ch{P×P}(x)+
1

3!
β3

ch{P×P×P}(x)+. . .

(8)

where P (x) = δ(1− x)(ln ε + 3/4) + Θ(1 − x − ε) 1
x (1 + x2)/(1 − x)

and {P × P}(x) =
∫ 1

0
dx1

∫ 1

0
dx2δ(x − x1x2)P (x1)P (x2).

• In LL contributing regions, phase space Jacobian’s of PHOTOS trivialize (CPC

1994). and the expression given above is obtained in a straightforward manner.

In fact for each of the outcoming charged lines simultaneously.

• But it is only a limit! PHOTOS treat phase space corners exactly. We had to

understand at spin amplitude, and exact distribution, levels why formula (8)

work, keeping in mind what happens with amplitudes non leading parts.
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Multiple photon emission 19

• To generate consecutive photons, PHOTOS simply iterates its single photon algorithm.

• Previously generated photons are treated a any other decay products.

• We generate photon 1 (each leg one after another)

• We include interference or matrix element weight

• And in the same way photon 2.

• previously generated photon(s) we remove from kinematical configuration, using reduction

procedure.
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Multiple photon emission 20

• We can produce such point in phase space starting with generation of photon 2 and

continuing with 1.

• Each of the two generation chains cover all phase space. There is no phase space

ordering in use. Instead we have statistical factor 1
l!

from

• Such solution must be confronted with distributions obtained from matrix elements.

• Comparisons with distributions obtained from double and triple photon amplitudes were

performed in 1994.

• Now let us look at properties of spin amplitudes.
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Multiple photon emission 21

• We have to check if description given in two previous slides justifies with properties of spin

amplitudes.

• Iterative algorithm? What with interferences of consecutive emissions?

• It is important to check if such properties are process dependent or generalize.

• My decade long work under leadership of S. Jadach on e+e− generators provided help.

• Is double photon emission amplitude build from terms we know from first order?

• From calculation it is clear that the structure of Z/γ∗ → l+l−γγ generalizes to other

processes.
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Multiple photon emission 22

Exact Matrix Element: Z → µ+µ−γγ written explicitly

• We use conventions from paper A. van Hameren, Z.W., EPJC 61 (2009) 33. Expressions

are valid for any current J , (also for QCD part proportional to {T AT B}, T A is for first T B

for second gluon.

• To get complete amplitude sum the gauge invariant parts, add spinors, eg. ū(p) and v(q);

k1/k2 e1/e2 denotes momenta/polarizations for 1-st/2-nd photon/gluon. Factors of parts

coincide with those of first order.

I
{1,2}
1 =

1

2
J/

„

p·e1

p·k1
−

q ·e1

q ·k1

«„

p·e2

p·k2
−

q ·e2

q ·k2

«

eikonal

I
{1,2}
2l = −

1

4

»„

p·e1

p·k1
−

q ·e1

q ·k1

«

e/2k/2

p·k2
+

„

p·e2

p·k2
−

q ·e2

q ·k2

«

e/1k/1

p·k1

–

J/ β1
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Multiple photon emission 23

I
{1,2}
2r =

1

4
J/

»„

p·e1

p·k1
−

q ·e1

q ·k1

«

k/2e/2

q ·k2
+

„

p·e2

p·k2
−

q ·e2

q ·k2

«

k/1e/1

q ·k1

–

β1

I
{1,2}
3 = −

1

8

„

e/1k/1

p·k1
J/

k/2e/2

q ·k2
+

e/2k/2

p·k2
J/

k/1e/1

q ·k1

«

startforβ2...

I
{1,2}
4p =

1

8

1

p·k1 + p·k2 − k1 ·k2

„

e/1k/1e/2k/2

p·k1
+

e/2k/2e/1k/1

p·k2

«

J/

I
{1,2}
4q =

1

8
J/

1

q ·k1 + q ·k2 − k1 ·k2

„

k/2e/2k/1e/1

q ·k1
+

k/1e/1k/2e/2

q ·k2

«

I
{1,2}
5pA =

1

2
J/

k1 ·k2

p·k1 + p·k2 − k1 ·k2

„

p·e1

p·k1
−

k2 ·e1

k2 ·k1

«„

p·e2

p·k2
−

k1 ·e2

k1 ·k2

«

I
{1,2}
5pB = −

1

2
J/

1

p·k1 + p·k2 − k1 ·k2

„

k1 ·e2k2 ·e1

k1 ·k2
− e1 ·e2

«

I
{1,2}
5qA =

1

2
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

„

q ·e1

q ·k1
−

k2 ·e1

k2 ·k1

«„

q ·e2

q ·k2
−

k1 ·e2

k1 ·k2

«
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Multiple photon emission 24

