Variable	Description
Common variables	
	Cosine of the angle in the plane transverse to the beams between the
$\cos \alpha_{\mathrm{2D}}(\mathrm{B}^+)$	momentum vector of the B ⁺ candidate and the line connecting the
	beam line and the SV.
$p(B^+ vtx)$	Probability of the SV kinematic fit.
L_{xy}/σ_{xy}	Significance of the SV displacement in the transverse plane with re-
	spect to the beam line.
$p_{\mathrm{T}}(\mathrm{B}^+)$	Transverse momentum of the B^+ candidate; in the electron channel it
	is divided by $m_{K^+e^+e^-}$.
$p_{\mathrm{T}}(\mathrm{K}^+)$	Transverse momentum of the K^+ candidate; in the electron channel it
	is divided by $m_{K^+e^+e^-}$.
Muon channel variables	
$\min \Delta R(\mu, K^+)$	$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ distance between the K ⁺ candidate and the
	closest muon candidate.
$\min \Delta z(\mu, \mathrm{K}^+)$	Δz distance between the points of origin of the K ⁺ candidate and the
	closest muon candidate along the beam line direction.
	PF isolation for the p_T -leading muon candidate, defined as a scalar p_T
$\mathrm{Iso}(\mu_{\mathrm{lead}})$	sum all PF candidates, excluding the muon candidate itself, within
	$\Delta R < 0.4$ of the muon candidate and corrected for pileup.
Electron channel variables	
$p_{\rm T}({\rm e}_i)/m_{{\rm K}^+{\rm e}^+{\rm e}^-},$ i=1,2	Transverse momenta of the two electron candidates, divided by
	$m_{\mathrm{K^+e^+e^-}}$
$\Delta z(\mathbf{e}_i, \mathbf{K}^+), \ i = 1, 2$	Longitudinal distance between the points of origin of each electron
	candidate and the kaon candidate.
$\frac{ d_{3D}(K^+, e^+e^-) }{\sigma_{ d_{3D}(K^+, e^+e^-) }}$	Kaon candidate 3D impact parameter significance with respect to the
	dielectron vertex.
$\Delta R(e^+,e^-)$	ΔR between the two electron candidates.
$\Delta R(\mathbf{e}_i, \mathbf{K}^+), \ i = 1, 2$	ΔR between each electron candidate and the kaon candidate.
-/-	Asymmetry of the momentum of the dielectron system and that of the
$\frac{ p(e^+e^-)\times r - p(K^+)\times r }{ p(e^+e^-)\times r + p(K^+)\times r }$	K^+ momentum with respect to the B^+ candidate trajectory, where r
	is a unit vector connecting the PV and SV.
$ID(e_i, i = 1, 2)$	Electron ID BDT score for two electron candidates.
, ,	Relative track-based isolation of the two electron candidates and the
$I_{\Delta R=0.4}^{\rm rel}({ m e}_i),\ i=1,2$	K^+ candidate, respectively, defined as a scalar p_T sum of all addi-
and $I_{\Delta R=0.4}^{\mathrm{rel}}(\mathrm{K}^+)$	tional tracks in a $\Delta R < 0.4$ cone around the candidate, divided by the
$\Delta K = 0.4 \text{(1)}$	candidate's $p_{\rm T}$.
	1.4