Definition
$p_{\mathrm{T}}^{\mathrm{ij}}$
$p_{\mathrm{Tj}}^{\ell_{\mathrm{j}}}$
$p_{\mathrm{T}}^{\text {miss }}$
$\Delta \eta_{\ell, \mathrm{jj}}$ and $\Delta \phi_{\ell, \mathrm{jj}}$
$\Delta \eta_{\mathrm{j}, \mathrm{j}}$ and $\Delta \phi_{\mathrm{j}, \mathrm{j}}$
$\left|\eta_{\ell}\right|$
$\Delta \phi_{\ell, \vec{p}_{\mathrm{m}}^{\mathrm{m} s s}}$
$\Delta \phi_{\ell \mathrm{j}, \bar{p}_{\mathrm{T}}^{\text {miss }}}$
$\min \left(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{\mathrm{j}_{2}}\right) / p_{\mathrm{T}}^{\text {miss }}$

$$
\max \left(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{\mathrm{j}_{1}}\right) / p_{\mathrm{T}}^{\text {miss }}
$$

$\max \left(p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{\mathrm{j}_{1}}\right) / m_{\ell \mathrm{jj} p_{\mathrm{T}}^{\mathrm{m}}{ }_{\mathrm{mss}}}$
p_{T} of the vectorial sum of the W candidate jets
p_{T} of the vectorial sum of the visible particles
Magnitude of the missing transverse momentum vector
$\Delta \eta$ and $\Delta \phi$ between the lepton and the dijet system
$\Delta \eta$ and $\Delta \phi$ between the W candidate jets
The absolute value of the lepton pseudorapidity
$\Delta \phi$ between the lepton and $\vec{p}_{\mathrm{T}}^{\text {miss }}$
$\Delta \phi$ between the vectorial sum of the visible particles and $\vec{p}_{\mathrm{T}}^{\text {miss }}$
Minimum of the lepton p_{T} and the next-to-leading W candidate jet p_{T}, divided by $p_{\mathrm{T}}^{\text {miss }}$
Maximum of the lepton p_{T} and the leading W candidate jet p_{T}, divided by $p_{\mathrm{T}}^{\text {miss }}$
Maximum of the lepton p_{T} and the leading W candidate jet p_{T}, divided by the invariant mass of the system of all visible particles and $\vec{p}_{T}^{\text {miss }}$, which is taken to be massless