I
{1,2}
5qB = −

1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

„

k1 ·e2k2 ·e1

k1 ·k2
− e1 ·e2

«

I
{1,2}
6B = −

1

4

k1 ·k2

p·k1 + p·k2 − k1 ·k2

»

+

„

p·e1

p·k1
−

k2 ·e1

k1 ·k2

«

e/2k/2

p·k2
+

„

p·e2

p·k2
−

k1 ·e2

k1 ·k2

«

e/1k/1

p·k1

–

J/

I
{1,2}
7B = −

1

4
J/

k1 ·k2

q ·k1 + q ·k2 − k1 ·k2

»

+

„

q ·e1

q ·k1
−

k2 ·e1

k1 ·k2

«

k/2e/2

q ·k2
+

„

q ·e2

q ·k2
−

k1 ·e2

k1 ·k2

«

k/1e/1

q ·k1

–

• for exponentiation one use separation into 3 parts only.

• I
{1,2}
3 , I

{1,2}
4p , I

{1,2}
4q were studied to improve options for PHOTOS kernel

iteration. Things are less transparent, concept of effective fermionic momenta must

be used eg. u((p − k1)long)ū((p − k1)long) ≃ p/ − k/1, it can be interpreted

that way in some limits ony. We got what is necessary! Parts for each kinematical

branch. In fact sub-structures for amplitudes of other theories proceeses appear as

well.

• Separation of β2 into parts, here of no use. No match with singularities of QED.
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Second order amplitudes of QCD. 25

Matrix Element: qq̄ → Jgg - part proportional to T AT B fermion spinors dropped

I
(1,2)
lr =

„

p·e1

p·k1
−

k2 ·e1

k2 ·k1
−

e/1k/1

2p·k1

«

J/

„

k/2e/2

2q ·k2
+

k1 ·e2

k1 ·k2
−

q ·e2

q ·k2

«

I
(1,2)
ll =

p·k2

p·k1 + p·k2 − k1 ·k2

„

p·e1

p·k1
−

k2 ·e1

k2 ·k1
−

e/1k/1

2p·k1

«„

p·e2

p·k2
−

k1 ·e2

k1 ·k2
−

e/2k/2

2p·k2

«

J/

I(1,2)
rr = J/

q ·k1

q ·k1 + q ·k2 − k1 ·k2

„

q ·e1

q ·k1
−

k2 ·e1

k2 ·k1
−

k/1e/1

2q ·k1

«„

q ·e2

q ·k2
−

k1 ·e2

k1 ·k2
−

k/2e/2

2q ·k2

«

I(1,2)
e = J/

„

1−
p·k2

p·k1 + p·k2 − k1 ·k2
−

q ·k1

q ·k1 + q ·k2 − k1 ·k2

«„

k1 ·e2

k1 ·k2

k2 ·e1

k1 ·k2
−

e1 ·e2

k1 ·k2

«

Remainder:

I(1,2)
p = −

1

4

1

p·k1 + p·k2 − k1 ·k2

„

e/1k/1e/2k/2 − e/2k/2e/1k/1

k1 ·k2

«

J/

I(1,2)
q = −

1

4
J/

1

q ·k1 + q ·k2 − k1 ·k2

„

k/1e/1k/2e/2 − k/2e/2k/1e/1

k1 ·k2

«
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Second order amplitudes of QCD. 26

