$\Delta \phi\left(\tau_{\mathrm{h}}, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)$
$\Delta \phi\left(\ell, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)$
$\frac{p_{\mathrm{T}}^{j_{1} j_{2}}-p_{\mathrm{T}}^{\mathrm{H}^{ \pm}}}{p_{\mathrm{T}}^{j_{1} j_{2}}+p_{\mathrm{T}}^{\mathrm{H}^{ \pm}}}$
$\frac{p_{\mathrm{T}}^{\mathrm{T}_{2}} \mathrm{j}_{2}}{H_{\mathrm{T}}}$
$m_{\mathrm{T}}\left(\ell, \tau_{\mathrm{h}}, j_{1}, j_{2}, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)$
$\frac{p_{\text {浐 }}}{H_{\mathrm{T}}}$
$m\left(\ell, \tau_{\mathrm{h}}\right)$
$\frac{p_{\mathrm{T}}^{j_{1} j_{2}}+L_{\mathrm{T}}}{H_{\mathrm{T}}}$
$m_{\mathrm{T}}\left(\ell, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)$
$p_{\mathrm{T}}^{\tau_{\mathrm{h}}}$
$N_{\text {jets }}$
$N_{\mathrm{t} \text { res }}$
azimuthal angle between the τ_{h} and $\vec{p}_{\mathrm{T}}^{\text {miss }}$ objects azimuthal angle between the ℓ and $\vec{p}_{T}^{\text {miss }}$ objects ratio of p_{T} sums calculated from $\ell, \tau_{\mathrm{h}}, j_{1}, j_{2}$ and $\vec{p}_{\mathrm{T}}^{\text {miss }}$ ratio of p_{T} of the first two leading jets and the H_{T} m_{T} reconstructed from $\ell, \tau_{\mathrm{h}}, j_{1}, j_{2}$, and $\vec{p}_{\mathrm{T}}^{\text {miss }}$ ratio of the p_{T} of the third leading jet and the H_{T} invariant mass of the ℓ and $\tau_{\text {h }}$ objects ratio of p_{T} of first two leading jets plus L_{T} and the H_{T} m_{T} reconstructed from the ℓ and $\vec{p}_{\mathrm{T}}^{\text {miss }}$ objects transverse momentum of τ_{h} object number of selected jets in the event number of selected $\mathrm{t}^{\text {res }}$ objects in the event