Matrix Element: qq̄ → Jgg - part proportional to T BT A fermion spinors dropped

I
(2,1)
lr =

„

p·e2

p·k2
−

k1 ·e2

k1 ·k2
−

e/2k/2

2p·k2

«

J/

„

k/1e/1

2q ·k1
+

k2 ·e1

k2 ·k1
−

q ·e1

q ·k1

«

I
(2,1)
ll =

p·k1

p·k2 + p·k1 − k2 ·k1

„

p·e2

p·k2
−

k1 ·e2

k1 ·k2
−

e/2k/2

2p·k2

«„

p·e1

p·k1
−

k2 ·e1

k2 ·k1
−

e/1k/1

2p·k1

«

J/

I(2,1)
rr = J/

q ·k2

q ·k2 + q ·k1 − k2 ·k1

„

q ·e2

q ·k2
−

k1 ·e2

k1 ·k2
−

k/2e/2

2q ·k2

«„

q ·e1

q ·k1
−

k2 ·e1

k2 ·k1
−

k/1e/1

2q ·k1

«

I(2,1)
e = J/

„

1−
p·k1

p·k2 + p·k1 − k2 ·k1
−

q ·k2

q ·k2 + q ·k1 − k2 ·k1

«„

k2 ·e1

k2 ·k1

k1 ·e2

k2 ·k1
−

e2 ·e1

k2 ·k1

«

I(2,1)
p = −

1

4

1

p·k2 + p·k1 − k2 ·k1

„

e/2k/2e/1k/1 − e/1k/1e/2k/2

k2 ·k1

«

J/

I(2,1)
q = −

1

4
J/

1

q ·k2 + q ·k1 − k2 ·k1

„

k/2e/2k/1e/1 − k/1e/1k/2e/2

k2 ·k1

«

Z. Was Loop Verein, Cern, October, 2010



Summary 27

1. PHOTOS Monte Carlo is for simulation of multiphoton FSR bremsstrahlung.

2. Program is designed to help generate correlated samples: events with and

without FSR bremsstrahlung.

3. For processes mediated by Z/γ ’ and W’s high precision is investigated.

4. Important for program construction were presented here studies of spin

amplitudes. Structure of their gauge invariant parts is used in definition of

photon emission kernel.

5. Remaining parts of amplitudes are needed for discussion of systematic errors,

for optimalization of program performance or for construction correcting weights.

6. For some processes eg. where matrix element is obtained from scalar QED

introduction of data constrained form factors may be necessary.

7. New version of program, using HepMC event record of C++ is available for

tests.

Z. Was Loop Verein, Cern, October, 2010



EXTRA TRANSPARENCIES 28

EXTRA TRANSPARENCIES

MOSTLY NUMERICAL TESTS
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Simulation parts communicate through event record:

- Parts:

• hard process: (Born, weak, new physics),

• parton shower,

•τ decays

• QED bremsstrahlung

- High precision achieved

- Detector studies: acceptance, resolution

lepton with or wihout photon.

Such organization requires:

• Good control of factorization (theory)

• Good understanding of tools on user side.
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MC-TESTER to test PHOTOS/TAUOLA
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Generator
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IR cutoff
N photons
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IR cutoff
N photons
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A −> B C (gammas)

A −> B C (gammas)

MC−TESTER

MC−TESTER

FILE
ROOT

FILE
ROOT

ANALYSIS
MC−TESTER

full ME

Born
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Figure 1: Comparison of standard PHOTOS and KORALZ for single photon emission. In the

left frame the invariant mass of the µ+µ− pair; SDP=0.00534. In the right frame the

invariant mass of µ−γ; SDP=0.00296. The histograms produced by the two programs

(logarithmic scale) and their ratio (linear scale, black line) are plotted in both frames. The

fraction of events with hard photon was 17.4863 ± 0.0042% for KORALZ and 17.6378 ±

0.0042% for PHOTOS.
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Figure 5: Comparisons of standard PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ− pair; SDP= 0.00918 (shape difference parameter). In the right frame the invariant

mass of the γγ pair; SDP=0.00268. The fraction of events with two hard photons was 1.2659

± 0.0011% for KKMC and 1.2952 ± 0.0011% for PHOTOS.
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Figure 6: Comparisons of improved PHOTOS with multiple photon emission and KKMC with

second order matrix element and exponentiation. In the left frame the invariant mass of the

µ+µ− pair; SDP= 0.00142. In the right frame the invariant mass of the γγ; SDP=0.00293.

The fraction of events with two hard photons was 1.2659 ± 0.0011% for KKMC and 1.2868

± 0.0011% for PHOTOS.
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Example: Distribution for Higgs parity
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π
− acollinearity distribution (≈ π))
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Figure 1: Transverse spin observables for the H boson for τ± → π±ντ . Distribu-

tions are shown for scalar higgs (red), scalar-pseudoscalar higgs with mixing angle
π
4 (green) and the ratio between the two (black).
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Acoplanarity distribution – Looks good
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Acoplanarity
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KKMC+PHOTOS EXP

Two plane spanned on µ+ and respectively two hardest photons localized in the

same hemisphere as µ+. In exlusive exponentiation this asymmetry appears with

second order matrix element only.
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